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Abstract.  Previous studies on net ozone production rates (PO₃) and their sensitivities to precursors relied 12 
on limited in-situ data, often coarse and uncertain chemical transport models (CTMs), and ozone indicators 13 
like the formaldehyde-to-nitrogen dioxide ratio (FNR). However, FNR fails to fully capture PO₃’s complex 14 
relationships with pollution, light, and water vapor. To address this, we refine the satellite-based PO3 15 
product from Souri et al. (2025) with key advancements: (i) a deep neural network to parametrize high-16 
dimensional non-linear ozone chemistry without the need for empirical linearization of atmospheric 17 
conditions, (ii) incorporation of water vapor, (iii) improved error characterization, and (iv) the application 18 
of a finer CTM to dynamically convert column retrievals into near-surface mixing ratios. Our PO3 19 
sensitivity maps surpass traditional FNR-based assessments by quantifying sensitivity magnitudes – 20 
factoring in photolysis rates and water vapor – with greater spatial information. Our new product provides 21 
daily near-clear sky PO3 and sensitivity maps using bias-corrected OMI (2005-2019, 0.25° × 0.25°) and 22 
TROPOMI (2018-2023, 0.1° × 0.1°), with values aligning within 10%. High PO3 rates (>8 ppbv/hr) appear 23 
in urban and biomass-burning regions under strong photochemical activity, including during a heatwave in 24 
the northeastern U.S. Photolysis rates are the dominant factor dictating the seasonality of PO3 magnitudes 25 
and sensitivities. The stability and long-term records of OMI retrievals (2005-2019) enable us to provide 26 
the first global maps of PO3 linear trends showing a surge of >30% over China, the Middle East, and India, 27 
while a reduction in the eastern U.S., southern Europe, and several regions in Africa.  28 

1. Introduction. 29 

To mitigate  tropospheric ozone pollution, a pervasive trace gas that impacts human health, climate, 30 
and crop productivity (Fleming et al., 2018; Mills et al., 2018; Gaudel et al., 2018), it is essential to quantify 31 
the spatiotemporal variations of two primary components: i) the sensitivity of the chemical net production 32 
rates of ozone (PO3) to its two main precursors, nitrogen oxides (NOX=NO+NO2) and volatile organic 33 
compounds (VOCs), and ii) the magnitude of PO3 itself. The first component provides insights into the 34 
positive and negative contributions of these precursors to PO3, which are typically categorized as NOX-35 
sensitive (where PO3 is influenced mainly by NOX), VOC-sensitive (where PO3 is affected primarily by 36 
VOCs), and transitional regimes (where PO3 is responsive to both NOX and VOCs) (Kleinman et al., 2002; 37 
Silman and He, 2002; Duncan et al., 2010). The latter component is crucial for understanding how locally 38 
produced ozone, in conjunction with advected or diffused ozone, can lead to high-ozone events (e.g., 39 
Kleinman et al., 2002, 2005; Sullivan et al., 2019).  40 

Creating global maps of PO3 and its sensitivity at spatiotemporal scales relevant to air quality 41 
policies is a challenge. Unique instruments can directly measure PO3 by calculating the difference in ozone 42 
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molecules from air samples drawn through two distinct tubes – one exposed to sunlight and the other 43 
shielded by an ultra-violet (UV) filter (Cazorla and Brune, 2010; Sadanaga et al., 2017; Sklaveniti et al., 44 
2018). However, these instruments suffer from various interferences, such as heterogeneous chemistry or 45 
photo-enhanced loss of ozone within the tubes, and they are limited to sparse super sites that restrict spatial 46 
variability. Similarly, box-model simulations of PO3, which are observationally constrained by intensive 47 
atmospheric composition measurements, are also limited by sparse aircraft sampling (Cazorla et al., 2012; 48 
Ren et al., 2013; Mazzuca et al.; 2016; Souri et al., 2020a; Schroeder et al., 2020; Brune et al., 2022; Wolfe 49 
et al., 2022; Souri et al., 2023a). Currently, our understanding of the global spatiotemporal variability of 50 
PO3 mainly relies on chemical transport models, which can possess significant uncertainties such as those 51 
associated with transport, emissions, and dry deposition. Moreover, they may lack the spatial resolution 52 
necessary to capture the non-linear dynamics associated with NOX and thus, ozone chemistry (Valin et al., 53 
2011; Vinken et al., 2011; Yu et al., 2016).  54 

