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Abstract. Merging physics-based with data-driven approaches in hybrid hydrological modeling offers new opportunities to en-
hance predictive accuracy while addressing challenges of model interpretability and fidelity. Traditional hydrological models,
developed using physical principles, are easily interpretable but often limited by their rigidity and assumptions. In contrast,
machine learning methods, such as Long Short-Term Memory (LSTM) networks, offer exceptional predictive performance
but are often criticized for their black-box nature. Hybrid models aim to reconcile these approaches by imposing physics to
constrain and understand what the ML part of the model does. This study introduces a quantitative metric based on Infor-
mation Theory to evaluate the relative contributions of physics-based and data-driven components in hybrid models. Through
synthetic examples and a large-sample case study, we examine the role of physics-based conceptual constraints: can we actu-
ally call the hybrid model “physics-constrained”, or does the data-driven component overwrite these constraints for the sake
of performance? We test this on the arguably most constrained form of hybrid models, i.e., we prescribe structures of typical
conceptual hydrological models and allow an LSTM to modify only its parameters over time, as learned during training against
observed discharge data. Our findings indicate that performance predominantly relies on the data-driven component, with the
physics-constraint often adding minimal value or even making the prediction problem harder. This observation challenges the
assumption that integrating physics should enhance model performance by informing the LSTM. Even more alarming, the data-
driven component is able to avoid (parts of) the conceptual constraint by driving certain parameters to insensitive constants or
value sequences that effectively cancel out certain storage behavior. Our proposed approach helps to analyse such conditions
in-depth, which provides valuable insights into model functioning, case study specifics, and the power or problems of prior
knowledge prescribed in the form of conceptual constraints. Notably, our results also show that hybrid modeling may offer
hints towards parsimonious model representations that capture dominant physical processes, but avoid illegitimate constraints.
Overall, our framework can (1) uncover the true role of constraints in presumably "physics-constrained" machine learning, and
(2) guide the development of more accurate representations of hydrological systems through careful evaluation of the utility of

expert knowledge to tackle the prediction problem at hand.
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1 Introduction

Hydrological models are essential tools for the management of water resources as well as scientific research. Due to their wide
range of applications, the motivations and reasons behind the choices that lead to the specific usage of a model over another
are not clear and the issue of adequacy in the choice of a model is not typically addressed (Horton et al., 2022). Worryingly,
the choice of a model is often relegated to past experience and not adequacy (Addor and Melsen, 2019).

Some authors have argued for the creation of a Community Hydrology Model which could be able to represent different
processes at different scales, making it suitable for a wide range of applications, but there are open challenges that need to be
addressed before such a model can be developed (Weiler and Beven, 2015). In contrast, other authors support the concept of
flexible modeling frameworks that enable users to combine different representations of processes and model constructs (Fenicia
et al., 2011; Clark et al., 2008). Using this approach, a unique model can be developed for a specific application, and the issue
of model adequacy is addressed by testing multiple models as different working hypotheses (Clark et al., 2011).

1.1 Conceptual rainfall-runoff models

So far, the traditional modeling approach has been that of simplified physical concepts in which different compartments in the
hydrological cycle are represented by interconnected storage units and these models obey physical principles. Thus, under-
standing of the physical system is translated into the model and vice-versa, making the models easily interpretable.

Typically, catchment scale processes in a rainfall-runoff model are represented by a reservoir element that can be described

by ordinary differential equations (ODEs):

as(t) _
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Where S(t) represents the conceptual storage of a reservoir element at time ¢, u(t) is time-dependent forcing data, Q(t)
is the response of the reservoir element to the forcing and 6 are the model parameters. Furthermore, f and g are functions
that describe the evolution of storage and output with time (Fenicia et al., 2011). These types of models are physically-based
because the main driving principle of a model is conservation of mass through Eq. 1.

These very simple principles for conceptual rainfall-runoff models have been adapted into modular modeling frameworks
such as FUSE (Clark et al., 2008), Superflex (Fenicia et al., 2011; Dal Molin et al., 2021) and RAVEN (Craig et al., 2020). These
frameworks enable researchers to develop an unlimited range of modular structures for rainfall-runoff models. In practice,
researchers apply these frameworks in model comparison studies using one of typically two approaches: top-down or bottom-
up development. The top-down approach begins with a complex model and reduces its components, while the bottom-up

approach starts with a simple model and gradually increases its complexity (Hrachowitz and Clark, 2017).
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Other studies evaluate an existing set of standard model structures within these frameworks. Although the choice of com-
ponents is often arbitrary and informed by prior experience, a paradigm for automatic model structure identification has been
proposed which systematically tests and identifies the most adequate model structures for a rainfall-runoff model while ac-

knowledging the challenge of equifinality (Spieler et al., 2020).
1.2 LSTMs

Unlike the previous approach, machine learning (ML) and other purely data-driven approaches assume no prior knowledge
and learn the required relationships between variables from the provided data alone. In particular, Long Short-Term Memory
(LSTM) networks have been shown to provide very accurate predictions of streamflow establishing a number of benchmarks
across different data sets (Kratzert et al., 2018, 2019b, c; Lees et al., 2021; Loritz et al., 2024). The performance of these
models can be partly attributed to the flexibility of LSTM networks (LSTMs hereafter) which do not have the constraints that
physically-based models have.

LSTMs (Hochreiter and Schmidhuber, 1997) are a type of recurrent neural network (RNN) which has been widely adapted
in hydrology for rainfall-runoff modeling and/or predicting streamflow (Kratzert et al., 2024). More generally, RNNs and
LSTMs have found applications in modeling dynamical systems (Gajamannage et al., 2023). Indeed, the reason they have been
successful is that this type of neural network adds both memory (that is, states) and feedback to allow for the current output
values to depend on past output values and states (Goodfellow et al., 2016). As mentioned previously, because a catchment
can be represented as a set of ODEs which make it a dynamical system (Kirchner, 2009), the usage of LSTMs for rainfall-
runoff modeling arises naturally. Ultimately, both approaches: conceptual and data-driven models are complementary, and
direct mappings between one another have been identified (Wang and Gupta, 2024).

The issue of lacking mass conservation in LSTMs has been addressed by models which include an additional term that
accounts for unobserved sinks, pointing towards deficiencies in data products (Frame et al., 2023) and this issue of closure
is often a point of discussion and controversy (Beven, 2020; Nearing et al., 2021). Nevertheless, the main criticism of these
models comes from their "black-box" nature, which makes their internal processes difficult to understand. Current methods
for interpreting neural networks typically require the use of a secondary model to analyze the primary one (Montavon et al.,
2018). For example, while researchers have proposed techniques to correlate LSTM hidden states with real-world variables
(Lees et al., 2022), this interpretation process remains complex and requires the implementation of an additional model, known
as a probe. In some cases, even the LSTM cell states themselves have shown successful correlation with the main drivers of
the hydrological cycle (Kratzert et al., 2019a). Although interpreting LSTM states is feasible, researchers also address this
challenge by selecting model architectures that are inherently more interpretable, although these approaches still often require

supplementary models for comprehensive explainability (De la Fuente et al., 2024).
1.3 Hybrid models

Recently, hybrid modeling approaches (Reichstein et al., 2019) have been proposed as end-to-end modeling systems that

combine data-driven approaches with traditional physics-based models. Differentiable models (Shen et al., 2023) represent
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a particular subset of hybrid models that leverage deep neural networks and differentiable programming paradigms (Paszke
et al., 2019; Bradbury et al., 2018) to calculate gradients with respect to model variables or parameters, enabling the discovery
of unknown relationships. In the broader context of scientific machine learning, these models also belong to the framework
of Universal Differential Equations (UDEs), which combine differential equations with neural networks to represent system
dynamics (Rackauckas et al., 2021). The process of solving UDEs allows researchers to identify unknown functions and system
dynamics from data while preserving the underlying mathematical structure of the equations.

One of the first successful applications of the differentiable framework in hydrology was the work of Tsai et al. (2021),
who used an early differentiable modeling approach named deep-parameter learning to regionally calibrate the HBV model
(Bergstrom and Forsman, 1973) and identify spatial patterns in the calibrated model parameters within a large-scale case study.
Their work demonstrated how large datasets could advance the understanding of hydrological processes through differentiable
models by finding continuous spatial patterns for the parameters of a hydrological model. In terms of interpretability, this
represents a major shift, as models calibrated using local optimization techniques often yield parameter estimates that vary
greatly in space.

This was followed by Feng et al. (2022), who used differentiable models to achieve state-of-the-art performance in stream-
flow prediction on the CAMELS-US dataset (Addor et al., 2017). Beyond prediction, the proposed models obtained accurate
correlations with independent data products for evapotranspiration and baseflow index (BFI). This opens up opportunities for
increased interpretability, by possibly constraining the hybrid model further with non-target variables and achieving "a process
granularity that enables providing a narrative to stakeholders" (Feng et al., 2022). Similar to the attempts of making LSTMs
interpretable, comprehensive explainablity is arguably not reached yet, and it seems to come at the price of reduced accuracy.

Subsequent work showed their suitability in ungauged settings (Feng et al., 2023) and on a global scale (Feng et al., 2024a).
The pattern of correlation with external data continued at the global scale where the calculated evapotranspiration from dif-
ferentiable models, an untrained variable, correlated with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite
observations. Differentiable models have also been used to address the numerical challenges of time-stepping models (Song
et al., 2024). Beyond streamflow prediction, differentiable models have been successfully applied to stream temperature mod-
eling (Rahmani et al., 2023) and photosynthesis simulations (Aboelyazeed et al., 2023).

Other approaches to hybrid modeling include using dense neural networks embedded directly into hydrological models to
improve process descriptions within the model itself (Li et al., 2023). Furthermore, the suggested deep parameter learning
approach has been successfully applied and extended independently using the EXP-HYDRO model (Zhang et al., 2025),
with the final hybrid model also obtaining good correlations with unobserved variables from the external ERAS5-Land dataset
(Muiioz-Sabater et al., 2021).

