

1 **Beyond Binary Maps from HCHO/NO₂: A Deep Neural Network**
2 **Approach to Global Daily Mapping of Net Ozone Production Rates**
3 **and Sensitivities Constrained by Satellite Observations (2005–2023)**

5 **Amir H. Souri^{1,2*}, Gonzalo González Abad³, Bryan N. Duncan¹, Luke D. Oman¹**

6 ¹Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD,
7 USA

8 ²GESTAR II, Morgan State University, Baltimore, MD, USA

9 ³Atomic and Molecular Physics (AMP) Division, Center for Astrophysics | Harvard & Smithsonian,
10 Cambridge, MA, USA

11 * Corresponding author: a.souri@nasa.gov

12 **Abstract.** Previous studies on net ozone production rates (PO₃) and their sensitivities to precursors relied
13 on limited in-situ data, often coarse and uncertain chemical transport models (CTMs), and ozone indicators
14 like the formaldehyde-to-nitrogen dioxide ratio (FNR). However, FNR fails to fully capture PO₃'s complex
15 relationships with pollution, light, and water vapor. To address this, we refine the satellite-based PO₃
16 product from Souri et al. (2025) with key advancements: (i) a deep neural network to parametrize high-
17 dimensional non-linear ozone chemistry without the need for empirical linearization of atmospheric
18 conditions, (ii) incorporation of water vapor, (iii) improved error characterization, and (iv) the application
19 of a finer CTM to dynamically convert column retrievals into near-surface mixing ratios. Our PO₃
20 sensitivity maps surpass traditional FNR-based assessments by quantifying sensitivity magnitudes –
21 factoring in photolysis rates and water vapor – with greater spatial information. Our new product provides
22 daily near-clear sky PO₃ and sensitivity maps using bias-corrected OMI (2005–2019, 0.25° × 0.25°) and
23 TROPOMI (2018–2023, 0.1° × 0.1°), with values aligning within 10%. High PO₃ rates (>8 ppbv/hr) appear
24 in urban and biomass-burning regions under strong photochemical activity, including during a heatwave in
25 the northeastern U.S. Photolysis rates are the dominant factor dictating the seasonality of PO₃ magnitudes
26 and sensitivities. The stability and long-term records of OMI retrievals (2005–2019) enable us to provide
27 the first global maps of PO₃ linear trends showing a surge of >30% over China, the Middle East, and India,
28 while a reduction in the eastern U.S., southern Europe, and several regions in Africa.

29 **1. Introduction.**

30 To mitigate tropospheric ozone pollution, a pervasive trace gas that impacts human health, climate,
31 and crop productivity (Fleming et al., 2018; Mills et al., 2018; Gaudel et al., 2018), it is essential to quantify
32 the spatiotemporal variations of two primary components: i) the sensitivity of the chemical net production
33 rates of ozone (PO₃) to its two main precursors, nitrogen oxides (NO_x=NO+NO₂) and volatile organic
34 compounds (VOCs), and ii) the magnitude of PO₃ itself. The first component provides insights into the
35 positive and negative contributions of these precursors to PO₃, which are typically categorized as NO_x-
36 sensitive (where PO₃ is influenced mainly by NO_x), VOC-sensitive (where PO₃ is affected primarily by
37 VOCs), and transitional regimes (where PO₃ is responsive to both NO_x and VOCs) (Kleinman et al., 2002;
38 Silman and He, 2002; Duncan et al., 2010). The latter component is crucial for understanding how locally
39 produced ozone, in conjunction with advected or diffused ozone, can lead to high-ozone events (e.g.,
40 Kleinman et al., 2002, 2005; Sullivan et al., 2019).

41 Creating global maps of PO₃ and its sensitivity at spatiotemporal scales relevant to air quality
42 policies is a challenge. Unique instruments can directly measure PO₃ by calculating the difference in ozone

43 molecules from air samples drawn through two distinct tubes – one exposed to sunlight and the other
44 shielded by an ultra-violet (UV) filter (Cazorla and Brune, 2010; Sadanaga et al., 2017; Sklaveniti et al.,
45 2018). However, these instruments suffer from various interferences, such as heterogeneous chemistry or
46 photo-enhanced loss of ozone within the tubes, and they are limited to sparse super sites that restrict spatial
47 variability. Similarly, box-model simulations of PO_3 , which are observationally constrained by intensive
48 atmospheric composition measurements, are also limited by sparse aircraft sampling (Cazorla et al., 2012;
49 Ren et al., 2013; Mazzuca et al.; 2016; Souri et al., 2020a; Schroeder et al., 2020; Brune et al., 2022; Wolfe
50 et al., 2022; Souri et al., 2023a). Currently, our understanding of the global spatiotemporal variability of
51 PO_3 mainly relies on chemical transport models, which can possess significant uncertainties such as those
52 associated with transport, emissions, and dry deposition. Moreover, they may lack the spatial resolution
53 necessary to capture the non-linear dynamics associated with NO_x and thus, ozone chemistry (Valin et al.,
54 2011; Vinken et al., 2011; Yu et al., 2016).

55 The “gold standard” approach to determine three-dimensional PO_3 within a process-based
56 framework involves running a high-resolution chemical transport model, with prognostic inputs constrained
57 by observations. This approach falls into the realm of an inversion/data assimilation framework (Bocquet
58 et al., 2015). Numerous studies have aimed to constrain various model prognostic inputs, including NO_x
59 and VOCs emissions and/or concentrations, using aircraft and satellite remote sensing retrievals (e.g.,
60 Stavrakou et al., 2009, 2016; Souri et al., 2016; Bauwens et al., 2016; Miyazaki et al., 2020; Opacka et al.,
61 2025). Notably, Souri et al. (2020b) developed a non-linear joint inversion of NO_x and VOCs to better
62 constrain PO_3 , thereby shedding light on the impact of recent emission regulations in East Asia on the
63 different chemical pathways governing the formation and loss of surface ozone. However, these studies
64 face a fundamental challenge: discrepancies between simulated fields and observations are often blamed
65 solely on emissions. In fact, such discrepancies can also stem from various model components, including
66 chemical mechanisms, dry deposition, photolysis rates, vertical diffusion, and transport. Given the limited
67 observations available for constraining all of these uncertain parameters, the optimization problem becomes
68 grossly under-determined. This means we lack sufficient information to uniquely determine the optimal
69 values of these parameters altogether. Additionally, the underlying physics of these models is inherently
70 uncertain, necessitating the explicit propagation of model physics errors into our final estimates or the
71 execution of ensemble model realizations to stochastically vet the credibility of the top-down estimates
72 across different realizations. Conducting these ensemble optimizations at fine-scale grid boxes around the
73 globe is prohibitively computationally intensive.

74 At the expense of sacrificing the full capability of a physics-based model, we can take advantage
75 of a statistical approach to predict PO_3 using several observable variables with improved computational
76 efficiency. Chatfield et al. (2010) made an early effort to parameterize the gross production of ozone via
77 $\text{NO}+\text{HO}_2$ through a multivariable power law function that depended on formaldehyde (HCHO), nitrogen
78 dioxide (NO_2), UV photolysis rates, and ambient temperature. Their model successfully reproduced over
79 60% of the variance observed in the ozone gross production rates. Souri et al. (2023a) introduced a bilinear
80 equation based on $\text{HCHO} \times \text{NO}_2$ and HCHO/NO_2 , which explained more than 80% of the variance in
81 simulated PO_3 . Building on these findings, Souri et al. (2025) developed a regularized piece-wise linear
82 regression to parameterize PO_3 using retrospective aircraft observations and a set of variables, including
83 HCHO/NO_2 , HCHO, NO_2 , $j\text{O}^1\text{D}$ (photolysis frequency for $\text{O}^1\text{D}+h\nu$), and $j\text{NO}_2$ (photolysis frequency for
84 $\text{NO}_2+h\nu$). Their algorithm successfully reproduced over 90% of the variance in observationally-constrained
85 PO_3 with minimal biases across moderately to extremely polluted regions.

86 These parameterizations present a unique opportunity to globally map PO_3 , as their primary inputs
87 can be largely constrained by well-characterized satellite retrievals with extensive horizontal coverage
88 (Gonzalez Abad et al. 2019). For this reason, Souri et al. (2025), compiled various satellite observations
89 including TROPOspheric Monitoring Instrument (TROPOMI) surface albedo, HCHO, and NO_2 columns
90 in conjunction with pre-computed model fields to populate the inputs to their parametrization, allowing
91 them to generate the first-ever maps of PO_3 worldwide. Because their algorithm had an explicit

92 mathematical form, they were also able to break down PO_3 into HCHO and NO_2 contributions, providing
93 much more detailed spatial information about ozone sensitivity maps compared to binary information (i.e.,
94 NO_x -sensitive or VOC -sensitive) made from HCHO to NO_2 ratios (known as formaldehyde to nitrogen
95 dioxide ratios – FNR) (Martin et al., 2004; Duncan et al., 2010; Choi et al., 2012; Choi and Souri, 2015a,
96 b; Jin et al., 2017; Schroeder et al., 2017; Souri et al., 2017; Jeon et al., 2018; Tao et al., 2022; Jonhson et
97 al., 2024). However, FNR was a central component of their algorithm to transform the non-linear ozone
98 chemistry into several linear segments (i.e., a piecewise regression).

99 The inclusion of FNR in Souri et al. (2025) introduces several complications, such as i) the
100 amplification of unresolved systematic and random errors in satellite retrievals associated with PO_3
101 estimates, and ii) discounting the dependency of PO_3 sensitivity to HCHO and NO_2 concentrations as
102 function of available light and water vapor. In fact, FNR does not provide useful information about ozone
103 chemistry in less photochemically active environments, such as early morning or late afternoon conditions
104 (known as light-limited or radical-limited conditions). Although the parametrization of PO_3 crafted in Souri
105 et al. (2025) relied on photolysis rates, the sensitivity of PO_3 to NO_2 (a proxy for reactive nitrogen) and
106 HCHO (a proxy for VOC reactivity) did not directly depend on photolysis rates.

107 The overarching goal of producing ozone chemistry sensitivity maps is to inform regulatory
108 agencies about the impact of emission reductions on locally produced ozone. Unlike conventional FNR-
109 based binary maps, these maps must quantify the magnitude of sensitivity rather than merely indicating its
110 direction. This quantitative approach is essential because both the sign and magnitude of sensitivities are
111 crucial for understanding the impact of emission changes. While detailed sensitivity maps can be derived
112 from chemical transport models by perturbing underlying emissions, the lack of observational constraints
113 on these models can introduce significant biases. Souri et al. (2025) attempted to address this limitation by
114 providing magnitude-dependent sensitivity maps of PO_3 to NO_2 and HCHO using piecewise linear
115 regression. However, their approach yielded derivatives of PO_3 with respect to NO_2 and HCHO that
116 remained invariant with changes in light and humidity conditions. This limitation is problematic because
117 reduced light conditions are known to substantially dampen the sensitivity of PO_3 to NO_x and VOCs , even
118 under identical emission rates. The current work is therefore motivated by the need to capture the complex,
119 multidimensional dependencies of PO_3 on ozone precursors, light intensity, and humidity using a more
120 flexible data-driven approach through a machine learning algorithm without the need for segregation or
121 linearization. While these maps will not replace process-based chemical transport model experiments, they
122 can efficiently provide first-order assessments to: (i) strategize improved modeling experiments, (ii) gauge
123 the added value of satellites on predictions of PO_3 , and (iii) guide the design of sub-orbital missions in
124 regions with poorly documented elevated PO_3 .

125 The new product of PO_3 along with spatially varying ozone sensitivity maps using bias-corrected
126 OMI and TROPOMI retrievals are generated globally for 2005-2023. We will document the advantages of
127 this algorithm over the older one and how the new results can bring fresh insights into PO_3 behavior across
128 various seasons, locations, and global trends.

129 2. Data

130 2.1. Satellite Retrievals

131 2.1.1. TROPOMI HCHO and NO_2

132 We use daily level-2 (L2) products of TROPOMI (v2.4-v2.5) tropospheric NO_2 and total HCHO
133 columns (v2.4-v2.6) obtained from UV-Vis radiances (~ 328 -496 nm) onboard the European Space
134 Agency's (ESA's) Sentinel Precursor (S5P) spacecraft with an equatorial overpass time of ~ 1330 local
135 standard time (LST) (Veefkind et al., 2012; van Geffen et al. 2022; De Smedt et al. 2021). These products
136 offer near-daily global coverage of NO_2 and HCHO columns at a horizontal resolution of 7.2 km (reduced

137 to 5.6 km after August 2019) by 3.6 km at nadir, extending to approximately 14 km at the edges of the
138 scanline, with a swath width of 2600 km. The data products used in this study span from May 2018 to the
139 end of 2023. The retrieval process follows a two-step framework: first, a differential spectral fitting
140 algorithm is used to determine the number of integrated molecules along the slant light path, and second,
141 air mass factor calculations are done based on simulated gas absorber profiles and radiative transfer model
142 calculations to convert slant columns into vertical ones.

143 Both products have been thoroughly vetted against ground-based remote sensing retrievals,
144 including the multi-axis differential optical absorption spectrometer (MAX-DOAS) (De Smedt et al., 2021;
145 Verhoelst et al., 2021; van Geffen et al. 2022; Souri et al., 2025) and Fourier transform infrared spectroscopy
146 (FTIR) (Vigouroux et al., 2020; Souri et al., 2025), showing a general tendency towards underestimation in
147 polluted regions. We include in our study only pixels with a quality flag (q_value) exceeding 0.5 and 0.75
148 for HCHO and NO₂ products, respectively. The quality flag encapsulates errors coming from clouds, snow,
149 surface refractivity, and algorithm performance. The selected values are based on the user manual
150 recommendation. The daily HCHO and NO₂ columns, along with the retrieval errors, are mapped onto a
151 0.1°×0.1° global grid using a mass-conserved bilinear interpolation approach described in Souri et al.
152 (2024).

153 2.1.2. OMI HCHO and NO₂

154 We use the Quality Assurance for the Essential Climate Variables (QA4ECV) NO₂ daily Level 2
155 product (Boersma et al., 2018) which is based on global radiances captured by the Ozone Monitoring
156 Instrument (OMI) sensor aboard NASA's Aura spacecraft. This product is retrieved with a similar overpass
157 time as TROPOMI. The horizontal resolution of the product ranges from 13×24 km² at nadir to 165×13
158 km² at the edge of the scanline. It relies on OMI Collection 3 radiance data. Since 2008, OMI has faced
159 significant anomalies resulting in the loss of reliable data in areas of its detector, a situation referred to as
160 the "row anomaly." This has led to inconsistent spatial resolution and global coverage throughout its
161 operational phase. However, the unaffected pixels have demonstrated a high level of stability over the past
162 two decades, making this product suitable for long-term trend analysis. Detailed description of the retrieval
163 algorithm, along with validation against ground remote sensing data, can be found in Boersma et al. (2018),
164 Compernolle et al. (2020), and Pinardi et al. (2020). We include good quality pixels based on an effective
165 cloud fraction below 50%, a quality processing flag parameter equal to zero, and exclusion of snowy
166 regions. Additionally, we discard the last two rows of the detector because of their poor horizontal
167 resolution. We use the OMI NO₂ product for the period from 2005 until the end of 2019.

168 We also use the OMI Smithsonian astrophysical observatory (SAO) daily HCHO Level 2 product
169 from the same sensor, which is generated using a newly developed algorithm and Collection 4 OMI
170 radiances (Ayazpour et al. 2025; Nowlan et al., 2023). This improved algorithm enhances the radiance
171 information content used to retrieved HCHO columns, significantly reducing noise in the slant column fit.
172 The stability of this product in extracting new information related to long-term global trends of HCHO has
173 been well demonstrated in recent studies (Souri et al., 2024; Anderson et al., 2024). We include only good
174 data following the quality flag provided with the dataset along with effective cloud fraction below 40%.
175 Both OMI products are mapped onto a global grid with a resolution of 0.25°×0.25° using the same algorithm
176 used for TROPOMI daily.

177 2.1.3. *Bias correction using ground-based remote sensing data*

178 In order to remove large biases in both TROPOMI and OMI products, we bias correct their columns
179 using the offset (additive term) and slope (multiplicative term) determined from a linear fit to paired MAX-
180 DOAS/FTIR and these datasets, as described by Souri et al. (2025). The rationale for defining retrieval
181 biases as a function of magnitude is to enhance correction factor generalizability across seasons and
182 locations. We take advantage of three studies characterizing the bias correction factors, listed in Table 1.

183 The application of these correction factors yields consistency across OMI and TROPOMI NO₂ and HCHO
 184 columns within 10% (Section 4.4.4)

185 **Table 1.** The slopes and offsets derived from various validation studies used to bias correct the
 186 satellite retrievals employed in the parameterization of PO₃.

Product	Slope	Offset	Benchmark	Time period of validation	Reference
TROPOMI NO ₂	0.66	0.32×10^{15} molec/cm ²	Global MAX-DOAS observations	2018-2023	Souri et al., (2025)
TROPOMI HCHO	0.59	0.90×10^{15} molec/cm ²	Global observations	FTIR 2018-2023	Souri et al., (2025)
OMI NO ₂	0.83	0.26×10^{15} molec/cm ²	Global MAX-DOAS observations	Varies for each station spanning from 2010-2018	Pinardi et al., (2020)
OMI HCHO	0.79	0.82×10^{15} molec/cm ²	Global observations	FTIR Varies for each station spanning from 2004-2020	Ayazpour et al., (2025)

187 2.1.4. *Surface albedo*

188 To estimate near-surface photolysis rates of jO¹D (O₃+hv, <350 nm) and jNO₂ (NO₂+hv, ~400-500
 189 nm) used in the parametrization of PO₃, we are required to provide reasonable surface albedo estimates
 190 (Section 2.4). We use a monthly Directionally Dependent Lambertian-Equivalent reflectivity (DLER)
 191 climatology derived from TROPOMI radiances at the spatial resolution of 0.125°×0.125°; the product is in
 192 good agreement with the MODIS BRDF product (Tilstra et al., 2024). This climatology has two sets of
 193 values for both shortwave (328 nm) and longwave UV (463 nm) that are used separately for calculating
 194 jO¹D and jNO₂, respectively. We use only the isotropic part of the DLER product (named *minimum_LER*),
 195 which is added to an offset coefficient provided with the dataset.

196 2.2. *Aircraft Measurements*

197 The use of aircraft observations is twofold: first, they provide a vast number of measured
 198 geophysical variables suitable to simulate our observationally-constrained PO₃ training dataset (Section
 199 3.1); second, they enable a rigorous validation of column-to-planetary boundary layer (PBL) conversion
 200 factors derived from a chemical transport model (Appendix B). We use the dataset compiled by Souri et al.
 201 (2025), who curated various aircraft campaigns measuring photolysis rates, meteorological variables, and
 202 atmospheric composition from varying atmospheric conditions, including urban/suburban settings
 203 (DISCOVER-AQs, and KORUS-AQ), high-vegetated regions (SENEX), and remote areas (INTEX-B and
 204 AToms). The sampling frequency varies from 10-sec to 30-sec. More detailed information regarding the
 205 choice of instrument, gap filling, and data exclusion can be found in Souri et al. (2025).

206 2.3. *MINDS simulations*

207 We use a global chemical transport model simulation designed to support trace gas retrievals. The
 208 simulation, called Multi-Decadal Nitrogen Dioxide and Derived Products from Satellites (MINDS) (Fisher
 209 et al., 2024), was generated using the Goddard Earth Observing System (GEOS) Earth system model

(Molod et al., 2015; Nielsen et al., 2017) equipped with the full chemistry Global Modeling Initiative (GMI) mechanism (Duncan et al., 2007; Strahan et al., 2007) and coupled with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol module (Chin et al., 2002). The rapid radiative transfer model, which was designed for global climate models (GCMs) and is known as the Radiative Transfer Module for GCM (RTTMG), calculates the longwave and shortwave radiation influenced by aerosols simulated by GOCART, enabling the incorporation of the direct effects of aerosols on meteorological conditions (Nielsen et al., 2017). Meteorology is resolved using GEOS with several prognostic inputs, including water vapor, being constrained by MERRA-2 reanalysis using “replay” mode at 3-hourly basis (Orbe et al., 2017). The model is setup at c360 grid ($0.25^\circ \times 0.25^\circ$) and covers the period of 1993 until the end of 2023. The model follows 72 hybrid sigma values ranging from the surface to 0.01 hPa.

Lightning production of NO is parametrized based on the simulated convection. The model uses the Monitoring Atmospheric Chemistry and Climate and CityZen (MACCity) inventory (Granier et al., 2011) of anthropogenic emissions downscaled to $0.1^\circ \times 0.1^\circ$ using the Emissions Database for Global Atmospheric Research version 4.2 (EDGAR 4.2). These anthropogenic emissions change by year and month. Biomass burning emissions rely on the Fire Energetics and Emissions Research (FEER) dataset (Ichoku and Ellison, 2014). Biogenic emissions are modeled interactively by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1 (Guenther et al. 2012). It is known that isoprene emissions in MEGANv2.1 are largely overestimated (Bauwens et al., 2016; Souri et al., 2020b), therefore they are scaled down by a factor of two.