The “gold standard” approach to determine three-dimensional PO3 within a process-based 55 
framework involves running a high-resolution chemical transport model, with prognostic inputs constrained 56 
by observations. This approach falls into the realm of an inversion/data assimilation framework (Bocquet 57 
et al., 2015). Numerous studies have aimed to constrain various model prognostic inputs, including NOX 58 
and VOCs emissions and/or concentrations, using aircraft and satellite remote sensing retrievals (e.g., 59 
Stavrakou et al., 2009, 2016; Souri et al., 2016; Bauwens et al., 2016; Miyazaki et al., 2020; Opacka et al., 60 
2025). Notably, Souri et al. (2020b) developed a non-linear joint inversion of NOX and VOCs to better 61 
constrain PO3, thereby shedding light on the impact of recent emission regulations in East Asia on the 62 
different chemical pathways governing the formation and loss of surface ozone. However, these studies 63 
face a fundamental challenge: discrepancies between simulated fields and observations are often blamed 64 
solely on emissions. In fact, such discrepancies can also stem from various model components, including 65 
chemical mechanisms, dry deposition, photolysis rates, vertical diffusion, and transport. Given the limited 66 
observations available for constraining all of these uncertain parameters, the optimization problem becomes 67 
grossly under-determined. This means we lack sufficient information to uniquely determine the optimal 68 
values of these parameters altogether. Additionally, the underlying physics of these models is inherently 69 
uncertain, necessitating the explicit propagation of model physics errors into our final estimates or the 70 
execution of ensemble model realizations to vet the credibility of the top-down estimates across different 71 
realizations from a stochastic point of view. Conducting these ensemble optimizations at fine-scale grid 72 
boxes around the globe is prohibitively computationally intensive. 73 

At the expense of sacrificing the full capability of a physics-based model, we can take advantage 74 
of a statistical approach to predict PO3 using several observable variables with improved computational 75 
efficiency. Chatfield et al. (2010) made an early effort to parameterize the gross production of ozone via 76 
NO+HO2 through a multivariable power law function that depended on formaldehyde (HCHO), nitrogen 77 
dioxide (NO2), UV photolysis rates, and ambient temperature. Their model successfully reproduced over 78 
60% of the variance observed in the ozone gross production rates. Souri et al. (2023a) introduced a bilinear 79 
equation based on HCHO×NO2 and HCHO/NO2, which explained more than 80% of the variance in 80 
simulated PO3. Building on these findings, Souri et al. (2025) developed a regularized piece-wise linear 81 
regression to parameterize PO3 using retrospective aircraft observations and a set of variables, including 82 
HCHO/NO2, HCHO, NO2, jO

1D (photolysis frequency for O1D+hv), and jNO2 (photolysis frequency for 83 
NO2+hv). Their algorithm successfully reproduced over 90% of the variance in observationally-constrained 84 
PO3 with minimal biases across moderately to extremely polluted regions.  85 

