Author’s response
Dear Dr. Fenicia,
Thank you for handling our manuscript and enabling our discussion with the reviewers.

Alongside this response letter, please find a new version of our manuscript which incorporates
the feedback received during the review process as well as a version of the manuscript with
tracked changes. This response letter is organized in two sections. First, we provide a brief
summary of the key points made by both reviewers and how they are addressed in this new
version. Then, we include point-by-point responses to each review, recalling our direct replies
during the discussion phase in light grey and indicating relevant changes made in the
manuscript in black font.

Scope

We would first like to clarify the scope of this study because both RC1 and RC2 suggested
additional experiments which would require modifying the setup in our case study. However, our
experimental setup is intentionally constrained because we’re building directly on “To bucket or
not to bucket” (Acufia Espinoza, et al. 2024) where the authors raise the question of why a
deliberately “nonsense” model was able to accurately predict streamflow. We answer this
question by introducing a new metric based on entropy. This metric is able to distinguish if the
predictive performance of a model (in terms of the objective function it was calibrated to
optimize) comes from its data-driven or its physics-based component. We show what entropy
can do in a controlled experiment and in a real case study while acknowledging the limitations
that it has in the latter. We also advocate for data-driven models to be used as baselines from
which a researcher can learn if modifications they are making or if the prior knowledge they are
adding actually helps.

Introduction and Context

Both RC1 and RC2 requested for the introduction to be expanded. RC1 focused on providing
more context on the evolution of hybrid models and the pros and cons of each modeling type
(conceptual, data-driven and hybrid models). RC2 requested for more references that compare
specifically hybrid models and LSTMs. To address these points, we have made changes
accordingly to Sections 1.2 and 1.3 in the revised manuscript.

Conclusions and Implications

The main concern of RC2 is that the current experiments and narrative might unintentionally
lead readers to conclude that hybrid models lack effectiveness and interpretability.

While we acknowledge that point and have carefully checked/revised our phrasing in several
sections (mainly Sect. 4.3.3 and the Conclusions), we would like to emphasize that our intention
is actually to help improve effectiveness and interpretability by providing a rigorous analysis tool
that reveals potential pitfalls that lead to non-interpretability, but under the hood. Our



contribution allows users to identify when models are being right for the wrong reasons, and we
provide tools to help correct them.

Focus on Streamflow

Both RC1 and RC2 noted that the study focuses on streamflow prediction. RC1’s perspective
was that by focusing on NSE and entropy, this potentially misrepresents broader hybrid
modeling goals such as interpretability, process fidelity and multi-variable outputs. While it is
true that we didn’t consider multi-variable training, in Sect. 4.3.2 we do focus heavily on the idea
that one should verify that an imposed constraint is still valid to fulfill the desire of interpretability
and process fidelity. This is highlighted in several other places of the manuscript. Additionally,
RC1 indicated that focusing on streamflow may reinforce issues of equifinality. While this is
explored in the synthetic cases by adequately fitting the parameters of our “true” model, we
don’t acknowledge it explicitly because we’re exploring this connection in a separate study. We
believe that such theoretical and methodological implications extend beyond the scope of the
current manuscript.

RC2 suggested more synthetic cases to evaluate if a “nonsense” formulation still performs well,
but that is not the intention of the synthetic cases. The objective of the synthetic cases is to
reframe the experimental setup of Acufa Espinoza et al. (2024) in a controlled setting and
translate our findings to the results of the real case study.

We sincerely thank you and the reviewers again for the valuable comments. We believe that the
modifications we made to the manuscript and our previous direct replies to their feedback,
effectively address the reviewers’ comments, concerns and suggestions.

Kind regards,
Manuel Alvarez Chaves on behalf of the co-authors



Review by Georgios Blougouras & Shijie Jiang (co-review team)

General comment 1: According to the phrasing of the paper in many instances, the readers
might be led to believe that hybrid modeling is used here as a way to help the LSTM predictive
performance (e.g., L106-107: ‘While purely data-driven... genuinely enhances model
performance’, or, L621: ‘...reduce the effort required...’). However, the LSTM’s role in the hybrid
architectures explored in the manuscript is not to ‘lead the predictions’, but rather to infer the
conceptual model parameters. Therefore, describing the models as ‘physics-constrained’ (L9)
might not be the most accurate description - maybe something like ML-enhanced/parameter
learning/... differentiable modeling would be more fitting. The change in terminology (although
potentially annoying), implies different perspectives regarding the role of the data-driven and the
physics-driven components of the model. To be more precise, the manuscript explores if
different architectures are ‘helping the LSTM’, even though to begin with, the concept of
parameter learning usually reflects the opposite direction (i.e., exploiting the LSTM to help the
conceptual model improve its predictions). To my opinion, this creates a ‘conceptual mismatch’
across the perspective of the manuscript and the ‘typical’ way such hybrid models are used. |
encourage the authors to clarify if their framing is applicable or not under this context - maybe it
might be more accurate to view the LSTM as being ‘constrained’, rather than ‘assisted’ by the
conceptual model. In light of this architecture interpretation, it would be helpful for the authors to
revisit their interpretation of the entropy-based results, to ensure that the evaluation and
subsequent conclusions are aligned with the actual model structure and what it represents.

Thank you for this thoughtful comment about terminology and framing.

Indeed, we show two different modeling setups: Section 4.3 shows the results of parameter
learning to enhance a conceptual model as the reviewer describes it, and Section 4.4 shows the
results for post-processing a regular conceptual model to improve performance of a data-driven
model. As these are two very different approaches and there exists no rigorous definition of
what a “hybrid model” is, we see this name as an apt description of what we did in both cases
and we would like to keep it as such.

Both perspectives, led by the data-driven component and physics-constrained, are valid and
depend on the researcher's background and starting point. A physics-based modeler would
naturally view our Hybrid SHM as a conceptual model with dynamic parameters, while a
data-driven modeler would see it as a constrained LSTM. Further, our analysis results indeed
suggests rethinking the terminology: if one starts from the more traditional hydrological
viewpoint of improving a conceptual hydrological model by letting an LSTM control its parameter
values, the performance results with the pure LSTM scoring best in most cases will cause the
modeler to frame the question rather from the LSTM side: is the additional conceptual part in
any way helpful (i.e. constraining in the right way, or assisting), or rather making the prediction
problem harder? In a revised version of the paper, we will carefully check the order in which we
introduce and use the different terminology, and make sure that it is in proper context with our
premises and results.



For the hybrid models which focus on parameter learning we do see the role of the LSTM as
leading predictions. As an example: because Hybrid Nonsense modifies ‘su’ and ‘si’ to behave
as time lags for the output, the outflow is mostly managed by the interaction between ‘sb’ and
‘kb’. Considering the previous point, in Figure 8 we see that for the high flow peak that happens
in 2005-01, ‘kb’ is increased disproportionately just so that the model can match the peak based
on the volume available in ‘sb’.