2.4. *TUV NCAR Photolysis Rates Look-up Table*

To estimate $j\text{NO}_2$ and $j\text{O}^1\text{D}$, we refer to a detailed look-up table provided by the Framework for 0-D Atmospheric Modeling (F0AM) model (Wolfe et al. 2016). This table is developed for clear-sky conditions based on over 20,064 solar spectra calculations. The data encompasses a broad spectrum of solar zenith angles (SZA) from 0° to 90° in 5° increments, altitudes ranging from 0 to 15 km in 1 km steps, overhead total ozone columns from 100 to 600 DU in increments of 50 DU, and surface UV albedo values from 0 to 1 in 0.2 increments. These calculations were carried out using NCAR’s Tropospheric Ultraviolet and Visible radiation model (TUV v5.2), along with cross sections and quantum yields from IUPAC and JPL (Wolfe et al., 2016). Information on SZA and surface elevation is obtained from the L2 TROPOMI/OMI granule data. Surface albedo is based on the TROPOMI DLER climatology (Section 2.1.4). The overhead total ozone columns are derived from MINDS simulations (Section 2.3). For any values that fall between the entries in the tables, we apply a linear interpolation method.

2.5. *Empirical PO_3 estimates using LASSO*

We will compare our new product (Section 3.2) to an empirical method developed by Souri et al. (2025), who took advantage of simulated PO_3 data constrained by aircraft measurements to parameterize PO_3 using four geophysical variables: NO_2 , HCHO , $j\text{NO}_2$, and $j\text{O}^1\text{D}$. Their algorithm used a piecewise L1-regularized linear regression model known as Least Absolute Shrinkage and Selection Operator (LASSO). Since the algorithm was based on a linear model which was ill-suited for the non-linear ozone chemistry, it was necessary to linearize the parameterization using various thresholds for FNRs. Despite the method’s simplicity, Souri et al. (2025) were able to reproduce approximately 88% of the variance with low biases (less than 20%) in observationally-constrained PO_3 . Using the empirical method, they generated the first maps of PO_3 by combining bias-corrected TROPOMI HCHO and NO_2 columns, simulated photolysis rates, and a global transport model designed for the conversion from column measurements to the PBL.

To isolate the performance of the PO_3 estimator used in Souri et al. (2025) in comparison to the proposed algorithm in this study, we will ensure that the input variables, including the mixing ratios of HCHO and NO_2 within the PBL as well as the photolysis rates, remain identical for both the empirical product and our new algorithm. Hereafter, we will refer to this empirical product as “ PO_3LASSO ”.

256 3. Methodology

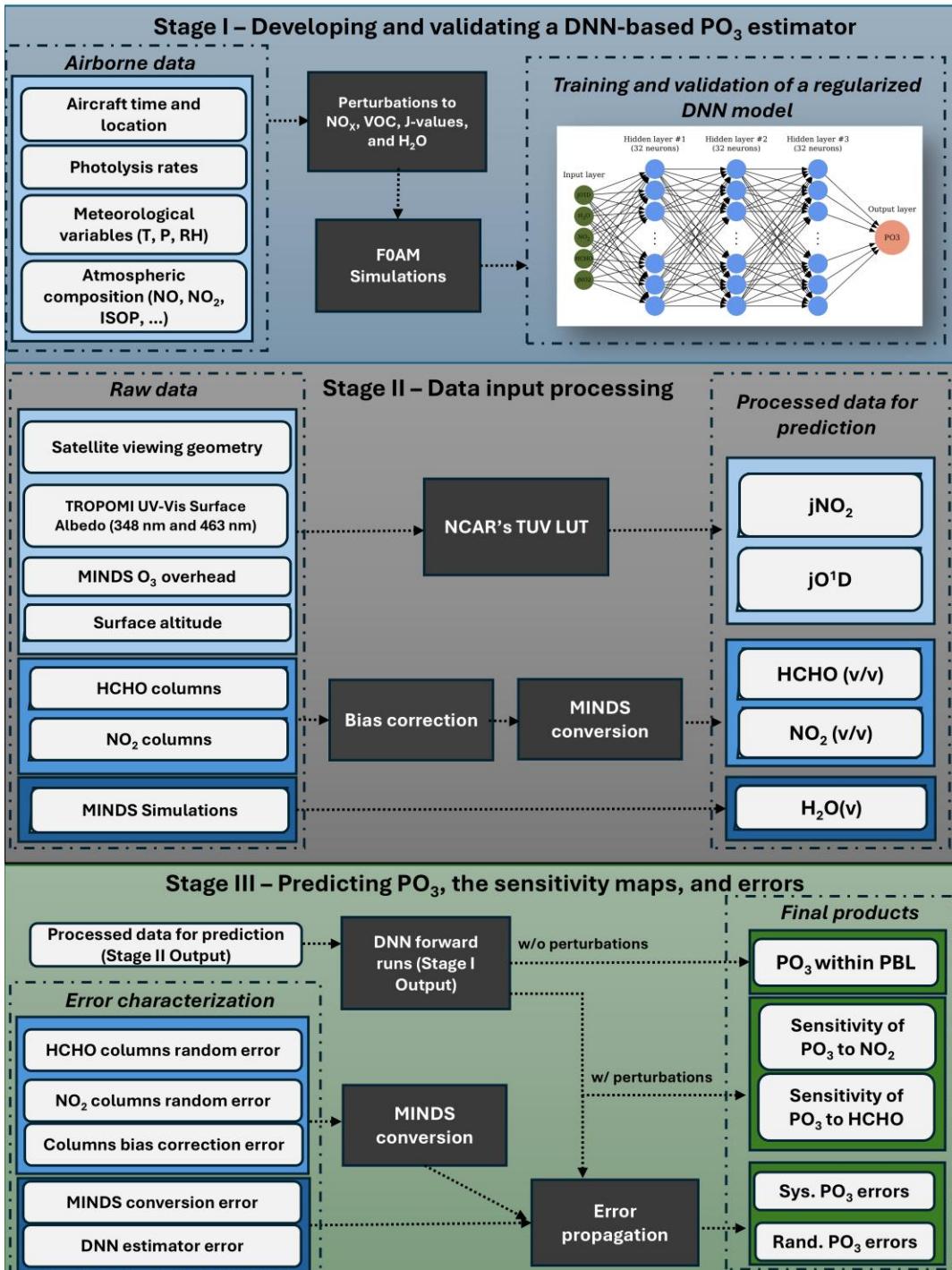
257 Figure 1 illustrates the three-stage process of our newly developed algorithm to operationally
258 produce long-term maps of PO_3 within the PBL along with the sensitivity and error maps. The product is
259 called “ PO_3DNN ”.

260 *Stage I*—This stage serves as the foundation for the product, focusing on parameterizing PO_3 using
261 a regularized Deep Neural Network (DNN). The training dataset, detailed in Section 3.1, is derived from
262 an observationally-constrained F0AM box model that provides simulated PO_3 along with various
263 atmospheric quantities directly or indirectly constrained by aircraft measurements. The decision to make
264 use of aircraft data is based on two main factors: i) they capture real-world atmospheric conditions across
265 diverse parts of the atmosphere and various geographic regions, and ii) the significant fluctuations inherent
266 in the data rigorously test the DNN’s capability to generalize (i.e., to fit the model through the data rather
267 than merely to the data). However, a notable limitation of aircraft data is its restriction to specific
268 atmospheric conditions. To address this, we have expanded the training dataset by perturbing the inputs to
269 the F0AM model (Section 3.1), resulting in a synthetic dataset. This expanded training dataset is then used
270 for validation, testing, and calibration of the DNN algorithm.

271 *Stage II*—The objective of this stage is to prepare spatiotemporal geophysical variables necessary
272 for the prediction of PO_3 (done in Stage III). We need five parameters on a global scale with daily frequency:
273 jNO_2 , jO^1D , HCHO , NO_2 , and $\text{H}_2\text{O}(\text{v})$. To generate global daily maps of near-surface photolysis rates, we
274 use the NCAR’s look-up table as detailed in Section 2.4; this table relies on SZA, which varies with time
275 and location, as well as surface UV-Vis albedo, ozone overhead columns, and surface altitudes. Both SZA
276 and surface altitude are provided as auxiliary fields in the satellite L2 products. Ozone overhead columns
277 are from MINDS. For surface UV-Vis albedo, we use two different wavelengths based on TROPOMI’s
278 climatology (Section 2.1.4). These calculations assume clear sky conditions, which are somewhat achieved
279 by the effective cloud fraction thresholds derived from both the OMI and TROPOMI products. Our
280 algorithm uses HCHO and NO_2 columns obtained from OMI or TROPOMI, which are bias-corrected
281 against ground remote sensing data. These measurements are then transformed into the mixing ratios in the
282 PBL region using the vertical distribution of HCHO and NO_2 profiles simulated by MINDS. The final
283 variable is the average number of water vapor ($\text{H}_2\text{O}(\text{v})$) molecules per cubic meters in the PBL region at
284 the satellite overpass time, which is obtained directly from the MINDS simulation. It is important to note
285 that the MINDS simulation is based on constraints from MERRA-2 reanalysis, underscoring that the $\text{H}_2\text{O}(\text{v})$
286 simulations are constrained by many observations.

287 *Stage III*—In the final stage, we predict PO_3 , generate sensitivity maps, and provide both systematic
288 and random errors associated with these estimates. To create PO_3 maps, we input the five parameters from
289 Stage II into the DNN model developed in Stage I. To generate the sensitivity maps of PO_3 in relation to
290 NO_2 and HCHO , we apply perturbations to NO_2 and HCHO based on the methodology described in Section
291 3.3. These perturbations also serve another purpose which is to propagate the errors associated with the
292 retrievals of HCHO and NO_2 , as well as their corresponding conversion factors from MINDS into the final
293 product. A comprehensive explanation of the error budget and characterization can be found in Section 3.4.

294 While we perform Stage I only once to establish a PO_3 estimator, we need to run Stage II and III
295 for any desired location/time or spatial resolution. The need to operationally run these two stages has
296 motivated us to create an open-source and object-oriented Python package called *ozonerates* v1.0 (Souri
297 and Gonzalez Abad, 2025), which is capable of running all steps while leveraging parallel computation.



298

299 **Figure 1.** Processing stages developed to operationally generate PO_3 and sensitivity maps along with daily
300 frequency errors on a global scale. Stage I aims to establish a regularized DNN model based on synthetic
301 and real-world aircraft measurements. Stage II prepares the necessary satellite-based input features used for
302 PO_3 prediction in Stage III. Stage III feeds the DNN model with Stage II values and some statistical error
303 analysis to generate the final product.

304 **3.1. Training dataset generation using F0AM box model**

305 To establish a relationship between several geophysical variables related to PO_3 , we use F0AM
 306 version 4 box model (Wolfe et al., 2016). This model is capable of simulating detailed chemical kinetics
 307 based on user inputs regarding meteorological variables, atmospheric compositions, and photolysis rates.
 308 F0AM uses a solver for ordinary differential equations (ODEs) designed for stiff systems, which allows it
 309 to determine the chemical evolution of all species included in the selected chemical mechanism. We adhere
 310 to previous configurations that apply the Carbon Bond 6 (CB06, r2) chemical mechanism within F0AM
 311 (Souri et al., 2020a; Souri et al., 2023a; Souri et al., 2025). The model is constrained by data collected
 312 during aircraft campaigns, including meteorological data, photolysis rates, and various trace gas
 313 concentrations. Additional details regarding the selection of instruments, bias corrections for photolysis,
 314 choices of dilution factors, and other configurations can be found in Souri et al. (2025). We incorporate data
 315 from seven aircraft campaigns, including DISCOVER-AQ (Texas, Washington D.C., Colorado), KORUS-
 316 AQ, ATOMs, INTEX-B, and SENEX, to further constrain the model. Souri et al. (2025) demonstrated that
 317 this setup effectively reproduces several unconstrained yet measured compounds, such as HCHO , HO_2 ,
 318 OH , and PAN ; moreover, the performance of the model was on par with other studies (e.g., Brune et al.,
 319 2020; Brune et al., 2022; Miller and Brune, 2022), indicating that it is a suitable model setup for
 320 understanding local ozone chemistry. This model-derived dataset consists of ~134k points.

321 A limitation to the training dataset prepared by Souri et al. (2025) originates from the fact that only
 322 a subset of atmospheric conditions could be observed by the suborbital missions. A remedy for this
 323 limitation is to synthetically regenerate data by systematically perturbing several of the inputs used in the
 324 F0AM model. As a result, we apply a scaling factor, ranging from 0.1 up to 10 in 12 evenly-spaced steps,
 325 separately to NO_x , VOCs, $\text{H}_2\text{O}(\text{v})$, and photolysis rates. This expands the dataset to ~6.4 million datapoints,
 326 covering a much wider range of atmospheric states.

327 Once the simulations are done, we determine simulated PO_3 by:

$$PO_3 = FO_3 - LO_3 \quad (1)$$

328 where LO_3 is all possible chemical loss pathways of ozone (negative stoichiometric multiplier matrix) and
 329 FO_3 is all possible chemical pathways producing ozone molecules (positive stoichiometric multiplier
 330 matrix). This equation is also known as ozone tendency. This definition simplifies intercomparison with
 331 estimates derived from different chemical mechanisms by eliminating the requirement to explicitly match
 332 individual production and loss terms, which often exhibit inconsistencies across mechanisms, especially in
 333 their treatment of peroxy radicals. The calculation of PO_3 is under a steady-state assumption.

334 **3.2. DNN architecture and configuration**

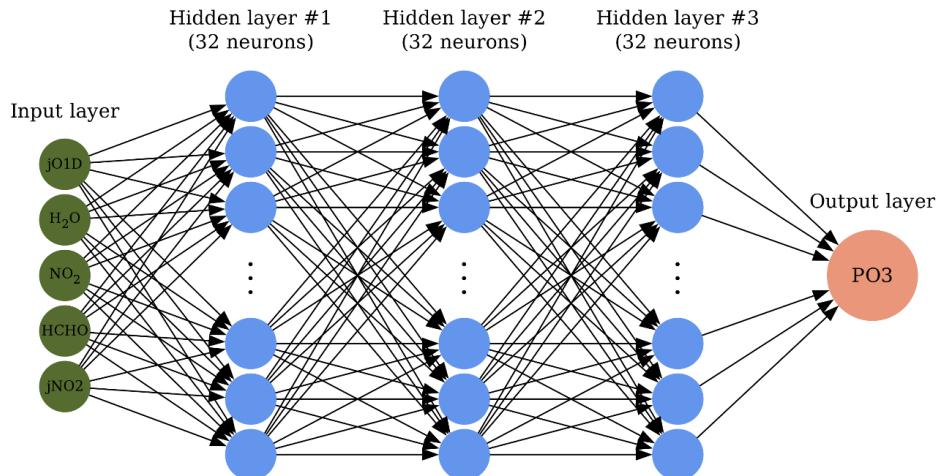
335 The overall architecture of the DNN model is portrayed in Figure 2. The design consists of three
 336 fully-connected hidden layers each having 32 neurons. The neurons are equipped with rectified linear unit
 337 (ReLU) activation functions. The training dataset (~6.4 millions) is split into 20% test, 24% validation, and
 338 56% training. Training inputs to the parametrization consists of HCHO , NO_2 , jO^1D , jNO_2 , and $\text{H}_2\text{O}(\text{v})$.
 339 Prior to the training, we normalize them, such that each feature (x) is rescaled according to $x' = \frac{x-\mu}{\sigma}x$,
 340 where μ and σ represent the mean and standard deviation of the feature, respectively, ensuring a mean of
 341 zero and a variance of one. The optimization (training) of the DNN follows the backpropagation rule armed
 342 with Adaptive Moment Estimation (ADAM) optimizer which is known to perform well with noisy data
 343 (Kingma and Ba, 2014). The initial learning rate is set to 10^{-5} . We use 500 epochs. The loss function (L) of
 344 the optimization problem is:

$$L = \frac{1}{2} \sum_{k=1}^N (y_k - o_k)^2 + \lambda \sum_{i=1}^p w_i^2 \quad (2)$$

345 where the first term on the right side represents the mean squares error (MSE) of the prediction derived
 346 from difference between the target PO_3 (y) and the predicted PO_3 (o). N represents the number of training
 347 datapoints. The second term is L2-regularization with a factor of λ to reduce the squares of p number of
 348 neuron weights (w).

349 An important aspect of this optimization is the use of L2 regularization, which effectively helped
 350 us determine the optimal number of hidden layers and neurons. L2 regularization penalizes the cost function
 351 if an illusion of high prediction accuracy (the first term) is achieved with excessive variance in the solution
 352 (weights). Failing to balance the prediction error and the solution variance can lead to overfitting, which
 353 harms model performance in two ways: i) it results in erroneous predictions for atmospheric conditions that
 354 fall outside the training dataset; ii) it diminishes the physical interpretability of the statistical model because
 355 of large fluctuations in the weights, a common issue in regression models known as collinearity. When we
 356 used too many neurons or layers, the regularization penalized the weights, causing a substantial proportion
 357 to approach zero (not shown), indicating that those neurons were unnecessary. However, incorporating
 358 regularization does have some drawbacks: i) it requires a smaller initial learning rate (set to 10^{-5}) to avoid
 359 falling into local minima, which demands more computational resources; and ii) the regularization factor
 360 also needs to be optimized. We find that a value of $\lambda = 10^{-5}$ provides the best results among the set of values
 361 [10^{-4} , 10^{-5} , and 10^{-6}], based on the symmetry in the statistical distributions of the test residuals, MSE, and
 362 the overall level of physical interpretability observed in the sensitivity tests.

363 The implementation of the DNN model is done using the open-source *TensorFlow* application
 364 programming interface (API) package in *Python* (Abadi et al., 2016). To thoroughly validate the
 365 performance of this model from various angles we i) compare the DNN prediction with the test data using
 366 various standard metrics, ii) investigate the evolution of the loss function derived from both the training set
 367 and the validation one over epochs, iii) study the physical explanation of the response of PO_3 to NO_2 and
 368 HCHO , water vapor, and photolysis rates, and iv) finally compare the DNN results to PO_3 LASSO. We will
 369 use a number of statistical metrics, including the coefficient of the determination (R^2), mean bias, mean
 370 square error, mean absolute error, and root mean square error (RMSE), to carry out the quantitative
 371 assessment (Section 4.1).



372
 373 **Figure 2.** The architecture of the DNN model. The model contains three hidden layers with 32 neurons
 374 each.

375 **3.3. Sensitivity calculations**

376 To elucidate the response of PO_3 to its inputs, we calculate the semi-normalized sensitivities
 377 through the finite difference method:

$$SP03_i = \frac{[PO3]_i^{110\%} - [PO3]_i^{90\%}}{0.2} \quad (3)$$

378 where $[PO3]_i^{110\%}$ and $[PO3]_i^{90\%}$ are PO_3 from perturbing input parameters ($i=1$ for NO_2 , and $i=2$ for
379 $HCHO$) by 1.1 and 0.9 scaling factors. A mathematical proof showing that these sensitivity calculations
380 are equivalent to the directional derivative is provided in Appendix A.

381 **3.4. Error budget and characterization**

382 Since the PO_3 DNN integrates atmospheric models, satellite trace gas retrievals, ground remote
383 sensing, and a machine learning approach, it contains various sources of errors, some of which will be
384 formulated in this section. Spatially and temporally averaging satellite-based products is a common practice
385 to reduce noise and fill gaps; therefore, we attempt to separate systematic errors (irreducible by averaging)
386 from random ones (reducible by averaging). We assign the total PO_3 within PBL region error (e_{total}) based
387 on the following equation:

$$e_{total} = \sqrt{e_{syst}^2 + e_{rand}^2} \quad (4)$$

388 where e_{syst} and e_{rand} are systematic and random errors associated with PO_3 estimates. Systematic errors
389 account for the errors associated with the bias correction of OMI and TROPOMI against ground remote
390 sensing retrievals ($e_{HCHO_bias_c}$ and $e_{NO2_bias_c}$), the model-based conversion of columns to the PBL mixing
391 ratios ($e_{HCHO_conversion}$, $e_{NO2_conversion}$), and the DNN estimator error (e_{DNN}), and are given by:

$$392 e_{syst} = \sqrt{e_{HCHO_bias_c}^2 + e_{NO2_bias_c}^2 + e_{HCHO_conversion}^2 + e_{NO2_conversion}^2 + e_{DNN}^2} \quad (5)$$

$$393 e_{HCHO_bias_c}^2 = \left(\frac{\partial PO_3}{\partial HCHO} \cdot \gamma \cdot e_{bc-HCHO} \right)^2 \quad (6)$$

$$394 e_{NO2_bias_c}^2 = \left(\frac{\partial PO_3}{\partial NO_2} \cdot \gamma \cdot e_{bc-NO_2} \right)^2 \quad (7)$$

$$395 e_{HCHO_conversion}^2 = \left(\frac{\partial PO_3}{\partial HCHO} \cdot VCD_{HCHO} \cdot e_{conv-HCHO} \right)^2 \quad (8)$$

$$396 e_{NO2_conversion}^2 = \left(\frac{\partial PO_3}{\partial NO_2} \cdot VCD_{NO_2} \cdot e_{conv-NO_2} \right)^2 \quad (9)$$

397 where γ is the conversion factor of the satellite total to the PBL columns translation based on MINDS and
398 the formulation by Souri et al. (2025); $e_{bc-HCHO}$ and e_{bc-NO_2} , in column units, are calculated following the
399 formulation from Souri et al. (2025) who used the errors of slope and offset obtained from the comparison
400 of satellite VCDs to ground remote sensing benchmarks; $e_{conv-HCHO}$ and $e_{conv-NO_2}$ are quantified by validating
401 the simulated conversion factors compared to those of aircraft vertical spirals (Appendix B). The unit for
402 these two errors is ppbv per the column unit; accordingly, we multiply these terms to satellite VCDs. The
403 last term in Eq.5 is a fixed systematic error associated with the DNN estimates which will be quantified
404 based on the MSE of the DNN prediction. Both $\frac{\partial PO_3}{\partial HCHO}$ and $\frac{\partial PO_3}{\partial NO_2}$ are derived from the sensitivity calculations
405 from Eq.3 divided by the satellite columns. All error terms in Eqs.6-9 are spatially and temporally invariant,
406 but the derivatives vary from pixel to pixel resulting in spatiotemporally-varying systematic errors.

