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Abstract. Previous studies on net ozone production rates (POs) and their sensitivities to precursors relied
on limited in-situ data, often coarse and uncertain chemical transport models (CTMs), and ozone indicators
like the formaldehyde-to-nitrogen dioxide ratio (FNR). However, FNR fails to fully capture POs’s complex
relationships with pollution, light, and water vapor. To address this, we refine the satellite-based PO;
product from Souri et al. (2025) with key advancements: (i) a deep neural network to parametrize high-
dimensional non-linear ozone chemistry without the need for empirical linearization of atmospheric
conditions, (ii) incorporation of water vapor, (iii) improved error characterization, and (iv) the application
of a finer CTM to dynamically convert column retrievals into near-surface mixing ratios. Our PO3
sensitivity maps surpass traditional FNR-based assessments by quantifying sensitivity magnitudes —
factoring in photolysis rates and water vapor — with greater spatial information. Our new product provides
daily near-clear sky PO; and sensitivity maps using bias-corrected OMI (2005-2019, 0.25° x 0.25°) and
TROPOMI (2018-2023, 0.1° x 0.1°), with values aligning within 10%. High POs rates (>8 ppbv/hr) appear
in urban and biomass-burning regions under strong photochemical activity, including during a heatwave in
the northeastern U.S. Photolysis rates are the dominant factor dictating the seasonality of POs magnitudes
and sensitivities. The stability and long-term records of OMI retrievals (2005-2019) enable us to provide
the first global maps of POs linear trends showing a surge of >30% over China, the Middle East, and India,
while a reduction in the eastern U.S., southern Europe, and several regions in Africa.

1. Introduction.

To mitigate tropospheric ozone pollution, a pervasive trace gas that impacts human health, climate,
and crop productivity (Fleming et al., 2018; Mills et al., 2018; Gaudel et al., 2018), it is essential to quantify
the spatiotemporal variations of two primary components: i) the sensitivity of the chemical net production
rates of ozone (POs) to its two main precursors, nitrogen oxides (NOx=NO+NO>) and volatile organic
compounds (VOCs), and ii) the magnitude of POs itself. The first component provides insights into the
positive and negative contributions of these precursors to POs, which are typically categorized as NOx-
sensitive (where POs is influenced mainly by NOx), VOC-sensitive (where POs is affected primarily by
VOCs), and transitional regimes (where POs is responsive to both NOx and VOCs) (Kleinman et al., 2002;
Silman and He, 2002; Duncan et al., 2010). The latter component is crucial for understanding how locally
produced ozone, in conjunction with advected or diffused ozone, can lead to high-ozone events (e.g.,
Kleinman et al., 2002, 2005; Sullivan et al., 2019).

Creating global maps of POs and its sensitivity at spatiotemporal scales relevant to air quality
policies is a challenge. Unique instruments can directly measure POs by calculating the difference in ozone
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molecules from air samples drawn through two distinct tubes — one exposed to sunlight and the other
shielded by an ultra-violet (UV) filter (Cazorla and Brune, 2010; Sadanaga et al., 2017; Sklaveniti et al.,
2018). However, these instruments suffer from various interferences, such as heterogeneous chemistry or
photo-enhanced loss of ozone within the tubes, and they are limited to sparse super sites that restrict spatial
variability. Similarly, box-model simulations of PO;, which are observationally constrained by intensive
atmospheric composition measurements, are also limited by sparse aircraft sampling (Cazorla et al., 2012;
Ren etal., 2013; Mazzuca et al.; 2016; Souri et al., 2020a; Schroeder et al., 2020; Brune et al., 2022; Wolfe
et al., 2022; Souri et al., 2023a). Currently, our understanding of the global spatiotemporal variability of
POs mainly relies on chemical transport models, which can possess significant uncertainties such as those
associated with transport, emissions, and dry deposition. Moreover, they may lack the spatial resolution
necessary to capture the non-linear dynamics associated with NOx and thus, ozone chemistry (Valin et al.,
2011; Vinken et al., 2011; Yu et al., 2016).

The “gold standard” approach to determine three-dimensional PO; within a process-based
framework involves running a high-resolution chemical transport model, with prognostic inputs constrained
by observations. This approach falls into the realm of an inversion/data assimilation framework (Bocquet
et al., 2015). Numerous studies have aimed to constrain various model prognostic inputs, including NOx
and VOCs emissions and/or concentrations, using aircraft and satellite remote sensing retrievals (e.g.,
Stavrakou et al., 2009, 2016; Souri et al., 2016; Bauwens et al., 2016; Miyazaki et al., 2020; Opacka et al.,
2025). Notably, Souri et al. (2020b) developed a non-linear joint inversion of NOx and VOCs to better
constrain POs, thereby shedding light on the impact of recent emission regulations in East Asia on the
different chemical pathways governing the formation and loss of surface ozone. However, these studies
face a fundamental challenge: discrepancies between simulated fields and observations are often blamed
solely on emissions. In fact, such discrepancies can also stem from various model components, including
chemical mechanisms, dry deposition, photolysis rates, vertical diffusion, and transport. Given the limited
observations available for constraining all of these uncertain parameters, the optimization problem becomes
grossly under-determined. This means we lack sufficient information to uniquely determine the optimal
values of these parameters altogether. Additionally, the underlying physics of these models is inherently
uncertain, necessitating the explicit propagation of model physics errors into our final estimates or the
execution of ensemble model realizations to vet the credibility of the top-down estimates across different
realizations from a stochastic point of view. Conducting these ensemble optimizations at fine-scale grid
boxes around the globe is prohibitively computationally intensive.

At the expense of sacrificing the full capability of a physics-based model, we can take advantage
of a statistical approach to predict PO; using several observable variables with improved computational
efficiency. Chatfield et al. (2010) made an early effort to parameterize the gross production of ozone via
NO+HO:» through a multivariable power law function that depended on formaldehyde (HCHO), nitrogen
dioxide (NO2), UV photolysis rates, and ambient temperature. Their model successfully reproduced over
60% of the variance observed in the ozone gross production rates. Souri et al. (2023a) introduced a bilinear
equation based on HCHOxNO2 and HCHO/NO», which explained more than 80% of the variance in
simulated POs. Building on these findings, Souri et al. (2025) developed a regularized piece-wise linear
regression to parameterize PO3 using retrospective aircraft observations and a set of variables, including
HCHO/NO,, HCHO, NO>, jO'D (photolysis frequency for O'D+hv), and jNO> (photolysis frequency for
NO2+hv). Their algorithm successfully reproduced over 90% of the variance in observationally-constrained
PO; with minimal biases across moderately to extremely polluted regions.

These parameterizations present a unique opportunity to globally map POs, as their primary inputs
can be largely constrained by well-characterized satellite retrievals with extensive horizontal coverage
(Gonzalez Abad et al. 2019). For this reason, Souri et al. (2025), compiled various satellite observations
including TROPOspheric Monitoring Instrument (TROPOMI) surface albedo, HCHO, and NO: columns
in conjunction with pre-computed model fields to populate the inputs to their parametrization, allowing
them to generate the first-ever maps of POs; worldwide. Because their algorithm had an explicit
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mathematical form, they were also able to break down PO3 into HCHO and NO:z contributions, providing
much more detailed spatial information about ozone sensitivity maps compared to binary information (i.e.,
NOx-sensitive or VOC-sensitive) made from HCHO to NO: ratios (known as formaldehyde to nitrogen
dioxide ratios — FNR) (Martin et al., 2004; Duncan et al., 2010; Choi et al., 2012; Choi and Souri, 2015a,
b; Jin et al., 2017; Schroeder et al., 2017; Souri et al., 2017; Jeon et al., 2018; Tao et al., 2022 ; Jonhson et
al., 2024). However, FNR was a central component of their algorithm to transform the non-linear ozone
chemistry into several linear segments (i.e., a piecewise regression).

The inclusion of FNR in Souri et al. (2025) might introduce several complications, such as i) the
amplification of unresolved systematic and random errors in satellite retrievals associated with PO;
estimates, and ii) discounting the dependency of POs sensitivity to HCHO and NO: concentrations as
function of available light and water vapor. In fact, FNR does not provide useful information about ozone
chemistry in less photochemically active environments, such as early moming or late afternoon conditions
(known as light-limited or radical-limited conditions). Although the parametrization of POs crafted in Souri
et al. (2025) relied on photolysis rates, the sensitivity of PO3; to NOz (a proxy for reactive nitrogen) and
HCHO (a proxy for VOC reactivity) did not directly depend on photolysis rates.

The overarching goal of producing ozone chemistry sensitivity maps is to inform regulatory
agencies about the impact of emission reductions on locally produced ozone. Unlike conventional FNR -
based binary maps, these maps must quantify the magnitude of sensitivity rather than merely indicating its
direction. This quantitative approach is essential because both the sign and magnitude of sensitivities are
crucial for understanding the impact of emission changes. While detailed sensitivity maps can be derived
from chemical transport models by perturbing underlying emissions, the lack of observational constraints
on these models can introduce significant biases. Souri et al. (2025) attempted to address this limitation by
providing magnitude-dependent sensitivity maps of POs to NO: and HCHO using piecewise linear
regression. However, their approach yielded derivatives of POs with respect to NO2 and HCHO that
remained invariant with changes in light and humidity conditions. This limitation is problematic because
reduced light conditions are known to substantially dampen the sensitivity of PO3; to NOx and VOCs, even
under identical emission rates. The current work is therefore motivated by the need to capture the complex,
multidimensional dependencies of POs; on ozone precursors, light intensity, and humidity using a more
flexible data-driven approach through a machine learning algorithm without the need for segregation or
linearization. While these maps will not replace process-based chemical transport model experiments, they
can efficiently provide first-order assessments to: (i) strategize improved modeling experiments, (ii) gauge
the added value of satellites on predictions of POs, and (iii) guide the design of sub-orbital missions in
regions with poorly documented elevated POs.

The new product of POs along with spatially varying ozone sensitivity maps using bias-corrected
OMI and TROPOMI retrievals are generated globally for 2005-2023. We will document the advantages of
this algorithm over the older one and how the new results can bring fresh insights into PO3 behavior across
various seasons, locations, and global trends.