The role of the LSTM as leading predictions is more clear for the post-processing models, as
the predictions are given directly by the data-based component being informed by the results of
an initial run of the physics-based component. Therefore we do see the two setups as cases in
which the conceptual model assists (or doesn’t) the LSTM. Moreover, particularly the setup that
uses parameter learning can be effectively described as physics-constrained because
conservation of mass is imposed by the conceptual model at the end of the pipeline. Therefore
we consider that both terms: ‘constrained’ and ‘assisted’, apply.

We added additional commentary on the 'sb' and 'kb' behavior in Figure 8 to better illustrate how
the LSTM leads predictions, but we believe our current terminology accurately reflects the
model architectures and their roles.

Our case study has two different modeling setups: Sect. 4.3 shows the results of parameter
learning to enhance a conceptual model, and Sect. 4.4 shows the results of post-processing a
regular conceptual model to improve performance of a data-driven model. This was clarified in
Sect. 1.4, and there is additional discussion in Sect. 4.3.2 to highlight how the LSTM indeed
leads predictions.

General comment 2: The manuscript defines the value of hybrid modeling primarily in terms of
streamflow prediction, measuring the “utility” of physics constraints by the degree to which they
reduce LSTM parameter variability (entropy) for this single task. In my view, this approach risks
narrowing the broader motivation for hybrid models, which is not limited to improving runoff
prediction or reducing model complexity, but also includes enabling more meaningful and
diagnostically useful process representations (e.g., for ET, soil moisture, or system anomalies). |
am concerned that by focusing only on this narrow predictive context and a single diagnostic
(entropy), the study may misrepresent the broader role of physical constraints in hybrid models.
Many would consider physical constraints valuable even when predictive skill does not improve,
as they support interpretability and process fidelity. | recommend that the authors more explicitly
clarify the intended scope of their analysis and discuss the limitations of generalizing these
findings to other goals of hybrid modeling.

Our focus on streamflow prediction reflects what we observe as the predominant approach in
current literature. As discussed in Sections 1.4 and 4.1, many existing hybrid modeling studies
emphasize predictive performance for a single target, often without detailed analysis of why
specific physical constraints or conceptual components are effective relative to alternatives.



Rather than dismissing the broader value of hybrid models for interpretability and process
fidelity, our study aims to provide a methodological framework for systematically evaluating the
degree to which physical constraints actually constrain model behavior. This is highly relevant
also in the context of interpretability and process fidelity: if the intended model structure that
shall guarantee interpretability is overwritten, this argument is no longer valid or we might
actually find a better (in our case: simpler) process representation that again allows for
interpretability and scientific learning. While we focus on entropy as our primary metric, we
believe entropy complements, rather than replaces, other evaluation approaches focused on
process representation and interpretability, as we demonstrate in Section 4.3.2. We appreciate
the perspective expressed by the reviewer in this comment and will include these considerations
as an introductory point for this section in a revised version of the manuscript.

Our focus on predicting streamflow follows from what we observe in current literature and our
reference study. We extended Sect. 1.3 to incorporate the ideas of interpretability of hybrid
models and correlations between model states and unobserved variables, and address these
ideas in Sect. 1.4, Sect. 4.3.2 and Sect. 5.

General comment 3: In the current setup, the LSTM is only used to infer parameters, and
streamflow is the sole observation timeseries used for evaluation. In my view, this setup may
further amplify the well-known problem of equifinality in hydrological modeling. From this
perspective, | am not convinced that low LSTM entropy necessarily reflects a physically
meaningful or faithful conceptual model; rather, it may simply mean that the LSTM has found a
convenient way to “satisfy” the runoff constraint, possibly by exploiting compensatory effects
among parameters or model components. While the manuscript explores this issue by
visualizing the distributions of the LSTM-predicted parameters (e.g., in Fig2 and Fig9), | would
encourage the authors to discuss more explicitly how equifinality in particular might influence
the interpretation of their results.

Thank you for this insightful comment about equifinality. We do explore this phenomenon to
some degree in the synthetic case study which features overparameterized models, and there
we found that the LSTM identifies rather robust and simpler solutions. Yet, generally,
constraining a multi-parameter model by a single objective inevitably comes with the risk of
equifinality. This issue is well-known in hydrology and it has been for a long time, therefore our
study setup is consistent and comparable with existing practice. We agree that moving on to
higher-variate constraints is desirable, yet we prefer not commenting on this in this manuscript
because we are currently exploring this connection in a separate study, as the theoretical and
methodological implications extend beyond the scope of the current manuscript.

While equifinality didn’t present a problem in Sect. 3.2, we acknowledge the calibrating/training
only on streamflow may reinforce this as an issue. Nevertheless, we prefer not to elaborate
further on equifinality in this manuscript since we're currently exploring the relationship between
it and entropy in a separate study.



Specific Comments

Introduction: Why are you mentioning the modular hydrological frameworks more than once
(L31, L47,...)? To my understanding, there is no clear and direct follow-up regarding such efforts
in the rest of the manuscript (though one could make a conceptual link, but it would still benefit
from a clarification from the authors).

Appendix B: It would be helpful to add some more context/information about the design of the
additional models.

If we see SHM as a proxy for a typical conceptual hydrological model, Bucket and Nonsense
arise as alternatives that come from modular hydrological frameworks and the value of multiple
working hypotheses even in a setting in which they are combined with neural networks.

In a new version of the manuscript, we will reference these ideas again in Section 2.2.2 where
the hybrid models of the study are introduced. Also, inspired by this comment, we plan to place
our findings in the broader context of modular hydrological frameworks in the conclusion (what
can we learn from our results with respect to building conceptual models).

We believe that there is a clear motivation and explanation for each model, but in a revised
version of the manuscript will acknowledge that they were inspired by the idea of having multiple
working hypotheses and flexible modeling frameworks.

These ideas of modular frameworks are highlighted in Sect 2.2.2 because we have multiple
models built on these principles in the synthetic and real case studies. We clarify this in Sect.
2.2.2 and Appendix B.

For the ‘1.3 Hybrid models’ subsection: To someone unfamiliar with such modelling efforts, |
think the current subsection lacks a bit of clarity - why should people care about hybrid models,
and how have people employed them in the (recent) past? | think a little bit more context is
required in this section (especially given that in the end, from your findings and conclusions, the
paper would appeal not only to ‘hybrid modellers’, but also to the general hydrological modeling
community). In general, every ‘modeling introduction’ subsection (i.e., 1.1, 1.2, 1.3) should have
clear pros and cons of using each modeling type - this is not clear for section 1.3. Furthermore,
additional context would be beneficial regarding the hydrological community’s evolution from 1.1
to 1.2 and then 1.3. Why did LSTM become the ‘benchmark’ for many researchers in the last 5
years? Why do more and more hydrologist attempt to use hybrid models instead of pure
data-driven models? Some of these questions are already answered in the text, but in a way
that in my opinion might not be extremely clear to someone that has is not well familiarized with
hybrid modeling.