407 Random errors originate from the uncertainty estimates coming with the TROPOMI and OMI L2
408 products and are somewhat reducible by averaging, and are given by:

$$e_{rand} = \sqrt{\left(\frac{\partial PO_3}{\partial HCHO} \cdot \gamma \cdot e_{rand-HCHO} \right)^2 + \left(\frac{\partial PO_3}{\partial NO_2} \cdot \gamma \cdot e_{rand-NO_2} \right)^2} \quad (10)$$

409 where $e_{rand-HCHO}$ and $e_{rand-NO_2}$ are random retrieval errors. All terms in Eq.10 vary by time and location.

410 Table 2 summarizes the numbers used in the above equations and their origin.

411 **Table 2.** Values used in error calculations.

Error terms	Systematic/Random	Value	Unit	Source
e_{bc-NO_2} and $e_{bc-HCHO}$	Systematic	$0.01 \times VCD + 0.06$	$\times 10^{15}$ molec./cm ²	Souri et al. (2025)
$e_{conv-HCHO}$ and $e_{conv-NO_2}$	Systematic	0.09	ppbv/(10^{15} molec./cm ²)	Appendix B
e_{DNN}	Systematic	0.88	ppbv/hr	Section 4.1
$e_{rand-NO_2}$ and $e_{rand-HCHO}$	Random	Variable	$\times 10^{15}$ molec./cm ²	L2 Products

412

413 It is important to acknowledge that the defined total error budget here is only a good guess and
414 optimistic. Some underlying sources of error, which are difficult to quantify, are not included. For example,
415 errors related to the training dataset derived from the F0AM model are challenging to assess because of the
416 lack of PO₃ measurements. We assume other inputs to the PO₃ parametrization, such as the monthly
417 climatology TROPOMI surface albedo to be error-free. Additionally, all datasets used to estimate PO₃
418 contain spatial representation errors (Souri et al. 2022), which are difficult to measure without knowing
419 their true state of global spatial variability. Moreover, we do not consider correlated errors among HCHO
420 and NO₂ retrievals. It is worth noting that some of the inputs such as H₂O(v) and the overhead ozone column
421 have minimal biases because of MINDS simulations being observationally constrained (Fisher et al., 2024;
422 Souri et al., 2024).

423 There are also assumptions regarding the equations mentioned earlier. For instance, it is assumed
424 that the validation of conversion factors can account for all systematic issues related to the vertical
425 distribution of NO₂ and HCHO in MINDS. Furthermore, we presume that the reported retrieval errors are
426 mostly random; however, this is not the case (Eskes et al., 2003; Boersma et al. 2018) and distinguishing
427 between these errors is not straightforward.

428 Another source of uncertainty arises from partially cloudy pixels and aerosols, which can introduce
429 errors in calculated photolysis rates. While we successfully filtered out cloud cover and strong aerosol
430 loadings (e.g., from wildfires) using effective cloud fraction thresholds, some aerosol or cloud-
431 contaminated pixels may pass cloud screening due to low optical depth or height characteristics. Rigorously
432 quantifying the errors coming from these effects would require running a radiative transfer model with
433 detailed three-dimensional optical properties of clouds and aerosols on a global scale, particularly critical
434 for aerosols, which can have complex effects on photolysis rates depending on their absorption and
435 scattering properties and vertical distribution. Unfortunately, such comprehensive datasets are typically
436 limited to the narrow swaths of spaceborne lidar observations, which themselves carry substantial
437 uncertainties (Thorsen and Fu, 2015). While these complications cannot be entirely avoided, particularly
438 for aerosol effects, users can apply additional quality control measures by filtering pixels using aerosol
439 optical depth retrievals from TROPOMI, OMI, or other sensors to more rigorously identify contaminated
440 observations.

441 In case of oversampling of the PO₃ product both temporally and spatially, the total error will be given by:

$$e_{total_oversampled} = \sqrt{\frac{1}{m} \sum e_{syst}^2 + \frac{1}{m^2} \sum e_{rand}^2} \quad (11)$$

442 where m is the total number of samples. Eq.11 suggests that the systematic errors are persistent across all
443 samples and are not reducible by averaging, whereas the random errors become smaller by root square of
444 samples. In this equation, the assumption is that the root-mean-square of the systematic errors is a good
445 approximation of the systematic errors in the oversampled data because they are independent of each other.

446 4. Results and Discussion

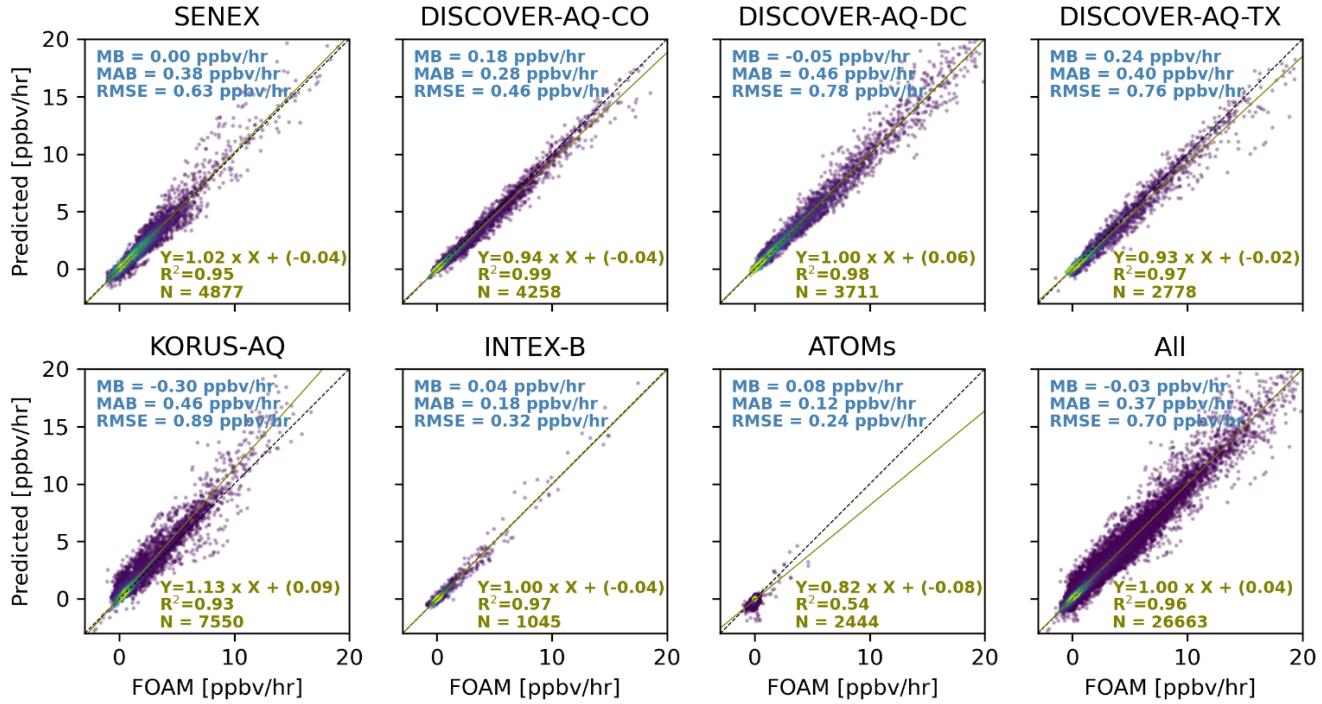
447 In this section, we begin by validating and contrasting PO_3 DNN against PO_3 LASSO. Following
448 that, we use OMI to investigate the spatiotemporal variability of PO_3 and its sensitivity to photolysis rates,
449 HCHO , and NO_2 globally. We provide an application of data to understand the global long-term trends PO_3
450 derived from OMI. Afterward, we offer a comprehensive global view of the PO_3 estimates algorithm by
451 integrating data from the TROPOMI compared with that one based on OMI. Finally, we document the total
452 error budget of the products.

453 4.1. *DNN performance*

454 We investigate the predictive power of the DNN algorithm against both validation and test data for
455 each air quality campaign or the entire aircraft dataset (Section 2.2). All training datasets described in
456 Section 3.1 are used in this stage. Except for the early stages of training, both training and validation curves,
457 explaining the evolution of the prediction against the number of epochs corresponding to the number of
458 iterations of training the network for one cycle, closely follow each other, indicating that we possibly do
459 not have overfitting issues (Figure S11). The curves are fairly smooth, resulting from using the ADAM
460 optimizer with a strictly small learning rate initially. Both curves converge to RMSE below 0.88 ppbv/hr
461 which we use to assign the error of PO_3 DNN prediction in Eq.5.

462 PO_3 DNN has promising skill at predicting PO_3 across various atmospheric conditions. Figure 3
463 presents a comparison of the predicted PO_3 values against observationally-constrained F0AM values for
464 the test data for each suborbital mission. A similar comparison, which includes all data points measured
465 during each mission, can be found in Figure S12. The primary reason for highlighting the test data is that
466 they have never been used to fine-tune the DNN parameters. There is a strong correlation between the
467 predictions and the benchmarks across most campaigns for both the test data points (Figure 3) and the
468 complete set of aircraft measurements (Figure S12). Notably, the slope for the "All" test dataset is close to
469 the unity line. The DNN algorithm can reproduce over 96% of the variance in the test data. Similar to the
470 approach of Souri et al. (2025), we completely exclude each suborbital mission from the training dataset
471 and use it as an independent benchmark to evaluate the model's performance. The resulting accuracy is
472 comparable to that achieved when 56% of the data are used for training, indicating that the PO_3
473 parameterization has reached a high degree of generalization (Figure S13).

474 The model performs significantly better than PO_3 LASSO over INTEX-B compared to LASSO (as
475 shown in Figure 7 in Souri et al., 2025). While the DNN's performance over the ATom campaigns is less
476 impressive than in other areas, it still represents a considerable improvement over LASSO, which was
477 unable to reproduce PO_3 in pristine regions ($R^2 < 0.05$). One key factor contributing to this improvement is
478 the inclusion of $\text{H}_2\text{O}(\text{v})$ in the input. Various parameters, including HO_x , are known to influence PO_3 in
479 remote regions, but these factors were not included in our parametrization. The method does not artificially
480 inflate results by introducing non-physical relationships in remote regions; the inability of the DNN to fully
481 explain PO_3 during AToms suggests that it does not force unrealistic relationships between PO_3 and the
482 inputs to completely align with the F0AM results, leaving areas for future improvement in parametrization
483 over remote regions.



484

485 **Figure 3.** Scatterplots comparing observationally-constrained F0AM model PO₃ and the predictions that
 486 were based on the DNN for the test data from each air quality campaign. The test data have never been used
 487 for hyper tuning the algorithm. “All” denotes all test data.

488 **4.2. Advantages of PO₃DNN over PO₃LASSO**

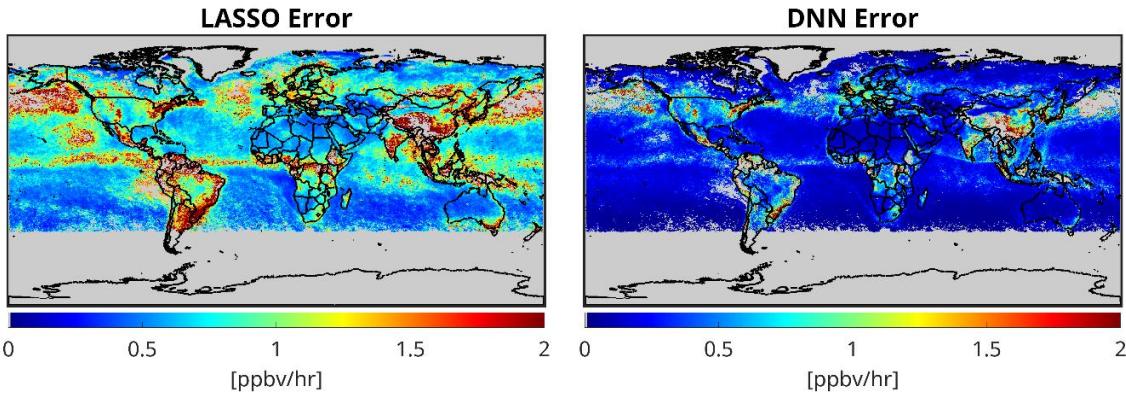
489 There are primarily four major benefits of PO₃DNN over PO₃LASSO that make the former parameterization
 490 a superior algorithm. The discussion of these advantages is as follows:

491 — *Higher predictive power:* PO₃LASSO predicted PO₃ for all datapoints collected from the suborbital
 492 missions with a R²=0.88, RMSE=1.2 ppbv/hr, and a slope of 0.87 (Souri et al., 2025), whereas PO₃DNN
 493 reproduced the exact datapoints (Figure S12) with a R²=0.96, RMSE=0.7 ppbv/hr, and a slope of 1.00.
 494 Furthermore, as shown in Figure 4, PO₃DNN has a great degree of generalization for datapoints outside
 495 of the training/validation data points. Consequently, these statistics suggest that DNN is a more
 496 powerful predictor.

497 — *Better representation of PO₃ over remote regions:* One notable limitation of PO₃LASSO was its
 498 inadequate representation of PO₃ in remote regions, such as during the ATOMs or INTEX-B campaigns.
 499 This led Souri et al. (2025) to entirely mask PO₃ estimates below 1 ppbv/hr. In these remote areas, PO₃
 500 is typically influenced by the reactions between ozone and HO_x in addition to O¹D and H₂O. While
 501 Souri et al. (2025) attempted to incorporate H₂O into the LASSO parametrization, the algorithm
 502 assigned a zero coefficient to this parameter because of the use of the L1-regularization term. This term
 503 typically assigns a zero coefficient for a geophysical variable that is either irrelevant to the target or
 504 shows strong non-linear relationship with the target. PO₃LASSO did not factor in H₂O(v) because
 505 H₂O(v) exhibits a non-linear relationship with PO₃ – although the reaction between O¹D and H₂O can
 506 suppress ozone formation through the removal of O¹D, it produces two molecules of OH regenerating
 507 ozone in polluted places (Bates and Jacob, 2019). Consequently, the non-linear relationship between
 508 H₂O and PO₃ is one that LASSO was unable to capture. While we could have addressed this by dividing
 509 the training dataset into different humidity levels (i.e., dry and humid), such an approach would have
 510 resulted in more discretization in the parametrization. Conversely, PO₃DNN can consider the non-linear

511 relationship between H_2O and PO_3 without the need for empirical linearization. We observe a significant
 512 improvement in predicted PO_3 for both AToms and INTEX-B campaigns compared to Souri et al.
 513 (2025).

514 — *Diminished satellite error effects*: The reliance of PO_3 LASSO on FNR increases the contamination of
 515 PO_3 predictions from satellite random noise. This primarily occurs because satellite errors associated
 516 with HCHO and NO_2 adversely influence FNR (see Figure 12 in Souri et al. (2023a)), resulting in noise
 517 in the empirical linearization approach used in PO_3 LASSO. Even if we assume that all inputs to the
 518 PO_3 LASSO parameterization, except for FNR, are error-free, the inherent randomness from choosing
 519 among four different sets of equations segregated by the noisy FNR will still feed noise into the final
 520 estimate. Although PO_3 DNN is inevitably influenced by satellite errors because of its dependence on
 521 HCHO and NO_2 columns, it does not exacerbate these errors because it operates independently of FNR.
 522 To demonstrate this tendency, Figure 4 shows the global PO_3 random error maps induced by OMI
 523 HCHO and NO_2 retrieval random errors averaged in June 2006. We use identical inputs and errors for
 524 both algorithms. Figure 4 is evidence of the diminished contamination of satellite random errors in
 525 PO_3 DNN as compared to PO_3 LASSO. The error differences tend to be larger over clean areas, because
 526 FNR random errors are higher when both HCHO and NO_2 levels are small.



527 **Figure 4.** The comparison of the effect of satellite random errors in HCHO and NO_2 on PO_3 predictions
 528 based on PO_3 LASSO and PO_3 DNN algorithms in June 2006. The data used for generating these maps are
 529 based on OMI retrievals.
 530

531 — *Continuity*: It is known that neural networks equipped with three hidden layers can well approximate
 532 almost any high-dimensional non-linear function (Shen et al., 2021). An important superiority of
 533 PO_3 DNN over PO_3 LASSO lies in the strength of the DNN algorithm at approximating high-
 534 dimensional non-linear relationships between PO_3 and HCHO (a proxy for VOCR), NO_2 (a proxy for
 535 reactive nitrogen), jNO_2 and jO^1D (a proxy for photochemistry), and H_2O . While some of these non-
 536 linearities were reasonably approximated in PO_3 LASSO by empirically segregating the chemical
 537 conditions using FNR, the non-linear ozone photochemistry can go beyond the dependency on VOCs
 538 and NO_x levels. In fact, the relationship between PO_3 and VOCs and NO_x can behave non-linearly
 539 depending on the available light and water vapor as discussed in Section 4.3. This indicates that
 540 traditional linear models, such as those using VOCR/ NO_x (or HCHO/NO_2) ratios, often fall short in
 541 capturing this complexity because of the continuous and non-linear nature of these relationships.
 542

543 **4.3. PO_3 DNN can capture non-linear PO_3 chemistry as a function of pollution, light, and
 544 humidity**

545 To further elaborate on the capability of PO_3 DNN to reasonably respond to variations in its five
 546 major parameters in a mathematically continuous fashion, we create six isopleths, each specifically

547 designed to represent a particular atmospheric condition listed in Table 3. These isopleths are based on
548 perturbing HCHO and NO₂ in PO₃DNN and are shown in Figure 5.

549 It is immediately apparent that the hyperbolic shape of the PO₃ curve relative to NO₂ and HCHO
550 can be recreated by our algorithm, displaying a positive response to both HCHO and NO₂ on the right and
551 left sides of the ridgelines. This observation underscores the effective parametrization of the non-linearities
552 in ozone photochemistry achieved through the DNN algorithm. In the subplot representing normal
553 conditions, we overlaid three lines indicating FNR values of 1.5 (blue), 2.5 (green), and 3.5 (cyan). Souri
554 et al. (2025) used these lines to determine various coefficients in the PO₃LASSO parameterization. For
555 instance, the derivative of PO₃ with respect to NO₂ was determined to be -0.14 ppbv/hr for FNR < 1.5 but
556 increased to 6.54 ppbv/hr for FNR > 3.5. However, in practice, the thickness and curvature of the PO₃
557 isopleths vary based on the prevailing atmospheric conditions, implying that the derivatives cannot
558 consistently retain the same values across the broad range of conditions.

559 In bright conditions, not only do we observe a significantly accelerated response of PO₃ compared
560 to the norm at identical NO₂ and HCHO concentrations, but the responses of PO₃ to these two compounds
561 also become more pronounced. Conversely, in dim conditions, both the magnitudes and responses are
562 weaker.

563 These results underscore the importance of including photolysis rates in ozone sensitivity analysis,
564 rather than relying solely on FNR in former studies. For example, a lower FNR in the morning (~0930 LST)
565 compared to the afternoon may wrongly suggest that PO₃ would become more sensitive to VOCs earlier in
566 the day. However, decreased light in the morning reduces the sensitivity of PO₃ to VOCs, despite a lower
567 FNR (Text S1).

568 The contrast between dry and humid isopleths suggests that the presence of H₂O(v) enhances PO₃
569 when abundant NO₂ and HCHO are present. This trend is similarly observed in the F0AM model, as
570 depicted in Figure S4, indicating that an increase in H₂O(v) over polluted regions (arbitrarily defined as
571 HCHO×NO₂ > 10) increases PO₃. Nonetheless, more humidity suppresses PO₃ especially where VOC is
572 limited and NO₂ is elevated possibly because the generated OH molecules from O¹D+H₂O(v)
573 predominantly react with elevated NO₂.

574 Lastly, we see the highest PO₃ rates recorded among all scenarios under a hypothetical condition
575 characterized by high humidity and photolysis rates. This condition is rare in nature because large amounts
576 of H₂O(v) (0.8×10^{18} molec/cm³) are confined to marine regions where surface reflectivity is low;
577 nonetheless, an intuitive tendency from PO₃DNN suggests that the algorithm does not create non-physical
578 extrapolation values.

