
Author’s response 
 
Dear Dr. Fenicia, 
 
Thank you for handling our manuscript and enabling our discussion with the reviewers. 
 
To your specific points: 
 
Reviewer 2 acknowledges improvements but finds critical logical issues remain, warranting 
rejection in the current form. There is a concern that entropy is oversimplified: low entropy does 
not guarantee physical adequacy nor high entropy inadequacy. The synthetic case needs added 
constraints, dynamic vs. static parameter handling requires clarification, and claims regarding 
hybrid models and physics overwriting are considered misleading. 
 
We thank the editor for their assessment. We have considered Reviewer #2's concerns and 
responded systematically to each point as detailed below. 

The core disagreement between the reviewer and ourselves is on scope. Reviewer #2 requests 
additional experiments (prediction in ungauged basins, alternative parameterizations, 
multivariable constraints) that were not part of the original study we are analyzing. Our paper is 
explicitly a diagnostic analysis of results from "To bucket or not to bucket" (Acuña Espinoza et 
al., 2024), and while our work certainly opens up new avenues for future research, we do not 
see the benefit of extending the scope of this manuscript too widely - its value and beauty lie in 
the straightforward application of a single, new metric that allows for deep diagnostic insights 
with our proposed analysis routine. Handling too many deviations from this setting will reduce 
the clarity of the manuscript to an extent that hinders true understanding of our method instead 
of adding to it.  

Based on the review comments, we have clarified our methodology to emphasize the idea that: 
identical LSTM architectures across all models enable an unbiased comparison using entropy, 
and we explicitly frame entropy as one diagnostic tool within a larger evaluation framework, not 
as a universal metric of physical adequacy. Moreover, their concerns about all parameters being 
dynamic have been addressed in a new section. 

Reviewer 1 agrees most concerns were addressed but emphasizes the need to justify the 
exclusive focus on streamflow prediction, incorporate discussion of equifinality, and ensure 
entropy metrics are not biased by differing model architectures. 
 
We thank the editor and Reviewer #1 for their constructive feedback. We have addressed all 
three remaining concerns in the revised manuscript as detailed in our responses below. We 
believe these revisions strengthen the manuscript's clarity and methodological rigor, and are 
confident that any doubts have been resolved. 
 
 



Considering these responses, we respectfully submit that Reviewer #2's requested changes 
represent a substantial expansion of scope beyond what we believe is graspable in an already 
reasonably lengthy single manuscript. While we have addressed all points that are within the 
manuscript’s stated objectives and added a new section outside of them, implementing the 
remaining suggested changes would effectively require conducting a different study, moving 
away from our own objectives. We are further concerned that these changes might lead to an 
iterative cycle where new concerns arise, as the reviewer appears to envision a different study 
than what was originally in the preprint. Given that Reviewer #1 has recommended acceptance 
with minor revisions, that we have addressed Reviewer #2's concerns where feasible, and that 
some criticisms of Reviewer #2 are in contradiction to our results, we respectfully request that 
the editor evaluate whether the remaining points constitute revisions or represent a fundamental 
disagreement about research direction. 
 
Kind regards, 
Manuel Álvarez Chaves on behalf of the co-authors  



Report #1 by Georgios Blougouras & Shijie Jiang (co-review team) 
 
We thank the authors for responding to our comments. Most of our concerns have already been 
well addressed in the revised version of the manuscript. However, we believe that a handful of 
our aforementioned comments require additional revisions in order to ensure the quality of the 
manuscript. 
 
We thank the co-review team for their feedback and address the remaining concerns in a 
revised version of the manuscript. 
 
(following the labels of our initial review file) 
General comment 2: 
We still believe that there needs to be a clear explanation regarding why streamflow is the sole 
predictive focus of the manuscript. Streamflow (or any single-variable) prediction is not the only 
dominant application of HMs in the last years, and ‘identifying correlations’ (as the authors put it) 
does not paint the full picture; for example, current studies are actively using hybrid models to 
infer unseen variables and calibrate under a multi-task-learning approach (in an attempt to 
ensure process fidelity). We definitely agree with the added point in 1.4 (and the conclusions): 
by-passing the physical constraints indeed makes us concerned about the validity of inference. 
Yet, there is still no clear-in text clarification regarding why only single-output hybrid models are 
evaluated, as the scope of hybrid models can extend beyond single-variable performance. We 
believe this clarification would fit specifically in the Introduction, where the authors introduce the 
motivation for their study and their modeling choices. 
 