These parameterizations present a unique opportunity to globally map PO3, as their primary inputs 86 
can be largely constrained by well-characterized satellite retrievals with extensive horizontal coverage 87 
(Gonzalez Abad et al. 2019). For this reason, Souri et al. (2025), compiled various satellite observations 88 
including TROPOspheric Monitoring Instrument (TROPOMI) surface albedo, HCHO, and NO2 columns 89 
in conjunction with pre-computed model fields to populate the inputs to their parametrization, allowing 90 
them to generate the first-ever maps of PO3 worldwide. Because their algorithm had an explicit 91 
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mathematical form, they were also able to break down PO3 into HCHO and NO2 contributions, providing 92 
much more detailed spatial information about ozone sensitivity maps compared to binary information (i.e., 93 
NOX-sensitive or VOC-sensitive) made from HCHO to NO2 ratios (known as formaldehyde to nitrogen 94 
dioxide ratios – FNR) (Martin et al., 2004; Duncan et al., 2010; Choi et al., 2012; Choi and Souri, 2015a, 95 
b; Jin et al., 2017; Schroeder et al., 2017; Souri et al., 2017; Jeon et al., 2018; Tao et al., 2022; Jonhson et 96 
al., 2024). However, FNR was a central component of their algorithm to transform the non-linear ozone 97 
chemistry into several linear segments (i.e., a piecewise regression).  98 

The inclusion of FNR in Souri et al. (2025) might introduce several complications, such as i) the 99 
amplification of unresolved systematic and random errors in satellite retrievals associated with PO3 100 
estimates, and ii) discounting the dependency of PO3 sensitivity to HCHO and NO2 concentrations as 101 
function of available light and water vapor. In fact, FNR does not provide useful information about ozone 102 
chemistry in less photochemically active environments, such as early morning or late afternoon conditions 103 
(known as light-limited or radical-limited conditions). Although the parametrization of PO3 crafted in Souri 104 
et al. (2025) relied on photolysis rates, the sensitivity of PO3 to NO2 (a proxy for reactive nitrogen) and 105 
HCHO (a proxy for VOC reactivity) did not directly depend on photolysis rates.  106 

The overarching goal of producing ozone chemistry sensitivity maps is to inform regulatory 107 
agencies about the impact of emission reductions on locally produced ozone. Unlike conventional FNR-108 
based binary maps, these maps must quantify the magnitude of sensitivity rather than merely indicating its 109 
direction. This quantitative approach is essential because both the sign and magnitude of sensitivities are 110 
crucial for understanding the impact of emission changes. While detailed sensitivity maps can be derived 111 
from chemical transport models by perturbing underlying emissions, the lack of observational constraints 112 
on these models can introduce significant biases. Souri et al. (2025) attempted to address this limitation by 113 
providing magnitude-dependent sensitivity maps of PO3 to NO2 and HCHO using piecewise linear 114 
regression. However, their approach yielded derivatives of PO3 with respect to NO2 and HCHO that 115 
remained invariant with changes in light and humidity conditions. This limitation is problematic because 116 
reduced light conditions are known to substantially dampen the sensitivity of PO3 to NOX and VOCs, even 117 
under identical emission rates. The current work is therefore motivated by the need to capture the complex, 118 
multidimensional dependencies of PO3 on ozone precursors, light intensity, and humidity using a more 119 
flexible data-driven approach through a machine learning algorithm without the need for segregation or 120 
linearization. While these maps will not replace process-based chemical transport model experiments, they 121 
can efficiently provide first-order assessments to: (i) strategize improved modeling experiments, (ii) gauge 122 
the added value of satellites on predictions of PO3, and (iii) guide the design of sub-orbital missions in 123 
regions with poorly documented elevated PO3. 124 

The new product of PO3 along with spatially varying ozone sensitivity maps using bias-corrected 125 
OMI and TROPOMI retrievals are generated globally for 2005-2023. We will document the advantages of 126 
this algorithm over the older one and how the new results can bring fresh insights into PO3 behavior across 127 
various seasons, locations, and global trends. 128 