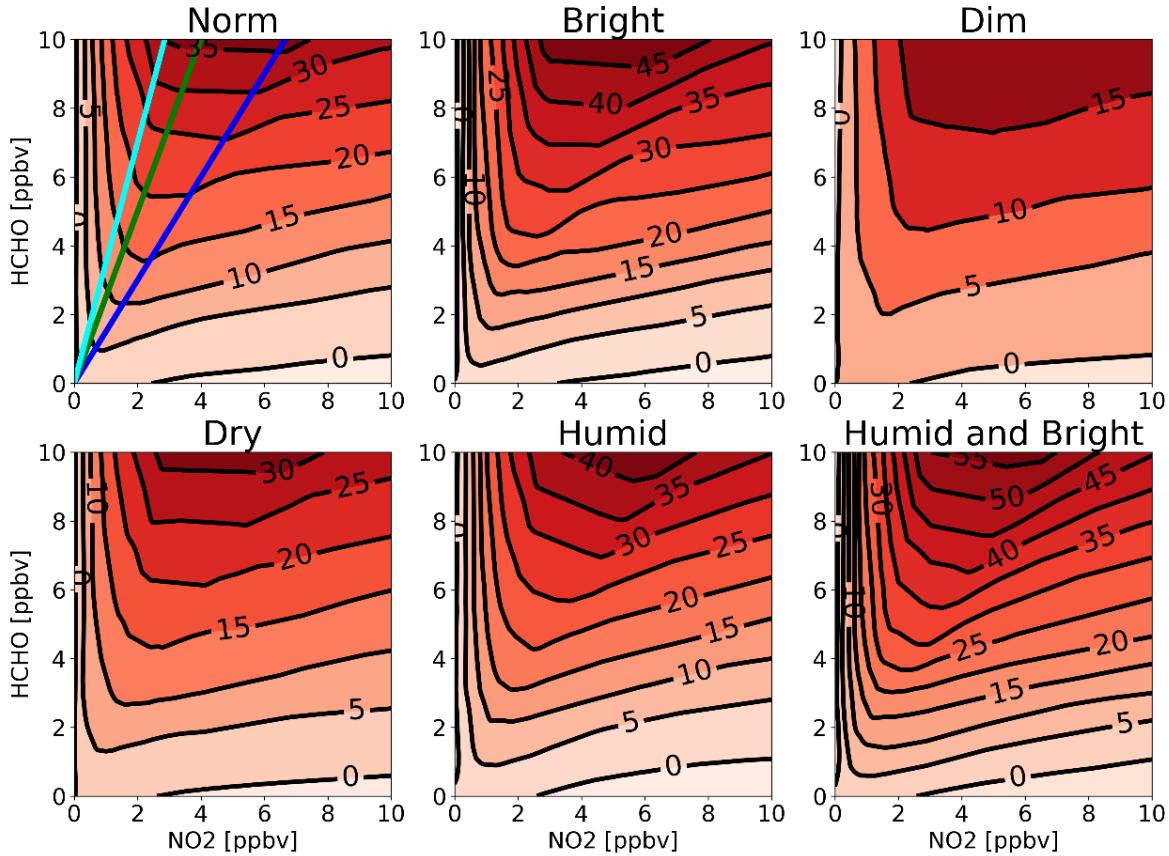
579

580

581 **Table 3.** Six different atmospheric conditions defined to understand the response of PO₃ to HCHO
582 and NO₂ changes.

Labels	H ₂ O [molec/cm ³]	jO ¹ D [1/s]	jNO ₂ [1/s]	Notes
<i>Norm</i>	0.4×10 ¹⁸	4×10 ⁻⁵	1.2×10 ⁻²	A typical condition in summer in the eastern US at noon
<i>Bright</i>	0.4×10 ¹⁸	7×10 ⁻⁵	1.4×10 ⁻²	Central America with abundant sunshine in the afternoon
<i>Dim</i>	0.4×10 ¹⁸	3×10 ⁻⁵	0.7×10 ⁻²	Scandinavia in the afternoon summer
<i>Dry</i>	0.1×10 ¹⁸	4×10 ⁻⁵	1.2×10 ⁻²	An arid region such as Spain Meseta Central in the afternoon summer
<i>Humid</i>	0.8×10 ¹⁸	4×10 ⁻⁵	1.2×10 ⁻²	A place like Persian Gulf with high humidity and abundant sunshine
<i>Humid and Bright</i>	0.8×10 ¹⁸	7×10 ⁻⁵	1.4×10 ⁻²	Since accelerated photolysis rates close-to-surface usually occur over bright regions (arid) with low humidity, this condition is rare in nature.

583



584

585 **Figure 5.** The contour maps of PO_3 isopleth generated by PO_3DNN algorithm for six different atmospheric
 586 conditions defined in Table 3. In the first subplot, blue, green, and cyan lines indicate $\text{FNR}=1.5, 2.5$, and
 587 3.5, respectively. Numbers on isopleths are in ppbv/hr.

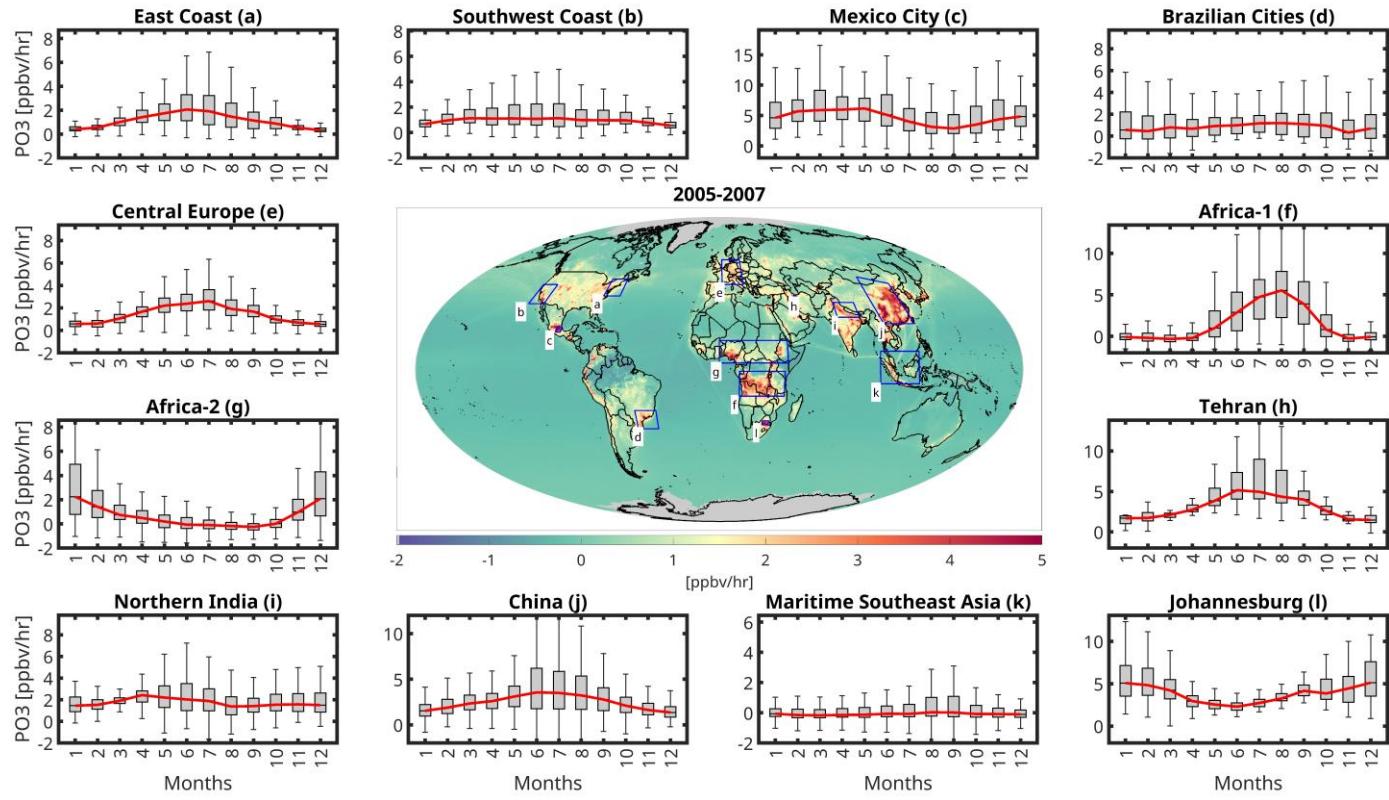
588 **4.4. PO_3 Maps and Sensitivities using OMI and TROPOMI: A General View, Long-term
 589 analysis, Intercomparisons, and Error Analysis**

590 **4.4.1. Global PO_3 and Seasonality using OMI in 2005-2007**

591 Figure 6 shows the global distribution of PO_3 rates averaged over a quarter-degree in 2005-2007,
 592 using OMI HCHO and NO_2 retrievals. It also includes whisker-box plots highlighting seasonal variations
 593 in PO_3 for selected regions and cities. We selected the 2005-2007 timeframe for this analysis because the
 594 OMI data were free from degradation issues, including the row anomaly. The map indicates accelerated
 595 PO_3 rates across heavily polluted regions, such as cities in the Middle East, Asia, the U.S., Central Europe,
 596 and Africa, aligning with what we observed in Souri et al. (2025). While some areas exhibit significant
 597 seasonal fluctuations, others show little variability throughout the seasons. Notably, the east coast of the
 598 U.S., Central Europe, China, Tehran, and Johannesburg experience peak PO_3 rates in summer. This pattern
 599 is primarily attributed to enhanced photochemistry and the elevated sensitivity of PO_3 to NO_x , driven by
 600 increases in VOC/NO_x (Souri et al., 2025).

601 The seasonal variability of PO_3 in two African regions, characterized by biomass burning, exhibits
 602 an anti-correlation. This occurs because biomass burning in the northern hemisphere of Africa occurs from
 603 November to March, while the southern hemisphere in Africa experiences it from June to September
 604 (Roberts et al., 2009). Maritime Southeast Asia also shows a peak in PO_3 during the biomass burning season
 605 (August-September).

606 Places like Mexico City, several major Brazilian cities (including Sao Paulo and Rio de Janeiro),
 607 northern India, and the southwest coast of the U.S. show minimal seasonal variability in PO_3 . The lack of
 608 pronounced seasonal changes may be attributed to less pronounced fluctuations in photolysis rates or
 609 substantial spatial heterogeneity in the seasonal variabilities of HCHO and NO_2 , resulting in reduced
 610 seasonal variations but with greater variance. Nonetheless, certain weather conditions can influence these
 611 results; for instance, monsoon flows can disperse and scavenge pollution from the northern India around
 612 July-September (David and Nair, 2013), dampening PO_3 . Mexico City also experiences a monsoon season
 613 in summer causing pollution to subside temporarily. The attribution of the seasonality will be discussed in
 614 the next section.



616 **Figure 6.** (center) The averaged global PO_3 map at $0.25^\circ \times 0.25^\circ$ in 2005-2007 based on the new algorithm.
 617 OMI data are used to populate HCHO and NO_2 abundance. (margins) the whisker-box plots of PO_3
 618 seasonality over various selected regions. In the box plot, the central red line shows the median, and the top
 619 and bottom edges of the box show the 25th (q1) and 75th (q3) percentiles. The dark solid lines at the very
 620 beginning and the end of each plot show the minimum and maximum values excluding the outliers. The
 621 outliers are removed based on by any value above $q3+1.5 \times (q3-q1)$ or below $q1-1.5 \times (q3-q1)$.

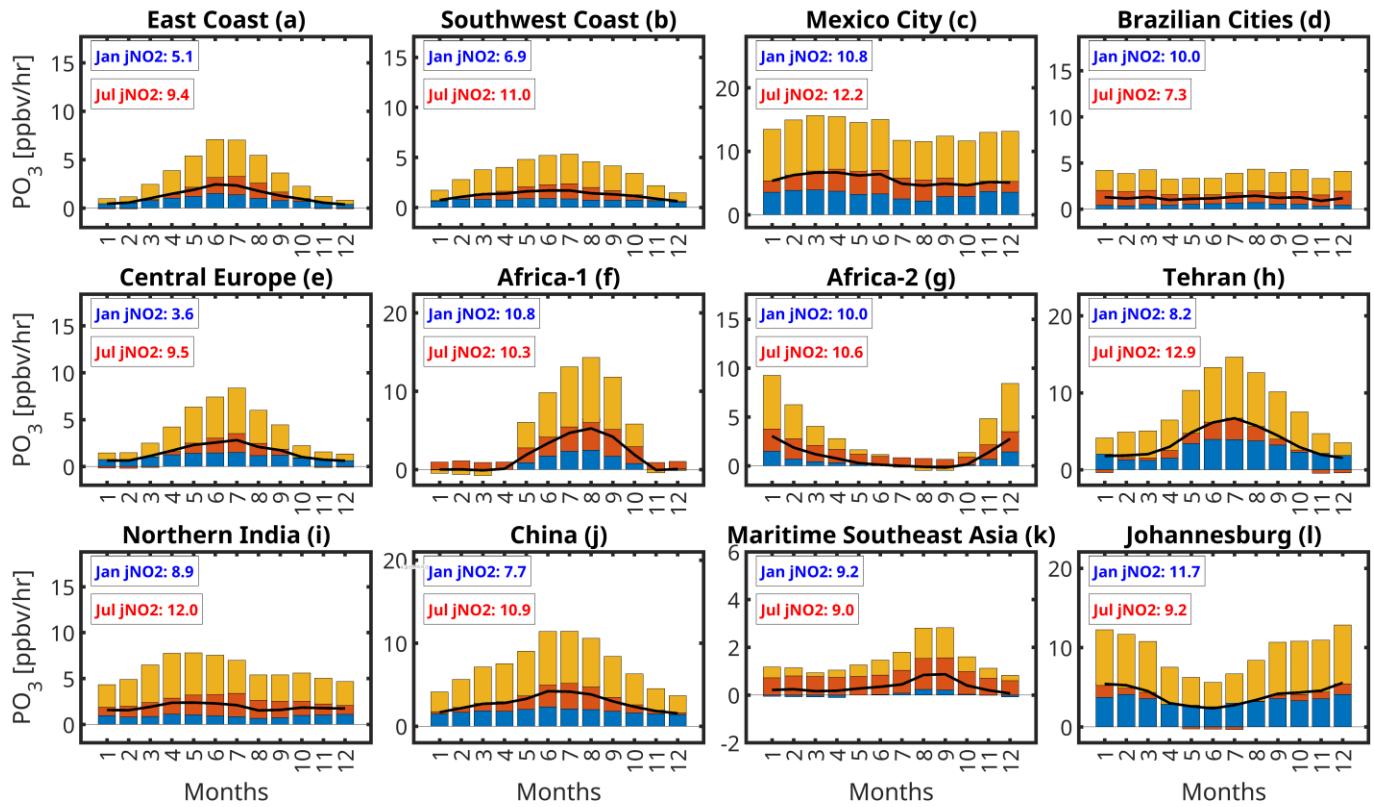
622 4.4.2. The attribution of PO_3 seasonality

623 Figure 7 illustrates the sensitivity of PO_3 to NO_2 , HCHO, and combined J-values ($j\text{NO}_2$ and $j\text{O}^1\text{D}$)
 624 based on Eq.3 across the same regions and months presented in Figure 6. The absolute values of PBL
 625 HCHO, NO_2 , and $j\text{NO}_2$ are shown in Figure S14. As shown in Appendix A, these sensitivity values are
 626 influenced by both the magnitude of the precursor and the first derivative of PO_3 with respect to that
 627 precursor. Thus, the sensitivity values should be interpreted as the result of these combined effects.
 628 Moreover, these sensitivities are calculated with respect to local HCHO and NO_2 concentrations rather than
 629 local emissions (unlike typical modeling experiments). Local concentrations reflect the combined influence

630 of both local and external emissions through various physicochemical processes. We exclude water vapor
631 from sensitivity analysis because its impact is an order of magnitude smaller than the three other factors.

632 The amplitude of photolysis rates dictates the amplitude of the sensitivity of PO_3 to NO_2 and
633 HCHO . For instance, over East Coast, Central Europe, and Tehran, the first derivative of PO_3 to NO_2 tends
634 to be small during colder months, primarily because of reduced photochemistry. As a result, despite
635 significantly higher NO_2 concentrations in these months, the sensitivity of PO_3 to NO_2 is muted. Conversely,
636 in warmer months, the larger positive derivative of PO_3 relative to NO_2 , driven by increased HCHO levels
637 (shifting away from VOC-sensitive regimes) and enhanced photolysis rates, markedly increases the
638 contributions of low summer NO_2 levels to PO_3 . Likewise, we observe substantially higher sensitivity of
639 PO_3 to HCHO concentrations during warmer seasons. This increase is attributed to both the elevated levels
640 of HCHO and the growing derivative of PO_3 with respect to HCHO , both of which are directly influenced
641 by enhanced photochemistry. One might argue that summer conditions should lead to a shift towards
642 extremely NO_x -sensitive regimes, resulting in a reduced first-order derivative of PO_3 to HCHO . However,
643 most polluted regions chosen for this figure are in transitional regimes during the summer, which renders
644 PO_3 fairly responsive to HCHO concentrations.

645 The sensitivity of PO_3 to photolysis rates is dependent on pollution levels, just as its sensitivity to
646 HCHO and NO_2 concentrations is influenced by photolysis rates. This is primary reason for seeing minimal
647 seasonality of PO_3 over Mexico City, various Brazilian cities, and northern India. These minimal changes
648 in photolysis rate sensitivities are caused by the less pronounced seasonality in both photolysis rates and
649 pollution levels compared to other areas (Figure S3). Souri et al. (2025) found that photolysis rates
650 significantly contribute to the production of PO_3 when there is an adequate amount of ozone precursors.
651 This was reflected in larger (smaller) coefficients associated with photolysis rates in PO_3 LASSO algorithm
652 for polluted (pristine) regions. For example, high photolysis rates over the Sahara do not significantly
653 contribute to PO_3 because of the limited availability of ozone precursors needed to initiate the $\text{RO}_x\text{-HO}_x$
654 cycle. A notable example can be observed in Africa, where photolysis rates tend to remain consistently high
655 throughout the year under near cloud-free conditions (Figure S14). However, there is a marked seasonality
656 in the sensitivity of PO_3 with respect to photolysis rates during polluted months suggesting that the ample
657 precursors can leverage available lights to form more ozone molecules. This pattern underscores the
658 algorithm's capability to understand the intertwined relationships between the photolysis rate sensitivities
659 and pollution levels, as well as the pollution sensitivities and photolysis rates.



661 **Figure 7.** The bar plots of the sensitivity of PO₃ to photolysis rates, NO₂, and HCHO concentrations within
662 the PBL over the selected regions shown in Figure 6. These sensitivities are influenced by both the
663 magnitude of the precursors and the first-order derivative of PO₃ to the precursor, detailed in Appendix A.
664 jNO₂ values are in $1 \times 10^{-3}/\text{s}$ units.

665 4.4.3. Global PO₃ linear trends using OMI (2005-2019)

666 Using the linear trend calculation method outlined by Souri et al. (2024), we compute global long-
667 term linear trends of PO₃ from OMI data, shown in Figure 8. High-latitude regions ($>65^\circ$) are excluded due
668 to limited photochemical activity. We observe large variability in both the signs and magnitudes of the linear
669 trends. Predominantly positive trends occur over the Middle East, India, and China, while negative trends
670 are mostly found in the eastern U.S., southern parts of Europe, maritime Southeast Asia, and several areas
671 in Africa. The largest upward trend in PO₃ over the U.S. occurs in oil and gas producing regions, including
672 the Permian Basin. While various physicochemical processes beyond near-surface PO₃ influence
673 tropospheric ozone trends, the strong agreement between predominantly upward PO₃ trends in Asia and the
674 Middle East suggested by satellite-based ozone observations (Gaudel et al., 2018; Boynar et al., 2025) is
675 noteworthy.

676 To gather a more relative perspective, Figure 9 shows relative PO₃ trends (as percentages relative
677 to 2005 annual averages) for regions where PO₃ exceeds 0.5 ppbv/hr. The largest relative changes (>30%)
678 are evident over the Persian Gulf, Chile, India, and China. Large negative values dominate over the eastern
679 U.S. and over the central Africa (>20%).