We believe the points you've raised are addressed within the current text: motivations for hybrid
models appear in lines 85-87 and 97-99, the rise of LSTMs as benchmarks is discussed in lines
56-60, and the shift toward hybrid approaches is covered in lines 71-74.



Moreover, this study builds directly on existing hybrid modeling literature and serves as a
follow-up to Acufia Espinoza et al. (2024). We designed it for readers already familiar with
hybrid modeling approaches rather than as an introductory text for newcomers. Given this
context and scope, we believe the current level of background information is appropriate for our
intended audience.

Yet, we acknowledge your point and, in line with our previous answers, in a new version of the
manuscript we will broaden Section 1.3 to highlight additional benefits of hybrid modeling
beyond performance improvements, which may help contextualize our work for a wider
readership.

We believe some of these points are already addressed in the manuscript. Specifically about
hybrid models, Sect. 1.3 was expanded based on this feedback.

L106: Do you mean ‘data-driven components’? Because the hydrological models inherently are
‘physics’-driven models. Otherwise, please revise.

L105-109: This whole text passage has the point of view of someone who wants to improve
data-driven hydrological models by incorporating physical principles. At the same time, the
opposite pathway (trying to improve physical models by using data-driven modules) is also
common in hydrology, and can also benefit from your suggested contributions. Why not mention
it here as well?

The statement should read: “They demonstrate that incorporating physics-based components or
prior knowledge doesn’t yield an improvement in model performance over the data-driven
solution”. We will modify it in a new version of the manuscript.

Thank you for the suggestion, indeed our proposed method can go both ways. We will add this
statement in a new version of the manuscript.

These lines were rewritten to incorporate this feedback.

L110-111 (contribution 1): This quantitative metric is not ‘self-standing’, to my understanding, but
relevant to a ‘benchmark’ model (in this case, the pure LSTM), right?. | believe it would benefit
the clarity of the manuscript if the authors were explicit about this here

Indeed, the metric requires a benchmark data-driven model to serve as a baseline. We will add
‘in comparison to a purely data-driven benchmark” at the end of this sentence in a revised
version of the manuscript.

Contribution 1 now includes “... in comparison to a purely data-driven benchmark”.
L114-115 (contribution 3): This suggested contribution is somewhat unclear to understand under

the provided context - a reader would need to read the following manuscript first to fully grasp
what the authors mean by ‘effective’ and ‘prescribed’. | suggest revising this.



Thank you for the suggestion. To clarify, we will add “based on the conceptual model” at the end
of this sentence in a revised version of the manuscript. This is what we refer to as the
prescribed structure.

Contribution 3 now includes “...based on the imposed”.

L122: ‘favoring’ -> again, the context is missing at this point for the readers to fully understand
what ‘favoring’ the data-driven component means, and | would suggest revising this a little bit to
provide more information.

Thank you for the suggestion. We will change this sentence to “High entropy points to an
imbalance in which the data-driven component compensates for inadequacies in the conceptual
model by manipulating its parameters...” in a revised version of the manuscript.

The new statement reads “High entropy points to an imbalance where the data-driven
component compensates for inadequacies in the conceptual model by manipulating its
parameters”.

L173: Similar to my point regarding the 1.3 section, | think the authors should provide a little bit
more context about why this revival of dynamic parameters has happened in hydrological
modeling. | would refer more to Tsai et al. here (https://doi.org/10.1038/s41467-021-26107-z),
which is already cited in your paper regardless.

Thank you for the suggestion. Yes, based on this and the previous comment, we will extend
Section 1.3.

Section 1.3 was expanded to incorporate this feedback.

L174 / Figure 1: To my understanding, the different model setups are not yet utilized, and they
do not become fully relevant until section 3 (which could be viewed as a gray zone between a
‘methods’ and a ‘results’ section). It is fine if the model setups remain in Figure 1 and this
section, but then the authors should also present what the individual models represent, because
there are 5 subfigures in figure 1, leaving a lot of questions to the readers (especially the ones
not familiar with past group efforts utilizing the SHM and Nonsense models). Otherwise, the
authors could immediately move the figure and refer to it in a more relevant section.

Thank you for your suggestion. We will add a brief description of each model here as we believe
this is a good place for Figure 1.

Descriptions for each model were added to Sect. 2.2.2 referencing Figure 1.
NSE* calculation: In the original work, this metric is cross-basin and there was an additional sum

in the formula (over all basins, which does not exist here), while Kratzert et al. divided by the
number of basins instead of the number of days. Here you use a basin-average metric,



deviating from the original formula as far as | can see (but please correct me if | am mistaken).
Does this imply that the evaluation is done on a basin-scale? It would confuse/conflict with the
rest of your paper where you indicate that you train on multiple basins.

Indeed there is a difference and we will clarify in a revised version of the manuscript.

In the way we wrote Equation 4, we are not including the terms related to batch averaging. In
our training pipeline, NSE* is calculated per training batch where each batch contains training
samples from a single basin letting us also calculate s; per batch without having to consider
standard deviations from more than one basin. Training on multiple basins happens at the end
of a training epoch where we average the loss function for all batches. This is different from how
the expression is shown in Kratzert et al. (2019b) but both loss functions are functionally
equivalent.

Equation 4 was modified to include batch averaging.

Section 2.3: | am concerned that the entropy metric may depend strongly on the specific
architecture and hyperparameters of the LSTM. Have you tested how robust the entropy-based
findings are to changes in LSTM design (e.g., number of hidden units) or to using alternative
machine learning models? | am curious to what extent the conclusions hold beyond the
particular ML setup chosen in this study.

It is correct that the absolute values of entropy depend on the chosen ML architecture; however,
the qualitative ranking between the different hybrid models remains stable. We confirmed this by
previous analyses where we initially applied our method to four models using five hidden states
and obtained the same qualitative ranking. When we extended the analysis to eight models, we
increased the hidden nodes to ten to achieve comparable performance across all models. This
is crucial because, in practice, a researcher typically selects an LSTM architecture to optimize
performance on their chosen loss function. Since our entropy analysis is applied post hoc to
trained models, the key requirement is that all models use the same architecture, rather than the
specific architectural choices themselves.

No changes were made to the manuscript based on this comment. The concern was addressed
as a reply to the reviewer.

L200: Here | would suggest a small change in the phrasing - maybe emphasize that you move
away from analyzing the entropy metric of the predicted parameter values, but nevertheless
exploring (and visualizing) the LSTM predicted parameters is an important step in exploring the
‘under-the-hood’ performance of the model. Currently it reads as if you will completely ignore
the information from the LSTM-predicted parameters.

Good point and thank you for your suggestion! We will change the phrasing in a revised version
of the manuscript.