2. Data
2.1.  Satellite Retrievals

2.1.1. TROPOMI HCHO and NO>

We use daily level-2 (L2) products of TROPOMI (v2.4-v2.5) tropospheric NO2 and total HCHO
columns (v2.4-v2.6) obtained from UV-Vis radiances (~328-496 nm) onboard the European Space
Agency’s (ESA’s) Sentinel Precursor (SS5P) spacecraft with an equatorial overpass time of ~1330 local
standard time (LST) (Veetkind et al., 2012; van Geffen et al. 2022; De Smedt et al. 2021). These products
offer near-daily global coverage of NO2 and HCHO columns at a horizontal resolution of 7.2 km (reduced
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to 5.6 km after August 2019) by 3.6 km at nadir, extending to approximately 14 km at the edges of the
scanline, with a swath width of 2600 km. The data products used in this study span from May 2018 to the
end of 2024. The retrieval process follows a two-step framework: first, a differential spectral fitting
algorithm is used to determine the number of integrated molecules along the slant light path, and second,
air mass factor calculations are done based on simulated gas absorber profiles and radiative transfer model
calculations to convert slant columns into vertical ones.

Both products have been thoroughly vetted against ground-based remote sensing retrievals,
including the multi-axis differential optical absorption spectrometer (MAX-DOAS) (De Smedt et al., 2021;
Verhoelst et al., 2021; van Geffen; Souri et al., 2025) and Fourier transform infrared spectroscopy (FTIR)
(Vigouroux et al., 2020; Souri et al., 2025), showing a general tendency towards underestimation in polluted
regions. We include in our study only pixels with a quality flag (¢ value) exceeding 0.5 and 0.75 for HCHO
and NO: products, respectively. The quality flag encapsulates errors coming from clouds, snow, surface
refractivity, and algorithm performance. The selected values are based on the user manual recommendation
(Eskes et al., 2020; De Smedt et al., 2021). The daily HCHO and NO2 columns, along with the retrieval
errors, are mapped onto a 0.1°x0.1° global grid using a mass-conserved bilinear interpolation approach
described in Souri et al. (2024).

2.1.2. OMI HCHO and NO»

We use the Quality Assurance for the Essential Climate Variables (QA4ECV) NO:> daily Level 2
product (Boersma et al., 2018) which is based on global radiances captured by the Ozone Monitoring
Instrument (OMI) sensor aboard NASA’s Aura spacecraft. This product is retrieved with a similar overpass
time as TROPOMI. The horizontal resolution of the product ranges from 13%24 km? at nadir to 165%13
km? at the edge of the scanline. It relies on OMI Collection 3 radiance data. Since 2008, OMI has faced
significant anomalies resulting in the loss of reliable data in areas of its detector, a situation referred to as
the "row anomaly." This has led to inconsistent spatial resolution and global coverage throughout its
operational phase. However, the unaffected pixels have demonstrated a high level of stability over the past
two decades, making this product suitable for long-term trend analysis. Detailed description of the retrieval
algorithm, along with validation against ground remote sensing data, can be found in Boersma et al. (2018),
Compernolle et al. (2020), and Pinardi et al. (2020). We include good quality pixels based on an effective
cloud fraction below 50%, a quality processing flag parameter equal to zero, and exclusion of snowy
regions. Additionally, we discard the last two rows of the detector because of their poor horizontal
resolution. We use the OMI NO: product for the period from 2005 until the end of 2019.

We also use the OMI Smithsonian astrophysical observatory (SAO) daily HCHO Level 2 product
from the same sensor, which is generated using a newly developed algorithm and Collection 4 OMI
radiances (Ayazpour et al. 2025; Nowlan et al., 2023). This improved algorithm enhances the radiance
information content used to retrieved HCHO columns, significantly reducing noise in the slant column fit.
The stability of this product in extracting new information related to long-term global trends of HCHO has
been well demonstrated in recent studies (Souri et al., 2024; Anderson et al., 2024). We include only good
data following the quality flag provided with the dataset along with effective cloud fraction below 40%.
Both OMI products are mapped onto a global grid with a resolution 0of 0.25°x0.25° using the same algorithm
used for TROPOMI daily.

2.1.3. Bias correction using ground-based remote sensing data

In order to remove large biases in both TROPOMI and OMI products, we bias correct their columns
using the offset (additive term) and slope (multiplicative term) determined from a linear fit to paired MAX-
DOAS/FTIR and these datasets, as described by Souri et al. (2025). The rationale for defining retrieval
biases as a function of magnitude is to enhance correction factor generalizability across seasons and
locations. We take advantage of three studies characterizing the bias correction factors, listed in Table 1.
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The application of these correction factors yields consistency across OMI and TROPOMI NOz and HCHO
columns within 10% (Section 4.4.4)

Table 1. The slopes and offsets derived from various validation studies used to bias correct the
satellite retrievals employed in the parameterization of POs.

Product Slope Offset Benchmark Time period of Reference
validation
TROPOMI NO2 0.59  0.90x10" molecs/cm*>  Global MAX-DOAS 2018-2023 Souri et al.,
observations (2025)
TROPOMI HCHO 0.66  0.32x10'" molecs/cm*> Global FTIR 2018-2023 Souri et al.,
observations (2025)
OMI NO; 0.83  0.26x10" molecs/cm*  Global MAX-DOAS Varies for each Pinardi et
observations station al., (2020)
spanning from
2010-2018
OMI HCHO 0.79  0.82x10"° molecs/cm*  Global FTIR Varies for each Ayazpour et
observations station al., (2025)

spanning from
2004-2020

2.1.4. Surface albedo

To estimate near-surface photolysis rates of jO'D (Os+hv, <350 nm) and jNO, (NO»+hv, ~400-500
nm) used in the parametrization of POs, we are required to provide reasonable surface albedo estimates
(Section 2.4). We use a monthly Directionally Dependent Lambertian-Equivalent reflectivity (DLER)
climatology derived from TROPOMI radiances at the spatial resolution of 0.125°%0.125°; the product is in
good agreement with the MODIS BRDF product (Tilstra et al., 2024). This climatology has two sets of
values for both shortwave (328 nm) and longwave UV (463 nm) that are used separately for calculating
jO'D and jNO., respectively. We use only the isotropic part of the DLER product (named minimum_LER),
which is added to an offset coefficient provided with the dataset.

2.2.  Aircraft Measurements

The use of aircraft observations is twofold: first, they provide a vast number of measured
geophysical variables suitable to simulate our observationally-constrained POs training dataset (Section
3.1); second, they enable a rigorous validation of column-to-planetary boundary layer (PBL) conversion
factors derived from a chemical transport model (Appendix B). We use the dataset compiled by Souri et al.
(2025), who curated various aircraft campaigns measuring photolysis rates, meteorological variables, and
atmospheric composition from varying atmospheric conditions, including urban/suburban settings
(DISCOVER-AQs, and KORUS-AQ), high-vegetated regions (SENEX), and remote areas (INTEX-B and
AToms). The sampling frequency varies from 10-sec to 30-sec. More detailed information regarding the
choice of instrument, gap filling, and data exclusion can be found in Souri et al. (2025).

2.3.  MINDS simulations

We use a global chemical transport model simulation designed to support trace gas retrievals. The
simulation, called Multi-Decadal Nitrogen Dioxide and Derived Products from Satellites (MINDS) (Fisher
et al.,, 2024), was generated using the Goddard Earth Observing System (GEOS) Earth system model
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(Molod etal., 2015; Nielsen et al., 2017) equipped with the full chemistry Global Modeling Initiative (GMI)
mechanism (Duncan et al., 2007; Strahan et al., 2007) and coupled with the Goddard Chemistry Aerosol
Radiation and Transport (GOCART) aerosol module (Chin et al., 2002). The rapid radiative transfer model,
which was designed for global climate models (GCMs) and is known as the Radiative Transfer Module for
GCM (RRTMG), calculates the longwave and shortwave radiation influenced by aerosols simulated by
GOCART, enabling the incorporation of the direct effects of aerosols on meteorological conditions (Nielsen
et al., 2017). Meteorology is resolved using GEOS with several prognostic inputs, including water vapor,
being constrained by MERRA-2 reanalysis using “replay” mode at 3-hourly basis (Orbe et al., 2017). The
model is setup at c360 grid (0.25°x0.25°) and covers the period of 1993 until the end of 2023. The model
follows 72 hybrid sigma values ranging from the surface to 0.01 hPa.

Lightning production of NO is parametrized based on the simulated convection. The model uses
the Monitoring Atmospheric Chemistry and Climate and CityZen (MACCity) inventory (Granier et al.,
2011) of anthropogenic emissions downscaled to 0.1°x0.1° using the Emissions Database for Global
Atmospheric Research version 4.2 (EDGAR 4.2). These anthropogenic emissions change by year and
month. Biomass burning emissions rely on the Fire Energetics and Emissions Research (FEER) dataset
(Ichoku and Ellison, 2014). Biogenic emissions are modeled interactively by the Model of Emissions of
Gases and Aerosols from Nature (MEGAN) v2.1 (Guenther et al. 2012). It is known that isoprene emissions
in MEGANV2.1 are largely overestimated (Bauwens et al., 2016; Souri et al., 2020b), therefore they are
scaled down by a factor of two.

2.4.  TUV NCAR Photolysis Rates Look-up Table

To estimate jNO2 and jO'D, we refer to a detailed look-up table provided by the Framework for 0-
D Atmospheric Modeling (FOAM) model (Wolfe et al. 2016). This table is developed for clear-sky
conditions based on over 20,064 solar spectra calculations. The data encompasses a broad spectrum of solar
zenith angles (SZA) from 0° to 90° in 5° increments, altitudes ranging from 0 to 15 km in 1 km steps,
overhead total ozone columns from 100 to 600 DU in increments of 50 DU, and surface UV albedo values
from 0 to 1 in 0.2 increments. These calculations were carried out using NCAR’s Tropospheric Ultraviolet
and Visible radiation model (TUV v5.2), along with cross sections and quantum yields from I[UPAC and
JPL (Wolfe et al., 2016). Information on SZA and surface elevation is obtained from the L2 TROPOMI/OMI
granule data. Surface albedo is based on the TROPOMI DLER climatology (Section 2.1.4). The overhead
total ozone columns are derived from MINDS simulations (Section 2.3). For any values that fall between
the entries in the tables, we apply a linear interpolation method.