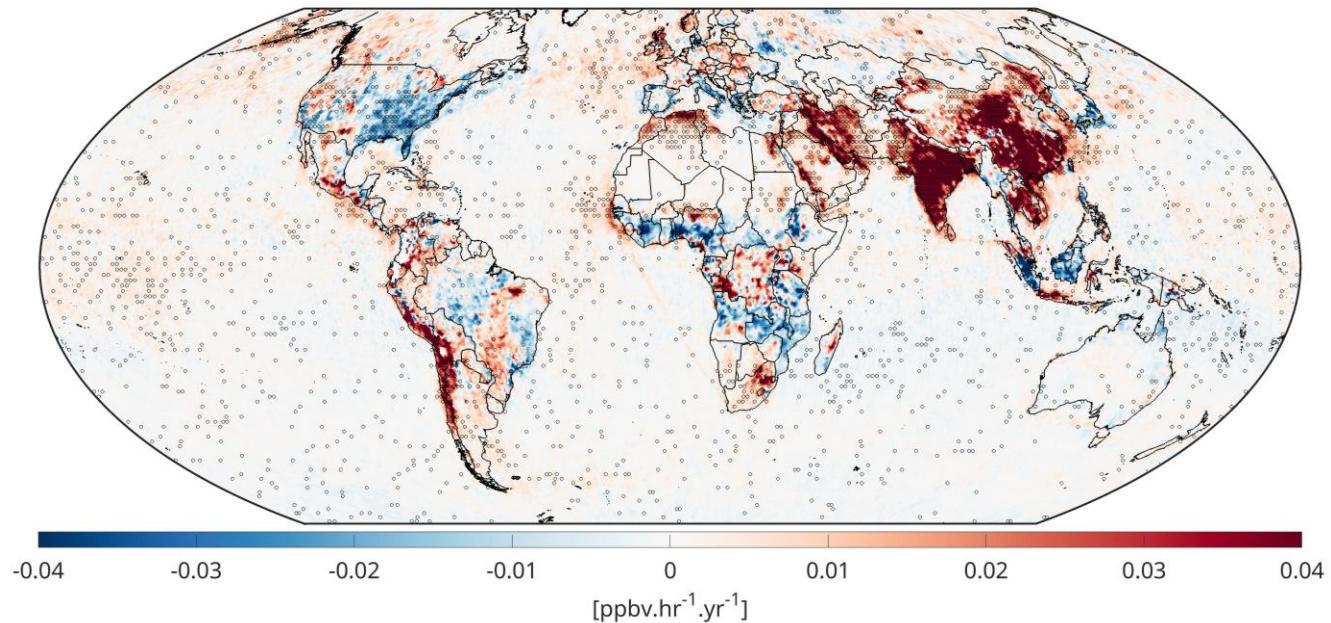
680 Multiple factors in our parameterization can simultaneously influence these trends, including
681 changes in HCHO VCDs, NO₂ VCDs, dynamic changes in column-to-PBL conversion factors from
682 MINDS, water vapor, and photolysis rates. However, photolysis rate trends should be negligible because
683 long-term changes in total overhead ozone are insignificant at midlatitudes (Figure S2 in Souri et al., 2024),

684 and surface albedo is based on a monthly climatology dataset. While water vapor increases over time in
685 response to global warming (Souri et al., 2024; Borger et al., 2024), these changes are insufficient to explain
686 the large variability in PO_3 linear trends over polluted regions. Accordingly, simultaneous changes in HCHO
687 and NO_2 boundary layer mixing ratios are the main drivers of PO_3 trends.

688 The PO_3 trends are generally explained by changes in ozone precursor concentrations which are
689 mapped in Figures S15 and S16. The attribution of trends in OMI HCHO and NO_2 have been partly
690 discussed in Souri et al., 2024 and the references therein. Increases in both HCHO and NO_2 over the Middle
691 East, India, and China drive rising PO_3 over time. Conversely, reduced HCHO and NO_2 concentrations over
692 parts of Africa, the eastern U.S., and maritime Southeast Asia, have led to PO_3 reductions. However, many
693 localized areas exhibit strong non-linearity. For instance, Tehran (Iran) shows positive PO_3 trends caused
694 by NO_2 increases in a predominantly VOC-sensitive regime, reducing ozone loss through NO_2+OH
695 reactions. Los Angeles (USA) shows upward trends attributed to rapid NO_2 reductions, resulting in the
696 opposite effect (Text S2)

697 The quantitative characterization of these trends (similar to our analysis of PO_3 seasonality in
698 Section 4.4.2 or rapid PO_3 changes during a heatwave in Text S3) presents significant challenges for several
699 reasons: (i) the amplitudes of these trends are generally an order of magnitude smaller than seasonal
700 changes, requiring more stringent attribution methods, (ii) the sensitivities of PO_3 to input parameterization
701 can behave non-linearly, making a linear trend analysis ill-suited for some localized areas, and (iii) changes
702 in ozone precursors have effects on the sensitivity of PO_3 to photolysis rates as described in Section 4.4.2,
703 introducing a convoluted problem.

704 Since our PO_3 parameterization encapsulates non-linear and interdependent relationships between
705 pollution levels, light intensity, and water vapor, fully isolating individual effects on PO_3 trends requires
706 reproducing the product while holding either NO_2 or HCHO constant individually and allowing others to
707 evolve over time (an approach similar to modeling experiments in Souri et al., 2024). This approach
708 comprehensively captures the non-linear dependencies between input variables and PO_3 , circumventing the
709 need for crude linear approximations.

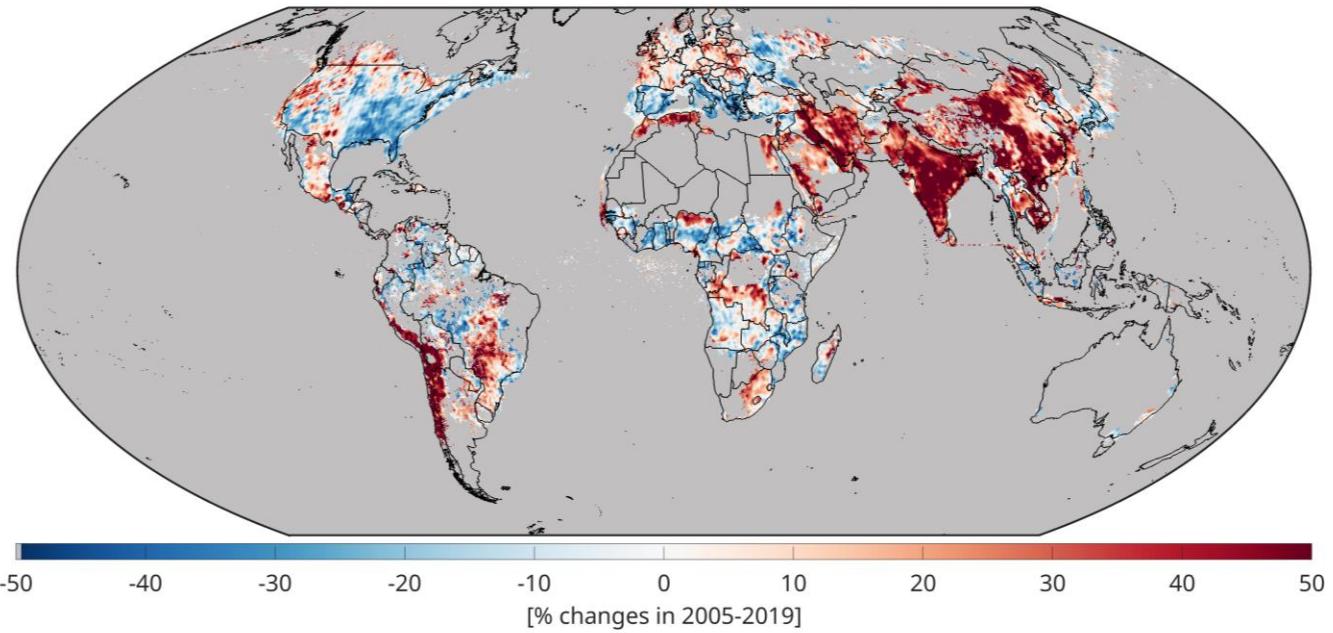


710

711 **Figure 8.** The linear trend maps of PO_3 within PBL derived from our new algorithm using OMI in 2005-
712 2019. Dots indicate that the trend has passes a statistical test based on the Mann-Kendall test at 95%
713 confidence interval.

714

715



716

717 **Figure 9.** Similar to Figure 8 but percentage changes are instead shown over $\text{PO}_3 > 0.5 \text{ ppbv/hr}$.

718 4.4.4. High resolution TROPOMI-based PO_3 maps contrasted with OMI in 2019

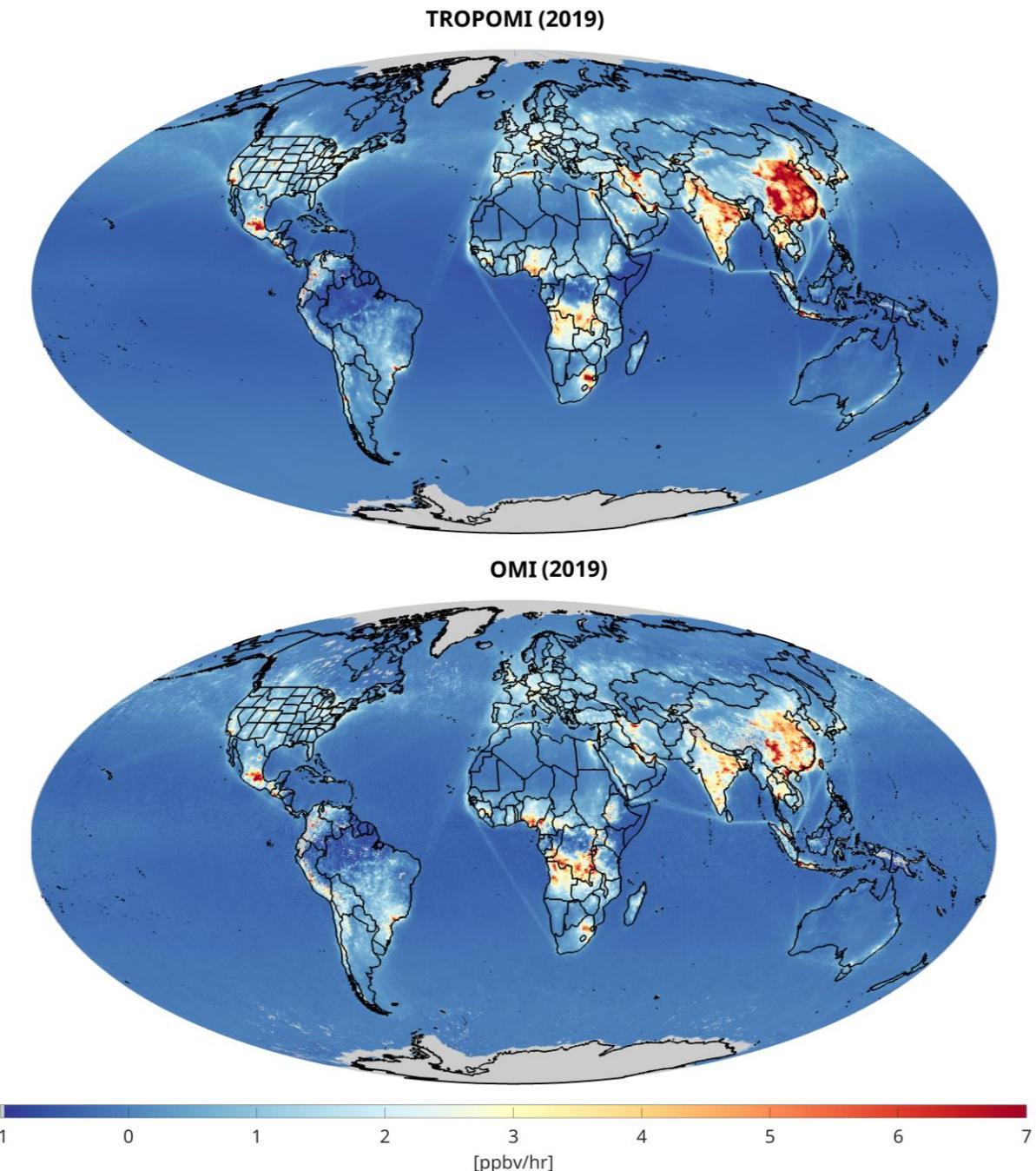
719 Accelerated rates of PO_3 at approximately 1330 LST are observed consistently across polluted
720 midlatitude regions characterized by high photolysis rates. This pattern is substantiated by the global PO_3
721 maps derived from TROPOMI and OMI data for the year 2019 illustrated in Figure 10. While the maps
722 presented are averages for 2019, significant PO_3 hotspots (exceeding 8 ppbv/hr) are identified over
723 metropolitan/industrial areas including Mexico City (Mexico), Tehran (Iran), the Persian Gulf, and Hunan
724 Province (China). There are less documented regions undergoing elevated locally-produced ozone such as
725 Johannesburg (South Africa), Rio de Janeiro (Brazil), Sao Paulo (Brazil), and Santiago (Chile). In contrast,
726 Europe emerges as a region with comparatively low PO_3 levels despite its dense population. This tendency
727 may be attributed to lower photolysis rates (characterized by high solar zenith angles and low surface
728 reflectivity) as well as effective emissions mitigation strategies. A notable similarity exists between these
729 identified hotspots and those reported by Souri et al. (2025), although the contrast between clean and
730 polluted areas is more pronounced in the PO_3 DNN product because of an improved representation of
731 PO_3 DNN in clean regions.

732 PO_3 exhibits a slight negative value over oceanic and densely forested areas (such as the Amazon
733 and Congo), primarily because of ozone sinks associated with water vapor ($\text{H}_2\text{O}(v)$) and alkenes, which are
734 implicitly included in our parametrization. However, a marked contrast is observed between the slightly
735 negative and positive PO_3 levels along marine vessel pathways. These ship paths are informed not only by
736 remote sensing data (Georgoulias et al., 2020) but also by the conversion of column measurements to PBL
737 mixing ratios thorough the MINDS simulation, which accounts for ship emissions. Given that the PBL is

738 typically shallow over marine regions, the conversion factor is expected to be substantial for these
739 pathways, resulting in a pronounced contrast in pollution levels.

740 The finer spatial resolution of the TROPOMI dataset enhances the detail of the PO₃ maps compared
741 to those derived from OMI, yielding less noise and fuller data. This reduction in gaps in TROPOMI-based
742 PO₃ is attributed to a lower likelihood of cloud contamination and the full coverage of all pixels in the
743 detector, in contrast to OMI, which suffers from the row anomaly. Visual analysis of the two datasets
744 indicates that TROPOMI often shows higher PO₃ than OMI over polluted regions. Except for NO₂ and
745 HCHO VCDs, the inputs to the parametrization are identical across both products.

746 To further investigate these differences, we synchronize the TROPOMI datasets at the OMI-based
747 spatial resolution and produced scatterplots, as displayed in Figure 11. The correspondence between the
748 two products is high ($R^2 = 0.86$). Nonetheless, TROPOMI-based PO₃ levels are approximately 10% greater
749 than those derived from OMI. The fact that we observe this overestimation given that TROPOMI has been
750 coarsened to match OMI's footprint suggests that the differing spatial resolutions (0.25 degrees versus 0.1
751 degrees) are unlikely to account for the discrepancy. Moreover, we undertake a comparative analysis of
752 NO₂ and HCHO mixing ratios within the PBL region as obtained from MINDS alongside these two satellite
753 datasets. Given that the conversion factor remains consistent between the two products, any observed
754 differences can be attributed to variations in their respective VCDs. Our analysis reveals that both NO₂ and
755 HCHO mixing ratios are higher in TROPOMI relative to OMI (by 5-6%), thereby providing a good
756 explanation for higher TROPOMI-based PO₃ in comparison to OMI.

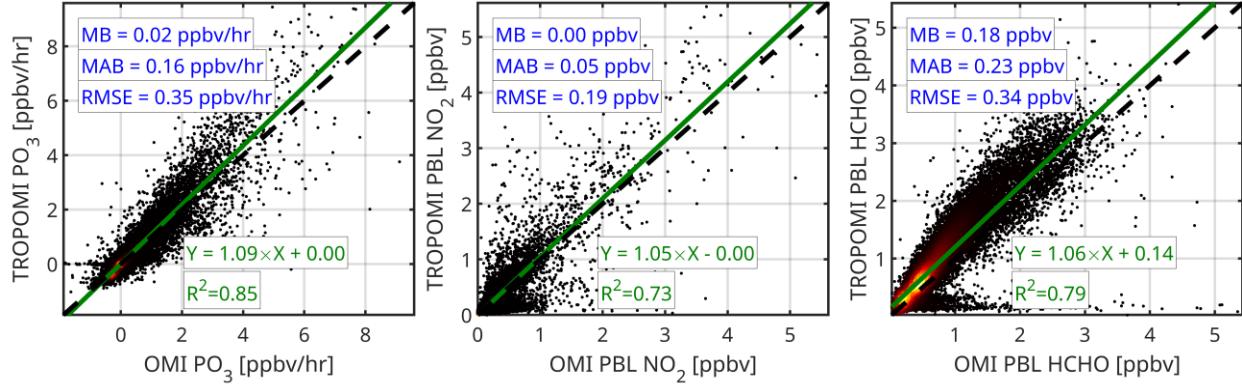


757

758 **Figure 10.** Global maps of PO_3 derived from TROPOMI (top) and OMI (bottom) datasets based on the
 759 PO_3DNN algorithm in 2019. These values are estimated within the PBL region at ~ 1330 LST. The data
 760 exclude cloudy pixels, strong smoke, sensor anomalies, and snow based on the recommended quality flags
 761 coming with TROPOMI and OMI products.

762

763



764

765 **Figure 11.** Scatterplots of (left) OMI PO₃ vs. TROPOMI PO₃, (middle) OMI PBL NO₂ vs. TROPOMI PBL
 766 NO₂, and (right) OMI PBL HCHO vs. TROPOMI PBL HCHO based on 2019. We coarsen TROPOMI
 767 dataset to match OMI's spatial resolution to remove the effect of spatial footprint on these results.

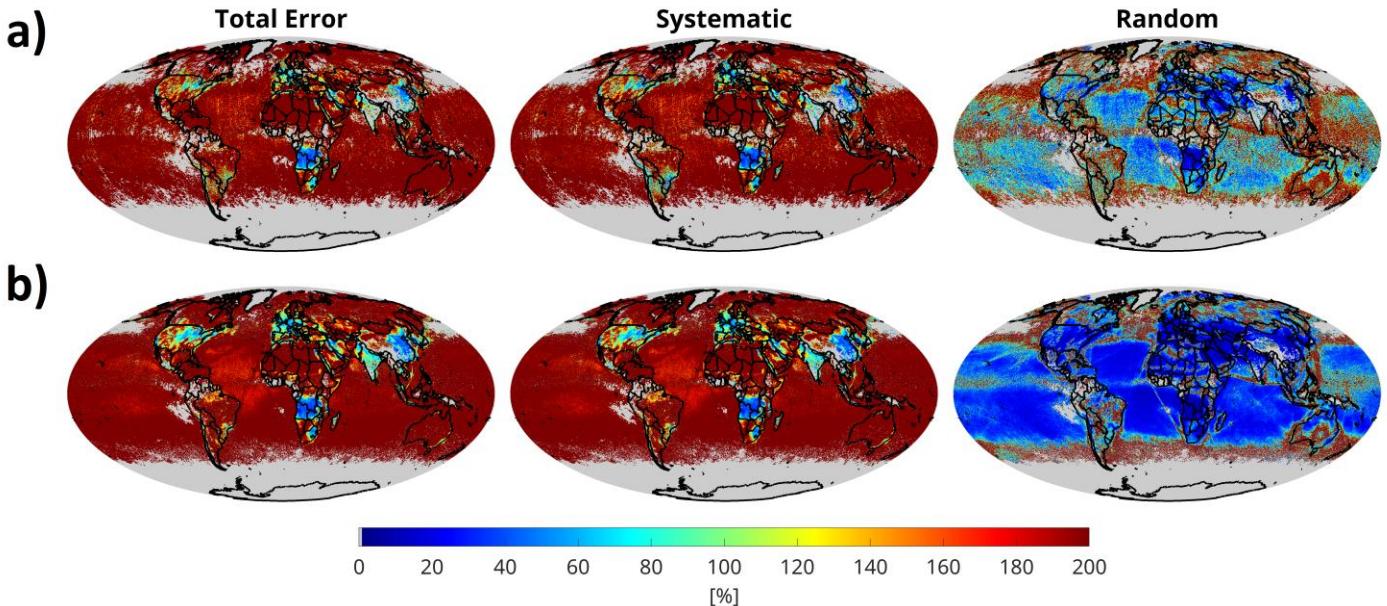
768 *4.4.5. Error Analysis*

769 Based on the formulation outlined in Section 3.4, we evaluate both the systematic and random error
 770 components of PO₃ for July 2019, based on data from both OMI and TROPOMI retrievals. Figure 12
 771 presents the average error values for the month. Total PO₃ errors range from 25% to 80% in areas
 772 characterized by moderate to extreme pollution, while in more remote regions, errors can surpass 200%.

773 On average, random errors constitute only a small fraction of the total error budget, with OMI
 774 showing consistently larger random errors than TROPOMI across the region. This is primarily a result of
 775 OMI's limited sampling caused by row anomaly issues. As mentioned in Section 4.2, these random errors
 776 are significantly lower when compared to the PO₃LASSO random errors (Souri et al., 2025).

777 Systematic errors account for most of the total error, exceeding 90%. These systematic errors are
 778 comprised of three components: biases arising from the correction of VCDs using ground-based remote
 779 sensing data, errors related to DNN predictions, and conversion factors derived from the MINDS
 780 framework. The first two components contribute minimally to the overall error (less than 5%), making the
 781 MINDS conversion factors the dominant contributor to the total error budget. Therefore, any
 782 parametrization aimed at converting satellite-based VCDs to near-surface concentrations, including the one
 783 presented in this study, should always seek out a model that accurately reflects the shape of the profiles.