Importantly, current hybrid model applications primarily take advantage of the ability of their data-driven components to
exploit information from large datasets, leaving their effectiveness with smaller datasets as an open question. The data require-
ments for different hydrological modeling methods remain an active area of research (Kratzert et al., 2024; Staudinger et al.,
2025).
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1.4 Key idea

Recent developments show an increasing integration of physics-based and data-driven approaches in hydrological modeling.
This trend is evident in streamflow prediction, where researchers have successfully implemented both neural operator-based
methods, such as NeuralODEs (Hoge et al., 2022), and traditional statistical approaches (Chlumsky et al., 2023). These hybrid
solutions increasingly blur the distinction between purely physics-based and purely data-driven modeling paradigms.
Although this integration is gaining widespread adoption in hydrology, recent work by Acufia Espinoza et al. (2024) raises
important questions that need to be addressed. They demonstrate that incorporating physics-based components or prior knowl-
edge doesn’t yield an improvement in model performance over a purely data-driven approach. Furthermore, hybrid models can
perform well even when the incorporated physical principles oversimplify or misrepresent the underlying system, primarily
because their data-driven components can compensate for these imposed limitations. Moreover, their results question the valid-
ity of using correlation with unobserved variables to justify this approach, as even models where the physics-based component
misrepresents the hydrological system can achieve good correlations with unobserved variables from external data products.
This observation raises fundamental questions about the value and meaning of incorporating physics-based components
into data-driven hydrological models. While purely data-driven methods often achieve high performance, we lack systematic
ways to evaluate when and how the addition of physical principles genuinely enhances model performance and improves the

representation of underlying physical processes. This study addresses this knowledge gap through the following contributions:

1. We introduce a quantitative metric to assess whether a hybrid model’s performance is dominated by its data-driven or

physics-based components in comparison to a purely data-driven benchmark;

2. We demonstrate the characteristics of this metric under synthetic conditions, i.e. we guide the modeler’s intuition about

what to expect if the prescribed constraint is physically meaningful or not;

3. We suggest a diagnostic evaluation routine to better understand the effective hybrid model’s structure, not its (presum-

ably) prescribed one based on the imposed conceptual model;

4. We derive insights about the relative contribution of physics-based and data-driven components from applying this metric

to a large-sample case study, illustrating how "physics may get in the way" under imperfectly known model settings.

In particular, we measure the entropy of both the LSTM-predicted time-variable parameters and the LSTM hidden states
to quantify how much the data-driven component of our hybrid model counteracts the conceptual model’s prescribed con-
straints. Our hypothesis is that low entropy indicates the LSTM needs minimal parameter variation, suggesting the conceptual
constraints accurately describe the natural system. Conversely, high entropy suggests inappropriate constraints (e.g., over-
simplified or enforcing mass balance despite imperfect inputs). High entropy points to an imbalance where the data-driven
component compensates for inadequacies in the conceptual model by manipulating its parameters. Subsequent evaluation of
LSTM-learned parameters helps determine whether this is actually the case. If so, we hope to still identify physical principles

within the hybrid model; otherwise, the term "physics-informed" would be proven misleading and attempts of interpretation



155

160

165

170

175

180

lack foundation. Our proposed approach helps analyze such conditions in-depth, which provides valuable insights into model
functioning, case study specifics, and the strength or limitations of prior knowledge prescribed in the form of conceptual
constraints.

Note that we focus on a typical single-task prediction (here: streamflow) to evaluate the value of adding prior process
knowledge (here: rainfall-runoff) in the form of conceptual models to an LSTM network. Yet, we recognize the potential of
hybrid models for multi-task learning, where models are evaluated on multiple objectives including multiple target variables,
and anticipate that our proposed method can be readily extended to such evaluations in future work.

We demonstrate our approach through two case studies. The first uses synthetic data with a known "true" model that ac-
curately represents the system, allowing us to test our hypothesis and develop practical insights about our proposed metric.
This example builds initial intuition for evaluating hybrid models by measuring entropy in both the conceptual model pa-
rameter space and LSTM hidden state space, demonstrating how performance can be attributed to either the data-driven or
physics-based components.

Our second case study applies these insights to a real-world dataset where no "true" model is known, further demonstrating
the practical application of our metric. For this case study, we also examine LSTM models that receive the states and fluxes
of a previously calibrated conceptual model as inputs. We analyze the entropy of the LSTM hidden states to explore how our
proposed metric can help understand how a conceptual model may inform predictions made in a purely data-driven approach.
Through these two real-world applications, we show that entropy can be used to analyze both data-driven models attempting
to incorporate physical principles and physics-based conceptual models incorporating data-driven components.

The remainder of the manuscript is structured as follows. Section 2 details the types of models employed in this study, data
for the case study and specific aspects of calculating differential entropy in higher dimensions. Section 3 and Sect. 4 cover the

described case studies. Finally, Sect. 5 summarizes our main findings and discusses avenues for future research.

2 Data and methods

In this section, we outline the basic elements of our study, including the dataset employed across both case studies, models used,
and the general methodological framework for training and evaluation. While this section provides a high-level overview of
our methods, the subsequent case-specific sections will discuss more in-depth details, including hyperparameter configurations,

architectural adaptations, data selection criteria, and other specific considerations unique to each experimental scenario.
2.1 CAMELS-GB

CAMELS-GB is a large sample catchment hydrology dataset for Great Britain (Coxon et al., 2020). As with similar large-
sample datasets (Addor et al., 2017; Loritz et al., 2024), it collects data for streamflow, catchment attributes, and meteorological
time-series data for 671 river basins across England, Scotland and Wales.

As in Acuia Espinoza et al. (2024), we based our experimental setup on the approach of Lees et al. (2021). We provide a

brief description here and refer readers to these studies as well as Appendix A in this article for further details.
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As forcing data, we used the time-series of catchment average values of precipitation, potential evapotranspiration and
temperature in the dataset. In addition, as input for the LSTMs, we used 23 of the static attributes that describe the catchments
in the dataset. Of these, 3 were related to topography, 6 to soil, 4 to land cover, 1 to human influence and 8 to climate
characteristics. These are detailed in Table A3. As part of the experimental setup, the data was divided into training, validation,
and testing sets. The training set spans from October 1, 1980, to December 31, 1997; the validation set from October 1, 1975,
to September 30, 1980; and the testing set from January 1, 1998, to December 31, 2008.

2.2 Models
2.2.1 LSTMs

An LSTM is a type of recurrent neural network that effectively addresses the vanishing gradient problem through specialized
memory cells with input, forget, and output gates. This architecture enables LSTMs to capture long-term dependencies in
sequential data, making them valuable for time series prediction. Their capacity to learn temporal patterns without explicit
physical parameterizations has proven particularly effective for modeling streamflow. For a more in-depth description of the

applications of LSTMs in hydrology, we refer to the work of Kratzert et al. (2018).
2.2.2 Hybrid models

The hybrid models used in our study follow the paradigm of Shen et al. (2023) and combine an LSTM network with a con-
ceptual physics-based representation of the hydrological system. More specifically, our models resemble the proposed §HBV
model (Feng et al., 2022).

Figure 1a shows a "pure" LSTM network that serves as our baseline. Then, for each model in Fig. 1b through 1d, there is a
coupling between an LSTM and a conceptual hydrological model. The model in Fig. 1d uses the Simple Hydrological Model
or SHM (Ehret et al., 2020) as the conceptual component, which is a simplified version of the HBV model. As an alternative,
the model in Fig. 1b uses a "Bucket" model i.e. a simple conceptual model that represents the catchment water balance using a
single storage. Finally, the model in Fig. 1c uses a "Nonsense" model, a conceptual model that deliberately represents processes
counter to common intuition: rainfall is immediately captured and stored as baseflow storage, then moves up a soil column to
the unsaturated zone before being transformed into output streamflow.

While SHM represents a model typically used in hydrological practice, the Bucket and Nonsense models serve as alterna-
tive hypotheses to test the limits of the hybrid modeling approach. These models were built using principles from modular
frameworks that still find applications in hybrid modeling (Clark et al., 2008; Fenicia et al., 2011).

In simple terms, the approach to hybrid modeling used here can be conceptualized as a hydrological model with dynamic pa-
rameters. In rainfall-runoff modeling, the use of dynamic parameters originated with data-based mechanistic modeling (Young
and Beven, 1994), which established methods for identifying time-invariant parameters in relation to their time-variant coun-
terparts. More recent approaches generate time-dependent parameters by introducing stochastic processes that represent de-

viations from calibrated static parameters (Reichert and Mieleitner, 2009). In these methods, both static parameters and their
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variable components are jointly calibrated via Bayesian updating using Markov chain Monte Carlo. While theoretically con-
vincing, the practical application of stochastic, time-dependent parameters has been very limited due to identifiability problems
and the computational burden of propagating time-dependent parameters in a rigorous Bayesian framework (Reichert et al.,
2021). With the recent gain in popularity of differentiable models, the idea of dynamic parameters (albeit in a deterministic
setting) has experienced a significant revival in hydrological modeling.

At runtime, the LSTM runs for the entire length of a sequence of inputs and predicts the conceptual model’s parameters at
every time step. These predictions are made in "sequence-to-sequence” mode. After this initial run, the operation of the model
resembles a traditional hydrological model with the distinction being that the model reads a new set of parameters at every
time step along with it’s inputs, therefore the parameters of the model vary in time. Due to the initial run of the LSTM and the
warm-up period of the hydrological model, all hybrid models in this paper use a sequence length of 730 days (2 years) with
only the second half of the predictions (yy°*™) evaluated in the loss function. Furthermore, instead of evaluating the model at
each unique selection of 365 time steps, we limit the number of evaluations to 450 chosen randomly, meaning that the loss
function is calculated using 365 - 450 = 164250 values of y*'™ and y°**. For more details of the evaluation process, please

refer to Acufia Espinoza et al. (2024).
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Figure 1. Sketch of the hybrid models used in this study. The parameters in each model are encircled and highlighted in green.
a) LSTM, b) Hybrid Bucket, c) Hybrid Nonsense, d) Hybrid SHM.
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2.2.3 Performance evaluation

Hybrid models are typically trained to make deterministic predictions. Therefore, depending on the case, we use either the
mean-squared error (MSE) or the basin average Nash-Sutcliffe efficiency (NSE*) (Kratzert et al., 2019c) as loss functions to

evaluate the simulations of our model y;,, with the observed data y,ps.

N
]‘ § obs sim 2

=1

N obs szm) 2

NSE* = % Zle Z
"B N

i1 Sb —|— 6

“4)

In Eq. 3, 7 identifies the predictions and observations on a specific day and N the number of days over which to calculate the
loss function. In the case of NSE*, B is the number of mini-batches in a training batch (typically 256) and the additional term
sp in Eq. 4 represents the standard deviation of the streamflow time-series of the basin b and € is a numerical stabilizer added

for cases where s, is low.
2.3 Entropy-based measure of LSTM-induced parameter variability

For our evaluation, we aim to measure how much the LSTM makes the conceptual model’s parameters vary over time to achieve
an optimized performance during training. The underlying premise is that, when using a perfect model, constant true parameter
values can be found during optimization, and the "LSTM-induced variability" will be zero. If the conceptual constraint is
sufficiently honored by the LSTM, we expect a mild or null variability in the predicted timeseries of parameter values. In
contrast, if a severely wrong representation of the true system is used as conceptual model, the LSTM will compensate through
highly time-dependent parameter values, and the variability in parameters will be high.

This analysis can also be extended to the hidden states of the LSTM network itself. As examples, in Sect. 3.3 and Sect. 4.3,
we examine cases where this extension is necessary to compare models with different numbers of parameters. In Sect. 4.5 we
also look at models with different numbers of inputs.