2. Data 129 

2.1. Satellite Retrievals 130 

2.1.1. TROPOMI HCHO and NO2 131 

We use daily level-2 (L2) products of TROPOMI (v2.4-v2.5) tropospheric NO2 and total HCHO 132 
columns (v2.4-v2.6) obtained from UV-Vis radiances (~328-496 nm) onboard the European Space 133 
Agency’s (ESA’s) Sentinel Precursor (S5P) spacecraft with an equatorial overpass time of ~1330 local 134 
standard time (LST) (Veefkind et al., 2012; van Geffen et al. 2022; De Smedt et al. 2021). These products 135 
offer near-daily global coverage of NO2 and HCHO columns at a horizontal resolution of 7.2 km (reduced 136 
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to 5.6 km after August 2019) by 3.6 km at nadir, extending to approximately 14 km at the edges of the 137 
scanline, with a swath width of 2600 km. The data products used in this study span from May 2018 to the 138 
end of 2024. The retrieval process follows a two-step framework: first, a differential spectral fitting 139 
algorithm is used to determine the number of integrated molecules along the slant light path, and second, 140 
air mass factor calculations are done based on simulated gas absorber profiles and radiative transfer model 141 
calculations to convert slant columns into vertical ones.  142 

Both products have been thoroughly vetted against ground-based remote sensing retrievals, 143 
including the multi-axis differential optical absorption spectrometer (MAX-DOAS) (De Smedt et al., 2021; 144 
Verhoelst et al., 2021; van Geffen; Souri et al., 2025) and Fourier transform infrared spectroscopy (FTIR) 145 
(Vigouroux et al., 2020; Souri et al., 2025), showing a general tendency towards underestimation in polluted 146 
regions. We include in our study only pixels with a quality flag (q_value) exceeding 0.5 and 0.75 for HCHO 147 
and NO2 products, respectively. The quality flag encapsulates errors coming from clouds, snow, surface 148 
refractivity, and algorithm performance. The selected values are based on the user manual recommendation 149 
(Eskes et al., 2020; De Smedt et al., 2021). The daily HCHO and NO2 columns, along with the retrieval 150 
errors, are mapped onto a 0.1o×0.1o global grid using a mass-conserved bilinear interpolation approach 151 
described in Souri et al. (2024). 152 

2.1.2. OMI HCHO and NO2 153 

We use the Quality Assurance for the Essential Climate Variables (QA4ECV) NO2 daily Level 2 154 
product (Boersma et al., 2018) which is based on global radiances captured by the Ozone Monitoring 155 
Instrument (OMI) sensor aboard NASA’s Aura spacecraft. This product is retrieved with a similar overpass 156 
time as TROPOMI. The horizontal resolution of the product ranges from 13×24 km² at nadir to 165×13 157 
km² at the edge of the scanline. It relies on OMI Collection 3 radiance data. Since 2008, OMI has faced 158 
significant anomalies resulting in the loss of reliable data in areas of its detector, a situation referred to as 159 
the "row anomaly." This has led to inconsistent spatial resolution and global coverage throughout its 160 
operational phase. However, the unaffected pixels have demonstrated a high level of stability over the past 161 
two decades, making this product suitable for long-term trend analysis. Detailed description of the retrieval 162 
algorithm, along with validation against ground remote sensing data, can be found in Boersma et al. (2018), 163 
Compernolle et al. (2020), and Pinardi et al. (2020). We include good quality pixels based on an effective 164 
cloud fraction below 50%, a quality processing flag parameter equal to zero, and exclusion of snowy 165 
regions. Additionally, we discard the last two rows of the detector because of their poor horizontal 166 
resolution. We use the OMI NO2 product for the period from 2005 until the end of 2019.  167 

We also use the OMI Smithsonian astrophysical observatory (SAO) daily HCHO Level 2 product 168 
from the same sensor, which is generated using a newly developed algorithm and Collection 4 OMI 169 
radiances (Ayazpour et al. 2025; Nowlan et al., 2023). This improved algorithm enhances the radiance 170 
information content used to retrieved HCHO columns, significantly reducing noise in the slant column fit. 171 
The stability of this product in extracting new information related to long-term global trends of HCHO has 172 
been well demonstrated in recent studies (Souri et al., 2024; Anderson et al., 2024). We include only good 173 
data following the quality flag provided with the dataset along with effective cloud fraction below 40%. 174 
Both OMI products are mapped onto a global grid with a resolution of 0.25°×0.25° using the same algorithm 175 
used for TROPOMI daily. 176 