2.5.  Empirical PO; estimates using LASSO

We will compare our new product (Section 3.2) to an empirical method developed by Souri et al.
(2025), who took advantage of simulated POs data constrained by aircraft measurements to parameterize
PO:s using four geophysical variables: NO2, HCHO, jNO>, and jO'D. Their algorithm used a piecewise L1-
regularized linear regression model known as Least Absolute Shrinkage and Selection Operator (LASSO).
Since the algorithm was based on a linear model which was ill-suited for the non-linear ozone chemistry, it
was necessary to linearize the parameterization using various thresholds for FNRs. Despite the method’s
simplicity, Souri et al. (2025) were able to reproduce approximately 88% of the variance with low biases
(less than 20%) in observationally-constrained POs. Using the empirical method, they generated the first
maps of PO3 by combining bias-corrected TROPOMI HCHO and NO: columns, simulated photolysis rates,
and a global transport model designed for the conversion from column measurements to the PBL.

To isolate the performance of the PO3 estimator used in Souri et al. (2025) in comparison to the
proposed algorithm in this study, we will ensure that the input variables, including the mixing ratios of
HCHO and NO: within the PBL as well as the photolysis rates, remain identical for both the empirical
product and our new algorithm. Hereafter, we will refer to this empirical product as “PO3;LASSO”.
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3. Methodology

Figure 1 illustrates the three-stage process of our newly developed algorithm to operationally
produce long-term maps of PO; within the PBL along with the sensitivity and error maps. The product is
called “PO3;DNN”.

Stage I —This stage serves as the foundation for the product, focusing on parameterizing PO3 using
a regularized Deep Neural Network (DNN). The training dataset, detailed in Section 3.1, is derived from
an observationally-constrained FOAM box model that provides simulated PO; along with various
atmospheric quantities directly or indirectly constrained by aircraft measurements. The decision to make
use of aircraft data is based on two main factors: i) they capture real-world atmospheric conditions across
diverse parts of the atmosphere and various geographic regions, and ii) the significant fluctuations inherent
in the data rigorously test the DNN’s capability to generalize (i.e., to fit the model through the data rather
than merely to the data). However, a notable limitation of aircraft data is its restriction to specific
atmospheric conditions. To address this, we have expanded the training dataset by perturbing the inputs to
the FOAM model (Section 3.1), resulting in a synthetic dataset. This expanded training dataset is then used
for validation, testing, and calibration of the DNN algorithm.

Stage Il — The objective of this stage is to prepare spatiotemporal geophysical variables necessary
for the prediction of POs (done in Stage I11). We need five parameters on a global scale with daily frequency:
jNO2, jO'D, HCHO, NO,, and H>O(v). To generate global daily maps of near-surface photolysis rates, we
use the NCAR’s look-up table as detailed in Section 2.4; this table relies on SZA, which varies with time
and location, as well as surface UV-Vis albedo, ozone overhead columns, and surface altitudes. Both SZA
and surface altitude are provided as auxiliary fields in the satellite L2 products. Ozone overhead columns
are from MINDS. For surface UV-Vis albedo, we use two different wavelengths based on TROPOMI’s
climatology (Section 2.1.4). These calculations assume clear sky conditions, which are somewhat achieved
by the effective cloud fraction thresholds derived from both the OMI and TROPOMI products. Our
algorithm uses HCHO and NO: columns obtained from OMI or TROPOMI, which are bias-corrected
against ground remote sensing data. These measurements are then transformed into the mixing ratios in the
PBL region using the vertical distribution of HCHO and NO: profiles simulated by MINDS. The final
variable is the average number of water vapor (H20(v)) molecules per cubic meters in the PBL region at
the satellite overpass time, which is obtained directly from the MINDS simulation. It is important to note
that the MINDS simulation is based on constraints from MERRA -2 reanalysis, underscoring that the H>O(v)
simulations are constrained by many observations.

Stage 1] — In the final stage, we predict POs, generate sensitivity maps, and provide both systematic
and random errors associated with these estimates. To create PO3 maps, we input the five parameters from
Stage II into the DNN model developed in Stage 1. To generate the sensitivity maps of POs in relation to
NO:z and HCHO, we apply perturbations to NO2> and HCHO based on the methodology described in Section
3.3. These perturbations also serve another purpose which is to propagate the errors associated with the
retrievals of HCHO and NO., as well as their corresponding conversion factors from MINDS into the final
product. A comprehensive explanation of the error budget and characterization can be found in Section 3.4.

While we perform Stage I only once to establish a POs estimator, we need to run Stage II and III
for any desired location/time or spatial resolution. The need to operationally run these two stages has
motivated us to create an open-source and object-oriented Python package called ozonerates v1.0 (Souri
and Gonzalez Abad, 2025), which is capable of running all steps while leveraging parallel computation.
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Figure 1. Processing stages developed to operationally generate POs and sensitivity maps along with daily
frequency errors on a global scale. Stage I aims to establish a regularized DNN model based on synthetic
and real-world aircraft measurements. Stage II prepares the necessary satellite-based input features used for
PO; prediction in Stage III. Stage III feeds the DNN model with Stage II values and some statistical error
analysis to populate the final product.
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3.1.  Training dataset generation using FOAM box model

To establish a relationship between several geophysical variables related to POs, we use FOAM
version 4 box model (Wolfe et al., 2016). This model is capable of simulating detailed chemical kinetics
based on user inputs regarding meteorological variables, atmospheric compositions, and photolysis rates.
FOAM uses a solver for ordinary differential equations (ODEs) designed for stiff systems, which allows it
to determine the chemical evolution of all species included in the selected chemical mechanism. We adhere
to previous configurations that apply the Carbon Bond 6 (CB06, 12) chemical mechanism within FOAM
(Souri et al., 2020a; Souri et al., 2023a; Souri et al., 2025). The model is constrained by data collected
during aircraft campaigns, including meteorological data, photolysis rates, and various trace gas
concentrations. Additional details regarding the selection of instruments, bias corrections for photolysis,
choices of dilution factors, and other configurations can be found in Souri et al. (2025). We incorporate data
from seven aircraft campaigns, including DISCOVER-AQ (Texas, Washington D.C., Colorado), KORUS-
AQ, ATOMs, INTEX-B, and SENEX, to further constrain the model. Souri et al. (2025) demonstrated that
this setup effectively reproduces several unconstrained yet measured compounds, such as HCHO, HO-,
OH, and PAN; moreover, the performance of the model was on par with other studies (e.g., Brune et al.,
2020; Brune et al., 2022; Miller and Brune, 2022), indicating that it is a suitable model setup for
understanding local ozone chemistry. This model-derived dataset consists of ~134k points.

A limitation to the training dataset prepared by Souri et al. (2025) originates from the fact that only
a subset of atmospheric conditions could be observed by the suborbital missions. A remedy for this
limitation is to synthetically regenerate data by systematically perturbing several of the inputs used in the
FOAM model. As a result, we apply a scaling factor, ranging from 0.1 up to 10 in 12 evenly-spaced steps,
separately to NOx, VOCs, H20(v), and photolysis rates. This expands the dataset to ~6.4 million datapoints,
covering a much wider range of atmospheric states.

Once the simulations are done, we determine simulated POs by:
POy = FO, — LO, (1)

where LO:s is all possible chemical loss pathways of ozone (negative stoichiometric multiplier matrix) and
FOs is all possible chemical pathways producing ozone molecules (positive stoichiometric multiplier
matrix). This equation is also known as ozone tendency. This definition simplifies intercomparison with
estimates derived from different chemical mechanisms by eliminating the requirement to explicitly match
individual production and loss terms, which often exhibit inconsistencies across mechanisms, especially in
their treatment of peroxy radicals. The calculation of POs is under a steady-state assumption.

3.2.  DNN architecture and configuration

The overall architecture of the DNN model is portrayed in Figure 2. The design consists of three
fully-connected hidden layers each having 32 neurons. The neurons are equipped with rectified linear unit
(ReLU) activation functions. The training dataset (~6.4 millions) is split into 20% test, 24% validation, and
56% training. Training inputs to the parametrization consists of HCHO, NO., jO'D, jNO>, and HO(v).

Prior to the training, we normalize them, such that each feature (x) is rescaled according to x’' = %x,

where p and o represent the mean and standard deviation of the feature, respectively, ensuring a mean of
zero and a variance of one. The optimization (training) of the DNN follows the backpropagation rule armed
with Adaptive Moment Estimation (ADAM) optimizer which is known to perform well with noisy data
(Kingma and Ba, 2014). The initial learning rate is set to 10~°. We use 500 epochs. The loss function (L) of
the optimalization problem is:

L P 2)
L=—Z(y -0 )2+/12w-2
2 k k i
k=1 i=1
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where the first term on the right side represents the mean squares error (MSE) of the prediction derived
from difference between the target POs (y) and the predicted POs (0). N represents the number of training
datapoints. The second term is L2-regularization with a factor of A to reduce the squares of p number of
neuron weights (w).

An important aspect of this optimization is the use of L2 regularization, which effectively helped
us determine the optimal number of hidden layers and neurons. L2 regularization penalizes the cost function
if an illusion of high prediction accuracy (the first term) is achieved with excessive variance in the solution
(weights). Failing to balance the prediction error and the solution variance can lead to overfitting, which
harms model performance in two ways: 1) it results in erroneous predictions for atmospheric conditions that
fall outside the training dataset; ii) it diminishes the physical interpretability of the statistical model because
of large fluctuations in the weights, a common issue in regression models known as collinearity. When we
used too many neurons or layers, the regularization penalized the weights, causing a substantial proportion
to approach zero (not shown), indicating that those neurons were unnecessary. However, incorporating
regularization does have some drawbacks: 1) it requires a smaller initial learning rate (set to 10°) to avoid
falling into local minima, which demands more computational resources; and ii) the regularization factor
also needs to be optimized. We found that a value of A = 10~ provided the best results among the set of
values [10™, 10”°, and 107], based on the symmetry in the statistical distributions of the test residuals, MSE,
and the overall level of physical interpretability observed in the sensitivity tests.