784 We also quantify the impact of inconsistent shape factors used in the retrievals and the MINDS
 785 profile on PO₃ estimates and find them introducing systematic errors of 5-25% over PO₃>0.5 ppbv/hr
 786 (Figures S17-S20). Refining TROPOMI and OMI products with MINDS shape factors would require
 787 reproducing several large-scale validation efforts (e.g., Verhoelst et al., 2021; Vigouroux et al., 2020;
 788 Pinardi et al., 2021; Ayazpour et al., 2025), which is beyond the practical scope and resources of this study.

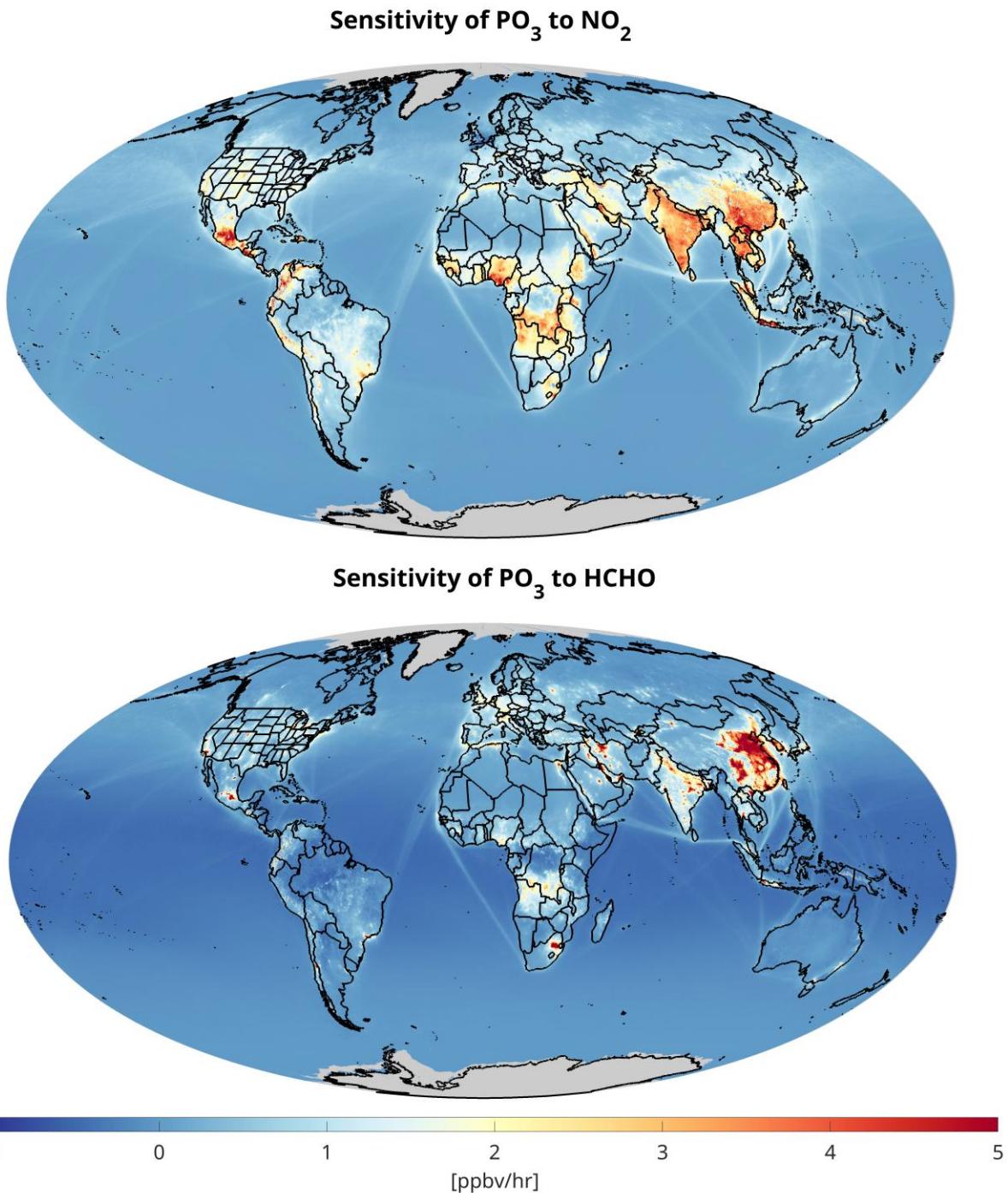


789
 790 **Figure 12.** The maps of total error, systematic, and random errors for (a) OMI, and (b) TROPOMI
 791 computed for July 2019.

792 *4.5.6. Beyond binary maps obtained from FNR: Ozone sensitivity maps using high-resolution TROPOMI*
 793 data

794 We explore the spatially varying sensitivity of PO_3 to HCHO and NO_2 worldwide using TROPOMI.
 795 These maps provide finer information compared to binary maps obtained from FNRs. Figure 13 illustrates
 796 global maps of these sensitivities averaged for the year 2019. We observe negative sensitivity values of PO_3
 797 to NO_2 in urban areas, which aligns with our understanding of non-linear ozone chemistry. These negative
 798 values are particularly pronounced in northern China, where VOCR/NO_x ratios remain low throughout the
 799 year. Similar non-linear feedback patterns can be seen in the Benelux region and the United Kingdom,
 800 primarily driven by elevated NO_2 levels. In contrast, NO_2 significantly contributes to higher PO_3 in southern
 801 China, India, Mexico, and several regions across Africa.

802 As indicated in Souri et al. (2025), the influence of HCHO on PO_3 is largely governed by NO_x
 803 emissions. This relationship explains why the sensitivity of PO_3 to HCHO closely mirrors global NO_2 levels,
 804 which dictates the locations of VOC-sensitive regimes. We observe slightly negative sensitivity of PO_3 to
 805 HCHO in remote and densely vegetated regions, likely a result of the effects of alkenes on ozone. However,
 806 the implicit nature of DNN makes it challenging to identify the exact chemical reasons behind these
 807 patterns. Noteworthy examples of areas where PO_3 is significantly influenced by HCHO include eastern
 808 China, Los Angeles (USA), Tehran (Iran), Mexico City (Mexico), and Johannesburg (South Africa).



809

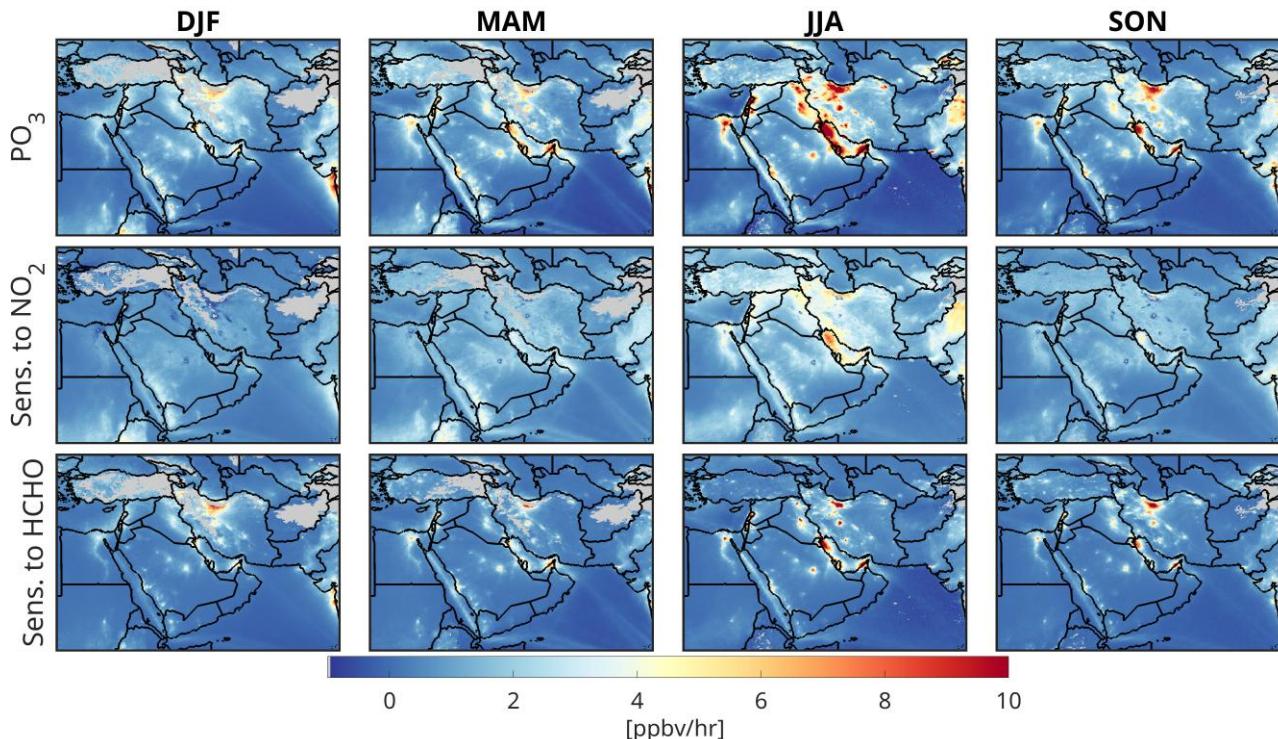
810 **Figure 13.** The sensitivity of PO_3 to NO_2 (top) and HCHO (bottom) based on our algorithm using
811 TROPOMI data in 2019.

812

813

814 Figure 14 presents the maps of PO_3 along with sensitivities across four seasons in 2019 over Middle
 815 East, derived from TROPOMI data. Notably, PO_3 values surge during the summer months in several densely
 816 populated and industrial regions of the Middle East. Furthermore, we observe considerable PO_3 values in
 817 the fall, primarily caused by the influence of HCHO. This fall peak is consistent with the observations made
 818 by Souri et al. (2025), who reported a sharp rise in PO_3 in late fall 2019 over Tehran (Iran). The overall
 819 seasonality of PO_3 is well aligned with the discussions presented in Section 4.4.1. The sensitivity of PO_3 to
 820 NO_2 exhibits notable variation, shifting from low and negative values during the colder months to positive
 821 and high values in the warmer months. We identify HCHO as the predominant contributor to PO_3 in these
 822 regions, as the majority of these cities fall in VOC-sensitive environments and emit significant amounts of
 823 anthropogenic HCHO, whether from primary or secondary sources.

824 These maps eliminate the need for binarization of chemical conditions, as they effectively illustrate
 825 the spatial variability in ozone response to HCHO and NO_2 while accounting for light and humidity, two
 826 important dimensions missing in FNR-based ozone sensitivity diagnosis. A more detailed discussion about
 827 FNR's inability to fully describe ozone chemistry is documented in Text S1.



828
 829 **Figure 14.** The magnitude of PO_3 and the corresponding sensitivity to NO_2 and HCHO over Middle East
 830 grouped into four different seasons. DJF: December-January-February, MAM: March-April-May, JJA:
 831 June-July-August, and SON: September-October-November. *Sens.* means sensitivity.

832 5. Summary

833 Early data-driven analyses of ozone chemistry sensitivity primarily relied on "ratio-based"
 834 indicators to partially linearize the non-linear aspects of urban ozone chemistry, which are influenced by
 835 pollution levels, light, and water vapor. With the development of more sophisticated algorithms, including
 836 machine learning techniques capable of fitting high-dimensional non-linear functions, we have shown that
 837 a highly effective parameterization of net ozone production rates (PO_3) can be achieved. This approach not
 838 only eliminates the need for empirical linearization of ozone chemistry through various indicators, but it
 839 also allows for the primary inputs to be accurately constrained using satellite observations. This

840 advancement allowed us to move beyond the previously employed formaldehyde-to-nitrogen dioxide ratio
841 (FNR) and to generate more comprehensive sensitivity maps, which account for variations not only in
842 HCHO and NO₂ but also in light and water vapor.

843 We significantly enhanced the empirical parametrization of PO₃ described in Souri et al. (2025), in
844 several key ways: (i) we improved the representation of PO₃ in both polluted and clean areas using a L2-
845 regularized deep neural network (DNN) and eliminated the need for empirical linearization of atmospheric
846 conditions with the FNR approach, resulting in reduced complexity and noise in the final estimates; (ii) we
847 used a finer, up-to-date global transport model called MINDS to convert satellite-retrieved vertical column
848 density (VCD) into planetary boundary layer (PBL) mixing ratios; (iii) we incorporated the error from these
849 conversion factors, derived from comprehensive validation against aircraft spirals, into the total error
850 budget; and (iv) we generated long-term records of PO₃ magnitudes and sensitivities to nitrogen dioxide
851 (NO₂) and formaldehyde (HCHO) using bias-corrected data from the Ozone Monitoring Instrument (OMI)
852 for the years 2005-2019 (at a resolution of 0.25° × 0.25°) and the TROPOspheric Monitoring Instrument
853 (TROPOMI) for 2018-2023 (at a resolution of 0.1° × 0.1°). These datasets were collected under partially
854 cloud-free conditions around 13:30 equatorial local standard time. The two products show strong
855 agreement, with TROPOMI-based PO₃ being approximately 10% higher than OMI, which is attributed to
856 higher NO₂ and HCHO concentrations noted by TROPOMI.

857 The DNN algorithm (PO₃DNN) accounted for more than 96% of the variance in both the test and
858 training datasets derived from observationally-constrained box simulations across various atmospheric
859 composition campaigns, with a slope close to the unity line. The new algorithm improved the representation
860 of PO₃ in remote regions compared to the version developed in Souri et al. (2025), due to the inclusion of
861 water vapor and the use of a more robust regression model. We found PO₃DNN to be logically responsive
862 to its inputs during various idealized experiments that involved changing light conditions, pollution levels,
863 and water vapor.

864 Expectedly, our results indicate that PO₃ magnitudes and sensitivity maps are primarily influenced
865 by the levels of ozone precursors, non-linearity of ozone chemistry, and photolysis rates. We revisited the
866 accelerated PO₃ observed in Souri et al. (2025) across polluted areas, such as major cities and during
867 biomass burning activities in photochemically active environments. Using sensitivity calculations derived
868 from the new algorithm, we investigated the contributors to PO₃ seasonality around the globe. We found
869 that photolysis rates were the primary drivers of PO₃ seasonality. During darker months, both the magnitude
870 of PO₃ and its sensitivity to NO₂ and HCHO decrease due to limited light availability to initiate the RO_x-
871 HO_x cycle. This critical trend is not represented by the pollution levels alone, highlighting the necessity of
872 including photolysis rates in ozone sensitivity analyses. Fortunately, we can largely constrain these rates
873 using satellite observations. In regions with minimal variability in photolysis rates (such as the tropics),
874 pollution levels became the main driver of PO₃ seasonality.

875 The long record of stable observations from OMI allowed us to generate the first-ever maps of PO₃
876 linear trends from 2005 to 2019 globally. The global long-term trends revealed substantial spatial variability,
877 with predominantly positive trends over Asia and the Middle East (>30% relative to 2005 in some regions)
878 and negative trends across the eastern U.S., Europe, and parts of Africa. Analysis indicated that
879 simultaneous changes in HCHO and NO₂ boundary layer concentrations were the primary drivers of these
880 trends. Although increases in both precursors over Asia and the Middle East, rising PO₃ and reduced
881 concentrations elsewhere lead to PO₃ decreases, localized non-linearities complicated this relationship, as
882 demonstrated by contrasting chemical regimes in Tehran vs. Los Angeles. Quantitative attribution of these
883 trends presents challenges because of their small amplitudes relative to seasonal variations and non-linear
884 sensitivities in the parameterization, necessitating “hold-one-out” approaches that account for complex
885 interdependencies between input variables.

886 We error characterized both systematic and random errors associated with PO₃DNN for both OMI
887 and TROPOMI-based products. We showed that total errors range from 25% to over 200%, with smaller

888 errors in polluted areas. Random errors are minor on monthly-basis, with OMI exhibiting larger errors due
889 to row anomaly issues. Systematic errors exceed 90% of the total error, primarily driven by MINDS
890 conversion factors. The total errors budget emphasizes on the role of model used for converting satellite-
891 based VCDs to near-surface concentrations and its importance for precisely determining ozone precursors
892 levels near to the surface. Furthermore, in future efforts, we also need to refine satellite retrievals using
893 spatially higher-resolution AMFs derived from MINDS while simultaneously performing retrieval
894 validation against ground-based remote sensing observations.

895 We developed a novel product aimed at enhancing our understanding of the variability in PO_3 and
896 its interactions with NO_x and VOCs on a global scale. This advanced algorithm has undergone meticulous
897 tuning and training using an extensive dataset derived from a reliable box model, which is further
898 constrained by intensive atmospheric composition campaigns conducted by NASA and NOAA. The
899 algorithm not only yields accurate estimates of PO_3 with minimal bias in comparison to observationally-
900 constrained values but also facilitates the derivation of PO_3 in relation to HCHO and NO_2 . However, as
901 indicated by Souri et al. (2025), there remain several opportunities for further improvement, including: i)
902 the incorporation of heterogeneous chemistry; ii) consideration of the impact of partially cloudy regions
903 and aerosols on photolysis rates; iii) gauging the potential benefits of using more sophisticated chemical
904 mechanisms for the generation of the training dataset; and iv) enhanced representation of vertical profiles
905 of NO_2 and HCHO using observationally-constrained chemical transport models with more rigorous
906 column to near-surface conversion methods (Cooper et al. 2020). Some of these enhancements present
907 significant challenges, particularly the fine-resolution three-dimensional characterization of aerosol and
908 cloud properties on a global scale, which is not obtainable with current reanalysis data. However, with the
909 advent of newer satellite technologies such as PACE and MAIA, there may be opportunities to improve the
910 representation of atmospheric models with respect to cloud and aerosol characteristics.

911 While the OMI- and TROPOMI-based PO_3 products maintain algorithmic consistency in several
912 key components, including photolysis rates and water vapor calculations, the underlying satellite retrievals
913 of HCHO and NO_2 VCDs remain unharmonized between the two instruments. To address the resulting
914 inter-instrument biases, we implemented bias correction using ground-based remote sensing retrievals as
915 reference standards. This approach achieved OMI and TROPOMI PO_3 agreement within 10% on average.
916 However, this level of consistency may be insufficient for robust joint trend analysis of the combined OMI-
917 TROPOMI PO_3 record over areas with non-linear or minor trends, potentially requiring the implementation
918 of trend harmonization algorithms (e.g., Hilboll et al., 2013) to ensure statistical reliability in long-term
919 analyses.

920 The emergence of novel geosynchronous orbit (GEO) technologies is becoming increasingly
921 important for monitoring the daylight hourly variability in ozone precursors. In particular, the finer spatial
922 and temporal resolution offered by the Tropospheric Emissions: Monitoring of Pollution (TEMPO),
923 Geostationary Environment Monitoring Spectrometer (GEMS), and Sentinel-4 instruments will aid in
924 distinguishing exceptional events from typical atmospheric conditions. In light of the success of emission
925 mitigation strategies over high income countries, the occurrences of elevated PO_3 are becoming more
926 infrequent, thereby necessitating a more detailed and rapid observational strategy for monitoring such
927 events. This presents a timely opportunity to address ozone exceedance events using TEMPO in conjunction
928 with our PO_3 estimator, especially since the algorithm is designed to handle light-limited conditions—such
929 as those encountered during early morning and late afternoon periods when TEMPO collects data—
930 conditions that are not feasible to analyze via the FNR approach.

931 **Appendix A: The sensitivity maps are the directional derivative**

932 To demonstrate that the sensitivity calculation of PO_3 to its inputs resembles (Eq.3) a directional derivative
933 output, we can approximate the perturbations in the PO_3 DNN (denoted as $f(x)$, where x is the targeted
934 sensitivity parameter) using the Taylor expansion:

935 $f(1.1x) \approx f(x) + (1.1x - x)\nabla f(x) = f(x) + 0.1x.\nabla f(x)$ (12)

936 $f(0.9x) \approx f(x) + (0.9x - x)\nabla f(x) = f(x) - 0.1x.\nabla f(x)$ (13)

937 The sensitivity calculation presented in Eq.3 can be rewritten in the following form:

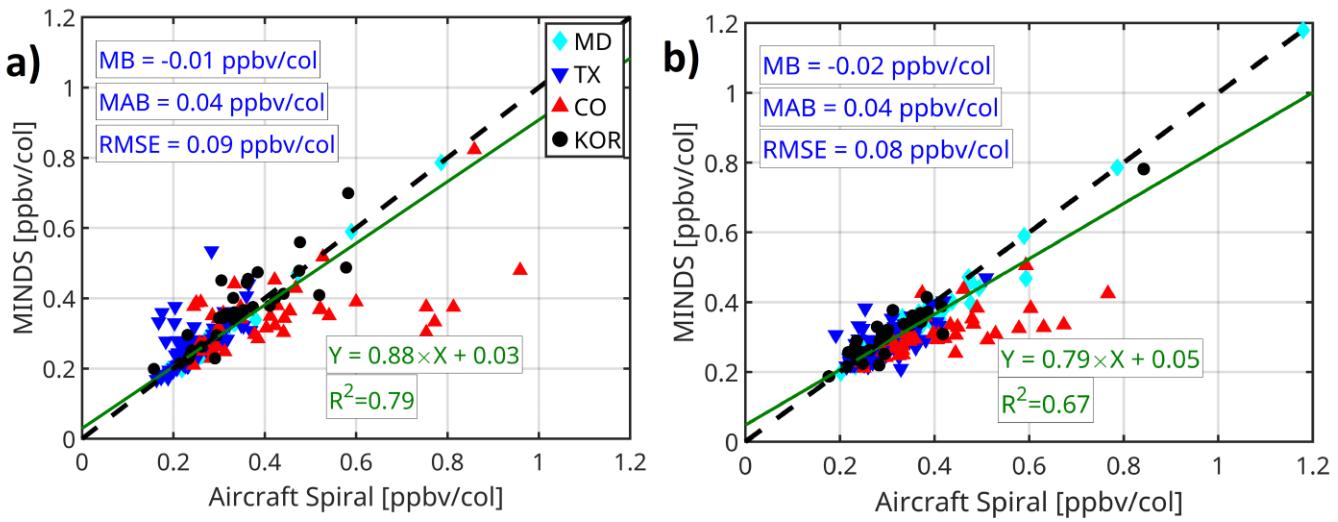
$$S = \frac{(f(x) + 0.1\nabla f(x)) - (f(x) - 0.1\nabla f(x))}{0.2} = \frac{0.2x.\nabla f(x)}{0.2} = x.\nabla f(x) \quad (14)$$

938 Therefore, the first-order approximation of the DNN prediction, when using the given sensitivity
 939 calculation, is $x.\nabla f(x)$ which represents the first-order Taylor expansion term that describes how the output
 940 changes with respect to both the gradient and the magnitude of x (i.e., directional derivative).