2.1.3. Bias correction using ground-based remote sensing data 177 

In order to remove large biases in both TROPOMI and OMI products, we bias correct their columns 178 
using the offset (additive term) and slope (multiplicative term) determined from a linear fit to paired MAX-179 
DOAS/FTIR and these datasets, as described by Souri et al. (2025). The rationale for defining retrieval 180 
biases as a function of magnitude is to enhance correction factor generalizability across seasons and 181 
locations. We take advantage of three studies characterizing the bias correction factors, listed in Table 1. 182 
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The application of these correction factors yields consistency across OMI and TROPOMI NO2 and HCHO 183 
columns within 10% (Section 4.4.4)  184 

Table 1. The slopes and offsets derived from various validation studies used to bias correct the 185 
satellite retrievals employed in the parameterization of PO3. 186 

Product Slope Offset  Benchmark  Time period of 

validation 

Reference 

TROPOMI NO2 0.59 0.90×1015 molecs/cm2 Global MAX-DOAS 
observations  

2018-2023 Souri et al., 
(2025) 

TROPOMI HCHO 0.66 0.32×1015 molecs/cm2 Global FTIR 
observations  

2018-2023 Souri et al., 
(2025) 

OMI NO2 0.83 0.26×1015 molecs/cm2 Global MAX-DOAS 
observations  

Varies for each 
station 

spanning from 
2010-2018 

Pinardi et 
al., (2020) 

OMI HCHO 0.79 0.82×1015 molecs/cm2 Global FTIR 
observations 

Varies for each 
station 

spanning from 
2004-2020 

Ayazpour et 
al., (2025) 

2.1.4. Surface albedo 187 

To estimate near-surface photolysis rates of jO1D (O3+hv, <350 nm) and jNO2 (NO2+hv, ~400-500 188 
nm) used in the parametrization of PO3, we are required to provide reasonable surface albedo estimates 189 
(Section 2.4). We use a monthly Directionally Dependent Lambertian-Equivalent reflectivity (DLER) 190 
climatology derived from TROPOMI radiances at the spatial resolution of 0.125°×0.125°; the product is in 191 
good agreement with the MODIS BRDF product (Tilstra et al., 2024). This climatology has two sets of 192 
values for both shortwave (328 nm) and longwave UV (463 nm) that are used separately for calculating 193 
jO1D and jNO2, respectively. We use only the isotropic part of the DLER product (named minimum_LER), 194 
which is added to an offset coefficient provided with the dataset. 195 

2.2. Aircraft Measurements 196 

The use of aircraft observations is twofold: first, they provide a vast number of measured 197 
geophysical variables suitable to simulate our observationally-constrained PO3 training dataset (Section 198 
3.1); second, they enable a rigorous validation of column-to-planetary boundary layer (PBL) conversion 199 
factors derived from a chemical transport model (Appendix B). We use the dataset compiled by Souri et al. 200 
(2025), who curated various aircraft campaigns measuring photolysis rates, meteorological variables, and 201 
atmospheric composition from varying atmospheric conditions, including urban/suburban settings 202 
(DISCOVER-AQs, and KORUS-AQ), high-vegetated regions (SENEX), and remote areas (INTEX-B and 203 
AToms). The sampling frequency varies from 10-sec to 30-sec. More detailed information regarding the 204 
choice of instrument, gap filling, and data exclusion can be found in Souri et al. (2025). 205 