This sentence was removed and clarified in the following paragraph.
L214: Mention that the link for the UNITE toolbox is found in the ‘code availability’ section.

We embedded a link to the text, but you make a better suggestion. Thank you! We will change it
in a revised version of the manuscript.

The statement now reads “... which can be found in the code availability section of this article”.

L233 -> Appendix A1: please specify how these parameter ranges can be justified (you mention
Beck et al., 2016, 2020 but later on in the text, leaving an open question for now).

There is actually a mistake in how the choice of parameters is described. The parameters from
Beck et al. (2016, 2020) are for the case study in CAMELS-GB. From this reference, we
adapted the ranges to fit the simpler models in the didactic examples. We will rectify this and
clarify our choices in a revised version of the manuscript.

The reference to Beck et al. (2016, 2020) was moved to Appendix A2 mentioning that they are
directly used in the CAMELS-GB case study and simplified for the synthetic case study.

Section 3.2: | think it would be beneficial to be more clear as to why you use a stand-alone
LSTM model to compare against the hybrid setups (for example, L727-L730 of Appendix B
could be mentioned here).

Thank you for your suggestion! We will move the description of Model O to the end of Section
3.1 as we're also advocating for an initial purely data-driven reference model.

Section 3.2 now includes a description of the results for Model 0.

L274: | would say that randomly selecting 5 basins and not repeating the experiment might not
convince many large-sample hydrologists - especially if you do not elaborate on these random
catchments or their representativeness... One could repeat the exact same experiment by using
5 other randomly selected basins (no need to go too much into detail, providing the results in
the supplementary and the logs on the repository is more than enough), or further demonstrate
why conducting an experiment on a set of 5 randomly selected catchments is more than enough
to derive safe and transferable conclusions.

A key aspect of our didactic example is that we use synthetically generated streamflow time
series from a conceptual model with known static parameters, rather than observed streamflow
data from real basins. In this synthetic framework, the specific characteristics or
representativeness of the selected basins are less critical because the "observed" streamflow is
generated using controlled parameters rather than reflecting actual basin behavior. As such, we
could have sourced the rainfall data from anywhere or even used a stochastic process to
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generate it for this example. This is noted in L279 but we will stress this point in a revised
version of the manuscript.

The reason for selecting five basins are now clarified in Sect. 3.2.

L362: | think mentioning results about models appearing in the supplementary (and especially
figures that have additional results from models not yet revealed before the supplementary
information) can lead to unnecessary complication. Maybe you can either remove them from the
main figures and reveal them directly in the supplementary information. Alternatively, if you wish
to keep them, maybe some additional information about models 6,7, and 8 in the main
manuscript would be helpful. Furthermore, you could also have specific shapes for Fig. 3 and 4
representing each type of ‘wrong model type’ - this would be practical if you wish to keep
models 6, 7 and 8 in the main figures (e.g., over-parameterized models have a ‘square’ shape
or a certain color, ‘wrong architecture’ models have striped color, etc...). This is not necessary to
be done, just a suggestion / visualization experiment.

We appreciate the suggestion, however we would like to keep it as it is right now. We provide a
description of how these models resemble those in the main text in L361-363, and we decided
not to provide a longer description because of their similarity to the models described in more
detail previously in this section. The suggestion for the change in visualization is good, but there
is an overlap as overparametrized models can also have wrong processes or architecture.
These categories are merely descriptive and we don’t think it's necessary to modify the axis.

No changes were made to the manuscript based on this comment.

L380: ‘matches the true system’ (and many other instances in section 3 where the word ‘true’ is
used) -> | feel like the phrasing is a bit misleading, as true is currently an idealized setup. Of
course you have mentioned this in the manuscript, but still the word choice is important, and
someone could make the implicit connection that these models can well capture the real word
‘true’ signal, which is not the case as we see in section 4.

Thank you for the suggestion. The first instance of the use of the word true to describe the
idealized setup in Section 3 happens in L235 and we use quotations to emphasize that this is a
case of synthetic “truth”. We reinforce this distinction in L498 for the real world case study. We
believe this establishes context and a reader will keep this in mind while reading this section.
While we appreciate the concern about terminology, as this issue is more philosophical, we
prefer to maintain our current usage of "true" for the synthetic reference as it better serves the
pedagogical aspect of this section.

No changes were made to the manuscript based on this comment.

L383: clarify which LSTM based entropy you refer to here - hidden-state or parameter based,
because the distinction is important and it needs to be clear to the readers.
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Thank you, we will add “hidden states” in a revised version of the manuscript.
The new statement reads “... LSTM hidden states ...".

‘On the Complexity of the Prediction Task’ -> | think this can be seamlessly merged with the 3.4
subsection, or go directly into the appendix - | feel like it doesn’t provide enough information as
a stand-alone part of the manuscript...

We would prefer to keep this section as it reflects our interest in data-driven baselines and the
analogy with complexity will appeal to some readers. Moreover, we highlight that our approach
focuses on the data-driven component and measuring the entropy of the conceptual head layer
is an open challenge that we hope can be addressed in the future.

No changes were made to the manuscript based on this comment.

Subsection 3.4 ‘Summary of the proposed approach’ and overall point about Section 3: Now all
the models had a (almost) perfect fit. This makes the evaluation ‘easier’, because now we know
if the LSTM had to work ‘overtime’ to ‘save’ the model performance. But how can we evaluate
this in cases where the models do not have equally comparable performance metrics? In other
words, how do we measure the ‘effort’ by the LSTM to 'save' the streamflow prediction, if the
final models do not predict streamflow prediction equally well? | am aware you touch this a little
bit on the next chapter, but | think additional discussion on this matter on Subsection 3.4 would
be very helpful - | am sure many readers would have this question.

We agree that this is a practical consideration that readers will share and, in a revised version of
the manuscript, we will add additional commentary to point towards the relevant section in this
subsection.

However we would like to emphasize that this is a didactic example which is predicated on
having equal performance because we’re not making any specific statements about model
selection or preference. Specifically we are using this section to apply our proposed method in a
controlled setting, and derive insights about the amount of effort prediction takes without
considering any differences in performance.

In practice, we do consider that any kind of ultimate selection should be based not only on
performance and entropy, but also on other criteria such as explainability, computational cost,
etc. This is why we highlight very specific cases in Section 4.3.

The last paragraph of Sect. 3.4 was modified to incorporate this feedback.

L454-459: Here, you could mention that a description of these models (SHM, Bucket and
Nonsense) can also be found later in this manuscript.
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Thank you! In a revised version of the manuscript we will reference Figure 1 and the relevant
subsection.

The description of the models was added to Sect. 2.2.2 and reference in Sect. 4.1.

L476: ‘...improving prediction skill -> | assume you mean compared to your LSTM-baseline,
right? Be more specific as the baseline comparison is important.