941 **Appendix B. MINDS conversion factor validation**

942 We validate the column conversion factors obtained from the MINDS simulations against
 943 corresponding values derived from aircraft spirals from several suborbital missions. The concentrations of
 944 HCHO and NO₂ in both datasets are collocated in time and space and are resampled onto a common vertical
 945 grid, ranging from the near surface up to 450 hPa in 20 hPa increments. To determine the conversion factors,
 946 these resampled concentrations are averaged within the PBL and then divided by the vertically integrated
 947 partial columns from the surface to 450 hPa. The PBLH is based on the MINDS simulations. Figure B.1
 948 displays scatterplots of the paired conversion factor binned at 12:15 LST and 15:15 LST (± 45 minutes
 949 around the TROPOMI/OMI local revisit time) for NO₂ and HCHO, respectively. The unit for these
 950 conversion factors is ppbv/col, where col represents 1×10^{15} molec.cm⁻². The comparison shows a good level
 951 of agreement between the two datasets for both species ($R^2 > 0.7$). The MINDS simulations perform slightly
 952 better for NO₂ than for HCHO. This performance difference may arise from the fact that HCHO is mainly
 953 a secondary product, meaning various uncertain VOC emissions, along with uncertain chemical processes
 954 in the model, could pile up leading to discrepancies in the vertical distribution of simulated HCHO
 955 compared to observations. Furthermore, HCHO vertical profiles can be easily affected by local circulation
 956 patterns that are difficult to resolve in coarse models (Souri et al., 2023b). We observe consistent model
 957 performance across various campaigns, except for DISCOVER-AQ Colorado. This discrepancy may result
 958 from complex topography and wind conditions in that region that the model might not fully capture. The
 959 differences between the two datasets can also be attributed to sources of error beyond the model
 960 deficiencies. For instance, the MINDS simulations represent a quarter-degree averaged concentration,
 961 which differs from the localized air samples derived from aircraft, known as the spatial representation error
 962 (Souri et al., 2022).

963 To account for the systematic errors resulting from the MINDS simulation in our error budget, we
 964 assign $e_{conv-HCHO}$ and $e_{conv-NO2}$ in Eq.5 to RMSE values obtained from the comparison. The choice of RMSE
 965 is based on the fact that it contains information about the bias and the dispersion of MINDS with respect to
 966 the observations. We assume these errors to be invariant by time or location, mainly because of limited
 967 aircraft spirals ($N=57$) we have from the suborbital missions.



96
 970 **Figure B.1.** The scatterplot of the column to the PBL conversion factor for (a) NO₂ and (b) HCHO obtained
 971 from aircraft spirals (x-axis) and MINDS simulation (y-axis) at the same time and location from four
 972 different suborbital missions. These 57 spirals are limited to OMI/TROPOMI overpass ± 45 min buffering
 973 time. “col” denotes 1×10^{15} molec.cm⁻².

974

975 **Financial Support**

976 This study is funded by NASA's ACMAP/Aura project (grant no. 80NSSC23K1250).

977 **Data Availability**

978 The PO₃ products can be obtained from <https://www.ozonerates.space>.

979 TROPOMI satellite data are derived from copernicus Sentinel-5P (processed by ESA), 2021, TROPOMI
980 Level 2 Nitrogen Dioxide total column products. Version 02. European Space Agency.
981 <https://doi.org/10.5270/S5P-9bnp8q8>, and copernicus Sentinel-5P (processed by ESA), 2020, TROPOMI
982 Level 2 Formaldehyde Total Column products. Version 02. European Space Agency.
983 <https://doi.org/10.5270/S5P-vgl17t0>. The TROPOMI UV DLER can be obtained from
984 https://www.temis.nl/surface/albedo/tropomi_ler.php (last access: 10 Nov 2024). OMI SAO HCHO at
985 https://waps.cfa.harvard.edu/sao_atmos/data/omi_hcho/OMI-HCHO-L2/ (last access, 15 Feb 2025).
986 MINDS simulations can be obtained from https://portal.nccs.nasa.gov/datasshare/merra2_gmi/gmi-minds/
987 (last access, 10 April 2025). OMI NO₂ (QA4ECV) can be downloaded from <https://www.temis.nl/> (last
988 access, 10 April 2025).

989 **Competing interests**

990 Bryan N. Duncan is a member of the editorial board of Atmospheric Chemistry and Physics

991 **Acknowledgements**

992 Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through
993 the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center.

994 **Authors' contributions**

995 AHS designed and implemented the research idea, analyzed the data, made all figures except for Figures 2
996 and 3, and wrote the manuscript. GG implemented, designed, and validated the DNN algorithm, and made
997 Figures 2 and 3. LDM provided the MINDS simulations. BND helped with the interpretation of the results
998 and editing.

999

1000

1001

1002 **References**

1003 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: A system for large-scale machine learning, <https://doi.org/10.48550/arXiv.1605.08695>, 31 May 2016.

1007 Anderson, D. C., Duncan, B. N., Liu, J., Nicely, J. M., Strode, S. A., Follette-Cook, M. B., Souri, A. H., Ziemke, J. R., González-Abad, G., and Ayazpour, Z.: Trends and Interannual Variability of the Hydroxyl Radical in the Remote Tropics During Boreal Autumn Inferred From Satellite Proxy Data, *Geophys. Res. Lett.*, 51, e2024GL108531, <https://doi.org/10.1029/2024GL108531>, 2024.

1011 Ayazpour, Z., González Abad, G., Nowlan, C. R., Sun, K., Kwon, H.-A., Chan Miller, C., Chong, H., Wang, H., Liu, X., Chance, K., O'Sullivan, E., Zhu, L., Vigouroux, C., De Smedt, I., Stremme, W., Hannigan, J. W., Notholt, J., Sun, X., Palm, M., Petri, C., Strong, K., Röhling, A. N., Mahieu, E., Smale, D., Té, Y., Morino, I., Murata, I., Nagahama, T., Kivi, R., Makarova, M., Jones, N., Sussmann, R., and Zhou, M.: Aura Ozone Monitoring Instrument (OMI) Collection 4 Formaldehyde Products, *Earth Space Sci.*, 12, e2024EA003792, <https://doi.org/10.1029/2024EA003792>, 2025.

1018 Bates, K. H. and Jacob, D. J.: An Expanded Definition of the Odd Oxygen Family for Tropospheric Ozone Budgets: Implications for Ozone Lifetime and Stratospheric Influence, *Geophys. Res. Lett.*, 47, e2019GL084486, <https://doi.org/10.1029/2019GL084486>, 2020.

1021 Bauwens, M., Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Wiedinmyer, C., Kaiser, J. W., Sindelarova, K., and Guenther, A.: Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations, *Atmos. Chem. Phys.*, 16, 10133–10158, <https://doi.org/10.5194/acp-16-10133-2016>, 2016.

1025 Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, *Atmos. Chem. Phys.*, 15, 5325–5358, <https://doi.org/10.5194/acp-15-5325-2015>, 2015.

1030 Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite NO₂ retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, *Atmos. Meas. Tech.*, 11, 6651–6678, <https://doi.org/10.5194/amt-11-6651-2018>, 2018.

1036 Boynard, A., Wespes, C., Hadji-Lazaro, J., Sinnathamby, S., Hurtmans, D., Coheur, P.-F., Douriaux-Boucher, M., Onderwaater, J., Steinbrecht, W., Pennington, E. A., Bowman, K., and Clerbaux, C.: Assessment of 16-year tropospheric ozone trends from the IASI Climate Data Record, *Atmos. Chem. Phys.*, 25, 11719–11755, <https://doi.org/10.5194/acp-25-11719-2025>, 2025.

1040 Borger, C., Beirle, S., and Wagner, T.: Analysis of global trends of total column water vapour from multiple years of OMI observations, *Atmos. Chem. Phys.*, 22, 10603–10621, <https://doi.org/10.5194/acp-22-10603-2022>, 2022.

1043 Brune, W. H., Miller, D. O., Thames, A. B., Allen, H. M., Apel, E. C., Blake, D. R., Bui, T. P., Commane, R., Crounse, J. D., Daube, B. C., Diskin, G. S., DiGangi, J. P., Elkins, J. W., Hall, S. R., Hanisco, T. F., Hannun, R. A., Hinsta, E. J., Hornbrook, R. S., Kim, M. J., McKain, K., Moore, F. L., Neuman, J. A., Nicely, J. M., Peischl, J., Ryerson, T. B., St. Clair, J. M., Sweeney, C., Teng, A. P., Thompson,

1047 C., Ullmann, K., Veres, P. R., Wennberg, P. O., and Wolfe, G. M.: Exploring Oxidation in the
1048 Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), *J. Geophys. Res.-*
1049 *Atmos.*, 125, e2019JD031685, <https://doi.org/10.1029/2019JD031685>, 2020.

1050 Brune, W. H., Miller, D. O., Thames, A. B., Brosius, A. L., Barletta, B., Blake, D. R., Blake, N. J., Chen,
1051 G., Choi, Y., Crawford, J. H., Digangi, J. P., Diskin, G., Fried, A., Hall, S. R., Hanisco, T. F., Huey,
1052 G. L., Hughes, S. C., Kim, M., Meinardi, S., Montzka, D. D., Pusede, S. E., Schroeder, J. R., Teng,
1053 A., Tanner, D. J., Ullmann, K., Walega, J., Weinheimer, A., Wisthaler, A., and Wennberg, P. O.:
1054 Observations of atmospheric oxidation and ozone production in South Korea, *Atmos. Environ.*,
1055 269, 118854, <https://doi.org/10.1016/j.atmosenv.2021.118854>, 2022.

1056 Cazorla, M. and Brune, W. H.: Measurement of Ozone Production Sensor, *Atmos. Meas. Tech.*, 3, 545–555,
1057 <https://doi.org/10.5194/amt-3-545-2010>, 2010.

1058 Cazorla, M., Brune, W. H., Ren, X., and Lefer, B.: Direct measurement of ozone production rates in Houston
1059 in 2009 and comparison with two estimation methods, *Atmos. Chem. Phys.*, 12, 1203–1212,
1060 <https://doi.org/10.5194/acp-12-1203-2012>, 2012.

1061 Chatfield, R. B., Ren, X., Brune, W., and Schwab, J.: Controls on urban ozone production rate as indicated
1062 by formaldehyde oxidation rate and nitric oxide, *Atmos. Environ.*, 44, 5395–5406,
1063 <https://doi.org/10.1016/j.atmosenv.2010.08.056>, 2010.

1064 Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A.,
1065 Higurashi, A., and Nakajima, T.: Tropospheric Aerosol Optical Thickness from the GOCART
1066 Model and Comparisons with Satellite and Sun Photometer Measurements, *J. Atmos. Sci.*, 59, 461–
1067 483, [https://doi.org/10.1175/1520-0469\(2002\)059<0461:TAOTFT>2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2), 2002.

1068 Choi, Y. and Souri, A. H.: Chemical condition and surface ozone in large cities of Texas during the last
1069 decade: Observational evidence from OMI, CAMS, and model analysis, *Remote Sens. Environ.*,
1070 168, 90–101, <https://doi.org/10.1016/j.rse.2015.06.026>, 2015a.

1071 Choi, Y. and Souri, A. H.: Seasonal behavior and long-term trends of tropospheric ozone, its precursors and
1072 chemical conditions over Iran: A view from space, *Atmos. Environ.*, 106, 232–240,
1073 <https://doi.org/10.1016/j.atmosenv.2015.02.012>, 2015b.

1074 Choi, Y., Kim, H., Tong, D., and Lee, P.: Summertime weekly cycles of observed and modeled NO_x and
1075 O₃ concentrations as a function of satellite-derived ozone production sensitivity and land use types
1076 over the Continental United States, *Atmos. Chem. Phys.*, 12, 6291–6307,
1077 <https://doi.org/10.5194/acp-12-6291-2012>, 2012.

1078 Compernolle, S., Verhoelst, T., Pinardi, G., Granville, J., Hubert, D., Keppens, A., Niemeijer, S., Rino, B.,
1079 Bais, A., Beirle, S., Boersma, F., Burrows, J. P., De Smedt, I., Eskes, H., Goutail, F., Hendrick, F.,
1080 Lorente, A., Pazmino, A., Piters, A., Peters, E., Pommereau, J.-P., Remmers, J., Richter, A., van
1081 Geffen, J., Van Roozendael, M., Wagner, T., and Lambert, J.-C.: Validation of Aura-OMI QA4ECV
1082 NO₂ climate data records with ground-based DOAS networks: the role of measurement and
1083 comparison uncertainties, *Atmos. Chem. Phys.*, 20, 8017–8045, <https://doi.org/10.5194/acp-20-8017-2020>, 2020.

1085 Cooper, M. J., Martin, R. V., McLinden, C. A., and Brook, J. R.: Inferring ground-level nitrogen dioxide
1086 concentrations at fine spatial resolution applied to the TROPOMI satellite instrument, *Environ.*
1087 *Res. Lett.*, 15, 104013, <https://doi.org/10.1088/1748-9326/aba3a5>, 2020.

1088

1089 David, L. M. and Nair, P. R.: Tropospheric column O₃ and NO₂ over the Indian region observed by Ozone
1090 Monitoring Instrument (OMI): Seasonal changes and long-term trends, *Atmos. Environ.*, 65, 25–
1091 39, <https://doi.org/10.1016/j.atmosenv.2012.09.033>, 2013.

1092 De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., Boersma, F., Chan, K.-
1093 L., Donner, S., Eichmann, K.-U., Hedelt, P., Hendrick, F., Irie, H., Kumar, V., Lambert, J.-C.,
1094 Langerock, B., Lerot, C., Liu, C., Loyola, D., Piters, A., Richter, A., Rivera Cárdenas, C., Romahn,
1095 F., Ryan, R. G., Sinha, V., Theys, N., Vlietinck, J., Wagner, T., Wang, T., Yu, H., and Van
1096 Roozendael, M.: Comparative assessment of TROPOMI and OMI formaldehyde observations and
1097 validation against MAX-DOAS network column measurements, *Atmos. Chem. Phys.*, 21, 12561–
1098 12593, <https://doi.org/10.5194/acp-21-12561-2021>, 2021.

1099 Duncan, B. N., Strahan, S. E., Yoshida, Y., Steenrod, S. D., and Livesey, N.: Model study of the cross-
1100 tropopause transport of biomass burning pollution, *Atmos. Chem. Phys.*, 7, 3713–3736,
1101 <https://doi.org/10.5194/acp-7-3713-2007>, 2007.

1102 Duncan, B., Y. Yoshida, J. Olson, S. Sillman, C. Retscher, R. Martin, L. Lamsal, Y. Hu, K. Pickering, C.
1103 Retscher, D. Allen, and J. Crawford, Application of OMI observations to a space-based indicator
1104 of NO_x and VOC controls on surface ozone formation, *Atmos. Environ.*, 44, 2213–2223,
1105 <https://doi.org/10.1016/j.atmosenv.2010.03.010>, 2010.

1106 Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-column satellite retrievals, *Atmos.*
1107 *Chem. Phys.*, 3, 1285–1291, <https://doi.org/10.5194/acp-3-1285-2003>, 2003.

1108 Fisher, B. L., Lamsal, L. N., Fasnacht, Z., Oman, L. D., Joiner, J., Krotkov, N. A., Choi, S., Qin, W., and
1109 Yang, E.-S.: Revised estimates of NO₂ reductions during the COVID-19 lockdowns using updated
1110 TROPOMI NO₂ retrievals and model simulations, *Atmos. Environ.*, 326, 120459,
1111 <https://doi.org/10.1016/j.atmosenv.2024.120459>, 2024.

1112 Fleming, Z. L., Doherty, R. M., von Schneidemesser, E., Malley, C. S., Cooper, O. R., Pinto, J. P., Colette,
1113 A., Xu, X., Simpson, D., Schultz, M. G., Lefohn, A. S., Hamad, S., Moolla, R., Solberg, S., and
1114 Feng, Z.: Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends
1115 relevant to human health, *Elem. Sci. Anth.*, 6, 12, <https://doi.org/10.1525/elementa.273>, 2018.

1116 Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C., Coheur, P.-
1117 F., Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., Ebojie, F., Foret, G., Garcia, O., Granados-Muñoz,
1118 M. J., Hannigan, J. W., Hase, F., Hassler, B., Huang, G., Hurtmans, D., Jaffe, D., Jones, N.,
1119 Kalabokas, P., Kerridge, B., Kulawik, S., Latter, B., Leblanc, T., Le Flochmoën, E., Lin, W., Liu,
1120 J., Liu, X., Mahieu, E., McClure-Begley, A., Neu, J. L., Osman, M., Palm, M., Petetin, H.,
1121 Petropavlovskikh, I., Querel, R., Rahpoe, N., Rozanov, A., Schultz, M. G., Schwab, J., Siddans, R.,
1122 Smale, D., Steinbacher, M., Tanimoto, H., Tarasick, D. W., Thouret, V., Thompson, A. M., Trickl,
1123 T., Weatherhead, E., Wespes, C., Worden, H. M., Vigouroux, C., Xu, X., Zeng, G., and Ziemke, J.:
1124 Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone
1125 relevant to climate and global atmospheric chemistry model evaluation, *Elem. Sci. Anth.*, 6, 39,
1126 <https://doi.org/10.1525/elementa.291>, 2018.

1127 Georgoulias, A. K., Boersma, K. F., van Vliet, J., Zhang, X., van der A, R., Zanis, P., and de Laat, J.:
1128 Detection of NO₂ pollution plumes from individual ships with the TROPOMI/S5P satellite sensor,
1129 *Environ. Res. Lett.*, 15, 124037, <https://doi.org/10.1088/1748-9326/abc445>, 2020.

1130 Gonzalez Abad, G., Souri, A. H., Bak, J., Chance, K., Flynn, L. E., Krotkov, N. A., Lamsal, L., Li, C., Liu,
1131 X., Miller, C. C., Nowlan, C. R., Suleiman, R., and Wang, H.: Five decades observing Earth's
1132 atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, *J.*
1133 *Quant. Spectrosc. Ra.*, 238, 106478, <https://doi.org/10.1016/j.jqsrt.2019.04.030>, 2019.

1134 Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier van der Gon, H., Frost, G. J., Heil, A., Kaiser,
1135 J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F.,
1136 Mieville, A., Ohara, T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van
1137 Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of anthropogenic and biomass
1138 burning emissions of air pollutants at global and regional scales during the 1980–2010 period, *Clim.
1139 Change*, 109, 163, <https://doi.org/10.1007/s10584-011-0154-1>, 2011.

1140 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.:
1141 The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended
1142 and updated framework for modeling biogenic emissions, *Geosci. Model Dev.*, 5, 1471–1492,
1143 <https://doi.org/10.5194/gmd-5-1471-2012>, 2012.

1144 Hilboll, A., Richter, A., and Burrows, J. P.: Long-term changes of tropospheric NO₂ over megacities derived
1145 from multiple satellite instruments, *Atmos. Chem. Phys.*, 13, 4145–4169,
1146 <https://doi.org/10.5194/acp-13-4145-2013>, 2013.

1147 Ichoku, C. and Ellison, L.: Global top-down smoke-aerosol emissions estimation using satellite fire
1148 radiative power measurements, *Atmos. Chem. Phys.*, 14, 6643–6667, <https://doi.org/10.5194/acp-14-6643-2014>, 2014.

1149 Jeon, W., Choi, Y., Souri, A. H., Roy, A., Diao, L., Pan, S., Lee, H. W., and Lee, S.-H.: Identification of
1150 chemical fingerprints in long-range transport of burning induced upper tropospheric ozone from
1151 Colorado to the North Atlantic Ocean, *Sci. Total Environ.*, 613–614, 820–828,
1152 <https://doi.org/10.1016/j.scitotenv.2017.09.177>, 2018.

1153 Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan, B., Folkert Boersma, K., De Smedt,
1154 I., Abad, G. G., Chance, K., and Tonnesen, G. S.: Evaluating a Space-Based Indicator of Surface
1155 Ozone-NO_x-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal
1156 Trends, *J. Geophys. Res.-Atmos.*, 122, 10,439–10,461, <https://doi.org/10.1002/2017JD026720>,
1157 2017.