The implementation of the DNN model is done using the open-source TensorFlow application
programming interface (API) package in Python (Abadi et al., 2016). To thoroughly validate the
performance of this model from various angles we i) compare the DNN prediction with the test data using
various standard metrics, ii) investigate the evolution of the loss function derived from both the training set
and the validation one over epochs, iii) study the physical explanation of the response of POs to NO; and
HCHO, water vapor, and photolysis rates, and iv) finally compare the DNN results to PO;LASSO. We will
use a number of statistical metrics, including the coefficient of the determination (R?), mean bias, mean
square error, mean absolute error, and root mean square error (RMSE), to carry out the quantitative
assessment (Section 4.1).

Hidden layer #1 Hidden layer #2 Hidden layer #3
(32 neurons) (32 neurons) (32 neurons)

Input layer %

4
\“‘{‘ _ ’;/}_
\Q,/// :

X AT NN\ Output layer
XL L J 7

Figure 2. The architecture of the DNN model. The model contains three hidden layers with 32 neurons
each.

3.3.  Sensitivity calculations

To elucidate the response of POs to its inputs, we calculate the semi-normalized sensitivities
through the finite difference method:

10
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[PO3]}1°% — [P0O3]7°% ®)
0.2
where [P03]}1°% and [POB]?O% are POs from perturbing input parameters (i=1 for NO-, and i=2 for

HCHO) by 1.1 and 0.9 scaling factors. A mathematical proof showing that these sensitivity calculations
are equivalent to the directional derivative is provided in Appendix A.

SPO3; =

3.4.  Error budget and characterization

Since the POsDNN integrates atmospheric models, satellite trace gas retrievals, ground remote
sensing, and a machine learning approach, it contains various sources of errors, some of which will be
formulated in this section. Spatially and temporally averaging satellite-based products is a common practice
to reduce noise and fill gaps; therefore, we attempt to separate systematic errors (irreducible by averaging)
from random ones (reducible by averaging). We assign the total PO3 within PBL region error (eww:) based
on the following equation:

_ / 2 2 4)
€total = esyst + €rand

where eqs and enna are systematic and random errors associated with POs estimates. Systematic errors
account for the errors associated with the bias correction of OMI and TROPOMI against ground remote
sensing retrievals (encro bias  and enoz bias ¢), the model-based conversion of columns to the PBL mixing
1atios (€#CHO conversion, €NO2_comversion), and the DNN estimator error (eppw), and are given by:

_ 2 2 2 2 2
syst = JeHCHO_bias_c + eNOZ_bias_c + eHCHO_conversion + eNOZ_Conversion + epnn (5)
2 __ [ opo, 2 6
€HCHO bias.c — SHCHO V- €pe—ncHo ( )
e2 . = (2% ’ (7)
NO2_bias_c ono, V- €pe—no,
2 __ [ oroy 2 ]
€HCHO _conversion — oHCHo VCD yeo- €conv—Hero ( )
2 _ PO, 2
€N02_conversion = ono, VED o, eCDnV7N02 )

where y is the conversion factor of the satellite total to the PBL columns translation based on MINDS and
the formulation by Souri et al. (2025); esc-cro and ese-no2, in column units, are calculated following the
formulation from Souri et al. (2025) who used the errors of slope and offset obtained from the comparison
of satellite VCDs to ground remote sensing benchmarks; ecom-rcro and econv-vo2 are quantified by validating
the simulated conversion factors compared to those of aircraft vertical spirals (Appendix B). The unit for
these two errors is ppbv per the column unit; accordingly, we multiply these terms to satellite VCDs. The
last term in Eq.5 is a fixed systematic error associated with the DNN estimates which will be quantified
based on the MSE of the DNN prediction. Both 22% and Z:—ZZ are derived from the sensitivity calculations

OHCHO
from Eq.3 divided by the satellite columns. All error terms in Eqs.6-9 are spatially and temporally invariant,

but the derivatives vary from pixel to pixel resulting in spatiotemporally-varying systematic errors.

Random errors originate from the uncertainty estimates coming with the TROPOMI and OMI L2
products and are somewhat reducible by averaging, and are given by:

aPo, 2 (aPo, 2
€rand = (BHCHO Y- erand—HCHO) + OO Y- €rand-no,
2

(10)
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where e-qnq—ncro and €rqna—no, are random retrieval errors. All terms in Eq. 10 vary by time and location.
Table 2 summarizes the numbers used in the above equations and their origin.

Table 2. Values used in error calculations.

Error terms Systematic/Random  Value Unit Source
15
€be-No2 and €ve-HCHO Systematic 0.01xVCD+0.06 10 2 Souri et al. (2025)
molec./cm
: ppbv/(10"° .
€conv-HcHO and €comv-No2  Systematic 0.09 molec./cm?) Appendix B
EDNN Systematic 0.88 ppbv/hr Section 4.1
15
€rand-N02 and €rma-ncno  Random Variable <10 5 L2 Products
molec./cm

It is important to acknowledge that the defined total error budget here is only a good guess and
optimistic. Some underlying sources of error, which are difficult to quantify, are not included. For example,
errors related to the training dataset derived from the FOAM model are challenging to assess because of the
lack of POs measurements. We assume other inputs to the PO; parametrization, such as the monthly
climatology TROPOMI surface albedo to be error-free. Additionally, all datasets used to estimate PO3
contain spatial representation errors (Souri et al. 2023), which are difficult to measure without knowing
their true state of global spatial variability. Moreover, we do not consider correlated errors among HCHO
and NOz retrievals. It is worth noting that some of the inputs such as H>O(v) and the overhead ozone column
have minimal biases because of MINDS simulations being observationally constrained (Fisher et al., 2024;
Souri et al., 2024).

There are also assumptions regarding the equations mentioned earlier. For instance, it is assumed
that the validation of conversion factors can account for all systematic issues related to the vertical
distribution of NO2 and HCHO in MINDS. Furthermore, we presume that the reported retrieval errors are
mostly random; however, this is not the case (Eskes et al., 2003; Boersma et al. 2018) and distinguishing
between these errors is not straightforward.

Another source of uncertainty arises from partially cloudy pixels and aerosols, which can introduce
errors in calculated photolysis rates. While we successfully filtered out cloud cover and strong aerosol
loadings (e.g., from wildfires) using effective cloud fraction thresholds, some aerosol or cloud-
contaminated pixels may pass cloud screening due to low optical depth or height characteristics. Rigorously
quantifying the errors coming from these effects would require running a radiative transfer model with
detailed three-dimensional optical properties of clouds and aerosols on a global scale, particularly critical
for aerosols, which can have complex effects on photolysis rates depending on their absorption and
scattering properties and vertical distribution. Unfortunately, such comprehensive datasets are typically
limited to the narrow swaths of spaceborne lidar observations, which themselves carry substantial
uncertainties (Thorsen and Fu, 2015). While these complications cannot be entirely avoided, particularly
for aerosol effects, users can apply additional quality control measures by filtering pixels using aerosol
optical depth retrievals from TROPOMI, OMI, or other sensors to more rigorously identify contaminated
observations.

In case of oversampling of the PO product both temporally and spatially, the total error will be given by:

1 1
€total = \[EZ eszyst + WZ ergand (1 1)
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where m is the total number of samples. Eq.11 suggests that the systematic errors are persistent across all
samples and are not reducible by averaging, whereas the random errors become smaller by root square of
samples. In this equation, the assumption is that the root-mean-square of the systematic errors is a good
approximation of the systematic errors in the oversampled data because they are independent of each other.

4. Results and Discussion

In this section, we begin by validating and contrasting PO3;DNN against PO;LASSO. Following
that, we use OMI to investigate the spatiotemporal variability of PO3 and its sensitivity to photolysis rates,
HCHO, and NO:> globally. We provide an application of the data to understand the effect of an extreme heat
wave on POs;. Afterward, we offer a comprehensive global view of the PO; estimates algorithm by
integrating data from the TROPOMI compared with that one based on OMI. Finally, we document the total
error budget of the products.

4.1. DNN performance

We investigate the predictive power of the DNN algorithm against both validation and test data for
each air quality campaign or the entire aircraft dataset (Section 2.2). All training datasets described in
Section 3.1 are used in this stage. Except for the early stages of training, both training and validation curves,
explaining the evolution of the prediction against the number of epochs corresponding to the number of
iterations of training the network for one cycle, closely follow each other, indicating that we possibly do
not have overfitting issues (Figures S11). The curves are fairly smooth, resulting from using the ADAM
optimizer with a strictly small learning rate initially. Both curves converge to RMSE below 0.88 ppbv/hr
which we use to assign the error of PO3DNN prediction in Eq.5.

PO:;DNN has promising skill at predicting PO3 across various atmospheric conditions. Figure 3
presents a comparison of the predicted POs values against observationally-constrained FOAM values for
the test data for each suborbital mission. A similar comparison, which includes all data points measured
during each mission, can be found in Figure S12. The primary reason for highlighting the test data is that
they have never been used to fine-tune the DNN parameters. There is a strong correlation between the
predictions and the benchmarks across most campaigns for both the test data points (Figure 3) and the
complete set of aircraft measurements (Figure S12). Notably, the slope for the "All" test dataset is close to
the unity line. The DNN algorithm can reproduce over 96% of the variance in the test data. Similar to the
approach of Souri et al. (2025), we completely exclude each suborbital mission from the training dataset
and use it as an independent benchmark to evaluate the model’s performance. The resulting accuracy is
comparable to that achieved when 56% of the data are used for training, indicating that the POs
parameterization has reached a high degree of generalization (Figure S13).