Although there are several measures of variability, we choose to measure this variability through entropy, as it does not
require any assumptions about the type or shape of the statistical distribution of the analyzed data. For analyzing the entropy
of timeseries data, we have to evaluate continuous (differential) entropy (Cover and Thomas, 2006; MacKay, 2003) as shown

in Eq. 5 with p denoting probability density functions (PDFs) of a random variable X with support X

H(X) = - / p()logp(z)dz, 5)

X
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Beirlant et al. (1997) provide a comprehensive overview of different common approaches to estimating differential entropy
from data. In this study, we will use the method proposed by Kozachenko and Leonenko (KL) based on nearest neighbor

distances (Kozachenko and Leonenko, 1987) shown in Eq. 6:

N
H(X) = (N) = p(8) + log(er(d) + ¢ D log(pl(0), ©

where 1) is the digamma function d%log(I‘(z)), N is the number of points in a sample, k is a hyperparameter specifying
the number of nearest neighbors used in the estimate, ¢1(d) is the volume of a d-dimensional unit ball, d is the number of
dimensions of the data and p{ (i) is the distance between z; and its k'" nearest neighbor. The KL estimator for entropy has
been shown to be accurate even for data in higher dimensions (Alvarez Chaves et al., 2024) and was implemented as part of
the UNITE toolbox, a suite of tools we have developed for practical applications of information theory in model evaluation,

which can be found in the code availability section of this article.
2.4 Diagnostic routine to evaluate hybrid model structure

Analyzing the variability in parameter or hidden-state space highlights cases where the prescribed conceptual constraint fails
to accurately reflect the underlying system dynamics. Such discrepancies fall into two categories: cases where the physics
are appropriate but other reasons make the model struggle (e.g., biased or highly uncertain input data), and cases where the
physics constraint itself is problematic (e.g., due to neglected or misrepresented processes). To distinguish between these cases
and gain insights into system understanding and model development, we propose a tailored diagnostic evaluation routine that
scrutinizes the joint behavior of the LSTM-learned parameters. We demonstrate the effectiveness and diagnostic capabilities

of this approach through didactic examples in Sect. 3.

3 Didactic examples illustrating the proposed workflow
3.1 Motivation

Synthetic examples here serve to create intuition about the role of the data-driven component in hybrid hydrological models.
Specifically, we will demonstrate the role of LSTMs predicting time-variant parameters of conceptual hydrological models.

We aim to answer the following questions:

1. How does the data-driven component behave in presence of a perfect conceptual constraint (i.e., the physics of the

data-generating process are fully reflected in the conceptual model)?

2. How much variability in the LSTM-predicted parameter values will be detectable if the conceptual constraint is reason-

able, but not a complete representation of the data-generating process?

3. How will the data-driven component react if the conceptual constraint is not reflecting the data-generating process at all?

10
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Specific details for the experimental set up of these didactic examples are described in Appendix Al. The main point to
highlight here is that all models were trained using mean-squared error (MSE) as the loss function (Eq. 3). The reason is that
the data used for y,,s was created synthetically by running an initial "true" model; therefore, there was no need to account for
differences in the magnitude of the streamflow signals between basins.

As stated in Sect. 1.1, the main principle driving conceptual hydrological models is the conservation of mass in different
reservoirs or storages within a model. Following Eq. 1, in a simple case of one storage, conservation of mass can be written
as % = P — @ — ET, with P being the input (precipitation) and ET" and () being two outputs (evapotranspiration and out-
put streamflow, respectively). Let us assume a model that represents a typical power reservoir in which the storage-outflow
relationship is described by the power function () = 5—;, where  and k are model parameters with an additional parameter «
being used as a correction factor for the output flux of E’T". This model and its governing equations are shown in Fig. 2a. Using
the precipitation and evapotranspiration time-series of a subset of basins in CAMELS-GB (cf. Sect. 2.1) and parameter values
a=0.8, §=1.2, k=24.0, we create a synthetic "observed" streamflow time-series that is shown across all plots in Fig. 2
(subplots b, d, f, i, ] and o). This initial model is considered our "synthetic truth" because it was used to generate the target data
("observed" streamflow) for the competing formulations of hybrid models described in Sect. 3.2.

We will analyze the resulting time-varying parameter values of the alternative hybrid models, as predicted by their respective
LSTM-component, and interpret these results given our knowledge of the true model structure in Sect. 3.3.1. Then, we will
explain how we measure variability as the entropy of the resulting parameter distributions in Sect. 3.3.2, and why we move to
measuring the "activity" of the LSTM in its hidden state space in Sect. 3.3.3. We summarize the key points of our proposed

approach, as illustrated on these didactic examples, in Sect. 3.4.
3.2 Hybrid models

To investigate the three research questions posed above, we setup an LSTM model as our data-driven benchmark and four

alternative hybrid models to predict the time-series of observed discharge, illustrated in the left column of Fig. 2:
1. We use an LSTM to directly predict streamflow from the inputs of precipitation and evapotranspiration (Model 0);

2. We couple the "true" model defined above with an LSTM network to predict its parameters «, S and k, as described in

Sect. 2.2.2 (Model 1);

3. We substitute the power-reservoir with a linear reservoir that follows the storage-outflow relationship Q = %, and add
a threshold parameter S,,,, such that any excess storage directly becomes streamflow @ = (S — Sy42) if S > Siaz

(Model 2);

4. We add an additional reservoir to Model 1 which receives the outflow of the previous reservoir % = (1 — Q2 and both

reservoirs have a linear storage-outflow relationship (Model 3);

5. We extend the storage-outflow relationship of Model 1 with an additional threshold parameter S that reflects the mini-

mum storage required to generate streamflow (Model 4).

11



315

320

325

330

335

340

In Fig. 2: Model 0 represents a case where we only have an LSTM which predicts streamflow, i.e. a purely data-driven
model. Then, based on the distinction between structures and processes, we have categorized each hybrid model according to
its architectural design and process representation. Model 2 maintains the correct one-reservoir architecture of the true model
but implements an incorrect process representation by substituting the true exponential outflow relationship with a simple
linear relationship. Model 3 deviates from the true model in both aspects: it uses the same incorrect linear outflow relationship
while also incorporating an additional storage reservoir that doesn’t exist in the true model. Model 4 preserves the correct
architecture of the true model but becomes overparameterized in its process representation by introducing an extra parameter,
Sp. Interestingly, when Sy is set to zero, Model 4’s process representation perfectly aligns with the outflow relationship in the
true model. We explore these relationships further in Sect. 3.3.1. Additional exemplary model architectures are presented in

Appendix B.

tng The LSTM architecture of the baseline model

and the hybrid models consists of ten hidden states. For our entropy analysis of the hidden states to be meaningful and fair.
it is important to compare models with the same architecture. The choice of ten hidden states and-trained-on-was determined

by the minimum required for both the baseline model and hybrid models to achieve equal performance. To aid in this process
the models were trained on a subset of five randomly selected basins (76005, 83004, 46008, 50008, and 96001) from the

CAMELS-GB dataset. In general, using multiple basins improved the training process for all models, particularly for the pure
LSTM (Model 0), validating current standard practices (Kratzert et al., 2024). However, the purpose of this analysis was not
to achieve maximum performance for a given task ;-but to compare hybrid approaches on equal grounds. Fe-We base our
entropy analysis on equal performance to ensure fair statements about the role of the conceptual component in hybrid models.
Additionally, to allow for extensive repetitions and alterations, we deliberately kept the training effort low (unlike the real-world
case study;; see Sect. 4).

The selection of these specific basins for this example is not critical. In our true model, we have defined a data-generating
process that does not consider basin-specific characteristics, meaning that the models could be trained on any set of basins. The
only requirement is that basins have sufficiently long time series of precipitation and evapotranspiration data, which is satisfied
by all CAMELS-GB basins. We used only the precipitation and pet time series from each basin and created our own synthetic
"observed" streamflow as described in Sect. 3.1 for model training. The train/test split followed the approach detailed in Sect.
2.1. Parameter variation ranges for the conceptual model components are shown in Table Al. Since the target is the product of
a model, there was no need to adjust the loss function for specific data characteristics; therefore, we chose MSE (Eq. 3) as the
loss function. Each model was trained for a specific number of epochs using model-specific learning rates. We refer readers
to the synthetic example logs for detailed specifications of each model. The reported testing metrics are averaged over five

realizations of each model obtained from random initializations using different seeds.
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Figure 2. Didactic examples, demonstrating the evaluation of hybrid hydrological models by measuring the entropy of the model parameters
and the LSTM hidden-state space. Left column: Schematic illustration of hybrid model structures, with Model 1 representing the "true"
conceptual physically constrained model coupled with the LSTM as a reference. Center column: Segment of observed/predicted discharge

time-series. Right column: Time-series of LSTM-predicted parameters and their univariate distributions.
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3.3 Analysis and discussion of results
3.3.1 Visualization of time-varying parameters

For illustration purposes, we show a short five-month period (November 2004 to April 2005, Cumbria and Carlisle floods of
2005 in the UK (Harper, 2015)) in Fig. 2 to demonstrate the ability of all models to perfectly fit the data both during high and
low flow conditions. The center column shows the predicted streamflow by an exemplary run of the hybrid model, and the right
column shows the corresponding parameter trajectories. The reported numerical values of NSE and entropy are for the whole
testing period of January 1, 1998, to December 31, 2008, and averaged over the five runs based on different random seeds for
initialization. The density plots in the right column of Fig. 2 were created using a kernel-based estimate for density (Waskom,
2021), but the reported individual entropies of each parameter and the joint entropy of the model parameters were calculated
using the KL estimator described in Sect. 2.3.

Pure LSTM (Model 0) For this case we see that the pure LSTM is able to make accurate predictions, perfectly fitting the
observed data. As such, this model serves as our baseline and any additional knowledge should make prediction easier (reduce
entropy) or more difficult (increase entropy).

Perfect physics constraint (Model 1) In the case of Model 1, where the LSTM is coupled to the true conceptual model, we
hope to see that the data-driven component does nothing, i.e., it doesn’t interfere with the perfect representation of the natural
system that is provided by the conceptual constraint. Indeed, we find that the network predicts practically static parameters
as shown in Fig. 2g, with almost negligible deviations only resulting from the effect of the sequential nature of the LSTM.
Reassuringly, the LSTM is able to recover the true parameter values of @ = 0.8, 5 = 1.2, and k£ = 24.0. As a logical conse-
quence, this hybrid model is able to perfectly mimic the observations with an NSE of 1.0, as they were created with the same
conceptual model and parameter values.