Indeed! We will add “in regard to the LSTM baseline” in a revised version of the manuscript.

The new statement now reads “... none of these constraints improve prediction skill over the
LSTM baseline”.

L485: ‘These five basins were carefully chosen...” -> how? Please elaborate. Also, are these 5
basins the one in Fig. 67 This is not immediately clear. And follow up question on L519-520:
Could this also be related to the hydrological processes involved in these catchments? You do
not provide any information regarding the catchments, despite being carefully chosen (L485).
Not all models can fit all catchments, and in the manuscript it is not explained how these
catchments were selected/what are their characteristics and so on... This creates an uncertainty
to the readers: how do we know that these results are not affected by the catchment selection
and specific catchment behavior? In other words, can the authors ensure that their findings are
transferable across and beyond the 5 selected catchments? (similar question - point for
selecting the basin 73014 in L568 and Fig. 9).

We agree that this is not clear and will improve it in a revised version of the manuscript. The five
examples were carefully chosen basins in which all hybrid models have performance on par
with the LSTM, as in our didactic example. Moreover in Fig. 8 and Fig. 9 we use basin 73014
because it belongs to this subset.

Our study focuses on demonstrating what our proposed entropy metric can reveal rather than
selecting optimal models; hence, it is not relevant what exactly are the characteristics in those
catchments, but rather we see them as useful examples to demonstrate what the results of our
proposed analysis may look like.

The choice of basins is now more clearly addressed in Sect. 4.2.

L564-L567: You mention the two different components. The first being, the low vs high entropy,
and the second being the unaffected vs suspicious time-varying patterns. Do you think there
could be a visual representation of this on a 2-axes plot? | am thinking something like figure 4
but 2-d. In this case, the more you move towards the ‘high’ entropy values, the less important
the change in parameters is (you already have mentioned that high entropy indicates ‘struggling
due to the imposed constraint’), but the more you move towards the ‘low’ entropy values, you
can get different ‘color’ (if we draw a comparison to fig. 4), depending on whether we have high
or low variability in the parameter axis. This is not necessary, but | thought it might be interesting
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to try and visualize this important insight - it could help promote and establish the detailed
methodology.

Thank you for the interesting suggestion. The problem is that, as we saw in Section 3 and
Figure 3, comparing the entropy in the parameters of models with different numbers of them will
result in disingenuous conclusions. There are ways in which this could be avoided, but we find
our methodology most simple by focusing just on the entropy of the data-driven component.

No changes were made to the manuscript based on this comment. The issue of comparing the
entropy of a model’'s parameters and its hidden states was addressed as a reply to the reviewer.

L573-574: Wouldn't the fact that the model has learned behaviors from training on other basins
a good thing? | am confused about the point you aim to make here.

This is clarified in the next sentence. For this basin, SHM by itself already proved to be a good
model and there is really no benefit from the hybrid approach and training in multiple basins.

No changes were made to the manuscript based on this comment.

L585-589 and Figure 10: You mention this later on, but it would be nice to elaborate already a
bit on why the Hybrid Nonsense is the top 2 - it is a logical question that a lot of readers would
immediately have.

Agreed! In a revised version of the manuscript we will start to comment here.

Section 4.3.3 was modified to address this and other comments.

Fig 11: Would be helpful to add the % in the bars as well.

The relevant percentages are already used in the text and the bars already give a sense of
proportion. Moreover, we used the same scale for the x-axis in Figure 11 and Figure 14, so we
would argue that there is no need to include percentages in the figure.

As the percentages are already in the text, Fig. 11 was not modified.

General question about section 4: What about a joint analysis of AH and ANSE? | mentioned
this earlier as well, but when trying to simulate real world catchments, the performance of the
models can vary quite a lot - then it would be hard to judge and compare the different entropies
across models, if the baseline of their predictive performance is not comparable. It would be
nice to provide some clarifying perspectives on this while concluding section 4.

Thank you for this important point and, as we mentioned in our previous reply, a decision about

model selection should account for performance and not only our proposed metric, which is
tailored to diagnostics, not model selection in specific. In fact, with this manuscript we don’t
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make any specific statements about model selection because we believe that this is an even
broader topic in which not only performance, and now entropy, should be considered, but also
interpretability and computational cost, for example. We will, however, comment on possible
ways to include AH and ANSE in a joint metric for model selection in a revised version of the
manuscript, as “nuclei” for future research.

The introduction of Sect. 4.3.3 comments on using entropy as part of a set of criteria for model
selection while not being a criterion on its own.

L648: | would like to suggest adding the word ‘evaluating’: ‘building **and evaluating*™* hybrid

models’. It is a bit ‘nit-picky’ as a comment, but | think it is an important part of your implications
and deserves to be mentioned.

Thank you for this suggestion. We also see how the word ‘evaluating’ fits here and will add it in
a revised version of the manuscript.

The statement now reads “These results overwhelmingly suggest that we need to reconsider
our ways of building and evaluating ...”. Additionally, this statement appeared previously in Sect.
4.3.3 and removed from there.

L672: This sentence reads like you imply something along the lines of: ‘process-based modeling
of catchment scale streamflow is unnecessary - why go in the long effort of creating or applying
these models if LSTMs can be better?’. | know this is not your initial intent, so | would suggest

rephrasing in order to avoid confusion.

Indeed, that is not our intention. We will place this better into context in a revised version of the
manuscript.

Section 4.3.3 and Sect. 5 were modified to consider this comment.
Technical Corrections

L38: ‘Typically catchment scale processes of in a rainfall-runoff...’
L174: ‘...used [in] our case...

L210: us -> is?

L211: you repeat ‘of’

L253: | believe ‘setup’ is just a noun - ‘set [space] up’ should be the verb needed in this context.
Maybe | am wrong.

L351: fix’ -> ‘adjust’ might be better fitting?
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L408: is there a full stop [.] missing after ‘model’?

L472-475: This period is 4 lines long and quite hard to read through - | would suggest splitting
up to individual sentences to ensure readability.

General ‘correction’: make sure you adopt a unified style when it comes to capitalizing titles
throughout the manuscript. | see some passages have a ‘capitalized’ style (e.g., ‘Comparing
Conceptual Constraints on the Entropy Axis’) and some others are more free with capitalizing

words (e.g., ‘3.3.2 Measuring entropy of conceptual model parameter space’).

Thank you for your careful reading of our manuscript! In a revised version we will fix all of these
technical corrections.

All of these changes were considered in the revised version of the manuscript.
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Review by Anonymous Reviewer #2

1. The LSTM in the hybrid model is used for parameter estimation, while the simulation is
conducted by the process-based model (PBM). The main reason for incorporating PBMs is to
improve model interpretability and performance, especially when data is limited (by reducing the
searching space). The latter is achieved through physical constraints provided by PBMs. The
physical constraints include not only mass balance for each bucket but also the interactions
between fluxes. More specifically, the hybrid model provides clearer expressions (better
interpretability) of the physical processes than black-box models (e.g., LSTM) and enables the
calculation of internal variables. This means that we can incorporate more data as target values
to further constrain or evaluate the model.