Thank you for stressing this point. We recognize that hybrid modeling can extend beyond the 
prediction of single variables and the review process has made it clear that we should be more 
explicit about our rationale. We focus on predicting streamflow alone because we are evaluating 
the value of adding prior knowledge about the rainfall-runoff process in the form of conceptual 
models to an LSTM network. While we agree that if the goal is a hydrologically consistent hybrid 
model of high fidelity, multi-task-learning is the way to go, but it is by no means standard 
practice yet. Again, as highlighted in all versions of the manuscript and reiterated in the first 
revision, we are not promoting a specific approach to hybrid modeling, but offer an analysis for 
existing types of hybrid modeling that raise doubts - and this is exactly the setting of using 
conceptual models to apparently constrain the LSTM, for single-output prediction only. As 
suggested, we have clarified this motivation in the introduction, l. 154: 
“Note that we focus on a typical single-task prediction (here: streamflow) to evaluate the value 
of adding prior process knowledge (here: rainfall-runoff) in the form of conceptual models to an 
LSTM network. Yet, we recognize the potential of hybrid models for multi-task learning, where 
models are evaluated on multiple objectives including multiple target variables, and anticipate 
that our proposed method can be readily extended to such evaluations in future work.” 
 
General comment 3: 
Even though the authors aim to reserve the in-depth exploration of equifinality – entropy for a 
separate study, it nevertheless remains an issue that needs to be (at least partially) discussed, 



as it is a core concern in hybrid modelling and hydrological models in general. The internal 
author responses to our comments are already a great step towards this direction - these (or 
equivalent explanations) should be added to the Introduction or the Discussion parts of the 
manuscript. 
 
Thank you for this comment and it is reassuring to hear that our internal discussion is what you 
had in mind. We have now included the discussion of equifinality in the manuscript, both in  
section 3 relating to the synthetic examples (l. 495):​
​
“Interestingly, equifinality did not pose an issue with synthetic data in our experiments, as all 
models achieved perfect predictive performance and the model was always identifiable under 
the right conditions. This matches the experience of Spieler et al. (2020). However, in real-world 
applications, equifinality is likely to be more pronounced due to measurement errors, incomplete 
observations of the system under study, and other sources of uncertainty. This issue is 
discussed further in Sect. 4.3.2.” 

and in section 4 relating to the CAMELS-GB case study (l. 656):  

“To return to the point of equifinality made in Sect. 3.4, as we have seen in this section, different 
hybrid model configurations may achieve similar predictive performance while exhibiting varying 
levels of entropy in the LSTM hidden state space and modifications to their internal behavior. 
We argue that high variability in parameter combinations represents an undesirable condition in 
terms of model structure specification. High entropy aligns with this perspective and, in general, 
entropy can be used to distinguish between equifinal models.” 

Specific comment on section 2.3 ('I am concerned that the entropy metric... ML setup chosen in 
this study'): 
Similar to the above point, we believe that the internal reply to the reviewer made by the authors 
should be incorporated in-text as well. The authors should instruct the readers on how to ensure 
that when they apply these entropy metrics themselves, these metrics do not end up being 
biased, e.g., from comparing models with different architectures. 
 
Based on the reviewer's feedback, we have included a brief description of the setup in Sect. 3.2. 
More specifically, we provide more details regarding the choice of the ten hidden state LSTM 
and the number of basins (l. 324): 

"The LSTM architecture of the baseline model and the hybrid models consists of ten hidden 
states. For our entropy analysis of the hidden states to be meaningful and fair, it is important to 
compare models of the same architecture. The choice of the number of hidden states was 
defined by the minimum required so that both the baseline model and hybrid models achieved 
equal performance. To aid in this process, the models were trained on a subset of five randomly 
selected basins (76005, 83004, 46008, 50008, and 96001) from the CAMELS-GB dataset. 

(...) 



We base our entropy analysis on equal performance, to ensure fair statements about the role of 
the conceptual component in a hybrid model ." 

 

 

 

Report #2 by Anonymous Reviewer #2 
 
I appreciate the authors’ efforts in revising the manuscript and responding to the previous round 
of review. However, I think there are still some critical logical issues that remain unresolved: 
 
First, in the synthetic case (Fig. 2), the central inference seems to be: conceptual model same 
as the “true model” or over-parameterized ⇒ low entropy; model different or 
underparameterized ⇒ high entropy. But this does not mean that models with high entropy are 
“wrong,” nor that low entropy means “correct.” Entropy is not a sufficient condition for the 
adequacy of a model structure. Over-parameterized models can have lower parameter 
entropies. Hydrologic models with more process representations may require a larger subset of 
parameters to be dynamic to accommodate their complex structure for good performance, 
whereas simpler models may need only a few dynamic parameters. Does this imply that the 
latter has a better physical representation?  
 
In the synthetic case, indeed we found that overparametrized models had lower entropies but 
not lower than the “true” model. This is because for the overparametrized models there are 
degrees of freedom that the LSTM can adjust but which are not necessary. 
 