Imperfect physics constraint (Models 2 and 3) The behavior of the time-varying parameters is expected to differ when
the LSTM is coupled to a conceptual model that does not adequately represent truth. Subplots j) and m) of Fig. 2 illustrate the
behavior of the parameters when the conceptual component of the hybrid model has been incorrectly specified. In these cases,
we can see how the LSTM varies the parameters in order to achieve good predictions despite an imperfect conceptual model
(i.e., the LSTM compensates for model structural error). This behavior is apparent in the variation of the recession constants
for Model 2 (k) and Model 3 (k; and k3). In situations of low flow, the recession constants increase, whereas for situations of
high flow, the reverse is true.

Over-parameterized constraint (Model 4) In the case of an over-parameterized conceptual model, the role of the data-
driven component is somewhat unclear. All parameters might be tweaked simultaneously in a manner that changes over time,
to achieve a best-possible fit with the observed data. Such a case would presumably spoil any attempts to interpret the inner
functioning of the hybrid model. However, in this case, we observe that the parameters of Model 4 (Fig. 2p) are optimized to
have almost constant values. In fact, the LSTM is able to correctly identify that the threshold parameter Sy is not meaningful

in predicting the output variable, so it is efficiently driven to a value of 0.0. By doing so, the LSTM transforms the prescribed
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constraint in the form of the over-parameterized conceptual model into an architecture that is equivalent with the true one. This
allows the LSTM to identify the true values of the other three parameters.

In Appendix B, we present four additional hybrid model versions that cover one under-parameterized case (Model 5 lacks
the parameter (3), and three over-parameterized cases of different types (concerning model structure and parameters). The
insights from these scenarios match what we have reported for the three broad classes above: the under-parameterized model
struggles with the effect that parameters are heavily varied, while the LSTM in over-parameterized models produces almost

static parameters in a combination that counteracts the over-parameterization best.
3.3.2 Measuring entropy of conceptual model parameter space

To quantify the variability of LSTM-predicted parameter values over time, we aggregate all individual values into a sample.
These samples are shown as distributions in subplots g), j), m) and p) of Fig. 2. Wide distributions result for cases where
parameters vary significantly over time, and very narrow distributions for cases of almost static behavior. We can quantify the
entropy of the joint distribution of the parameters by using Eq. 6 as described in Sect. 2.3, with entropy being larger for wide
distributions and lower for narrow distributions. Let it be noted that we are calculating the entropy of the parameters predicted
by the neural network which occupy a range of values from 0 to 1 as shown in the right-hand side of the right-most subplots
in Fig. 2, such that the measurements of entropy are not affected by the scale of the parameters. Hence, these values occupy
a range of values of 1, and considering that the maximum entropy (of a uniform distribution) over this value range is 0.0, the
calculated entropies are negative (with more negative meaning smaller entropy which equals smaller variability).

Perfect physics constraint Comparing the entropies obtained for Models 1, 2 and 3, we can confirm that Model 1 (LSTM
coupled to the true conceptual model) shows the lowest entropy. In a theoretical ideal case, the LSTM would have been able to
perfectly recover the true values of o, 8 and k without any variation in time at all, and that would lead to a theoretical entropy
of —oo (but this is an unrealistic expectation given the difficult task required of the LSTM, and numerical imprecisions).
Nevertheless, the variations of the parameters are very small and thus also the calculated entropy is significantly smaller than
for Models 2 and 3.

Imperfect physics constraint We find that Model 2 generates less entropy than Model 3, which means that the conceptual
model in Model 2 better represents the true model underlying the observed data (while definitely being further from the
truth than Model 1). In this sense, the proposed entropy measure can be considered to represent "closeness" of a model’s
representation of the true system.

Over-parameterized constraint Measuring the entropy of the parameters for Model 4 distorts this result. As Model 4
permits a parameter configuration that makes the model equal to Model 1, the predicted parameters of the LSTM are again
almost constant, and the calculated joint entropy is even lower than for Model 1. Note that this is a special case of an over-
parametrized model. In Appendix B, and particularly in Fig. Blg we show an example of an over-parametrized model in which
the true model is not findable.

Comparing Conceptual Constraints on the Entropy Axis To gain more intuition about how our hybrid models are ranked

based on entropy, we place them all (including the ones presented in Appendix B) on the same entropy axis (Fig. 3).
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Figure 3. Benchmarking axis based on the entropy of the time-varying parameters in the different hybrid models (didactic examples).

We would expect to find Model 1 furthest to the left in Fig. 3, because the LSTM has nothing to adjust, so parameters are
practically constant over time and their joint entropy is minimal. However, we see that is not the case and, among the models
discussed in this section, it is Model 4 which creates the lowest entropy.

This is an artifact of comparing entropies in different dimensions. As an example, consider X to be a random variable that

follows a multivariate Gaussian distribution, i.e. X ~ N (u, ) with € R? and ¥ € R9*4, The entropy of X is then given as:

H(X)= 6%105;(27re) + %log (det (%)) @)

We can see that the entropy of X is directly proportional to the determinant of 3. If we add a single dimension to > with
a very low value on the main diagonal (a timeseries of almost-constant values will have close-to-zero variance) and all off-
diagonal entries being practically zero, the value of entropy tends to decrease because the decrease of the second term through
multiplication of the original determinant with a value smaller than one tends to outweigh the increase of the first term.

There are two additional cases which show lower entropy due to the number of parameters in their conceptual models
(Models 6 and 8) and one further example which has entropy close to Model 4 because it shares a similar inflow-outflow
relationship (Model 7). The issues with these results are explained further in Appendix B. While explainable through theory,
this ranking is counter-intuitive and does not meet our expectations for a metric that unifies the evaluation of arbitrary hybrid
models. We have illustrated these results here to allow the reader to follow our argument and move with us deeper into the

hybrid models, i.e., into the LSTM hidden-state space.
3.3.3 Measuring entropy of LSTM hidden state space

To overcome the challenge of appropriately comparing the "activity” of the LSTM for models with differing numbers of
parameters, we propose that the entropy of the coupled system should not be measured in the space of the parameters but in the
space of the hidden states of the LSTM instead. Because all of the networks in this example have the same number of hidden
states (10) which move in the same range of values (—1 to 1 due to the tanh function in the operations in the network), the
calculated entropies will be comparable between themselves.

The entropy values obtained for the hidden state spaces of all four models are reported in the left column of Fig. 2. The
hidden states of the LSTM in Model 1 have smaller variations than in the rest of the models, and thus the entropy of this
network is the lowest among all candidates. This measure of variability has an even more intuitive interpretation as how much

the LSTM has to compensate for a misspecified conceptual constraint.
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Comparing Conceptual Constraints on the Entropy Axis When placing the models on our universal entropy axis in Fig.
4, Model 1 now appears furthest to the left, which meets our expectation that the true constraint should coincide with minimal
"activity" of the LSTM. We also see the same ranking between Model 2 and Model 3, which again makes intuitive sense,
as using a one-reservoir-model better matches the true system. Finally, rearranging by the entropies of the LSTMs, Model 4
is now to the right of Model 1, which identifies it as a misspecified conceptual model, but honors that the resulting hybrid
configuration is very close to the true system, as opposed to the proposed configurations in Models 2 and 3. Hence, measuring
the entropy of the LSTM hidden states prevents us from disingenuous conclusions obtained by making unfair comparisons

between models with different number of parameters.
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Figure 4. Benchmarking axis based on the entropy of the trajectories of the LSTM hidden states in the different hybrid models and the pure
LSTM (didactic examples). The division of the green and red backgrounds serves to identify the addition of "good" and "bad" constraints,

respectively.

Pure LSTM as a Reference One more advantage of measuring the entropy directly in the hidden states of the LSTM is that
any hybrid model can now be compared to a single "pure" LSTM, i.e., an LSTM with a simple linear head layer instead of the
conceptual model. The addition of a conceptual head layer should make the prediction task of the LSTM easier - at least this is
the prevailing idea when promoting "physics-informed" ML. In our setting, adding useful information through the conceptual
constraint should reduce the required activity of the LSTM, and hence, entropy. If, by contrast, the conceptual constraint made
the task even more difficult, it would add entropy. Marking the pure LSTM as Model 0, we can create a divide on our axis
between models that add "good" (helpful) physics (here: Models 1 and 4), and models which add "bad" (misleading) physics
(here: Models 2 and 3). In addition, Models 5, 6, 7 and 8 are discussed in Appendix B, where it is shown that they also fall
consistently in these categories of "good" and "bad".

On the Complexity of the Prediction Task The LSTM by itself can be seen as a baseline of the required complexity for
accomplishing the prediction task. The proposed measure of entropy can be related to the overall complexity of the network as
the entropy of the trajectories of the states in dynamical systems has been related to their Kolgomorov complexity (Galatolo
et al., 2010). In theory, if the true model is specified as the conceptual head layer, the entropy of the LSTM is reduced to the
theoretical minimum (—oo) and the required entropy or complexity to accomplish the specific modeling task is completely
contributed by the conceptual head layer. Hence, the entropy of the conceptual head layer in Model 1 should be exactly the
same as the entropy of the pure LSTM (Model 0), but measuring the entropy of the conceptual head layer by itself is not

straight-forward and remains an open challenge.
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3.4 Summary of the proposed approach

Let us distill our proposed approach as a diagnostic framework that discerns the adequacy of conceptual constraints in hybrid
models. When the prescribed conceptual model accurately represents the natural system, the LSTM will exhibit minimal inter-
vention, effectively endorsing the conceptual model. Conversely, when the conceptual constraint fundamentally misrepresents
the system dynamics, the LSTM will demonstrate high activity, working extensively to overcome the inherent limitations of the
prescribed conceptual model. This difference in LSTM activity serves as a clear signal for assessing the fidelity of our initial
conceptual model.

These situations can be detected by the following proposed workflow:

1. Visualize the time-sequence of LSTM-predicted parameters to gain insight about how heavily the data-driven component
acts against the physics constraint; draw conclusions about compensation mechanisms and judge whether the physics

constraint is sufficiently honored or massively altered in the hybrid model.

2. Quantify the joint entropy of the LSTM hidden state space trajectories; compare against a pure LSTM for the predic-
tion task for reference, and, ideally, against alternative formulations of conceptual constraints by placing all resulting

entropies on the universal model evaluation axis.

3. Interpret the results: are the conceptual components of the hybrid models an advantage or a burden in solving the predic-
tion task? Which configurations are more helpful than others? Try to understand why from step 1. Over-parameterization
will tend to be helpful but with some parameters driven to "unphysical" values; under-parameterization will make the

task unnecessarily difficult.

From the analysis of the didactic examples, we specifically want to highlight that the constraint-morphing capability of
the data-driven component is both an opportunity and a risk: it is very promising to see that the flexibility of the LSTM is
not abused, but rather it points us towards parsimonious model structures (as in Model 4). At the same time, this constraint-
morphing happens under the hood (e.g., resulting NSE is practically the same for all our analyzed model versions!) - it is not
safe to say that a hybrid model naturally satisfies the constraint we have prescribed. As such, we should be careful with stating
that a model is "physics-constrained" before investigating in detail what the final version of the LSTM is doing. This is where
our proposed diagnostic routine helps.