The model performs significantly better than PO;LASSO over INTEX-B compared to LASSO (as
shown in Figure 7 in Souri et al., 2025). While the DNN's performance over the ATom campaigns is less
impressive than in other areas, it still represents a considerable improvement over LASSO, which was
unable to reproduce POs in pristine regions (R* < 0.05). One key factor contributing to this improvement is
the inclusion of H2O(v) in the input. Various parameters, including HOx, are known to influence POs in
remote regions, but these factors were not included in our parametrization. The method does not artificially
inflate results by introducing non-physical relationships in remote regions; the inability of the DNN to fully
explain POs during AToms suggests that it does not force unrealistic relationships between POs and the
inputs to completely align with the FOAM results, leaving areas for future improvement in parametrization
over remote regions.
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Figure 3. Scatterplots comparing observationally-constrained FOAM model POs and the predictions that
were based on the DNN for the test data from each air quality campaign. The test data have never been used
for hyper tuning the algorithm. “All” denotes all test data.

4.2.

There are primarily four major benefits of PO;DNN over PO;LASSO that make the former parameterization
a superior algorithm. The discussion of these advantages is as follows:

Advantages of PO3sDNN over PO3LASSO

— Higher predictive power: PO3LASSO predicted POs for all datapoints collected from the suborbital

missions with a R?=0.88, RMSE=1.2 ppbv/hr, and a slope of 0.87 (Souri et al., 2025), whereas PO;DNN
reproduced the exact datapoints (Figure S12) with a R?=0.96, RMSE=0.7 ppbv/hr, and a slope of 1.00.
Furthermore, as shown in Figure 4, PO;DNN has a great degree of generalization for datapoints outside
of the training/validation data points. Consequently, these statistics suggest that DNN is a more
powerful predictor.

Better representation of POs over remote regions: One notable limitation of PO3sLASSO was its
inadequate representation of PO; in remote regions, such as during the ATOMs or INTEX-B campaigns.
This led Souri et al. (2025) to entirely mask PO; estimates below 1 ppbv/hr. In these remote areas, PO;
is typically influenced by the reactions between ozone and HOx in addition to jO'D and H>O. While
Souri et al. (2025) attempted to incorporate H2O into the LASSO parametrization, the algorithm
assigned a zero coefficient to this parameter because of the use of the L1-regularization term. This term
typically assigns a zero coefficient for a geophysical variable that is either irrelevant to the target or
shows strong non-linear relationship with the target. PO;LASSO did not factor in H2O(v) because
H:O(v) exhibits a non-linear relationship with POs — although the reaction between O'D and H>O can
suppress ozone formation through the removal of O'D, it produces two molecules of OH regenerating
ozone in polluted places (Bates and Jacob, 2019). Consequently, the non-linear relationship between
H>0 and PO:; is one that LASSO was unable to capture. While we could have addressed this by dividing
the training dataset into different humidity levels (i.e., dry and humid), such an approach would have
resulted in more discretization in the parametrization. Conversely, PO3;DNN can consider the non-linear
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relationship between H.O and PO; without the need for empirical linearization. We observe a significant
improvement in predicted POs for both AToms and INTEX-B campaigns compared to Souri et al.
(2025).

— Diminished satellite error effects: The reliance of PO3LASSO on FNR increases the contamination of
PO:; predictions from satellite random noise. This primarily occurs because satellite errors associated
with HCHO and NO; adversely influence FNR (see Figure 12 in Souri et al. (2023a)), resulting in noise
in the empirical linearization approach used in PO;LASSO. Even if we assume that all inputs to the
PO;LASSO parameterization, except for FNR, are error-free, the inherent randomness from choosing
among four different sets of equations segregated by the noisy FNR will still feed noise into the final
estimate. Although PO;DNN is inevitably influenced by satellite errors because of its dependence on
HCHO and NO: columns, it does not exacerbate these errors because it operates independently of FNR.
To demonstrate this tendency, Figure 4 shows the global POs; random error maps induced by OMI
HCHO and NO: retrieval random errors averaged in June 2006. We use identical inputs and errors for
both algorithms. Figure 4 is evidence of the diminished contamination of satellite random errors in
PO3DNN as compared to POsLASSO. The error differences tend to be larger over clean areas, because
FNR random errors are higher when both HCHO and NO: levels are small.

LASSO Error DNN Error

[ppbv/hr] [ppbv/hr]
Figure 4. The comparison of the effect of satellite random errors in HCHO and NO: on POs predictions
based on PO3;LASSO and POsDNN algorithms in June 2006. The data used for generating these maps are
based on OMI retrievals.

— Continuity: 1t is known that neural networks equipped with three hidden layers can well approximate
almost any high-dimensional non-linear function (Shen et al., 2021). An important superiority of
POsDNN over PO;LASSO lies in the strength of the DNN algorithm at approximating high-
dimensional non-linear relationships between PO3; and HCHO (a proxy for VOCR), NO2 (a proxy for
reactive nitrogen), jNO> and jO'D (a proxy for photochemistry), and H.O. While some of these non-
linearities were reasonably approximated in PO3LASSO by empirically segregating the chemical
conditions using FNR, the non-linear ozone photochemistry can go beyond the dependency on VOCs
and NOx levels. In fact, the relationship between PO3 and VOCs and NOx can behave non-linearly
depending on the available light and water vapor as discussed in Section 4.3. This indicates that
traditional linear models, such as those using VOCR/NOx (or HCHO/NQO) ratios, often fall short in
capturing this complexity because of the continuous and non-linear nature of these relationships.

4.3.  PO3DNN can capture non-linear PO3 chemistry as a function of pollution, light, and
humidity

To further elaborate on the capability of PO3DNN to reasonably respond to variations in its five
major parameters in a mathematically continuous fashion, we create six isopleths, each specifically
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designed to represent a particular atmospheric condition listed in Table 3. These isopleths are based on
perturbing HCHO and NO: in PO3;DNN and are shown in Figure 5.

It is immediately apparent that the hyperbolic shape of the PO3 curve relative to NO2 and HCHO
can be recreated by our algorithm, displaying a positive response to both HCHO and NO:> on the right and
left sides of the ridgelines. This observation underscores the effective parametrization of the non-linearities
in ozone photochemistry achieved through the DNN algorithm. In the subplot representing normal
conditions, we overlaid three lines indicating FNR values of 1.5 (blue), 2.5 (green), and 3.5 (cyan). Souri
et al. (2025) used these lines to determine various coefficients in the PO3LASSO parameterization. For
instance, the derivative of PO3 with respect to NO2 was determined to be -0.14 ppbv/hr for FNR < 1.5 but
increased to 6.54 ppbv/hr for FNR > 3.5. However, in practice, the thickness and curvature of the PO3
isopleths vary based on the prevailing atmospheric conditions, implying that the derivatives cannot
consistently retain the same values across the broad range of conditions.

In bright conditions, not only do we observe a significantly accelerated response of PO3 compared
to the norm at identical NO2 and HCHO concentrations, but the responses of POs to these two compounds
also become more pronounced. Conversely, in dim conditions, both the magnitudes and responses are
weaker.

These results underscore the importance of including photolysis rates in ozone sensitivity analysis,
rather than relying solely on FNR in former studies. For example, a lower FNR in the moming (~0930 LST)
compared to the afternoon may wrongly suggest that PO; would become more sensitive to VOCs earlier in
the day. However, decreased light in the morning reduces the sensitivity of PO3 to VOCs, despite a lower
FNR (Text S1).

The contrast between dry and humid isopleths suggests that the presence of H2O(v) enhances PO;
when abundant NO2 and HCHO are present. This trend is similarly observed in the FOAM model, as
depicted in Figure S4, indicating that an increase in H2O(v) over polluted regions (arbitrarily defined as
HCHOXNO2 > 10) increases POs. Nonetheless, more humidity suppresses PO3 especially where VOC is
limited and NO: is elevated possibly because the generated OH molecules from O'D+H.O(v)
predominantly react with elevated NO..

Lastly, we see the highest POs rates recorded among all scenarios under a hypothetical condition
characterized by high humidity and photolysis rates. This condition is rare in nature because large amounts
of HO(v) (0.8x10") are confined to marine regions where surface reflectivity is low; nonetheless, an
intuitive tendency from PO3DNN suggests that the algorithm does not create non-physical extrapolation
values.
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581 Table 3. Six different atmospheric conditions defined to understand the response of POs to HCHO
582  and NO: changes.

Labels H,O [molec/m’] jO'D [1/s] jNO:[1/s] Notes
A typical condition in summer in

18 -5 2
Norm 0.4x10 4x10 1.2x10 the castern US at noon
Bright 0.4x10'® 7%10°5 1.4x10° Centrgl America with abundant
sunshine in the afternoon
Dim 0.4x10'8 3x10° 0.7%10°2 Scandinavia in the afternoon
summer
An arid region such as Spain
Dry 0.1x10'® 4x107 1.2x10* Meseta Central in the afternoon
summer
A place the like Persian Gulf
Humid 0.8x10' 4x10° 1.2x107 with high humidity and abundant
sunshine
Since accelerated photolysis
Humid and rates close-to-surface usually

0.8x10'® 7x107 1.4x10* occur over bright regions (arid)
with low humidity, this condition
is rare in nature.

Bright
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Figure 5. The contour maps of PO; isopleth generated by PO;DNN algorithm for six different atmospheric
conditions defined in Table 3. In the first subplot, blue, green, and cyan lines indicate FNR=1.5, 2.5, and
3.5, respectively. Numbers on isopleths are in ppbv/hr.

4.4. PO3 Maps and Sensitivities using OMI and TROPOMI: A General View, Long-term
analysis, and Intercomparisons

4.4.1. Global POs and Seasonality using OMI in 2005-2007

Figure 6 shows the global distribution of POs rates averaged over a quarter-degree in 2005-2007,
using OMI HCHO and NO:; retrievals. It also includes whisker-box plots highlighting seasonal variations
in POs for selected regions and cities. We selected the 2005-2007 timeframe for this analysis because the
OMI data were free from degradation issues, including the row anomaly. The map indicates accelerated
POs rates across heavily polluted regions, such as cities in the Middle East, Asia, the U.S., Central Europe,
and Africa, aligning with what we observed in Souri et al. (2025). While some areas exhibit significant
seasonal fluctuations, others show little variability throughout the seasons. Notably, the east coast of the
U.S., Central Europe, China, Tehran, and Johannesburg experience peak POs; rates in summer. This pattern
is primarily attributed to enhanced photochemistry and the elevated sensitivity of POs to NOx, driven by
increases in VOCR/NOx (Souri et al., 2025).