1158 Johnson, M. S., Philip, S., Meech, S., Kumar, R., Sorek-Hamer, M., Shiga, Y. P., and Jung, J.: Insights into
1159 the long-term (2005–2021) spatiotemporal evolution of summer ozone production sensitivity in the
1160 Northern Hemisphere derived with the Ozone Monitoring Instrument (OMI), *Atmos. Chem. Phys.*,
1161 24, 10363–10384, <https://doi.org/10.5194/acp-24-10363-2024>, 2024.

1162 Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization,
1163 <https://doi.org/10.48550/arXiv.1412.6980>, 30 January 2017.

1164 Kleinman, L. I., Daum, P. H., Imre, D., Lee, Y.-N., Nunnermacker, L. J., Springston, S. R., Weinstein-Lloyd,
1165 J., and Rudolph, J.: Ozone production rate and hydrocarbon reactivity in 5 urban areas: A cause of
1166 high ozone concentration in Houston, *Geophys. Res. Lett.*, 29, 105-1-105-4,
1167 <https://doi.org/10.1029/2001GL014569>, 2002.

1168 Kleinman, L. I., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Springston, S. R., Weinstein-Lloyd, J., and
1169 Rudolph, J.: A comparative study of ozone production in five U.S. metropolitan areas, *J. Geophys.
1170 Res.-Atmos.*, 110, <https://doi.org/10.1029/2004JD005096>, 2005.

1171 Martin, R. V., Fiore, A. M., and Van Donkelaar, A.: Space-based diagnosis of surface ozone sensitivity to
1172 anthropogenic emissions, *Geophys. Res. Lett.*, 31, <https://doi.org/10.1029/2004GL019416>, 2004.

1173 Mazzuca, G. M., Ren, X., Loughner, C. P., Estes, M., Crawford, J. H., Pickering, K. E., Weinheimer, A. J.,
1174 and Dickerson, R. R.: Ozone production and its sensitivity to NO_x and VOCs: results from the
1175 DISCOVER-AQ field experiment, Houston 2013, *Atmos. Chem. Phys.*, 16, 14463–14474,
1176 <https://doi.org/10.5194/acp-16-14463-2016>, 2016.

1177

1178 Miller, D. O. and Brune, W. H.: Investigating the Understanding of Oxidation Chemistry Using 20 Years of
1179 Airborne OH and HO₂ Observations, *J. Geophys. Res.-Atmos.*, 127, e2021JD035368,
1180 <https://doi.org/10.1029/2021JD035368>, 2022.

1181 Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D.,
1182 Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V.,
1183 and Xu, X.: Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution
1184 and trends relevant to vegetation, *Elem. Sci. Anth.*, 6, 47, <https://doi.org/10.1525/elementa.302>,
1185 2018.

1186 Miyazaki, K., Bowman, K. W., Yumimoto, K., Walker, T., and Sudo, K.: Evaluation of a multi-model, multi-
1187 constituent assimilation framework for tropospheric chemical reanalysis, *Atmos. Chem. Phys.*, 20,
1188 931–967, <https://doi.org/10.5194/acp-20-931-2020>, 2020.

1189 Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general
1190 circulation model: evolution from MERRA to MERRA2, *Geosci. Model Dev.*, 8, 1339–1356,
1191 <https://doi.org/10.5194/gmd-8-1339-2015>, 2015.

1192 Nielsen, J. E., Pawson, S., Molod, A., Auer, B., da Silva, A. M., Douglass, A. R., Duncan, B., Liang, Q.,
1193 Manyin, M., Oman, L. D., Putman, W., Strahan, S. E., and Wargan, K.: Chemical Mechanisms and
1194 Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model, *J. Adv.*
1195 *Model. Earth Syst.*, 9, 3019–3044, <https://doi.org/10.1002/2017MS001011>, 2017.

1196 Nowlan, C. R., González Abad, G., Kwon, H.-A., Ayazpour, Z., Chan Miller, C., Chance, K., Chong, H.,
1197 Liu, X., O’Sullivan, E., Wang, H., Zhu, L., De Smedt, I., Jaross, G., Seftor, C., and Sun, K.: Global
1198 Formaldehyde Products From the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on
1199 Suomi NPP and NOAA-20, *Earth Space Sci.*, 10, e2022EA002643,
1200 <https://doi.org/10.1029/2022EA002643>, 2023.

1201 Opacka, B., Stavrakou, T., Müller, J.-F., De Smedt, I., van Geffen, J., Marais, E. A., Horner, R. P., Millet,
1202 D. B., Wells, K. C., and Guenther, A. B.: Natural emissions of VOC and NO_x over Africa
1203 constrained by TROPOMI HCHO and NO₂ data using the MAGRITTEv1.1 model, *Atmos. Chem.*
1204 *Phys.*, 25, 2863–2894, <https://doi.org/10.5194/acp-25-2863-2025>, 2025.

1205 Orbe, C., Oman, L. D., Strahan, S. E., Waugh, D. W., Pawson, S., Takacs, L. L., and Molod, A. M.: Large-
1206 Scale Atmospheric Transport in GEOS Replay Simulations, *J. Adv. Model. Earth Syst.*, 9, 2545–
1207 2560, <https://doi.org/10.1002/2017MS001053>, 2017.

1208 Pinardi, G., Van Roozendael, M., Hendrick, F., Theys, N., Abuhassan, N., Bais, A., Boersma, F., Cede, A.,
1209 Chong, J., Donner, S., Drosoglou, T., Dzhola, A., Eskes, H., Frieß, U., Granville, J., Herman, J. R.,
1210 Holla, R., Hovila, J., Irie, H., Kanaya, Y., Karagkiozidis, D., Kouremeti, N., Lambert, J.-C., Ma, J.,
1211 Peters, E., Piters, A., Postlyakov, O., Richter, A., Remmers, J., Takashima, H., Tiefengrab, M.,
1212 Valks, P., Vlemmix, T., Wagner, T., and Wittrock, F.: Validation of tropospheric NO₂ column
1213 measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations,
1214 *Atmos. Meas. Tech.*, 13, 6141–6174, <https://doi.org/10.5194/amt-13-6141-2020>, 2020.

1215 Ren, X., van Duin, D., Cazorla, M., Chen, S., Mao, J., Zhang, L., Brune, W. H., Flynn, J. H., Grossberg,
1216 N., Lefer, B. L., Rappenglück, B., Wong, K. W., Tsai, C., Stutz, J., Dibb, J. E., Thomas Jobson, B.,
1217 Luke, W. T., and Kelley, P.: Atmospheric oxidation chemistry and ozone production: Results from
1218 SHARP 2009 in Houston, Texas, *J. Geophys. Res.-Atmos.*, 118, 5770–5780,
1219 <https://doi.org/10.1002/jgrd.50342>, 2013.

1220 Roberts, G., Wooster, M. J., and Lagoudakis, E.: Annual and diurnal african biomass burning temporal
1221 dynamics, *Biogeosciences*, 6, 849–866, <https://doi.org/10.5194/bg-6-849-2009>, 2009.

1222 Sadanaga, Y., Kawasaki, S., Tanaka, Y., Kajii, Y., and Bandow, H.: New System for Measuring the
1223 Photochemical Ozone Production Rate in the Atmosphere, *Environ. Sci. Technol.*, 51, 2871–2878,
1224 <https://doi.org/10.1021/acs.est.6b04639>, 2017.

1225 Schroeder, J. R., Crawford, J. H., Ahn, J.-Y., Chang, L., Fried, A., Walega, J., Weinheimer, A., Montzka, D.
1226 D., Hall, S. R., Ullmann, K., Wisthaler, A., Mikoviny, T., Chen, G., Blake, D. R., Blake, N. J.,
1227 Hughes, S. C., Meinardi, S., Diskin, G., Digangi, J. P., Choi, Y., Pusede, S. E., Huey, G. L., Tanner,
1228 D. J., Kim, M., and Wennberg, P.: Observation-based modeling of ozone chemistry in the Seoul
1229 metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ), *Elem. Sci.
1230 Anth.*, 8, 3, <https://doi.org/10.1525/elementa.400>, 2020.

1231 Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A., Wisthaler, A., Müller, M.,
1232 Mikoviny, T., Chen, G., Shook, M., Blake, D. R., and Tonnesen, G. S.: New insights into the column
1233 CH₂O/NO₂ ratio as an indicator of near-surface ozone sensitivity, *J. Geophys. Res.-Atmos.*, 122,
1234 8885–8907, <https://doi.org/10.1002/2017JD026781>, 2017.

1235 Shen, Z., Yang, H., and Zhang, S.: Neural network approximation: Three hidden layers are enough, *Neural
1236 Netw.*, 141, 160–173, <https://doi.org/10.1016/j.neunet.2021.04.011>, 2021.

1237 Sillman, S. and He, D.: Some theoretical results concerning O₃-NO_x-VOC chemistry and NO_x-VOC
1238 indicators, *J. Geophys. Res.-Atmos.*, 107, ACH 26-1-ACH 26-15,
1239 <https://doi.org/10.1029/2001JD001123>, 2002.

1240 Sklaveniti, S., Locoge, N., Stevens, P. S., Wood, E., Kundu, S., and Dusanter, S.: Development of an
1241 instrument for direct ozone production rate measurements: measurement reliability and current
1242 limitations, *Atmos. Meas. Tech.*, 11, 741–761, <https://doi.org/10.5194/amt-11-741-2018>, 2018.

1243 Souri, A. and Gonzalez Abad, G. (2025) “ahsouri/ozonerates: Ozonerates v1.0”. Zenodo. doi:
1244 10.5281/zenodo.15076487.

1245 Souri, A. H., Chance, K., Sun, K., Liu, X., and Johnson, M. S.: Dealing with spatial heterogeneity in
1246 pointwise-to-gridded- data comparisons, *Atmos. Meas. Tech.*, 15, 41–59,
1247 <https://doi.org/10.5194/amt-15-41-2022>, 2022.

1248 Souri, A. H., Choi, Y., Jeon, W., Li, X., Pan, S., Diao, L., and Westenbarger, D. A.: Constraining NO_x
1249 emissions using satellite NO₂ measurements during 2013 DISCOVER-AQ Texas campaign,
1250 *Atmos. Environ.*, 131, 371–381, <https://doi.org/10.1016/j.atmosenv.2016.02.020>, 2016.

1251 Souri, A. H., Choi, Y., Jeon, W., Woo, J.-H., Zhang, Q., and Kurokawa, J.: Remote sensing evidence of
1252 decadal changes in major tropospheric ozone precursors over East Asia, *J. Geophys. Res.-Atmos.*,
1253 122, 2474–2492, <https://doi.org/10.1002/2016JD025663>, 2017.

1254 Souri, A. H., Duncan, B. N., Strode, S. A., Anderson, D. C., Manyin, M. E., Liu, J., Oman, L. D., Zhang,
1255 Z., and Weir, B.: Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH)
1256 and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite
1257 observations, *Atmos. Chem. Phys.*, 24, 8677–8701, <https://doi.org/10.5194/acp-24-8677-2024>,
1258 2024.

1259 Souri, A. H., González Abad, G., Wolfe, G. M., Verhoelst, T., Vigouroux, C., Pinardi, G., Compernolle, S.,
1260 Langerock, B., Duncan, B. N., and Johnson, M. S.: Feasibility of robust estimates of ozone
1261 production rates using a synergy of satellite observations, ground-based remote sensing, and
1262 models, *Atmos. Chem. Phys.*, 25, 2061–2086, <https://doi.org/10.5194/acp-25-2061-2025>, 2025.

1263 Souri, A. H., Johnson, M. S., Wolfe, G. M., Crawford, J. H., Fried, A., Wisthaler, A., Brune, W. H., Blake,
1264 D. R., Weinheimer, A. J., Verhoelst, T., Compernolle, S., Pinardi, G., Vigouroux, C., Langerock,

1265 B., Choi, S., Lamsal, L., Zhu, L., Sun, S., Cohen, R. C., Min, K.-E., Cho, C., Philip, S., Liu, X.,
1266 and Chance, K.: Characterization of errors in satellite-based HCHO/NO₂ tropospheric column ratios
1267 with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval
1268 uncertainties, *Atmos. Chem. Phys.*, 23, 1963–1986, <https://doi.org/10.5194/acp-23-1963-2023>,
1269 2023a.

1270 Souri, A. H., Kumar, R., Chong, H., Golbazi, M., Knowland, K. E., Geddes, J., and Johnson, M. S.:
1271 Decoupling in the vertical shape of HCHO during a sea breeze event: The effect on trace gas
1272 satellite retrievals and column-to-surface translation, *Atmos. Environ.*, 309, 119929,
1273 <https://doi.org/10.1016/j.atmosenv.2023.119929>, 2023b.

1274 Souri, A. H., Nowlan, C. R., González Abad, G., Zhu, L., Blake, D. R., Fried, A., Weinheimer, A. J.,
1275 Wisthaler, A., Woo, J.-H., Zhang, Q., Chan Miller, C. E., Liu, X., and Chance, K.: An inversion of
1276 NO_x and non-methane volatile organic compound (NMVOC) emissions using satellite observations
1277 during the KORUS-AQ campaign and implications for surface ozone over East Asia, *Atmos. Chem. Phys.*, 20, 9837–9854, <https://doi.org/10.5194/acp-20-9837-2020>, 2020b.

1279 Souri, A. H., Nowlan, C. R., Wolfe, G. M., Lamsal, L. N., Chan Miller, C. E., Abad, G. G., Janz, S. J., Fried,
1280 A., Blake, D. R., Weinheimer, A. J., Diskin, G. S., Liu, X., and Chance, K.: Revisiting the
1281 effectiveness of HCHO/NO₂ ratios for inferring ozone sensitivity to its precursors using high
1282 resolution airborne remote sensing observations in a high ozone episode during the KORUS-AQ
1283 campaign, *Atmos. Environ.*, 224, 117341, <https://doi.org/10.1016/j.atmosenv.2020.117341>, 2020a.

1284 Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Lerot, C., Van Roozendael, M., Coheur, P.-F.,
1285 Clerbaux, C., Boersma, K. F., van der A, R., and Song, Y.: Substantial Underestimation of Post-
1286 Harvest Burning Emissions in the North China Plain Revealed by Multi-Species Space
1287 Observations, *Sci. Rep.*, 6, 32307, <https://doi.org/10.1038/srep32307>, 2016.

1288 Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., Kanakidou, M., Vrekoussis, M., Wittrock,
1289 F., Richter, A., and Burrows, J. P.: The continental source of glyoxal estimated by the synergistic
1290 use of spaceborne measurements and inverse modelling, *Atmos. Chem. Phys.*, 9, 8431–8446,
1291 <https://doi.org/10.5194/acp-9-8431-2009>, 2009.

1292 Strahan, S. E., Duncan, B. N., and Hoor, P.: Observationally derived transport diagnostics for the lowermost
1293 stratosphere and their application to the GMI chemistry and transport model, *Atmos. Chem. Phys.*,
1294 7, 2435–2445, <https://doi.org/10.5194/acp-7-2435-2007>, 2007.

1295 Sullivan, J. T., McGee, T. J., Stauffer, R. M., Thompson, A. M., Weinheimer, A., Knote, C., Janz, S.,
1296 Wisthaler, A., Long, R., Szykman, J., Park, J., Lee, Y., Kim, S., Jeong, D., Sanchez, D., Twigg, L.,
1297 Sunnicht, G., Knepp, T., and Schroeder, J. R.: Taehwa Research Forest: a receptor site for severe
1298 domestic pollution events in Korea during 2016, *Atmos. Chem. Phys.*, 19, 5051–5067,
1299 <https://doi.org/10.5194/acp-19-5051-2019>, 2019.

1300 Tao, M., Fiore, A. M., Jin, X., Schiferl, L. D., Commane, R., Judd, L. M., Janz, S., Sullivan, J. T., Miller, P.
1301 J., Karambelas, A., Davis, S., Tzortziou, M., Valin, L., Whitehill, A., Civerolo, K., and Tian, Y.:
1302 Investigating Changes in Ozone Formation Chemistry during Summertime Pollution Events over
1303 the Northeastern United States, *Environ. Sci. Technol.*, 56, 15312–15327,
1304 <https://doi.org/10.1021/acs.est.2c02972>, 2022.

1305 Thorsen, T. J. and Fu, Q.: CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-
1306 based Raman lidars, *J. Geophys. Res.-Atmos.*, 120, 12,209-12,220,
1307 <https://doi.org/10.1002/2015JD024095>, 2015.

1308 Tilstra, L. G., de Graaf, M., Trees, V. J. H., Litvinov, P., Dubovik, O., and Stammes, P.: A directional surface
 1309 reflectance climatology determined from TROPOMI observations, *Atmos. Meas. Tech.*, 17, 2235–
 1310 2256, <https://doi.org/10.5194/amt-17-2235-2024>, 2024.

1311 Valin, L. C., Russell, A. R., Hudman, R. C., and Cohen, R. C.: Effects of model resolution on the
 1312 interpretation of satellite NO₂ observations, *Atmos. Chem. Phys.*, 11, 11647–11655,
 1313 <https://doi.org/10.5194/acp-11-11647-2011>, 2011.

1314 van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., ter Linden,
 1315 M., Ludewig, A., Boersma, K. F., and Veefkind, J. P.: Sentinel-5P TROPOMI NO₂ retrieval: impact
 1316 of version v2.2 improvements and comparisons with OMI and ground-based data, *Atmos. Meas.
 1317 Tech.*, 15, 2037–2060, <https://doi.org/10.5194/amt-15-2037-2022>, 2022.

1318 Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan,
 1319 J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P.,
 1320 Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA
 1321 Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for
 1322 climate, air quality and ozone layer applications, *Remote Sens. Environ.*, 120, 70–83,
 1323 <https://doi.org/10.1016/j.rse.2011.09.027>, 2012.

1324 Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M.,
 1325 Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A.,
 1326 Bazureau, A., Boersma, K. F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M.,
 1327 Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N.,
 1328 Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., Liu, C., Müller, M., Navarro
 1329 Comas, M., Piters, A. J. M., Pommereau, J.-P., Portafaix, T., Prados-Roman, C., Puentedura, O.,
 1330 Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L.,
 1331 Sinyakov, V. P., Stremme, W., Strong, K., Van Roozendael, M., Veefkind, J. P., Wagner, T.,
 1332 Wittrock, F., Yela González, M., and Zehner, C.: Ground-based validation of the Copernicus
 1333 Sentinel-5P TROPOMI NO₂ measurements with the NDACC ZSL-DOAS, MAX-DOAS and
 1334 Pandonia global networks, *Atmos. Meas. Tech.*, 14, 481–510, <https://doi.org/10.5194/amt-14-481-2021>, 2021.

1335

1336 Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., De
 1337 Smedt, I., Grutter, M., Hannigan, J. W., Jones, N., Kivi, R., Loyola, D., Lutsch, E., Mahieu, E.,
 1338 Makarova, M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., Palm,
 1339 M., Pinardi, G., Röhling, A., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., van
 1340 Roozendael, M., Wang, P., and Winkler, H.: TROPOMI–Sentinel-5 Precursor formaldehyde
 1341 validation using an extensive network of ground-based Fourier-transform infrared stations, *Atmos.
 1342 Meas. Tech.*, 13, 3751–3767, <https://doi.org/10.5194/amt-13-3751-2020>, 2020.

1343 Vinken, G. C. M., Boersma, K. F., Jacob, D. J., and Meijer, E. W.: Accounting for non-linear chemistry of
 1344 ship plumes in the GEOS-Chem global chemistry transport model, *Atmos. Chem. Phys.*, 11, 11707–
 1345 11722, <https://doi.org/10.5194/acp-11-11707-2011>, 2011.

1346 Wolfe, G. M., Hanisco, T. F., Arkinson, H. L., Blake, D. R., Wisthaler, A., Mikoviny, T., Ryerson, T. B.,
 1347 Pollack, I., Peischl, J., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Teng, A., Huey, L. G., Liu,
 1348 X., Fried, A., Weibring, P., Richter, D., Walega, J., Hall, S. R., Ullmann, K., Jimenez, J. L.,
 1349 Campuzano-Jost, P., Bui, T. P., Diskin, G., Podolske, J. R., Sachse, G., and Cohen, R. C.:
 1350 Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive
 1351 hydrocarbons and enhanced oxidants, *Atmos. Chem. Phys.*, 22, 4253–4275,
 1352 <https://doi.org/10.5194/acp-22-4253-2022>, 2022.

1353 Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D Atmospheric
1354 Modeling (F0AM) v3.1, *Geosci. Model Dev.*, 9, 3309–3319, <https://doi.org/10.5194/gmd-9-3309-2016>, 2016.

1355

1356 Yu, K., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Miller, C. C., Travis, K. R., Zhu, L., Yantosca,
1357 R. M., Sulprizio, M. P., Cohen, R. C., Dibb, J. E., Fried, A., Mikoviny, T., Ryerson, T. B., Wennberg,
1358 P. O., and Wisthaler, A.: Sensitivity to grid resolution in the ability of a chemical transport model
1359 to simulate observed oxidant chemistry under high-isoprene conditions, *Atmos. Chem. Phys.*, 16,
1360 4369–4378, <https://doi.org/10.5194/acp-16-4369-2016>, 2016.