Even though in this section we focused on cases of equal performance, in Sect. 4 and more specifically Sect. 4.3.3 we analyze
a case study with real data where no true model exists and our proposed hypotheses for hybrid models yield different results in
terms of both predictive performance and entropy. It is also important to note that the issue of uncertainty is not addressed by
these synthetic examples because the output of the true model, and therefore our observed data, were unaffected by noise. Our
measurement of entropy could certainly be part of a larger and more comprehensive framework that includes both epistemic and
aleatory uncertainty (Gong et al., 2013) and probabilistic model representations, but such a framework is beyond the scope of
this article. Nevertheless, any measurement of entropy will always contain a fraction attributable to the intrinsic chaos of data,

which becomes particularly relevant when transitioning from synthetic to real-world applications. Interestingly, equifinality did
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not pose an issue with synthetic data in our experiments, as all models achieved perfect predictive performance and the model
was always identifiable under the right conditions. This matches the experience of Spieler et al. (2020). However, in real-world
applications, equifinality is likely to be more pronounced due to measurement errors, incomplete observations of the system
under study. and other sources of uncertainty. This issue is discussed further in Sect. 4.3.2._

4 Case study: CAMELS-GB

Following the intuition developed by the didactic examples, we apply our developed metric to a case study in large sample
hydrology using the CAMELS-GB dataset.

Both the pure LSTM and the LSTMs coupled with the conceptual models have 64 hidden states each, which makes them
directly comparable between themselves. All models were trained using the Adam optimizer (Kingma and Ba, 2017) with a
learning rate of 1 x 10~2 and a different number of epochs depending on the model, with the number of epochs always ranging
between 28 and 32. The ranges allowed for the parameters of the conceptual models are listed in Table A2, the static attributes
used as input to the LSTM in all models are listed in Table A3.

Further details about the study setup are presented in Appendix A2 but this analysis follows the results from Acufia Espinoza
et al. (2024), so we first summarize their main findings to put these new results into context. The meticulous reader will
notice some differences in the results between the previous study and these current results. These differences are discussed in

Appendix C and do not impact the main findings in either study.
4.1 Motivation or: why do we want hybrid models?

Hybrid models have demonstrated significant improvements in hydrological predictions across multiple applications. These
include enhanced accuracy in daily streamflow prediction (Jiang et al., 2020; Feng et al., 2022), better predictions in large
basins (Bindas et al., 2024), and more precise estimates of variables like volumetric water content (Bandai et al., 2024) and
stream water temperature (Rahmani et al., 2023), as some examples. In each case, the hybrid approach outperformed traditional
physics-based conceptual models, including the EXP-Hydro and HBV models, the Muskingum-Cunge river routing method,
and a partial-differential-equation-based description of the physical process, respectively. However, while these improvements
are of note and leaving aside aspects of lacking interpretability, the central question of "to bucket or not to bucket" was: given
the remarkable success of purely data-driven approaches, is the additional effort of combining them with conceptual models
actually worth it?

Acufia Espinoza et al. (2024) conducted a model comparison study that evaluated four different approaches: a purely data-
driven LSTM and three conceptual hydrological models, each later transformed into hybrids through the process described in
Sect. 2.2.2. The three conceptual models: SHM, adapted from Ehret et al. (2020), Bucket, and Nonsense represent different
hypotheses of the hydrological system. Among these, SHM is a conventional hydrological model suitable for practical appli-
cations, while Bucket and Nonsense serve as contrasting cases: Bucket being an oversimplified representation and Nonsense

incorporating physically implausible assumptions.
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We evaluate the streamflow prediction performance of these seven models using the Cumulative Density Function (CDF)

to aggregate model performance across all 671 basins in the dataset. Figure 5 presents these results, while Table 1 provides

530 key metrics derived from the CDF analysis. The two considered metrics are the median NSE, which corresponds to the CDF’s
middle quantile (the higher the better), and the "area under the curve" (AUC). The AUC serves as a summary metric where
lower values indicate better performance, because the AUC becomes minimal if NSE only takes on maximum values (Gauch

et al., 2021).
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Figure 5. Comparison of model performance between conceptual models with static parameters (dashed lines), hybrid models with dynamic

parameters (solid lines), and the pure LSTM for all CAMELS-GB basins.

Table 1. Comparison of model performance quantified by area under the NSE curve (AUC) and median NSE

Model AUC  Median NSE
LSTM 0.123 0.865
SHM 0.267 0.747
Hybrid SHM 0.216 0.839
Bucket 0.395 0.582
Hybrid Bucket 0.147 0.852
Nonsense 0.477 0.511
Hybrid Nonsense ~ 0.265 0.801

Figure 5 demonstrates the effect of combining conceptual models with LSTM networks. The effect is visible as a drastic shift
535 to the right from the dashed lines (purely conceptual models) to the solid lines (their hybrid counterparts). This improvement
is further quantified in Table 1, where the metrics consistently show improved performance for hybrid versions compared to

their original counterparts.
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Despite these improvements, our results show that incorporating conceptual models did not exceed the performance of a
pure LSTM approach (in Fig. 5, the LSTM appears farthest to the right). Interestingly, performance improves most when
hybridizing the oversimplified Bucket model, and this hybrid model matches the LSTM performance most closely. Intuitively,
one might have expected the LSTM’s flexibility to help the Nonsense model most, followed by the Bucket model, and finally
the SHM model. Furthermore, one might have expected that after hybridization, the Hybrid SHM would perform best and
exceed the pure LSTM. Instead, what we observe suggest that the SHM constraint actually limits hybrid performance, adding a
Bucket-type constraint is more successful, and that none of these constraints improve prediction skill over the LSTM baseline.

These findings raise several urgent questions:

— Why do apparently "bad" physics allow for better hybrid performance than "good" physics?
— What can we conclude from hybrid performance after all if it does not reflect process fidelity?

— Do physics get in the way of successful data-driven modeling?

We note that one untouched advantage of the hybrid approach lies in its ability to directly derive unobserved variables, such
as soil water equivalent (SWE), without requiring secondary models. Hence, we wish to provide modelers with tools to obtain

satisfying answers to these questions and to better inform and justify hybrid modeling in future research and practice.
4.2 Performance on individual basins

To better understand the mechanisms of these hybrid models and their impact on model performance, we will investigate
the prediction task for five individual basins in detail. These five basins were carefully chosen to facilitate discussion in this
section, as they demonstrate cases in which all hybrid models achieve similar performance (as in Sect. 3) while having different
rankings based on our proposed entropy metric. In Sect. 4.3.3 we draw statistical conclusions about the prevailing behaviors
for all basins.

Figure 6 exemplarily shows five basins where the performance gap between hybrid and non-hybrid versions is again very
clear. However, these basins all share the characteristic that all models, including the deliberately implausible Nonsense model,
reach very similar performance when hybridized. This seems counterintuitive in several aspects and again supports the research
questions we have formulated above, as we would have expected to see differences in performance among the hybrid models
depending on the constraints imposed. Does the LSTM truly not care what the conceptual constraint is as it can effectively
transform any constraint into the same end product?

Furthermore, we would have expected (hoped?) that at least the physics-plausible constraint of SHM would have helped
solve the prediction task, yet this is only marginally true for basins 5003 and 41025, which show slightly higher performance
for the Hybrid SHM model. Confusingly, in the specific case of basin 5003, all constraints (physics-plausible or not) seem to
help. Overall, Fig. 6 highlights the urgent need for diagnostic analysis tools that help us understand what it actually means to
constrain a data-driven model with a conceptual hydrological model and how much physics remain inside.

Since we are in a real-data setup now, there is no "true" model or constraint that we could use as a reference for minimal

entropy on our evaluation axis. We will therefore seek the LSTM component that produces the least entropy. Our main anchor

21



575

580

585

%
»

73014 — ‘ LSTM

SHM

Hybrid SHM
5003 - Bucket & O

Hybrid Bucket

¥¢ Nonsense
41025 - % Hybrid Nonsense __». *
18014 # R -
23008 e : Y
T
0.3 0.4 0.5 0.6 0.7 0.8
NSE

Figure 6. Comparison of model performance between conceptual models with static parameters, hybrid models with dynamic parameters,

and the pure LSTM for individual CAMELS-GB basins.

will be the performance of the pure LSTM, dividing between meaningful added knowledge and misguided assumptions that

require compensation by the LSTM.
4.3 Analysis and interpretation of resultsentropy diagnostics
4.3.1 Measuring entropy of LSTM hidden state space

Following the intuition developed in Sect. 3, we address the questions in the previous section through an entropy analysis of
the LSTM’s hidden states for the prediction of the five individual basins introduced above.

Figure 7 shows the calculated entropy during the testing period for both the pure LSTM and the hybrid models. This is
equivalent to the entropy axis we had introduced in our didactic examples, with the pure LSTM marking the divide between
"good" and "bad" constraints. Overall, we find that the ranking varies per basin: in some cases (basins 23008, 18014, 41025),
the pure LSTM shows by far the lowest entropy and hence none of the constraints can be considered useful for predicting
streamflow at these basins; for the other basins, at least some conceptual constraints proved helpful, in basin 5003 even all of
them.

Focusing on basin 5003, the observed ranking aligns with our expectation that SHM is the only plausible and hence most
useful constraint. This suggests that SHM’s imposed structure reasonably reflects the natural system, effectively transferring
part of the entropy to the physics-based component. However, any conceptual hydrological model reduces the network’s en-
tropy compared to the pure LSTM, even the Nonsense model, which opposes our expectation that this constraint should not be
useful. Notably, Hybrid Nonsense shows even lower entropy than Hybrid Bucket, indicating that some complexity is necessary

and a too simple conceptual model offers little benefit.
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Figure 7. Entropy of the trajectories of the LSTM hidden states in the different hybrid models and the pure LSTM for individual CAMELS-
GB basins. The division of green and red backgrounds matches that of Fig. 4.

Basin 73014 presents a counterexample where Hybrid Nonsense performs best (produces the least entropy) and Hybrid SHM
is located to the right of the LSTM, suggesting that a plausible hydrological model can even make predictions more difficult.
This finding highlights the unpredictability of hybrid models and the need for deeper investigations to achieve interpretability;

simply imposing a constraint does not do the job.
4.3.2 Visualization of time-varying parameters

In this section, we demonstrate the power of visually analyzing the time-series of the LSTM-predicted parameters on the
example of exploring why the Nonsense model creates the least entropy for basin 73014. This analysis illustrates how our
entropy-based metric contributes to a broader evaluation framework where models are assessed not only by quantitative metrics
but also by a qualitative evaluation of their behaviour (Gupta et al., 2008).