Many studies, including those by the authors, showed that the internal variables such as soil
moisture and ET are comparable to observations. If the physics are totally incorrect (or, as the
authors commented --- “physics-ignored”), how is it possible that these internal variables make
sense? If some of the modules carry realism to some extent (which would make
“physics-ignored” incorrect), can the authors’ method ascertain what is good or correct? If the
method cannot ascertain what is good, how can it separate the good from the bad?

Currently, the model in this study is trained only with streamflow data and evaluated against
streamflow. However, the authors could design a more complex synthetic case with additional
internal variables such as ET, snow, soil moisture, and baseflow, and explore the following:

a. If we add more constraints to the internal variables (by using them as additional targets),
can the nonsense formulation still achieve the same performance as the correct model?

b. Can a model with a nonsense formulation provide accurate simulations of these internal
variables when trained only on streamflow?
In real cases, even when we lack direct observations for some variables, we can still
compare model outputs to satellite or reanalysis data to gain insights into the accuracy of
the internal variables and model structure.

c. When your hybrid models produce accurate predictions for both internal variables and
streamflow, do you still observe an increase in entropy when adding physical models?
Or, if entropy increases, can you still maintain the same level of accuracy?

Thank you for this comment. We would like to clarify that we use "ignored" rather than
"incorrect" physics because this better describes what may happen in hybrid models. Physical
laws such as conservation of mass and physical principles like the interaction of fluxes are
indeed encoded in the model, but in some cases they might not be satisfied in the ways in which
the modeller might expect.

If the prescribed constraints are not respected in the hybrid model, then also interpretability is

not given as such. This emphasizes the need for and usefulness of our proposed method: we
need to better understand if the hybrid model under investigation truly respects the physics as
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intended (in that case, interpretation and consistency tests make sense and are meaningful), or
if the data-driven component effectively changes the structure - up to essentially manipulating all
processes, leaving only mass balance as effective physics constraint (in that case, interpretation
based on the initially prescribed physical processes would be misleading and not suitable for
advancing science).

We suspect that hybrid models, more often than not, show an effective structure that is notably
different from the initially prescribed physics constraint. We hope to motivate the readership and
community to perform extensive tests with our proposed methodology to confirm or dismiss this
hypothesis.

The reason why so far this issue has not been widely documented might lie in the fact that even
hybrid models that are constrained by “inadequate physics” have the capacity to show high
correlations with unobserved variables. Our Hybrid Nonsense model demonstrates this clearly
as was shown in Acufa Espinoza et al. (2024). Despite deliberately encoding nonsensical
interactions in between its fluxes and storages, this model still achieved a correlation with soil
moisture (from ERA5-Land data) of 0.85 that is nearly identical to the more physically
reasonable Hybrid SHM with a correlation of 0.86. This shows that compensation by a neural
network can make even poorly encoded knowledge of physics appear to work well. One
possible explanation is that soil moisture dynamics are mostly driven by boundary conditions
(rainfall - soil moisture increases, no rainfall - soil moisture decreases), making it not a
particularly challenging test. It remains an open question how consistency checks should be
designed to be truly informative in a physics context; our proposed method will help establish
the ground for interpretation of such consistency checks by warning the modeler if the
prescribed constraints are actively compensated for.

The key contribution of our work is hence providing a systematic way to distinguish when
physics are consistently utilized versus ignored and manipulated. Our entropy metric,
benchmarked against a purely data-driven baseline, enables this separation. Higher entropy
than the baseline indicates "bad” physics, i.e. constraints that need compensation, while lower
entropy indicates "good” physics, i.e. contributing meaningfully to model performance. “Good”
and “bad” is used as abbreviation for these longer definitions in the manuscript and properly
explained as such; if that is perceived as too bold, however, we would consider replacing those
terms in the caption of Fig. 4.

Thank you for these suggestions. These are indeed questions we have considered ourselves
and would be valuable to explore in future work. However, we believe it's important to maintain a
focused scope for this study to ensure we provide a thorough answer to our central research
question. The performance of hybrid models as such, and the best training strategy (single
target vs. multi-objective) to increase it, are not of core interest here (as we noted above, the
entropy metric is not to be confused with a performance score).

Furthermore, we do not wish this study and publication to become a comprehensive evaluation
of the Nonsense model. The motivation for this study arose from the observation in Acuna
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Espinoza et al. (2024) where good predictions of streamflow were achieved without the need to
add a proper physics-based model like SHM, but using Nonsense instead. This led us to
investigate why you could seemingly add any conceptual model structure, even deliberately
"nonsensical" ones, and still achieve equally good hybrid predictions of streamflow. We believe
our current scope allows us to provide a solid understanding of this phenomenon through both
our synthetic case study and the CAMELS-GB case study, and we see the questions you've
raised as natural and important extensions for future research.

Regarding the broader question of using correlations with internal variables to validate hybrid
models: as discussed above, there is a need to increase the rigor of such analyses by putting
the correlation results into the proper context. While important hybrid modeling studies have
used correlation of internal variables as validation (Feng et al., 2022), from the other
perspective, it has been shown that LSTM cell states can also achieve strong correlations with
observed variables, even with individual cells presumably learning to track specific processes
like snow accumulation (Kratzert et al., 2019).

Instead, we first need to understand what the hybrid model is doing, before we can interpret
correlations. It might be that the internal functioning of the hybrid model is substantially different
from what the modeler had put in, and hence a surprisingly high correlation with variables not
used for training might just mean that the hybrid model found its way into an effective
time-lagged representation of how rainfall increases the level of a storage, before producing
discharge: this is what we observed in our test case with the Nonsense model. We therefore see
our proposed analysis as a first and necessary step to put any correlation analysis on solid
grounds. The result of a correlation analysis, however, will not have an impact on our method in
any sense, which is why we don’t see merit in extending the scope of the current manuscript to
internal variables. Also, the question how we can better enforce physics constraints to prevent
them from being overwritten is beyond the scope of this study; rather, the proposed method
provides a tool for modelers to test the effectiveness of their way of constraining hybrid models.

In our reply to the reviewer’'s comment we described the issue of deriving interpretability from
the imposed conceptual model constraint when this structure likely has been modified in the
final hybrid model. We also described the issue of using correlation from unobserved variables
with independent data products as validating. These points have been incorporated in multiple
subsections of Sect. 1 and Sect. 5.