We fundamentally disagree that “hydrologic models with more process representations may 
require a larger subset of parameters to be dynamic to accommodate their complex structure for 
good performance”. Dynamic parameters, in our view, represent processes that one does not 
fully understand and therefore is letting a neural network fill this gap in understanding. If one 
could write a hydrological model using equations that describe each and every process in their 
full detail, there would be no need to couple this model with a neural network and therefore no 
entropy. The empirical results from the synthetic examples support this claim. 
 
In addition, if only streamflow data from the “true model” is used to constrain the training 
(pretending this is the only information we know), we might think that Model 3 provides a better 
representation of hydrological processes since it has two-layer buckets (soil moisture and 
baseflow buckets) and gives an almost perfect streamflow prediction. However, when more 
information about the model structure or other variables is available, we see that this model is 
actually most different from the “true model.” This simple example demonstrates why additional 
constraints are needed to diagnose whether a model reflects “bad” physics. 
 



We respectfully disagree with this interpretation. To emphasize a point that we have argued 
before, we are evaluating the added benefit of a specific conceptual model in helping the hybrid 
model predict streamflow alone. For this specific example, without additional constraints, 
entropy shows that Model 3 does not provide a realistic interpretation of the synthetic truth 
(which has only one reservoir). As shown in Figure 4, Model 3 sits furthest to the right on the 
entropy axis relative to the data-driven model, whereas the true model is located furthest to the 
left. Further, the overparameterized models that can be reduced to the true model fall between 
the true model and the data-driven baseline. This positioning alone successfully diagnoses the 
inadequacy of Model 3's physical representation in characterizing the processes required to 
generate streamflow. This is precisely the diagnostic capability we propose. Our approach is 
fully consistent in interpretation and does not require "additional constraints" to "diagnose 
whether a model reflects 'bad' physics". 
 
More rigorous experiments, e.g. adding additional constraints to the training (as suggested in 
the previous round of review), are required to demonstrate how entropy can be meaningfully 
connected with the physical representation of a conceptual model. The authors argue that 
“we're focusing on this relationship between model complexity and difficulty in prediction.” Can I 
then understand that entropy is related to model complexity, not to the correctness of the 
physical representation? However, what we need is not an easier model but a more physically 
correct model. 
 
Both in the paper and in our previous answer we refer to the complexity of the LSTM measured 
by the entropy of its hidden states. If the conceptual model adequately represents the 
generation process of streamflow in the catchment, the LSTM will have low entropy/low 
complexity. If the conceptual model doesn’t accurately represent the streamflow generation 
process then the LSTM has high entropy/high complexity. Therefore it is the correctness of how 
the conceptual model represents the physical process. 
 
Second, the entropy of LSTM states might not reflect parameter entropy. As noted in the 
previous review, we should not make all parameters dynamic. For the same model, the selection 
of dynamic parameters will change the entropy. In addition, the parameter ranges differ between 
models in the synthetic case, which might make comparisons and diagnosis problematic. A 
hybrid model with flexible parameter ranges can still simulate well even with the wrong structure, 
since the governing equations of buckets the simple conceptual rainfall–runoff models are 
similar to each other (summarized to Eq. 1).  
 
We appreciate the reviewer's considerations regarding measuring entropy and model 
comparison. 
 
As shown with the synthetic examples, the LSTM states are an unbiased way to analyze the 
entropy of the parameters and to compare between models with different numbers of 
parameters and different value ranges. Each hybrid model is coupled with an LSTM of identical 
architecture. While the conceptual models differ, they share this common LSTM component, 
which provides a consistent basis for comparing entropy across models. 



 
Regarding dynamic parameter selection, this paper analyzes results from "To bucket or not to 
bucket" (Acuña Espinoza et al., 2024), which established the hybrid modeling framework with all 
parameters made dynamic. The current work focuses on diagnosing and interpreting those 
results through entropy analysis, rather than conducting new experiments with alternative 
architectures or parameterizations. Further, we do not see the fundamental difference to the 
approach we have proposed: if only specific parameters are made dynamic, then it is among 
these parameters to compensate for any misspecification in the conceptual constraint, so the 
individual entropies per parameter are expected to increase, and it is joint entropy over all 
hidden states that we measure, so we still see entropy as a fully consistent and fair metric.  
 
To exemplify this, we have added a new Section 4.4 to the manuscript, with the previous 
Section 4.4 moved to Section 4.5. Subplot a) of the new Figure 12 shows the NSE CDF curves 
for the LSTM, SHM, Hybrid SHM, and a new model variant: SHM with only the parameter β in 
the soil moisture reservoir made dynamic (7 static parameters, 1 dynamic parameter). As 
expected, this single-parameter dynamic model shows a slight performance increase compared 
to the fully static conceptual model, but does not match the performance of the model with all 
dynamic parameters. 