Figure 8 (top panel) compares the differences between observed and simulated streamflow values for the non-hybrid and
hybrid versions of the Nonsense model in this basin. The Hybrid Nonsense model shows drastically improved predictions,
represented by the solid line in the streamflow plot, compared to its non-hybrid counterpart (dashed line). That means that
allowing the parameters to vary over time greatly improves the ability of this model to make accurate predictions.

To better understand the adjustments made by the LSTM, let us first look at the original structure of the Nonsense model,
which is considered physically implausible due to the arrangement of its hydrological storage units (see schematic illustration
in Fig. 1c). Counter-intuitively, water from direct precipitation or snowmelt initially enters the model through the baseflow
storage, typically considered the unit with the longest retention time. The model then routes water through an unusual sequence:
it moves next to the interflow storage which once again has a longer residence time, then it passes into the unsaturated zone,

loses some mass through evapotranspiration, and is finally transformed into the streamflow output. Ignoring their physical
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Figure 8. Differences between simulated streamflow, states and model parameters of the Nonsense and Hybrid Nonsense models for basin

73014. Both the states and model parameters are shown on a scale relative to their mean.

interpretation for a moment, the Nonsense model basically consists of a series of three storages connected sequentially, forming
a cascade-like arrangement that essentially transforms the storages into a dampening function, which delays the input signal.
The adjustments made to this implausible model structure by the LSTM component of Hybrid Nonsense become apparent
when examining its states and parameters (bottom left and right panel in Fig. 8). To simplify interpretation, all plots have been
normalized by the mean value of the corresponding state or parameter over the analyzed period. This normalization sets the
mean value to 1.0 on the plot, with the lines indicating deviations from the mean. However, that doesn’t mean that parameters

for Nonsense and Hybrid Nonsense have similar or even values that are close to each other. For example, the value of sy a4
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for Nonsense is 398.6 mm while the mean value for Hybrid Nonsense is 83.5 mm. This reflects a typical behaviour in these
hybrid models were the the parameters for the non-hybrid and hybrid model can occupy drastically different ranges.

Analyzing the static parameters in the Nonsense model, the dampening behavior of the storages becomes evident: the dashed
lines for the baseflow storage sb and the interfow storage si closely resemble the output hydrograph, but are dampened too
strongly in the unsaturated zone storage su. However, this behaviour changes significantly when the model becomes Hybrid
Nonsense. Specifically, the line for sb becomes horizontal, indicating that the parameter k;, is being used to effectively "skip"
this storage. In fact, the Hybrid Nonsense model modifies su and si to behave as time lags for the input rainfall to become
outflow which ultimately is mostly managed by the interactions between sb and k;. In Fig. 8 we see that for the high flow peak
that happens in 2005-01, k; is increased disproportionately just so that the model can match the peak based on the volume
available in sb.

The solid lines for su and s, 4, reveal a distinct pattern in which s, ;45 closely tracks the value of su. This behavior is
tied to the conditional property of the storage: if s, > 54, maqq, any excess runoff added to su is immediately outputted. Because
Su,maqe consistently mirrors su, any additional runoff into this storage is immediately converted to simulated streamflow, once
again, effectively bypassing this storage. In addition, the outflow of su is also managed by 3 which appears to be anticorrelated
with si / k; to match the shape of the observed hydrograph. As a result, the Hybrid Nonsense model essentially functions as
a single-storage system with added lagging behavior. This lag is introduced by the sequential transfer of mass between the
storages, which occurs one at a time during each time step.

The imposed structure of the original Nonsense model was effectively modified by the LSTM, transforming the overcom-
plicated but physically implausible model into something that more closely resembles the Bucket model, with some additional
flexibility guided by the characteristics of the training data. Since we did not impose specific constraints on the storage be-
havior, apart from limits to the parameters, the LSTM discovered an optimized architecture that, in combination with the
data-driven component, works just as well as any of the other constraints. It seems that the modified Nonsense structure is
significantly more suitable than the oversimplified Bucket model, presumably because it allows for just the right amount of
additional freedom. Interestingly, morphing the structure of the Nonsense constraint costs the LSTM less effort (entropy) than
fighting against (arguably) more adequate but too rigid constraints such as the SHM or the Bucket conceptual models - this
is important to keep in mind when interpreting the results of our entropy analysis. High entropy clearly indicates struggling
caused by the imposed constraint; low entropy paired with unaffected parameters means a plausible constraint, whereas low
entropy paired with suspicious time-varying patterns that alter the qualitative behavior of the states means overwriting of con-
straints in favor of something more efficient; something that can potentially still be meaningful, as we have uncovered here,
and also from the over-parameterization cases in our didactic examples (so, there is hope).

Figure 9 presents the same analysis period for the SHM and Hybrid SHM models in basin 73014. Due to its larger structure,
interpretation becomes more challenging, but we observe some of the same behaviors identified in the analysis of Hybrid
Nonsense. The LSTM determines that some of the additional storage compartments in SHM are unnecessary, as it does not
utilize sb and instead regulates outflow through the fast-flow (sf) and si storages. Furthermore, minimal changes in si suggest

that most of the outflow is directed through sf.
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The high variability in the LSTM-controlled parameters for the remaining reservoirs may show a learned behavior from
other basins in the dataset. Such adaptation appears unnecessary for this particular basin, as the predictions made by the non-
Hybrid SHM model were already sufficiently accurate and modifications made by the LSTM improved performance only
slightly. Ultimately, this leads to the Hybrid SHM model being penalized, placing it last in our ranking. As a final note, that
the "intervention" of the LSTM was not obvious from comparing the hydrographs produced by SHM and Hybrid SHM and
without the analysis proposed here, one would think that Hybrid SHM is a well-constrained hybrid model that respects the

assumptions formulated in SHM - which is not at all the case, as we have shown here.

To return to the point of equifinality made in Sect. 3.4, as we have seen in this section, different hybrid model configurations
may achieve similar predictive performance while exhibiting varying levels of entropy in the LSTM hidden state space and
modifications to their internal behavior, We argue that high variability in parameter combinations represents an undesirable
condition in terms of model structure specification. High entropy aligns with this perspective and, in general, entropy can be
used to distinguish between equifinal models.

4.3.3 Statistical analysis of results for all basins

In the previous section, we analyzed specific results from five basins in the dataset because their results mirror those of our
controlled examples in Sect. 3. We can extend this analysis to all basins in the dataset to comment on their results based solely
on entropy, though we acknowledge that our constraint of equal performance in the comparison does not hold, as is clear from
Fig. 5. Nevertheless, while acknowledging that this constraint is not fulfilled, the insights derived in this section are meaningful
to the overall understanding of hybrid models.

One could develop a model selection criterion that considers both performance and entropy. In fact, there has been previous
research on model selection considering computational complexity and model performance (Azmi et al., 2021). However, our
purpose here is not to introduce a criterion for model selection but to understand the role of conceptual constraints in hybrid
models using entropy as a diagnostic tool.

In Fig. 7, the most common pattern across basins is shown by basins 23008, 18014, and 41025, where the LSTM consistently
has the lowest entropy while the other hybrid models show non-consistent rankings. It appears that their ranking is determined
by the specific hydrological system being modeled and the required model complexity. We therefore analyze here the overall
statistics and rankings of entropy across all basins.

The violin plots in Fig. 10 show the entropy distributions of each model, with median values of —151.2 nats for the LSTM,
—128.2 nats for Hybrid Nonsense, —113.1 nats for Hybrid SHM, and —111.0 nats for Hybrid Bucket. The LSTM’s wider
dispersion highlights the varying complexity required to model each individual basin. The fact that the LSTM is the only model
to cover much of the lower entropy range demonstrates that, in most cases, introducing a conceptual constraint substantially
increases the modeling challenge. This is apparent for Hybrid Bucket, which has the highest entropy distribution, meaning that
such a simple conceptual constraint is not helpful in most cases and the LSTM has to make the most effort to compensate for

this overly rigid constraint.
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Figure 9. Differences between simulated streamflow, states and model parameters of the SHM and Hybrid SHM models for basin 73014.

Both the states and model parameters are shown on a scale relative to their mean.
Surprisingly, Hybrid Nonsense has the lowest median entropy among the hybrid models. This goes against an initial hypoth-

esis that a researcher might have; yet, as our analysis in Sect. 4.3.2 has shown, the Nonsense model lends itself to being most

easily transformed by the LSTM into a more suitable structure that can predict streamflow well. Finally, Hybrid SHM did not
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fulfill our expected result, as it seems that this model is overly complex for this specific dataset and the LSTM has more trouble

using it to its advantage than the Nonsense model.
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Figure 10. Violin plots of the entropy of the trajectories of the LSTM hidden states in the different hybrid models and the pure LSTM across
all CAMELS-GB basins.

To analyze this in more detail, we collected the individual rankings per basin for the whole dataset, identified the unique

rankings that appear, and determined their frequency of occurrence. The counts of rankings are shown in Fig. 11.
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Figure 11. Counts of the different entropy-based model ranking outcomes across all CAMELS-GB basins. To limit the length of the label,

the shorter conceptual names of the hybrid models were used but the counts are for the hybrid versions of these models.

690 The ranking suggested by the medians in Fig. 10 (entropy of LSTM being lowest, followed by Hybrid Nonsense, Hybrid
SHM, and Hybrid Bucket) reflects most frequent ranking across all basins (67%). Aggregating all those basins, for which the
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pure LSTM obtains the lowest entropy, leads to 91% of all basins. This tells us that, in general over this particular large-sample
dataset, the conceptual representations used in our hybrid models were not able to make the prediction task easier for the LSTM
and the prior knowledge that we tried to enforce didn’t help. Ultimately we got a hybrid model that predicted well not because
of the physical constraints that we imposed, but because the LSTM was able to compensate for these constraints through added
effort (entropy).

Although our previous statement is the main finding of this study, we are still able to identify specific catchments for which
the added prior knowledge indeed helped. In Fig. 11 there are 11 basins (1.6%) which show the LSTM at the top, meaning that
any of the conceptual models added information that helped in prediction; in 8 out of 671 cases (1.2%), Hybrid SHM showed
the lowest entropy, meaning that the constraint that a hydrologist would perceive as the most plausible and useful actually
turned out to need the least compensation by the data-driven component. And only in 1 out of 671 cases, the physically least

plausible Nonsense model needed the most compensation.

4.4 What if only individual parameters are dynamic?

Although our experimental settings have been deliberately kept consistent with Acuila Espinoza et al. (2024), it is not necessa
for every model parameter to be dynamic, as in the cases examined so far, for our method to work. Rather, it could be

scientifically interesting to examine the role of individual parameters in “fighting” the imposed constraints. To illustrate the

diagnostic capability of the proposed entropy analysis for this question, we examine a variant of the SHM model in which onl

the parameter /3 in the unsaturated zone reservoir is made dynamic, while the remaining seven parameters remain static.
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Figure 12. a) Model performance for the LSTM, SHM (all parameters static), Hybrid SHM (all parameters dynamic), and SHM [ dynamic

models across all CAMELS-GB basins. b) Violin plots of the entropy of the trajectories of the LSTM hidden states in the different hybrid
models and the pure LSTM across all CAMELS-GB basins.