2. Should we make all parameters dynamic? Similar to traditional conceptual models, hybrid
models also suffer from overfitting when too many parameters are calibrated (or “learned,” in the
case of hybrid models), especially when done dynamically. We should not make all parameters
dynamic. This caution has been raised in several recent works on hybrid modeling. By making
all parameters dynamic, we give the LSTM too much freedom and intentionally allow it to
dominate the hybrid model. One key point | want to emphasize is that LSTMs (and neural
networks in general) are "lazy" models—they tend to find the most convenient (easiest) way to
make predictions. Rather than learning the true functional relationships of parameters, they
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often memorize patterns in the time series, and often special effort is needed to make it extract
the necessary information. To discourage this "laziness" in neural networks, two approaches can
be considered:

a. In addition to the temporal test as done in this work, prediction in ungauged basins or
regions is a useful evaluation method. Verifying the accuracy of internal variables is
another effective strategy. If a hybrid model demonstrates good spatial generalizability,
how does its entropy compare to that of a pure LSTM?

b. If we only allow a limited number of parameters to be dynamic, for example, just beta
(shape coefficient in the soil moisture zone), can all models still achieve the same level
of performance? How does their entropy compare to that of the pure LSTM?

The authors touch on a similar point in Lines 645-648: “Notably, this process occurs entirely
under the hood. If we had evaluated performance using only NSE, we might have mistakenly
concluded that the Nonsense constraint was just as valid as SHM or Bucket, since all three
achieved the same performance when paired with the LSTM.” | hope the authors can consider
my suggestions in their entropy analysis experiments. The current experiments and narrative
might unintentionally lead readers to conclude that the hybrid model lacks of effectiveness and
interpretability.

Thank you for these suggestions. In fact, ultimately we wish to help improve the effectiveness
and interpretability of hybrid models, by providing a rigorous analysis tool that helps looking
under the hood. We challenge the assumption that hybrid models become effective simply
because we add a specific structure like SHM. As reflected in the lines you highlighted, our
intention is to demonstrate that, when predicting streamflow alone, some models might be good
for the wrong reasons, and we aim to provide tools to identify such cases, to have a chance to
correct them and develop better ways of building hybrid models.

We agree that not all parameters need to be dynamic, and our implementation actually provides
the flexibility to keep certain parameters static while making others dynamic. Your suggestions
represent excellent directions for future research. For example, if we freeze certain parameters,
does the LSTM increase its reliance on remaining parameters (increasing entropy), or does it
find more elegant solutions with the remaining degrees of freedom (reducing entropy)? These
questions exemplify how this study opens new research avenues while advancing model
evaluation beyond simple predictive performance to include model complexity, a topic that is
typically not addressed.

Nevertheless, for this study we deliberately followed that of Acufia Espinoza et al. (2024), as we
specifically wanted to address the questions those authors raised. To emphasize, we didn’t do
any new modeling for this study but analyzed previously published results.

With respect to prediction in ungauged basins: we focused on temporal rather than spatial
extrapolation because we also followed the scope of Lees et al. (2021), which matches the
standard benchmarking practice for CAMELS datasets. Theory-wise, we do not see the direct
benefit of applying our entropy metric to the predictions of hybrid models in ungauged basins.
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The potential overwriting of physics constraints happens during the training phase, and hence it
is natural and logical to analyze it in the respective basins that these data are available for. In a
secondary step, one could of course also use our method to analyze the variability of LSTM
hidden states when predicting in ungauged basins, but the interpretation becomes more difficult
- we see this as an open question for future work.

Regarding your point about neural networks being "lazy" models, please indulge us as we'd like
to offer a philosophical perspective. We believe this apparent "laziness" sometimes aligns
beautifully with the principle of Occam's razor in that what appears to be lazy may actually
represent profound insight that recognizes that a complex problem can have a surprisingly
simple solution. In our case, the LSTM's ability to ignore unnecessary complexity in models like
SHM and focus on what's truly essential for streamflow prediction could be seen as elegant,
efficient and parsimonious problem-solving rather than laziness. The fact that the LSTM could
transform even our Nonsense model into an effective predictor suggests it identified the core
requirements for this prediction task, potentially revealing important insights about what's
actually necessary for predicting streamflow accurately in this dataset. Further, we designed the
didactic synthetic examples deliberately such that they could reveal if LSTMs tend to do
“overcomplicated” things or fail by only memorizing time patterns. It was reassuring to see that
they identified the simplest and truest representation possible.

The suggestions made by the reviewer in this comment are appreciated and definitely provide
avenues for future research. Our scope for this study is constrained by the scope of Acufia
Espinoza et al. (2024) and we believe that we effectively have answered the question of why a
model with a deliberately “nonsense” component proved effective at making predictions while
introducing a metric the adds to a repertoire of criteria that can be used to assess hybrid
models.

Based on this comment we made changes to several subsections of Sect. 4, especially Sect.
4.3.3, and Sect. 5 to acknowledge the limitations of this study and to better frame and give
context to our results.

3. | also felt the entropy argument has some logical issues: The fact that LSTM has the lowest
entropy simply means it has no reason to care about processes. Let’s think of process-based
Earth System models with land surface processes like energy balance and carbon cycles, with
many complicated calculations and quite likely lower NSE values. Now, let's say we replace a
component with large variability but minor influence on streamflow with an NN-based dynamic
parameter. The dynamic parameter will learn some of the missing dynamics but will generate a
large entropy with a quite small gain on streamflow performance, but does this mean it is worse
than a model that completely ignores these dynamics? Moving one step further, if one
“‘downstream component” to the NN has large structural error and generates lots of noise, the
NN ends up ignoring this component (giving it nearly 0 weight), and route information through
other paths. The total entropy may end up being lower. Does this mean the second one is a
more realistic model?
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Thank you for raising these questions.

To reiterate, our measure of entropy is designed to evaluate whether added model components
contribute meaningfully to make the task of prediction easier or whether the neural network
must compensate for their inadequacy. Entropy is used as a diagnostic tool. When we argue
that entropy relates to the challenge of prediction (lines 394-401), we're focusing on this
relationship between model complexity and difficulty in prediction. Further, as stated above, we
do not wish to provide a model selection method that pits performance against entropy. Rather,
we provide a tool that transparently shows how much the LSTM has to compensate, which is
expected to be very valuable in model evaluation. We do not see the point of providing a
universal recipe of how to balance this with performance. The main driver of advances is, from
our perspective, understanding why our models perform as they do.

So coming back to your specific example, we believe that if a hybrid model learns to bypass
structurally flawed components, this provides valuable diagnostic information. While this doesn't
make the model more "realistic" in terms of process representation, it reveals which processes
actually contribute to predictive skill versus which introduce unhelpful complexity. Understanding
when and why processes are ignored can guide us toward better representations or help
recognize when we're asking models to represent processes they cannot adequately constrain
with available data.

No changes were made to the manuscript based on this comment. The issue of replacing
processes or skipping a specific process were addressed in our reply to the reviewer.

