Author’s response
Dear Dr. Fenicia,
Thank you for handling our manuscript and enabling our discussion with the reviewers.

To your specific points:

We thank the editor for their assessment. We have considered Reviewer #2's concerns and
responded systematically to each point as detailed below.

The core disagreement between the reviewer and ourselves is on scope. Reviewer #2 requests
additional experiments (prediction in ungauged basins, alternative parameterizations,
multivariable constraints) that were not part of the original study we are analyzing. Our paper is
explicitly a diagnostic analysis of results from "To bucket or not to bucket" (Acufia Espinoza et
al., 2024), and while our work certainly opens up new avenues for future research, we do not
see the benefit of extending the scope of this manuscript too widely - its value and beauty lie in
the straightforward application of a single, new metric that allows for deep diagnostic insights
with our proposed analysis routine. Handling too many deviations from this setting will reduce
the clarity of the manuscript to an extent that hinders true understanding of our method instead
of adding to it.

Based on the review comments, we have clarified our methodology to emphasize the idea that:
identical LSTM architectures across all models enable an unbiased comparison using entropy,
and we explicitly frame entropy as one diagnostic tool within a larger evaluation framework, not
as a universal metric of physical adequacy. Moreover, their concerns about all parameters being
dynamic have been addressed in a new section.

We thank the editor and Reviewer #1 for their constructive feedback. We have addressed all
three remaining concerns in the revised manuscript as detailed in our responses below. We
believe these revisions strengthen the manuscript's clarity and methodological rigor, and are
confident that any doubts have been resolved.



Considering these responses, we respectfully submit that Reviewer #2's requested changes
represent a substantial expansion of scope beyond what we believe is graspable in an already
reasonably lengthy single manuscript. While we have addressed all points that are within the
manuscript’s stated objectives and added a new section outside of them, implementing the
remaining suggested changes would effectively require conducting a different study, moving
away from our own objectives. We are further concerned that these changes might lead to an
iterative cycle where new concerns arise, as the reviewer appears to envision a different study
than what was originally in the preprint. Given that Reviewer #1 has recommended acceptance
with minor revisions, that we have addressed Reviewer #2's concerns where feasible, and that
some criticisms of Reviewer #2 are in contradiction to our results, we respectfully request that
the editor evaluate whether the remaining points constitute revisions or represent a fundamental
disagreement about research direction.

Kind regards,
Manuel Alvarez Chaves on behalf of the co-authors



Report #1 by Georgios Blougouras & Shijie Jiang (co-review team)

We thank the co-review team for their feedback and address the remaining concerns in a
revised version of the manuscript.

Thank you for stressing this point. We recognize that hybrid modeling can extend beyond the
prediction of single variables and the review process has made it clear that we should be more
explicit about our rationale. We focus on predicting streamflow alone because we are evaluating
the value of adding prior knowledge about the rainfall-runoff process in the form of conceptual
models to an LSTM network. While we agree that if the goal is a hydrologically consistent hybrid
model of high fidelity, multi-task-learning is the way to go, but it is by no means standard
practice yet. Again, as highlighted in all versions of the manuscript and reiterated in the first
revision, we are not promoting a specific approach to hybrid modeling, but offer an analysis for
existing types of hybrid modeling that raise doubts - and this is exactly the setting of using
conceptual models to apparently constrain the LSTM, for single-output prediction only. As
suggested, we have clarified this motivation in the introduction, I. 154:

“Note that we focus on a typical single-task prediction (here: streamflow) to evaluate the value
of adding prior process knowledge (here: rainfall-runoff) in the form of conceptual models to an
LSTM network. Yet, we recognize the potential of hybrid models for multi-task learning, where
models are evaluated on multiple objectives including multiple target variables, and anticipate
that our proposed method can be readily extended to such evaluations in future work.”



Thank you for this comment and it is reassuring to hear that our internal discussion is what you
had in mind. We have now included the discussion of equifinality in the manuscript, both in
section 3 relating to the synthetic examples (l. 495):

“Interestingly, equifinality did not pose an issue with synthetic data in our experiments, as all
models achieved perfect predictive performance and the model was always identifiable under
the right conditions. This matches the experience of Spieler et al. (2020). However, in real-world
applications, equifinality is likely to be more pronounced due to measurement errors, incomplete
observations of the system under study, and other sources of uncertainty. This issue is
discussed further in Sect. 4.3.2.”

and in section 4 relating to the CAMELS-GB case study (l. 656):

“To return to the point of equifinality made in Sect. 3.4, as we have seen in this section, different
hybrid model configurations may achieve similar predictive performance while exhibiting varying
levels of entropy in the LSTM hidden state space and modifications to their internal behavior.
We argue that high variability in parameter combinations represents an undesirable condition in
terms of model structure specification. High entropy aligns with this perspective and, in general,
entropy can be used to distinguish between equifinal models.”