Figure 12a shows the NSE CDF curves for the LSTM, SHM (fully static), Hybrid SHM (all parameters dynamic), and this

new SHM S-dynamic variant. The single-parameter dynamic model shows a slight performance increase compared to the full
static conceptual model, but does not match the performance of the model with all dynamic parameters.
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Figure 12b presents the entropy distributions for these models. The fully static conceptual model has no entropy and therefore
is not shown. Notably, the single dynamic-parameter variant exhibits significantly higher entropy than even the Hybrid SHM
model with all parameters dynamic. This observation is consistent with our interpretation of entropy as a measure of LSTM
activity: when the LSTM must compensate for model misspecification through only one degree of freedom instead of eight,
as in Hybrid SHM, its activity (and thus entropy) increases substantially without proportional performance gains. In the SHM
S-dynamic case, the LSTM attempts to correct the entire conceptual model through a single point of entry. By contrast, in the
Hybrid SHM case, the LSTM makes smaller adjustments across multiple model components, resulting in higher performance
and lower entropy.

This example demonstrates that entropy can serve as a diagnostic for identifying how the neural network component
compensates for structural inadequacies in_the conceptual model as represented by individual parameters. This suggests
the possibility of systematically diagnosing individual components by selectively making parameters dynamic or static, with
entropy guiding the process toward a model representation that more realistically reflects the natural system.

4.5 What about other approaches to hybrid modeling?

Measuring the entropy of the data-driven component of a hybrid model works particularly well in our setup because of the
tight coupling between the LSTM and the conceptual hydrological model through the parameters of the latter. Nevertheless,
our suggested approach can be effectively applied to other types of hybrid models or physics-informed machine learning.

As one example of an alternative approach to physics-informed machine learning, post-processing the results of a hydro-
logical model to improve its predictions has been suggested (Nearing et al., 2020; Frame et al., 2021). For this application, a
traditional hydrological model with static parameters makes an initial run to predict streamflow, and the predictions as well
as the states of the hydrological model are fed to an LSTM to make improved predictions of streamflow. The approach is
successful in the sense that it improves predictions of streamflow and manages to move all performance CDF curves close, but
not beyond, the LSTM as shown in Fig. 13. Note that both the LSTM and post-processing LSTMs use the same number of
hidden nodes (64), making our approach and comparison still applicable.

The violin plot of entropies for the LSTM hidden states across all basins shown in Fig. 14 suggests a different conclusion
than for our previous hybrids. It seems that the LSTM is largely "unimpressed" by the additional input, no matter which model
it was created by; only the Nonsense model (of all things!) seems to be able to effectively reduce the effort required for the
prediction task, meaning that there is some pre-processing that this particular model does that is actually helpful. Fig—Figure
15 shows a much more mixed bag of results where, for certain specific basins, any of the conceptual models might produce
an output that reduces the entropy of the LSTM. Considering that feeding the model "Nonsense" is helpful in close to 80%
of all basins should again be an impressive warning that feeding physics-based model output to a data-driven model is not
necessarily physically meaningful (in that case, we would expect the LSTM to have a harder time with nonsense outputs). This
confirms previous findings in literature which suggest that post-processing a conceptual model is not a good method to make

"physics-informed" machine learning (Nearing et al., 2020; Frame et al., 2021).
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Figure 13. Comparison of model performance between conceptual models with static parameters (dashed lines), post-processing hybrid

models with dynamic parameters (filled lines), and the pure LSTM for all CAMELS-GB basins.
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Figure 14. Violin plots of the entropy of the trajectories of the LSTM hidden states in the different post-processing hybrid models and the
pure LSTM across all CAMELS-GB basins.

745 Since post-processing conceptual models do not allow for scrutinizing conceptual states or parameters, as with hybrid mod-
els, we cannot perform our detailed analysis as shown above (Figs. 8 and 9). Hence, interpretation of the impact of the physics-
based input (hard to call this a constraint) requires interpretation of the LSTM hidden states. This is a current line of research
in its own right (e.g., Feng et al., 2024b; Blougouras et al., 2024), and goes beyond the scope of this study. It will be in-
teresting to explore what the contribution of "Nonsense" is that seems to simplify the prediction task for the LSTM, while

750 physically-meaningful outputs as LSTM inputs do not necessarily help.
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Figure 15. Counts of the different entropy-based model ranking outcomes across all CAMELS-GB basins. To limit the length of the label,

the shorter conceptual names of the post-processing models were used but the counts are for the hybrid versions of these models.

4.6 Summary of findings from the case study

In this case study, we compared a pure LSTM model with three hybrid hydrological models based on the CAMELS-GB large-
sample data set. Overall, we found that the LSTM outperformed the hybrid models in predicting streamflow, and our entropy
analysis revealed that adding physics-based constraints generally did not simplify the prediction task.

Our analysis also showed that the LSTM effectively adjusts the constraints imposed by the conceptual model. For instance,
Hybrid Nonsense is very different from its original Nonsense formulation with the LSTM identifying an optimized architecture
that, when combined with a data-driven component, performs just as well as all other models. The degree of effort required
for the LSTM to modify these constraints provides insight into how accurately the conceptual model represents the underlying
system. This finding highlights a key opportunity for hybrid modeling: refining existing models to better suit specific sites
based on training data characteristics. In essence, hybrid models can guide us toward more parsimonious model structures.

Notably, this process occurs entirely under the hood. If we had evaluated performance using only NSE, we might have
mistakenly concluded that the Nonsense constraint was just as valid as SHM or Bucket, since all three achieved the same
performance when paired with the LSTM. These results overwhelmingly suggest that we need to reconsider our ways of
building and evaluating hybrid models. Even if "just" the parameters of conceptual hydrological models are modified by

the data-driven component, the resulting hybrid models function differently than what we expect by imposing mass balance

equations.

While our findings might be specific to the particular dataset and model candidates used in this study, we have provided an
objective method to test our hypotheses in arbitrary other scenarios. Future research should explore a wider range of datasets
and hybrid model architectures to validate and extend our conclusions.
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Finally, we have provided an outlook of how to apply our entropy-based analysis to only partially-dynamic hybrid models
and even other types of hybrid construction. While the-there are differences between approaches that should be taken into

consideration for an in-depth analysis of re

the-hybrid-medelarchitectures, the evaluation of entropy in the LSTM hidden states already provides an objective insight that
would have been obscured when only considering skill scores;-as-pointed-eut-abeve. Complementary analyses that target the

specifics of other hybrid model architectures are left for future work.

5 Conclusions

"Man is always prey to his truths. Once he has admitted them, he cannot free himself from them" (Camus, 1991). The pursuit of
a single, universal model to explain every hydrological system is fundamentally absurd. This paper challenges the hydrological
community’s tendency to rely on a single model, like SHM, as a comprehensive explanation for the complex dynamics of
all river basins. Our work shows that SHM, or other conceptual models of its kind, is precisely the kind of rigid "truth"
Camus warned us about: a single model that, now coupled with a component that learns from data, represents a seemingly
straightforward explanation of every and any complex natural system.

The recognition of these limitations extends to the process of model selection itself. As observed by Kuhn and Hacking
(2012), "scientists work from models acquired through education and subsequent exposure to the literature, often without fully
knowing what characteristics have elevated these models to the status of community paradigms." This implicit acceptance
of certain modeling approaches, while pragmatic, further highlights the tension between using an interpretable model and
capturing the full complexity of real-world systems. Hybrid models acknowledge this tension by incorporating prior knowledge
to achieve partial interpretability while accepting the residual complexity that remains unmodeled. However, our study suggests
that this balance is often skewed in favor of the data-driven component. The use of a conceptual model as a structural prior
represents an attempt to extract meaningful dynamics from a larger environmental system (Young et al., 1996), but as we have
shown, this attempt is often forced. When the problem is relatively simple, such as predicting streamflow in our case study,
conceptual prior knowledge is largely ignored in favor of a more flexible, data-driven structure, raising the question of whether
it was necessary in the first place if only predictive capacity is considered.

Our primary contribution is a metric that quantifies how much prior knowledge contributes compared to a purely data-
driven approach. In Sect. 3, we demonstrated how different conceptual models can be evaluated based on how closely their
prescribed equations align with those governing the "true" system. Our key finding was that the hybrid model containing the
"true" conceptual model required the least assistance from the LSTM (lowest entropy), while models with architectures very
different from the true underlying process required the most assistance from the LSTM (highest entropy). This demonstrates
that our entropy metric can distinguish between conceptual models that perform well for the right reasons versus those that
achieve good performance just through compensation by a data-driven component, a distinction that traditional performance

metrics cannot make.
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Interestingly, measuring the "complexity" of the LSTM in the sense of measuring its "compensation activity" when cou-
pled to a parsimonious but inadequate representation yields larger entropy than when coupled to a more flexible inadequate
representation. This means two things: low entropy does not automatically mean that the constraint is honored and that it is
realistic; and the LSTM seems to have more work to do to fight against something simple but wrong than to fiddle around
with an arbitrary, flexible enough structure to make it work. We have seen this in the overparameterization cases in the didactic
examples and with the nonsense model in the case study. So, high entropy means the LSTM is struggling because of a too rigid,
inadequate constraint. Low entropy means that the LSTM is seeing something in the constraint; however, deeper analysis in the
form of inspecting parameter and state trajectories are required to distinguish whether the constraint is deemed reasonable to
predict the data (constant parameters), or whether it just lends itself well to be transformed into something new, parsimonious,
and effective, which might even be physics-explainable and guide us towards a better representation of the true model. So,
there is hope in hybrids; just in a different way than the community might have anticipated.

Additionally, we showed that a data-driven model can serve as a reference point, distinguishing between conceptual models
that better approximate reality and those that do not. We propose that data-driven models should serve as the baseline for eval-
uating hybrid models, which allows us to determine whether incorporating prior knowledge, such as physics-based constraints,
genuinely enhances predictive performance or simply adds unnecessary complexity.

Applying this metric to a large-scale case study revealed that our attempts to improve predictive capacity through hybridiza-
tion were often unsuccessful. This was because the added knowledge rarely captured the true system dynamics, forcing the
flexible component of our models to compensate for incorrect assumptions (Sect. 4.3.2).

Beyond performance, there may be broader value of hybrid models with respect to interpretability and process fidelity. In
that context, it is highly important to evaluate the degree to which physical constraints actually constrain model behavior: if
the intended model structure that should guarantee interpretability is overwritten, this argument is no longer valid, or we might
actually discover a better (in our case: simpler) process representation that again allows for scientific insight and learning.
Additionally, correlation between a labeled storage component and external variables should not be the sole standard for
evaluating hybrid models because, as we have shown, the original constraint that defined that label may no longer apply in the
final model structure.