The seasonal variability of PO; in two African regions, characterized by biomass burning, exhibits
an anti-correlation. This occurs because biomass burning in the northern hemisphere of Africa occurs from
November to March, while the southern hemisphere in Africa experiences it from June to September
(Roberts et al., 2009). Maritime Southeast Asia also shows a peak in PO3 during the biomass burning season
(August-September).

Places like Mexico City, several major Brazilian cities (including Sao Paulo and Rio de Janeiro),
northern India, and the southwest coast of the U.S. show minimal seasonal variability in PO3. The lack of
pronounced seasonal changes may be attributed to less pronounced fluctuations in photolysis rates or
substantial spatial heterogeneity in the seasonal variabilities of HCHO and NO:, resulting in reduced
seasonal variations but with greater variance. Nonetheless, certain weather conditions can influence these
results; for instance, monsoon flows can disperse and scavenge pollution from the northern India around
July-September (David and Nair, 2013), dampening PO;. Mexico City also experiences a monsoon season
in summer causing pollution to subside temporarily. The attribution of the seasonality will be discussed in
the next section.
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Figure 6. (center) The averaged global PO3 map at 0.25°x0.25° in 2005-2007 based on the new algorithm.
OMI data are used to populate HCHO and NO:> abundance. (margins) the whisker-box plots of POs
seasonality over various selected regions. In the box plot, the central red line shows the median, and the top
and bottom edges of the box show the 25th (q1) and 75th (q3) percentiles. The dark solid lines at the very
beginning and the end of each plot show the minimum and maximum values excluding the outliers. The
outliers are removed based on by any value above q3+1.5%(q3—q1) or below q1—1.5 % (q3—q1).

4.4.2. The attribution of PO3 seasonality

Photolysis rates, which serve as crucial indicators of photochemical activity, are the primary
determinants of PO3 seasonality. Figure 7 illustrates the sensitivity of PO3; to NO2, HCHO, and combined
J-values (j;NO2 and jO'D) based on Eq.3 across the same regions and months presented in Figure 6. The
absolute values of PBL HCHO, NO3, and jNO: are shown in Figure S14. As shown in Appendix A, these
sensitivity values are influenced by both the magnitude of the precursor and the first derivative of PO3 with
respect to that precursor. Thus, the sensitivity values should be interpreted as the result of these combined
effects. Moreover, these sensitivities are calculated with respect to local HCHO and NO:> concentrations
rather than local emissions (unlike typical modeling experiments). Local concentrations reflect the
combined influence of both local and external emissions through various physicochemical processes. We
exclude water vapor from sensitivity analysis because its impact is an order of magnitude smaller than the
three other factors.

The amplitude of photolysis rates dictates the amplitude of the sensitivity of PO3 to NO2 and
HCHO. For instance, over East Coast, Central Europe, and Tehran, the first derivative of PO3 to NO> tends
to be small during colder months, primarily because of reduced photochemistry and non-linear chemistry.
As a result, despite significantly higher NO2 concentrations in these months, the sensitivity of PO3 to NO»
is muted; this tendency indicates that the derivative effect can overshadow the increase in NO:
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concentrations. Conversely, in warmer months, the larger positive derivative of POj3 relative to NO2, driven
by increased HCHO levels (shifting away from VOC-sensitive regimes) and enhanced photolysis rates,
markedly increases the contributions of low summer NO: levels to POs. Likewise, we observe substantially
higher sensitivity of PO; to HCHO concentrations during warmer seasons. This increase is attributed to
both the elevated levels of HCHO and the growing derivative of PO; with respect to HCHO, both of which
are directly influenced by enhanced photochemistry. One might argue that summer conditions should lead
to a shift towards extremely NOx-sensitive regimes, resulting in a reduced first-order derivative of POs to
HCHO. However, most polluted regions chosen for this figure are in transitional regimes during the
summer, which renders PO; fairly responsive to HCHO concentrations.

The sensitivity of POs to photolysis rates is dependent on pollution levels, just as its sensitivity to
HCHO and NO: concentrations is influenced by photolysis rates. This is primary reason for seeing minimal
seasonality of PO; over Mexico City, various Brazilian cities, and northern India. These minimal changes
in photolysis rate sensitivities are caused by the less pronounced seasonality in both photolysis rates and
pollution levels compared to other areas (Figure S3). Souri et al. (2025) found that photolysis rates
significantly contribute to the production of POs when there is an adequate amount of ozone precursors.
This was reflected in larger coefficients associated with photolysis rates in POsLASSO algorithm for
FNR<1.5, where pollution levels were high. For example, high photolysis rates over the Sahara do not
significantly contribute to POs because of the limited availability of ozone precursors needed to initiate the
ROx-HOx cycle. A notable example can be observed in Africa, where photolysis rates tend to remain
consistent throughout the year under near cloud-free conditions (Figure S14). However, there is a marked
seasonality in the sensitivity of POs with respect to photolysis rates during polluted months suggesting that
the ample precursors can leverage available lights to form more ozone molecules. This pattern underscores
the algorithm's capability to understand the intertwined relationships between the photolysis rate
sensitivities and pollution levels, as well as the pollution sensitivities and photolysis rates.
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Figure 7. The bar plots of the sensitivity of POs to photolysis rates, NO2, and HCHO concentrations within
the PBL over the selected regions shown in Figure 6. These sensitivities are influenced by both the
magnitude of the precursors and the first-order derivative of PO; to the precursor, detailed in Appendix A.
jNO: values are in 1x107/s units.

4.4.3. Global POjs linear trends using OMI (2005-2019)

Using the linear trend calculation method outlined by Souri et al. (2024), we compute global long-
term linear trends of POs from OMI data, shown in Figure 8. High-latitude regions (>65°) are excluded due
to limited photochemical activity. We observe large variability in both the signs and magnitudes of the linear
trends. Predominantly positive trends occur over the Middle East, India, and China, while negative trends
are mostly found in the eastern U.S., southern parts of Europe, maritime Southeast Asia, and several areas
in Africa. The largest upward trend in POs over the U.S. occurs in oil and gas producing regions, including
the Permian Basin. While various physicochemical processes beyond near-surface PO; influence
tropospheric ozone trends, the strong agreement between predominantly upward POs3 trends in Asia and the
Middle East suggested by satellite-based ozone observations (Gaudel et al., 2018; Boynar et al., 2025) is
noteworthy.

To gather a more relative perspective, Figure 9 shows relative PO; trends (as percentages relative
to 2005 annual averages) for regions where PO3 exceeds 0.5 ppbv/hr. The largest relative changes (>30%)
are evident over the Persian Gulf, Chile, India, and China. Large negative values dominate over the eastern
U.S. and over the central Africa (>20%).

Multiple factors in our parameterization can simultaneously influence these trends, including
changes in HCHO VCDs, NO2 VCDs, dynamic changes in column-to-PBL conversion factors from
MINDS, water vapor, and photolysis rates. However, photolysis rate trends should be negligible because
long-term changes in total overhead ozone are insignificant at midlatitudes (Figure S2 in Souri et al., 2024),
and surface albedo is based on a monthly climatology dataset. While water vapor increases over time in
response to global warming (Souri et al., 2024 ; Borger et al., 2024), these changes are insufficient to explain
the large variability in POs linear trends over polluted regions. Accordingly, simultaneous changes in HCHO
and NO: boundary layer mixing ratios are the main drivers of PO; trends.

The PO; trends are generally explained by changes in ozone precursor concentrations which are
mapped in Figures S15 and S16. The attribution of trends in OMI HCHO and NO: have been partly
discussed in Souri et al., 2024 and the references therein. Increases in both HCHO and NO: over the Middle
East, India, and China drive rising POs over time. Conversely, reduced HCHO and NO: concentrations over
parts of Africa, the eastern U.S., and maritime Southeast Asia, have led to POs reductions. However, many
localized areas exhibit strong non-linearity. For instance, Tehran (Iran) shows positive PO3 trends caused
by NO: increases in a predominantly VOC-sensitive regime, reducing ozone loss through NO»+OH
reactions. Los Angeles (USA) shows upward trends attributed to rapid NO: reductions, resulting in the
opposite effect (Text S2)

The quantitative characterization of these trends (similar to our analysis of PO3 seasonality in
Section 4.4.2 or rapid PO; changes during a heatwave in Text S3) presents significant challenges for several
reasons: (i) the amplitudes of these trends are generally an order of magnitude smaller than seasonal
changes, requiring more stringent attribution methods, (ii) the sensitivities of POs3 to input parameterization
can behave non-linearly, making a linear trend analysis ill-suited for some localized areas, and (iii) changes
in ozone precursors have effects on the sensitivity of PO3 to photolysis rates as described in Section 4.4.2,
introducing a convoluted problem.

Since our PO; parameterization encapsulates non-linear and interdependent relationships between
pollution levels, light intensity, and water vapor, fully isolating individual effects on PO; trends requires
reproducing the product while holding either NO2 or HCHO constant individually and allowing others to
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710  evolve over time (an approach similar to modeling experiments in Souri et al., 2024). This approach
711 comprehensively captures the non-linear dependencies between input variables and POs, circumventing the
712 need for crude linear approximations.

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

713 [ppbv.hr’1 .yr‘1]

714 Figure 8. The linear trend maps of PO3 within PBL derived from our new algorithm using OMI in 2005-
715  2019. Dots indicate that the trend has passes a statistical test based on the Mann—Kendall test at 95%
716  confidence interval.