Based on the reviewer's feedback, we have included a brief description of the setup in Sect. 3.2.
More specifically, we provide more details regarding the choice of the ten hidden state LSTM
and the number of basins (. 324):

"The LSTM architecture of the baseline model and the hybrid models consists of ten hidden
states. For our entropy analysis of the hidden states to be meaningful and fair, it is important to
compare models of the same architecture. The choice of the number of hidden states was
defined by the minimum required so that both the baseline model and hybrid models achieved
equal performance. To aid in this process, the models were trained on a subset of five randomly
selected basins (76005, 83004, 46008, 50008, and 96001) from the CAMELS-GB dataset.

(...)



We base our entropy analysis on equal performance, to ensure fair statements about the role of
the conceptual component in a hybrid model ."

Report #2 by Anonymous Reviewer #2

| appreciate the authors’ efforts in revising the manuscript and responding to the previous round
of review. However, | think there are still some critical logical issues that remain unresolved:

First, in the synthetic case (Fig. 2), the central inference seems to be: conceptual model same
as the “true model” or over-parameterized = Ilow entropy; model different or
underparameterized = high entropy. But this does not mean that models with high entropy are
“‘wrong,” nor that low entropy means “correct.” Entropy is not a sufficient condition for the
adequacy of a model structure. Over-parameterized models can have lower parameter
entropies. Hydrologic models with more process representations may require a larger subset of
parameters to be dynamic to accommodate their complex structure for good performance,
whereas simpler models may need only a few dynamic parameters. Does this imply that the
latter has a better physical representation?

In the synthetic case, indeed we found that overparametrized models had lower entropies but
not lower than the “true” model. This is because for the overparametrized models there are
degrees of freedom that the LSTM can adjust but which are not necessary.

We fundamentally disagree that “hydrologic models with more process representations may
require a larger subset of parameters to be dynamic to accommodate their complex structure for
good performance”. Dynamic parameters, in our view, represent processes that one does not
fully understand and therefore is letting a neural network fill this gap in understanding. If one
could write a hydrological model using equations that describe each and every process in their
full detail, there would be no need to couple this model with a neural network and therefore no
entropy. The empirical results from the synthetic examples support this claim.

In addition, if only streamflow data from the “true model” is used to constrain the training
(pretending this is the only information we know), we might think that Model 3 provides a better
representation of hydrological processes since it has two-layer buckets (soil moisture and
baseflow buckets) and gives an almost perfect streamflow prediction. However, when more
information about the model structure or other variables is available, we see that this model is
actually most different from the “true model.” This simple example demonstrates why additional
constraints are needed to diagnose whether a model reflects “bad” physics.



We respectfully disagree with this interpretation. To emphasize a point that we have argued
before, we are evaluating the added benefit of a specific conceptual model in helping the hybrid
model predict streamflow alone. For this specific example, without additional constraints,
entropy shows that Model 3 does not provide a realistic interpretation of the synthetic truth
(which has only one reservoir). As shown in Figure 4, Model 3 sits furthest to the right on the
entropy axis relative to the data-driven model, whereas the true model is located furthest to the
left. Further, the overparameterized models that can be reduced to the true model fall between
the true model and the data-driven baseline. This positioning alone successfully diagnoses the
inadequacy of Model 3's physical representation in characterizing the processes required to
generate streamflow. This is precisely the diagnostic capability we propose. Our approach is
fully consistent in interpretation and does not require "additional constraints" to "diagnose
whether a model reflects 'bad' physics".

Both in the paper and in our previous answer we refer to the complexity of the LSTM measured
by the entropy of its hidden states. If the conceptual model adequately represents the
generation process of streamflow in the catchment, the LSTM will have low entropy/low
complexity. If the conceptual model doesn’t accurately represent the streamflow generation
process then the LSTM has high entropy/high complexity. Therefore it is the correctness of how
the conceptual model represents the physical process.

We appreciate the reviewer's considerations regarding measuring entropy and model
comparison.

As shown with the synthetic examples, the LSTM states are an unbiased way to analyze the
entropy of the parameters and to compare between models with different numbers of
parameters and different value ranges. Each hybrid model is coupled with an LSTM of identical
architecture. While the conceptual models differ, they share this common LSTM component,
which provides a consistent basis for comparing entropy across models.