While we focus on entropy as our primary metric, we believe entropy complements, rather than replaces, other existing
evaluation approaches focused on process representation and physical understanding. Furthermore, the compensation work of
the LSTM should be related to aspects of achieved performance to provide a comprehensive basis for model selection, with the
identification of appropriate ways to potentially combine these aspects into a single informative metric being left as an open
research question.

In the future, hybrid models could become valuable tools for refining our understanding of hydrological systems, but only
if we critically reassess traditional modeling practices. The fact that even a "nonsense" conceptual model demonstrated the
highest potential for adding useful information in post-processing hybrids raises new questions. We hypothesize that physics
constraints in the form of strict sequential processing may be too rigid and that guiding the LSTM toward learning appropriate

lag functions or the entire hydrological model itself could be a more effective strategy.
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Overall, our findings challenge the assumption that physics-informed machine learning necessarily preserves the physics as
initially formulated. Instead, the data-driven component may restructure the imposed constraints, uncovering a more effective,
potentially physics-explainable alternative. We do not oppose hybrid modeling; rather, we propose a quantitative tool to analyze

840 how much the physics-based constraints are modified and suggest a workflow for diagnosing these structural adaptations. In the
end, hybrid modeling, when paired with information-theoretic analyses, has the potential to provide valuable physical insights.

Without such an approach, however, many so-called "physics-informed" models may be better described as physics-ignored.

Code availability. The code to recreate any of the experiments in this paper is publicly available at https://github.com/manuel-alvarez-chaves/
hybrid-models/tree/paper (last access: 25.03.2025). We also used part of the Hy2DL library which can be accessed as a brach at https://github.

845 com/KIT-HYD/Hy2DL/tree/manuel-dev (last access: 25.03.2025). The UNITE toolbox is also available at https://github.com/manuel-alvarez-chaves/
unite_toolbox (last access: 25.03.2025).

Data availability. CAMELS-GB is available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9. All of the code for this
project, model state dictionaries, model configurations, training logs and netCDF files of the results of this study have been archived at the

data repository of the University of Stuttgart (DaRUS) and can be found at this link: https://doi.org/10.18419/DARUS-4920

850 Appendix A: Study setup

We provide further details of our experimental setup in this section, and point the interested reader towards a repository in the
data repository of the University of Stuttgart (DaRUS) that contains all the code for this project including: training scripts, logs
and archived netCDF files of the saved internal and hidden states, fluxes and predictions made by each model. The repository
can be found at this link: https://doi.org/10.18419/DARUS-4920.

855 Al Didactic examples
The ranges for the parameters of the conceptual models allowed in the didactic examples are listed in Table A1l.
A2 CAMELS-GB

The parameter ranges for the conceptual models used in the CAMELS-GB case are listed in Table A2. The parameter ranges
shown in both Table A1 and Table A2 were adapted from typical ranges found in the literature for the HBV model (Beck et al.,

860 2016, 2020). For the synthetic examples, we simplified the parameter ranges to better suit the proposed examples. The static
attributes used as input to the LSTM in all models are listed in Table A3.
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Table A1. Ranges of the model parameters in the synthetic examples

Limits
Model Parameter
Lower  Upper

o 0.5 2.0
1 B 0.1 2.0
k 10.0 60.0
@ 0.5 2.0
2 Smaw 50.0  400.0
k 1.0 100.0
« 0.1 2.0
3 k1 30.0 300.0
k2 0.1 40.0
a 0.5 2.0
4 154 0.9 35
S0 0.0 50.0
k 1.0 60.0
«@ 0.5 2.0
: k 0.1 300.0
o 0.5 2.0
6 154 0.9 35
~y 0.5 2.0
k 1.0 60.0
«a 0.1 2.0
$1,maz 1.0 200.0
7 k1 100.0  400.0
8 0.1 2.0
ko 1.0 60.0
«@ 0.5 2.0
Smaz 1.0 250.0
5 B 0.9 35
k 1.0 100.0

Appendix B: Additional didactic examples

In Sect. 3 and specifically Fig. 2 we showed five key didactic cases that can be used to understand the rankings in Figs. 3

and 4. To further our understanding of the behaviors that can be quantified by measuring the entropy of the hidden states of
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Table A2. Ranges of the model parameters for the CAMELS-GB case study

Limits
Model Parameter
Lower  Upper

dd 0.0 10.0
f_thr 10.0 60.0
Su,maz 20.0 700.0
SHM B8 1.0 6.0
perc 0.0 1.0
ks 0.05 0.9
ki 0.01 0.5
kp 0.001 0.2
Bucket k 0.002 1.0
aux_ET 0.01 1.5
dd 0.0 10.0
Su,maz 20.0 700.0
Nonsense 8 1.0 6.0
ki 0.01 0.5
ky 0.001 0.2

the LSTM, we show four additional examples in Fig. B1. These additional examples also follow in the framework of multiple
working hypotheses (Clark et al., 2011), and in this section we briefly describe what can be learned from them.

Model 5 represents a case in which the added knowledge is lacking the degrees of freedom that the "true" model has. Thus,
the LSTM has to take over and compensate using its internal hidden states, resulting in the high measurement of entropy of the
LSTM. Although this behavior is also apparent in the variations of the parameters shown in Fig. Ble, measuring entropy there
can result in the wrong assumption that a conceptual model with more reservoirs in Model 3 would more closely resemble the
"true" model, as shown in Fig. 3 but this is not true. The true picture is given by the entropy of the LSTMs in Fig. 4.

Models 6 to 8 all serve as cases where the conceptual model has a greater number of parameters than the "true" model,
making them overparametrized but cases such as 6 and 8 resemble the "true" model very closely. Model 7 also has the "true"
model embedded within, but the input relationship is distorted by the extra reservoir in s;.

Returning to the idea of how much a model closely matches the "true" model, the ranking in Fig. 4 makes intuitive sense.
The "true" model is furthest to the left followed by Models 4, 6 and 8 which use the same number of reservoirs and whose
input-output relationships can match that of the "true" model (all have an exponential term). This grouping is followed by
Model 7 which has the ability to match the output relationship using the second exponential reservoir but the input is not
directly precipitation and evapotranspiration but some dampened product coming from the first reservoir. Next we have the

divider between encoding "good" and "bad" physics. All of the previous models have the "true" model (in some sense) within
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Table A3. Catchment attributes from the CAMELS-GB dataset used to train all models

Type Attribute Description

Topographic area catchment area (km?)

Topographic elev_mean mean elevation (m. a. s. l.)

Topographic dpsbar slope of the catchment mean drainage path (m km™1)

Soil sand_perc percent sand (%)

Soil silt_perc percent silt (%)

Soil clay_perc percent clay (%)

Soil porosity_hypres soil porosity calculate using the hypres pedotransfer function (-)
Soil conductivity_hypres hydraulic conductiviyu calculated using the hypres pedotransfer function (-)
Soil soil_depth_pelletier ~ depth to bedrock (m)

Land cover dwood_perc fraction of precipitation falling as snow (for days colder than 0°C)
Land cover ewood_perc percent of catchment that is deciduous woodland (%)

Land cover crop_perc percent of catchment that is evergreen woodland (%)

Land cover urban_perc percent of catchment that is cropland (%)

Human influence

reservoir_cap

percent of catchment that is urban area (%)

Climatic p_mean catchment reservoir capacity (ML)

Climatic pet_mean mean daily precipitation (mm d ')

Climatic p_seasonality mean daily PET (mm d ')

Climatic frac_snow seasonality and timing of precipitation (estimated using sine curves)
Climatic high_prec_freq frequency of high-precipitation days (>5x mean daily precipitation)
Climatic low_prec_freq frequency of dry days (<1 mm d~—')

Climatic high_prec_dur average duration of high-precipitation events (>5x mean daily precipitation)
Climatic low_prec_dur average duration of dry periods (number of consecutive days <1 mm d™ 1)

their structure. This additional knowledge makes the task required of the LSTM easier, thus reducing its entropy. If, instead, we
encode "bad" physics, we fall in cases where the model is able to perfectly fit the observed data but not because of the additional
knowledge, but because of a more complex LSTM which now, in addition to prediction, has to overwrite our incorrect prior
knowledge.

Model 3 is the worst offender as the usage of a two reservoirs system with none of the reservoirs having an exponential term
in their output relationship is the case most dissimilar to the "true" model. Models 2 and 5 improve upon this condition, but

still lack some semblance of the "true" model in their structure making them to also fall in the "bad" physics category.
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Figure B1. Additional examples on evaluating hybrid hydrological models by measuring the entropy of different model components

Appendix C: Standardizing training pipelines

The results in the case study presented in Sect. 4 follow the results of the previous study of Acufia Espinoza et al. (2024).
890 However the data and metrics reported between studies related to model variables and performance are not the same. Between
studies we modified our training pipelines to adopt current standard practices (Shen et al., 2023; Kratzert et al., 2024), therefore
there are differences between the metrics.

For the models with static parameters, these differences are shown in Fig. C1 and Table C1. In our previous study, the
conceptual models were calibrated individually for each basin using the DREAM algorithm (Vrugt, 2016). This procedure
895 results in better performance at predicting streamflow than in regional training as we did for this current study. The drop in
performance could be the due to the identification of regional sets of parameters, as in Tsai et al. (2021), but we did not pursue

this finding further.
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Figure C1. Comparison of model performance for models with static parameters between studies

Table C1. Comparison of model performance for models with static parameters quantified by area under the NSE curve (AUC) and median

NSE

Model Version AUC  Median NSE

TBONTB 0.243 0.760
SHM

New 0.267 0.747

TBONTB 0.381 0.590
Bucket

New 0.395 0.582

TBONTB 0.441 0.510
Nonsense

New 0.477 0.511

Then for the models with dynamic parameters, the differences are shown in Figure-Fig. C2 and Table C2.

Table C2. Comparison of model performance quantified by area under the NSE curve (AUC) and median NSE

Model Version AUC  Median NSE
TBONTB 0.120 0.870
LSTM
New 0.123 0.865
TBONTB 0.216 0.844
Hybrid SHM
New 0.216 0.839
TBONTB  0.168 0.857
Hybrid Bucket
New 0.147 0.852
TBONTB 0.310 0.797
Hybrid Nonsense
New 0.265 0.801
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Figure C2. Comparison of model performance for models with dynamic parameters between studies

As in all cases the differences in metrics between studies are small, we accept them while acknowledging that the models
analyzed in this study are different than those in AeufiaEspinozaetal(2024)Acufia Espinoza et al. (2024). Moreover, the
main objective of the present study is not to set a "state-of-the-art" benchmark for a particular dataset and, accordingly, the

overall message that we wish to communicate is not affected by the differences in performance between studies.
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