4. One should not think that the NNs in a hybrid model learn only true physics --- it is a mixture
of true missing (to be learned) processes and compensation for structural, parametric and even
numerical deficiencies. The baked-in assumptions serve as constraints to limit the searchable
subspace, hopefully making the framework more generalizable and giving meaning to
intermediate variables. The hope is that the signal overwhelms the noise or that we can extract
useful insights from learning. We verify the meaning using additional observations.

My point is that one should base such analysis on a case-by-case basis and the conclusion
obtained by the experimental design in this study may not generalize to another case. Entropy
measures variability, not correctness. A model may need high variability in parameters due to
data noise, poor observability, or inherent system variability—not necessarily because the
constraints are wrong. The authors acknowledge uncertainty later (Sect. 4.3.2 and 4.5) but still
lean heavily on this deterministic interpretation throughout. Equating low entropy with model
adequacy and high entropy with “physics being ignored” oversimplifies complex interactions
between model structure, data, and learning dynamics.

Thank you for this comment. In rainfall-runoff modeling, where we work with significant
abstractions of real-world dynamics, we acknowledge that what we learn are not "true physics"
but rather macro-scale insights about system behavior, no matter if we talk about conceptual or
hybrid models. Further, here the NN is not used to learn “true” physics, as these are assumed
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to be encoded by the conceptual model which serves as the head layer of the LSTM. Rather,
the LSTM learns how to bias-correct the conceptual constraint to arrive at close-to-true physics.

As the Reviewer states, models will struggle with data noise, poor observability, or unresolved
system variability, and this will have an impact on how much effort the LSTM has to put in to
make the rigid conceptual constraint perform well under these conditions. Hence, while it will be
difficult to interpret individual entropy values as “high” or “low”, the comparison with the
reference entropy value of the pure LSTM, and potentially other hybrid model structures as
done in our study, for a given catchment is highly informative. This is why we promote
constructing at least parts of the model evaluation axis in Fig. 4, and why we look at
basin-specific rankings in Fig. 11 to complement the results from simply comparing entropy
values across basins in Fig. 10. It will be interesting indeed to further refine our understanding
how “adversities” in the data of the basin to be modeled impact the difficulty of the modeling task
and hence the entropy metric in future work.

We agree that evaluation should be case-by-case, which is why we promote a widely applicable
method, not its analysis outcomes. We made a careful effort to both provide an overview of
results for that specific large-sample data set, and additionally investigated specific basins
in-depth for our analysis in Sections 4.2, 4.3.1, and 4.3.2. The purpose of these analyses is to
let the readers gain intuition about the possible outcomes of our analysis method and their
interpretation, such that they can apply the method to their cases of interest. It will be valuable
to find out if our results generalize across many different large-sample datasets, and how they
depend on the specific hybrid model architecture. Again, with this study, we hope to stimulate
further research along these lines, to advance hybrid modeling in hydrology but as Reviewer 1
pointed out, as well in many other disciplines.

Similarly to comment no. 2, we made changes to several subsections of Sect. 4, and Sect. 5 to
acknowledge the limitations of this study and to better frame and give context to our results.

5. Ignoring causality. None of the analyzed information metrics measure causality, while
causality is a key value brought in with the incorporation of physics. The physical component
can ensure that higher temperature can lead to higher evaporation, or ensuring that precipitation
(not humidity) drives runoff. The causality and baked-in sensitivity allow future climate
projections to be more reliable. Your information metrics do not reflect such guarantees.

Thank you for this observation. You are correct that our entropy-based analysis does not
measure causality, because it is not designed to do so, and we also do not claim anywhere in
the text that it would. We do agree that what the Reviewer describes as causality is a desirable
property and insightful methods should be developed to measure/detect it in hybrid models. This
is an open question, yet unrelated to the topic and goal of our study.

No changes were made to the manuscript based on this comment. Measuring causality is
outside of the scope of this study.
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Minor comments:

Line 102—104: There are several other studies that have compared hybrid models with LSTM.
These could also be mentioned here for completeness.

Thank you for this suggestion. Indeed there are, and we will include some additional references
to comparisons between hybrid models and LSTMs in Section 1.3 of a revised version of the
manuscript, while keeping these lines focused on motivating the current study.

Section 1.3 was expanded to include additional studies which compare hybrid models.

Line 451-453: This depends on which aspect of the problem you're examining. Hybrid models
should be compared not only to LSTM but also to traditional process-based models. Given the
same structure of a process-based model, the hybrid version can yield better performance.
Compared to LSTM, hybrid models offer better interpretability. The fact that a hybrid model can
make a nonsensical model perform well does not mean that a hybrid model built with a correct
process-based structure is invalid. As | mentioned in my major comments, the model should be
evaluated more comprehensively. Previous experience and domain expertise can help reduce
equifinality problems and prevent obviously nonsensical model configurations.

Thank you for this comment. We agree that hybrid models may provide valuable capabilities
between traditional and data-driven approaches, and we are not saying that well-designed
hybrid models are invalid. As we have pointed out before, it is critical to understand if the
prescribed physics are obeyed or not, before making a claim about interpretability.. The fact that
our "nonsensical" structure could be transformed into an effective predictor suggests we should
pay more attention to what is effectively happening in the hybrid model structure, and be more
critical about whether what we're adding actually contributes to the task at hand. Our entropy
analysis is intended as a complementary tool to help identify when neural networks are
compensating for structural choices, allowing more informed decisions about the merits (such as
interpretability) of a model.

Similar to the general comment, changes were made in Sect. 1.2, 1.3 and Sect. 5 based on this
comment.

Line 561-562: This supports my view that LSTM is a “lazy” model. It tends to find ways to
bypass physical constraints, especially when dynamic parameters are allowed.

While we wouldn’'t necessarily agree with the notion of “lazy” (we rather find it smart and
reassuring that the LSTM finds a parsimonious, efficient and skillful representation of the
system), we fully agree that the LSTM finds ways to bypass physical constraints if they are not
helpful for the prediction task, and this is exactly what we shed light on with our method - in a
quantitative way by means of our entropy metric, and qualitatively by analyzing the overwriting
behavior of the dynamic parameters.
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No changes were made to the manuscript based on this comment. The interpretation of LSTMs
being “lazy” was addressed in our reply to the reviewer.

Line 637—-638: A simplified task means that LSTM has found an easier path to make predictions,
but this does not necessarily indicate higher accuracy. Multiple evaluation metrics should be
used to support conclusions

We disagree with this point. All models were trained and evaluated using the same loss function
(NSE or MSE), ensuring accuracy is directly comparable. So the LSTM indeed achieved higher
accuracy in streamflow prediction. What we refer to as a "simplified task" is prediction with lower
entropy: if the physics constraint took over main parts of prediction, the hidden states in the
LSTM wouldn’t have to vary as much as in the pure LSTM, and hence entropy would be lower.
While additional metrics could provide more detail and further insight, our study focuses
specifically on the “effort” of the LSTM in this hybrid model architecture.

No changes were made to the manuscript based on this comment.
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