Regarding dynamic parameter selection, this paper analyzes results from "To bucket or not to
bucket" (Acufia Espinoza et al., 2024), which established the hybrid modeling framework with all
parameters made dynamic. The current work focuses on diagnosing and interpreting those
results through entropy analysis, rather than conducting new experiments with alternative
architectures or parameterizations. Further, we do not see the fundamental difference to the
approach we have proposed: if only specific parameters are made dynamic, then it is among
these parameters to compensate for any misspecification in the conceptual constraint, so the
individual entropies per parameter are expected to increase, and it is joint entropy over all
hidden states that we measure, so we still see entropy as a fully consistent and fair metric.

To exemplify this, we have added a new Section 4.4 to the manuscript, with the previous
Section 4.4 moved to Section 4.5. Subplot a) of the new Figure 12 shows the NSE CDF curves
for the LSTM, SHM, Hybrid SHM, and a new model variant: SHM with only the parameter {3 in
the soil moisture reservoir made dynamic (7 static parameters, 1 dynamic parameter). As
expected, this single-parameter dynamic model shows a slight performance increase compared
to the fully static conceptual model, but does not match the performance of the model with all
dynamic parameters.

Subplot b) presents the entropy distributions for these models. The fully static conceptual model
has no entropy and therefore is not shown in the figure. The single dynamic parameter variant
exhibits an increase in entropy, even higher than the Hybrid SHM model with all parameters
dynamic. This observation is consistent with our framework: when the LSTM must compensate
for model misspecification through only one degree of freedom instead of eight, its activity (and
thus entropy) increases substantially without proportional performance gains. To put it in
different words, for SHM 8 dynamic, the LSTM has to "fix" the entire conceptual model through a
single point of entry. By contrast, in the Hybrid SHM case where the LSTM is able to make
smaller adjustments across multiple model components, this results in higher performance and
lower entropy.

This example demonstrates that entropy serves as a diagnostic for how the neural network
component compensates for structural inadequacies in the conceptual model. One can imagine
additional experiments where parameters are selectively made dynamic or static to diagnose
individual components in the conceptual model, with entropy guiding this process toward a
representation that most accurately matches the natural system.

The reviewer correctly notes that parameter ranges differ between models. However, our
entropy metric is derived from LSTM hidden states, not directly from parameter values. As
explained previously, this provides a normalized comparison framework where the consistent
LSTM architecture ensures comparability despite differences in the underlying conceptual
models.



We appreciate the reviewer's detailed concerns and address them systematically below.

Regarding predictions in ungauged basins (PUB), in our previous response, we focused on the
fact that the overwriting is learned during training, so it makes sense to us to investigate this
behavior for those basins with available data. However, we agree that one can additionally
analyze the entropy when using the trained model to predict in an ungauged setting, to assess
the amount of overwriting happening - it just doesn’t have the 1:1 translation of overwriting that
had to happen to achieve good performance in fitting data, which is the core interest of our
study.

Nevertheless, this paper is a follow-up to "To bucket or not to bucket" (Acufia Espinoza et al.,
2024), which did not include PUB experiments, and we do not see the merit of extending our
analysis to this setting because its interpretation does not add anything more didactic than what
we have shown so far.

Outside of the ungauged setting, we do see the question of comparing models with dynamic
versus static parameters as interesting. In fact, we observe a few instances where conceptual
models with static parameters achieve performance equivalent to their dynamic counterparts.
For example,

Basin 85001:
Model NSE Entropy
LSTM 0.921 -119.16
Hybrid SHM 0.923 -133.26
SHM 0.900




Basin 94001:

Model NSE Entropy
LSTM 0.935 -121.26
Hybrid SHM 0.957 -128.56
SHM 0.926

In these cases, the modest performance improvement of the hybrid model over the static
version, combined with entropy values lower than the data-driven baseline, suggests adequate
physical representation. The hybrid framework with dynamic parameters provides only marginal
benefit for these particular basins. We allude to these specific examples in Section 4.3.1 and,
more specifically, in Figure 7.

Concerning the influence of neural network architecture on entropy, we reiterate that all models
in our comparison use identical LSTM architectures. This controlled setup allows us to attribute
differences in entropy to the conceptual model component, as explained in our response to the
previous point.

As a final point, we respectfully disagree with the reviewer’s last statement saying that our
interpretation oversimplifies the problem. Our framework interprets entropy as follows: low
entropy indicates that the conceptual model provides an adequate physics-based representation
that effectively constrains the hybrid model's behavior. High entropy indicates that the
conceptual model misrepresents aspects of the natural system, requiring the neural network
component to compensate through adjustments in the conceptual model's parameters to
achieve accurate predictions. In such cases, the success of the hybrid model should be
attributed primarily to the neural network's flexibility rather than to the physics-based conceptual
structure. This diagnostic capability: distinguishing whether good performance stems from
appropriate physical structure or from a neural network that compensates, is what entropy
reveals and what we aim to communicate.
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