717
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718
719  Figure 9. Similar to Figure 8 but percentage changes are instead shown over PO3>0.5 ppbv/hr.
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4.4.4. High resolution TROPOMI-based POs maps contrasted with OMI in 2019

Accelerated rates of POs at approximately 1330 LST are observed consistently across polluted
midlatitude regions characterized by high photolysis rates. This pattern is substantiated by the global PO;
maps derived from TROPOMI and OMI data for the year 2019 illustrated in Figure 10. While the maps
presented are averages for 2019, significant PO; hotspots (exceeding 8 ppbv/hr) are identified over
metropolitan/industrial areas including Mexico City (Mexico), Tehran (Iran), the Persian Gulf, and Hunan
Province (China). There are less documented regions undergoing elevated locally-produced ozone such as
Johannesburg (South Africa), Rio de Janeiro (Brazil), Sao Paulo (Brazil), and Santiago (Chile). In contrast,
Europe emerges as a region with comparatively low PO3 levels despite its dense population. This tendency
may be attributed to lower photolysis rates (characterized by high solar zenith angles and low surface
reflectivity) as well as effective emissions mitigation strategies. A notable similarity exists between these
identified hotspots and those reported by Souri et al. (2025), although the contrast between clean and
polluted areas is more pronounced in the PO3DNN product because of an improved representation of
POsDNN in clean regions.

POs exhibits a slight negative value over oceanic and densely forested areas (such as the Amazon
and Congo), primarily because of ozone sinks associated with water vapor (H20(v)) and alkenes, which are
implicitly included in our parametrization. However, a marked contrast is observed between the slightly
negative and positive POs levels along marine vessel pathways. These ship paths are informed not only by
remote sensing data (Georgoulias et al., 2020) but also by the conversion of column measurements to PBL
mixing ratios thorough the MINDS simulation, which accounts for ship emissions. Given that the PBL is
typically shallow over marine regions, the conversion factor is expected to be substantial for these
pathways, resulting in a pronounced contrast in pollution levels within the PBL.

The finer spatial resolution of the TROPOMI dataset enhances the detail of the PO3; maps compared
to those derived from OMI, yielding less noise and fuller data. This reduction in gaps in TROPOMI-based
PO; is attributed to a lower likelihood of cloud contamination and the full coverage of all detectors, in
contrast to OMI, which suffers from the row anomaly. Visual analysis of the two datasets indicates that
TROPOMI consistently shows higher PO3; than OMI over polluted regions. Except for NO2 and HCHO
VCDs, the inputs to the parametrization are identical across both products.

To further investigate these differences, we synchronized the TROPOMI datasets at the OMI-based
spatial resolution and produced scatterplots, as displayed in Figure 11. The correspondence between the
two products is high (R* = 0.86). Nonetheless, TROPOMI-based POs levels are approximately 10% greater
than those derived from OMI. The fact that we observe this overestimation given that TROPOMI has been
coarsened to match OMI’s footprint suggests that the differing spatial resolutions (0.25 degrees versus 0.1
degrees) are unlikely to account for the discrepancy. Moreover, we undertake a comparative analysis of
NO:z and HCHO mixing ratios within the PBL region as obtained from MINDS alongside these two satellite
datasets. Given that the conversion factor remains consistent between the two products, any observed
differences can be attributed to variations in their respective VCDs. Our analysis reveals that both NO2 and
HCHO mixing ratios are higher in TROPOMI relative to OMI (by 5-6%), thereby providing a solid
explanation for the elevated TROPOMI-based PO; in comparison to OMI.
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760  Figure 10. Global maps of POs derived from TROPOMI (top) and OMI (bottom) datasets based on the
761 POsDNN algorithm in 2019. These values are estimated within the PBL region at ~1330 LST. The data
762  exclude cloudy pixels, strong smoke, sensor anomalies, and snow based on the recommended quality flags
763  coming with TROPOMI and OMI products.
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Figure 11. Scatterplots of (left) OMI PO3 vs. TROPOMI POs3, (middle) OMI PBL NO2 vs. TROPOMI PBL
NO2, and (right) OMI PBL HCHO vs. TROPOMI PBL HCHO based on 2019. We coarsen TROPOMI
dataset to match OMI’s spatial resolution to remove the effect of spatial footprint on these results.

4.4.5. Error Analysis

Based on the formulation outlined in Section 3.4, we evaluate both the systematic and random error
components of POs for July 2019, based on data from both OMI and TROPOMI retrievals. Figure 12
presents the average error values for the month. Total POs errors range from 25% to 80% in areas
characterized by moderate to extreme pollution, while in more remote regions, errors can surpass 200%.

On average, random errors constitute only a small fraction of the total error budget, with OMI
showing consistently larger random errors than TROPOMI across the region. This is primarily a result of
OMI's limited sampling caused by row anomaly issues. As mentioned in Section 4.2, these random errors
are significantly lower when compared to the PO;LASSO random errors (Souri et al., 2025).

Systematic errors account for most of the total error, exceeding 90%. These systematic errors are
comprised of three components: biases arising from the correction of VCDs using ground-based remote
sensing data, errors related to DNN predictions, and conversion factors derived from the MINDS
framework. The first two components contribute minimally to the overall error (less than 5%), making the
MINDS conversion factors the dominant contributor to the total error budget. Therefore, any
parametrization aimed at converting satellite-based VCDs to near-surface concentrations, including the one
presented in this study, should always seek out a model that accurately reflects the shape of the profiles.

We also quantify the impact of inconsistent shape factors used in the retrievals and the MINDS
profile on POs estimates and find them introducing systematic errors of 5-25% over POs>0.5 ppbv/hr
(Figures S17-S20). Refining TROPOMI and OMI products with MINDS shape factors would require
reproducing several large-scale validation efforts (e.g., Verhoelst et al., 2021; Vigouroux et al., 2020;
Pinardi et al., 2021; Ayazpour et al., 2025), which is beyond the practical scope and resources of this study.
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Figure 12. The maps of total error, systematic, and random errors for (a) OMI, and (b) TROPOMI
computed for July 2019.

4.5.6. Beyond binary maps: Ozone sensitivity maps using high-resolution TROPOMI data

We explore the spatially varying sensitivity of PO3; to HCHO and NO: worldwide using TROPOMI.
These maps provide finer information compared to binary maps obtained from FNRs. Figure 13 illustrates
global maps of these sensitivities averaged for the year 2019. We observe negative sensitivity values of PO3
to NO: in urban areas, which aligns with our understanding of non-linear ozone chemistry. These negative
values are particularly pronounced in northern China, where VOC/NOx ratios remain low throughout the
year. Similar non-linear feedback patterns can be seen in the Benelux region and the United Kingdom,
primarily driven by elevated NO:z levels. In contrast, NO: significantly contributes to higher POs levels in
southern China, India, Mexico, and several regions across Africa.

As indicated in Souri et al. (2025), the influence of HCHO on PO; is largely governed by NOx
emissions. This relationship explains why the sensitivity of PO3 to HCHO closely mirrors global NO: levels,
which dictates the locations of VOC-sensitive regimes. We observe slightly negative sensitivity of POs3 to
HCHO in remote and densely vegetated regions, likely a result of the effects of alkenes on ozone. However,
the implicit nature of DNN makes it challenging to identify the exact chemical reasons behind these
patterns. Noteworthy examples of areas where POs is significantly influenced by HCHO include eastern
China, Los Angeles (USA), Tehran (Iran), Mexico City (Mexico), and Johannesburg (South Africa).
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Figure 13. The sensitivity of PO3 to NO:z (top) and HCHO (bottom) based on our algorithm using
TROPOMI data in 2019.
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Figure 14 presents the maps of PO; along with sensitivities across four seasons in 2019 over Middle
East, derived from TROPOMI data. Notably, POs values surge during the summer months in several densely
populated and industrial regions of the Middle East. Furthermore, we observe considerable PO; values in
the fall, primarily caused by the influence of HCHO. This fall peak is consistent with the observations made
by Souri et al. (2025), who reported a sharp rise in POs3 in late fall 2019 over Tehran (Iran). The overall
seasonality of POs is well aligned with the discussions presented in Section 4.4.1. The sensitivity of PO; to
NO: exhibits notable variation, shifting from low and negative values during the colder months to positive
and high values in the warmer months. We identify HCHO as the predominant contributor to POs3 in these
regions, as the majority of these cities fall in VOC-sensitive environments and emit significant amounts of
anthropogenic HCHO, whether from primary or secondary sources.

These maps eliminate the need for binarization of chemical conditions, as they effectively illustrate
the spatial variability in ozone response to HCHO and NO: while accounting for light and humidity, two
important dimensions missing in FNR-based ozone sensitivity diagnosis. A more detailed discussion about
FNR'’s inability to fully describe POs chemistry is documented in Text S1.
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Figure 14. The magnitude of POs and the corresponding sensitivity to NO2 and HCHO over Middle East
grouped into four different seasons. DJF: December-January-February, MAM: March-April-May, JJA:
June-July-August, and SON: September-October-November. Sens. means sensitivity.

4.  Summary

Early data-driven analyses of ozone chemistry sensitivity primarily relied on "ratio-based"
indicators to partially linearize the non-linear aspects of urban ozone chemistry, which are influenced by
pollution levels, light, and water vapor. With the development of more sophisticated algorithms, including
machine learning techniques capable of fitting high-dimensional non-linear functions, we have shown that
a highly effective parameterization of net ozone production rates (PO;3) can be achieved. This approach not
only eliminates the need for empirical linearization of ozone chemistry through various indicators, but it
also allows for the primary inputs to be accurately constrained using satellite observations. This
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advancement allowed us to move beyond the previously employed formaldehyde-to-nitrogen dioxide ratio
(FNR) and to generate more comprehensive sensitivity maps, which account for variations not only in
HCHO and NO: but also in light and water vapor.