Subplot b) presents the entropy distributions for these models. The fully static conceptual model 
has no entropy and therefore is not shown in the figure. The single dynamic parameter variant 
exhibits an increase in entropy, even higher than the Hybrid SHM model with all parameters 
dynamic. This observation is consistent with our framework: when the LSTM must compensate 
for model misspecification through only one degree of freedom instead of eight, its activity (and 
thus entropy) increases substantially without proportional performance gains. To put it in 
different words, for SHM β dynamic, the LSTM has to "fix" the entire conceptual model through a 
single point of entry. By contrast, in the Hybrid SHM case where the LSTM is able to make 
smaller adjustments across multiple model components, this results in higher performance and 
lower entropy. 

This example demonstrates that entropy serves as a diagnostic for how the neural network 
component compensates for structural inadequacies in the conceptual model. One can imagine 
additional experiments where parameters are selectively made dynamic or static to diagnose 
individual components in the conceptual model, with entropy guiding this process toward a 
representation that most accurately matches the natural system. 

 
The reviewer correctly notes that parameter ranges differ between models. However, our 
entropy metric is derived from LSTM hidden states, not directly from parameter values. As 
explained previously, this provides a normalized comparison framework where the consistent 
LSTM architecture ensures comparability despite differences in the underlying conceptual 
models. 
 
 



Third, the hybrid model using all static parameters could have similar performance to the one 
with some dynamic parameters in predictions for ungauged basins. I am not sure why the 
authors claim: “The potential overwriting of physics constraints happens during the training 
phase, and hence it is natural and logical to analyze it in the respective basins that these data 
are available for.” One can still calculate the entropy of the LSTM and parameters. In this case, 
can we say the model using all static parameters has a better physical representation than the 
one with dynamic parameters? However, they use the same physical model. How the NN part of 
the hybrid model is designed also matters. Again, equating low entropy with “adequate physics” 
and high entropy with “physics being ignored” oversimplifies the problem.  
 
I think these issues, along with those raised in the previous round of review, need to be 
addressed in the current work; otherwise, the results could mislead readers. Unfortunately, the 
authors defer them to future work, which prevents me from supporting the publication of this 
manuscript in its current form. 
 
We appreciate the reviewer's detailed concerns and address them systematically below. 
 
Regarding predictions in ungauged basins (PUB), in our previous response, we focused on the 
fact that the overwriting is learned during training, so it makes sense to us to investigate this 
behavior for those basins with available data. However, we agree that one can additionally 
analyze the entropy when using the trained model to predict in an ungauged setting, to assess 
the amount of overwriting happening - it just doesn’t have the 1:1 translation of overwriting that 
had to happen to achieve good performance in fitting data, which is the core interest of our 
study. 
 
Nevertheless, this paper is a follow-up to "To bucket or not to bucket" (Acuña Espinoza et al., 
2024), which did not include PUB experiments, and we do not see the merit of extending our 
analysis to this setting because its interpretation does not add anything more didactic than what 
we have shown so far. 
 
Outside of the ungauged setting, we do see the question of comparing models with dynamic 
versus static parameters as interesting. In fact, we observe a few instances where conceptual 
models with static parameters achieve performance equivalent to their dynamic counterparts. 
For example,  
 
Basin 85001: 
 

Model NSE Entropy 

LSTM 0.921 -119.16 

Hybrid SHM 0.923 -133.26 

SHM 0.900  

 



Basin 94001: 
 

Model NSE Entropy 

LSTM 0.935 -121.26 

Hybrid SHM 0.957 -128.56 

SHM 0.926  

 
In these cases, the modest performance improvement of the hybrid model over the static 
version, combined with entropy values lower than the data-driven baseline, suggests adequate 
physical representation. The hybrid framework with dynamic parameters provides only marginal 
benefit for these particular basins. We allude to these specific examples in Section 4.3.1 and, 
more specifically, in Figure 7.  
 
Concerning the influence of neural network architecture on entropy, we reiterate that all models 
in our comparison use identical LSTM architectures. This controlled setup allows us to attribute 
differences in entropy to the conceptual model component, as explained in our response to the 
previous point. 
 
As a final point, we respectfully disagree with the reviewer’s last statement saying that our 
interpretation oversimplifies the problem. Our framework interprets entropy as follows: low 
entropy indicates that the conceptual model provides an adequate physics-based representation 
that effectively constrains the hybrid model's behavior. High entropy indicates that the 
conceptual model misrepresents aspects of the natural system, requiring the neural network 
component to compensate through adjustments in the conceptual model's parameters to 
achieve accurate predictions. In such cases, the success of the hybrid model should be 
attributed primarily to the neural network's flexibility rather than to the physics-based conceptual 
structure. This diagnostic capability: distinguishing whether good performance stems from 
appropriate physical structure or from a neural network that compensates, is what entropy 
reveals and what we aim to communicate. 
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