We significantly enhanced the empirical parametrization of POs described in Souri et al. (2025), in
several key ways: (i) we improved the representation of POj3 in both polluted and clean areas using a L.2-
regularized deep neural network (DNN) and eliminated the need for empirical linearization of atmospheric
conditions with the FNR approach, resulting in reduced complexity and noise in the final estimates; (ii) we
used a finer, up-to-date global transport model called MINDS to convert satellite-retrieved vertical column
density (VCD) into planetary boundary layer (PBL) mixing ratios; (iii) we incorporated the error from these
conversion factors, derived from comprehensive validation against aircraft spirals, into the total error
budget; and (iv) we generated long-term records of PO3; magnitudes and sensitivities to nitrogen dioxide
(NO2) and formaldehyde (HCHO) using bias-corrected data from the Ozone Monitoring Instrument (OMI)
for the years 2005-2019 (at a resolution of 0.25° x 0.25°) and the TROPOspheric Monitoring Instrument
(TROPOMI) for 2018-2023 (at a resolution of 0.1° x 0.1°). These datasets were collected under partially
cloud-free conditions around 13:30 equatorial local standard time. The two products show strong
agreement, with TROPOMI-based PO; being approximately 10% higher than OMI, which is attributed to
higher NO; and HCHO concentrations noted by TROPOMI.

The DNN algorithm (PO3DNN) accounted for more than 96% of the variance in both the test and
training datasets derived from observationally-constrained box simulations across various atmospheric
composition campaigns, with a slope close to the unity line. The new algorithm improved the representation
of POs3 in remote regions compared to the version developed in Souri et al. (2025), due to the inclusion of
water vapor and the use of a more robust regression model. We found PO3DNN to be logically responsive
to its inputs during various idealized experiments that involved changing light conditions, pollution levels,
and water vapor.

Expectedly, our results indicate that PO3 magnitudes and sensitivity maps are primarily influenced
by the levels of ozone precursors, non-linearity of ozone chemistry, and photolysis rates. We revisited the
accelerated POs observed in Souri et al. (2025) across polluted areas, such as major cities and during
biomass burning activities in photochemically active environments. Using sensitivity calculations derived
from the new algorithm, we investigated the contributors to PO; seasonality around the globe. We found
that photolysis rates were the primary drivers of PO3 seasonality. During darker months, both the magnitude
of PO; and its sensitivity to NO2 and HCHO decrease due to limited light availability to initiate the ROx-
HOx cycle. This critical trend is not represented by the pollution levels alone, highlighting the necessity of
including photolysis rates in ozone sensitivity analyses. Fortunately, we can largely constrain these rates
using satellite observations. In regions with minimal variability in photolysis rates (such as the tropics),
pollution levels became the main driver of PO3 seasonality.

The long record of stable observations from OMI allowed us to generate the first-ever maps of POs
linear trends from 2005 to 2019 globally. The global long-term trends revealed substantial spatial variability,
with predominantly positive trends over Asia and the Middle East (>30% relative to 2005 in some regions)
and negative trends across the eastern U.S., Europe, and parts of Africa. Analysis indicated that
simultaneous changes in HCHO and NO: boundary layer concentrations were the primary drivers of these
trends. Although increases in both precursors over Asia and the Middle East, rising POs and reduced
concentrations elsewhere lead to decreases, localized non-linearities complicated this relationship, as
demonstrated by contrasting chemical regimes in Tehran vs. Los Angeles. Quantitative attribution of these
trends presents challenges because of their small amplitudes relative to seasonal variations and non-linear
sensitivities in the parameterization, necessitating “hold-one-out” approaches that account for complex
interdependencies between input variables.

We error characterized both systematic and random errors associated with PO3DNN for both OMI
and TROPOMI-based products. We showed that total errors range from 25% to over 200%, with smaller
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errors in polluted areas. Random errors are minor on monthly-basis, with OMI exhibiting larger errors due
to row anomaly issues. Systematic errors exceed 90% of the total error, primarily driven by MINDS
conversion factors. The total errors budget emphasizes on the role of model used for converting satellite-
based VCDs to near-surface concentrations and its importance for precisely determining ozone precursors
levels near to the surface. Furthermore, in future efforts, we also need to refine satellite retrievals using
spatially higher-resolution AMFs derived from MINDS while simultaneously performing retrieval
validation against ground-based remote sensing observations.

We developed a novel product aimed at enhancing our understanding of the variability in PO3 and
its interactions with NOx and VOCs on a global scale. This advanced algorithm has undergone meticulous
tuning and training using an extensive dataset derived from a reliable box model, which is further
constrained by intensive atmospheric composition campaigns conducted by NASA and NOAA. The
algorithm not only yields accurate estimates of PO3s with minimal bias in comparison to observationally-
constrained values but also facilitates the derivation of POs in relation to HCHO and NO.. However, as
indicated by Souri et al. (2025), there remain several opportunities for further improvement, including: 1)
the incorporation of heterogeneous chemistry; ii) consideration of the impact of partially cloudy regions
and aerosols on photolysis rates; iii) the inclusion of more sophisticated chemical mechanisms for the
generation of the training dataset; and iv) enhanced representation of vertical profiles of NO2 and HCHO
using observationally-constrained chemical transport models with more rigorous column to near-surface
conversion factors (Cooper et al. 2020). Some of these enhancements present significant challenges,
particularly the fine-resolution three-dimensional characterization of aerosol and cloud properties on a
global scale, which is not obtainable with current reanalysis data. However, with the advent of newer
satellite technologies such as PACE and MAIA, there may be opportunities to improve the representation
of atmospheric models with respect to cloud and aerosol characteristics.

While the OMI- and TROPOMI-based POs products maintain algorithmic consistency in several
key components, including photolysis rates and water vapor calculations, the underlying satellite retrievals
of HCHO and NO2 VCDs remain unharmonized between the two instruments. To address the resulting
inter-instrument biases, we implemented bias correction using ground-based remote sensing retrievals as
reference standards. This approach achieved OMI and TROPOMI POs; agreement within 10% on average.
However, this level of consistency may be insufficient for robust joint trend analysis of the combined OMI-
TROPOMI POs record over areas with non-linear or minor trends, potentially requiring the implementation
of trend harmonization algorithms (e.g., Hilboll et al., 2013) to ensure statistical reliability in long-term
analyses.

The emergence of novel geosynchronous orbit (GEO) technologies is becoming increasingly
important for monitoring the daylight hourly variability in ozone precursors. In particular, the finer spatial
and temporal resolution offered by the Tropospheric Emissions: Monitoring of Pollution (TEMPO),
Geostationary Environment Monitoring Spectrometer (GEMS), and Sentinel-4 instruments will aid in
distinguishing exceptional events from typical atmospheric conditions. In light of the success of emission
mitigation strategies over high income countries, the occurrences of elevated PO; are becoming more
infrequent, thereby necessitating a more detailed and rapid observational strategy for monitoring such
events. This presents a timely opportunity to address ozone exceedance events using TEMPO in conjunction
with our POs estimator, especially since the algorithm is designed to handle light-limited conditions—such
as those encountered during early morning and late afternoon periods when TEMPO collects data—
conditions that are not feasible to analyze via the FNR approach.

Appendix A: The sensitivity maps are the directional derivative

To demonstrate that the sensitivity calculation of POs to its inputs resembles (Eq.5) a directional derivative
output, we can approximate the perturbations in the PO:DNN (denoted as f{x), where x is the targeted
sensitivity parameter) using the Taylor expansion:
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f(llx) = f(x) + (1.1x —x)Vf(x) = f(x) + 0.1x. Vf(x) (12)
f(0.9x) = f(x) + (0.9x —x)Vf(x) = f(x) — 0.1x.Vf(x) (13)

The sensitivity calculation presented in Eq.3 can be rewritten in the following form:

x) +0.1Vf(x)) — (f(x) — 0.1Vf(x 0.2x.Vf(x
() + 016 - U@ =01V @) 025U @) _ o (14)
Therefore, the first-order approximation of the DNN prediction, when using the given sensitivity
calculation, is x. Vf (x) which represents the first-order Taylor expansion term that describes how the output
changes with respect to both the gradient and the magnitude of x (i.e., directional derivative).

Appendix B. MINDS conversion factor validation

We validate the column conversion factors obtained from the MINDS simulations against
corresponding values derived from aircraft spirals from several suborbital missions. The concentrations of
HCHO and NO:z in both datasets are collocated in time and space and are resampled onto a common vertical
grid, ranging from the near surface up to 450 hPa in 20 hPa increments. To determine the conversion factors,
these resampled concentrations are averaged within the PBL and then divided by the vertically integrated
partial columns from the surface to 450 hPa. The PBLH is based on the MINDS simulations. Figure B.1
displays scatterplots of the paired conversion factor binned at 12:15 LST and 15:15 LST (+45 minutes
around the TROPOMI/OMI local revisit time) for NO2 and HCHO, respectively. The unit for these
conversion factors is ppbv/col, where col represents 1x10'°> molec.cm™. The comparison shows a good level
of agreement between the two datasets for both species (R*>0.7). The MINDS simulations perform slightly
better for NO2 than for HCHO. This performance difference may arise from the fact that HCHO is mainly
a secondary product, meaning various uncertain VOC emissions, along with uncertain chemical processes
in the model, could pile up leading to discrepancies in the vertical distribution of simulated HCHO
compared to observations. Furthermore, HCHO vertical profiles can be easily affected by local circulation
patterns that are difficult to resolve in coarse models (Souri et al., 2023b). We observe consistent model
performance across various campaigns, except for DISCOVER-AQ Colorado. This discrepancy may result
from complex topography and wind conditions in that region that the model might not fully capture. The
differences between the two datasets can also be attributed to sources of error beyond the model
deficiencies. For instance, the MINDS simulations represent a quarter-degree averaged concentration,
which differs from the localized air samples derived from aircraft, known as the spatial representation error
(Souri et al., 2022).

To account for the systematic errors resulting from the MINDS simulation in our error budget, we
assign econv-rcro and econv- No2 in Eq.5 to RMSE values obtained from the comparison. The choice of RMSE
is based on the fact that it contains information about the bias and the dispersion of MINDS with respect to
the observations. We assume these errors to be invariant by time or location, mainly because of limited
aircraft spirals (N=57) we have from the suborbital missions.
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time. “col” denotes 1x10"> molec.cm™.
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