2.3. MINDS simulations 206 

We use a global chemical transport model simulation designed to support trace gas retrievals. The 207 
simulation, called Multi-Decadal Nitrogen Dioxide and Derived Products from Satellites (MINDS) (Fisher 208 
et al., 2024), was generated using the Goddard Earth Observing System (GEOS) Earth system model 209 
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(Molod et al., 2015; Nielsen et al., 2017) equipped with the full chemistry Global Modeling Initiative (GMI) 210 
mechanism (Duncan et al., 2007; Strahan et al., 2007) and coupled with the Goddard Chemistry Aerosol 211 
Radiation and Transport (GOCART) aerosol module (Chin et al., 2002). The rapid radiative transfer model, 212 
which was designed for global climate models (GCMs) and is known as the Radiative Transfer Module for 213 
GCM (RRTMG), calculates the longwave and shortwave radiation influenced by aerosols simulated by 214 
GOCART, enabling the incorporation of the direct effects of aerosols on meteorological conditions (Nielsen 215 
et al., 2017). Meteorology is resolved using GEOS with several prognostic inputs, including water vapor, 216 
being constrained by MERRA-2 reanalysis using “replay” mode at 3-hourly basis (Orbe et al., 2017). The 217 
model is setup at c360 grid (0.25°×0.25°) and covers the period of 1993 until the end of 2023. The model 218 
follows 72 hybrid sigma values ranging from the surface to 0.01 hPa.  219 

Lightning production of NO is parametrized based on the simulated convection. The model uses 220 
the Monitoring Atmospheric Chemistry and Climate and CityZen (MACCity) inventory (Granier et al., 221 
2011) of anthropogenic emissions downscaled to 0.1o×0.1o using the Emissions Database for Global 222 
Atmospheric Research version 4.2 (EDGAR 4.2). These anthropogenic emissions change by year and 223 
month. Biomass burning emissions rely on the Fire Energetics and Emissions Research (FEER) dataset 224 
(Ichoku and Ellison, 2014). Biogenic emissions are modeled interactively by the Model of Emissions of 225 
Gases and Aerosols from Nature (MEGAN) v2.1 (Guenther et al. 2012). It is known that isoprene emissions 226 
in MEGANv2.1 are largely overestimated (Bauwens et al., 2016; Souri et al., 2020b), therefore they are 227 
scaled down by a factor of two.  228 

2.4. TUV NCAR Photolysis Rates Look-up Table 229 

To estimate jNO2 and jO1D, we refer to a detailed look-up table provided by the Framework for 0-230 
D Atmospheric Modeling (F0AM) model (Wolfe et al. 2016). This table is developed for clear-sky 231 
conditions based on over 20,064 solar spectra calculations. The data encompasses a broad spectrum of solar 232 
zenith angles (SZA) from 0° to 90° in 5° increments, altitudes ranging from 0 to 15 km in 1 km steps, 233 
overhead total ozone columns from 100 to 600 DU in increments of 50 DU, and surface UV albedo values 234 
from 0 to 1 in 0.2 increments. These calculations were carried out using NCAR’s Tropospheric Ultraviolet 235 
and Visible radiation model (TUV v5.2), along with cross sections and quantum yields from IUPAC and 236 
JPL (Wolfe et al., 2016). Information on SZA and surface elevation is obtained from the L2 TROPOMI/OMI 237 
granule data. Surface albedo is based on the TROPOMI DLER climatology (Section 2.1.4). The overhead 238 
total ozone columns are derived from MINDS simulations (Section 2.3). For any values that fall between 239 
the entries in the tables, we apply a linear interpolation method.  240 

2.5. Empirical PO3 estimates using LASSO 241 

We will compare our new product (Section 3.2) to an empirical method developed by Souri et al. 242 
(2025), who took advantage of simulated PO3 data constrained by aircraft measurements to parameterize 243 
PO3 using four geophysical variables: NO2, HCHO, jNO2, and jO1D. Their algorithm used a piecewise L1-244 
regularized linear regression model known as Least Absolute Shrinkage and Selection Operator (LASSO). 245 
Since the algorithm was based on a linear model which was ill-suited for the non-linear ozone chemistry, it 246 
was necessary to linearize the parameterization using various thresholds for FNRs. Despite the method’s 247 
simplicity, Souri et al. (2025) were able to reproduce approximately 88% of the variance with low biases 248 
(less than 20%) in observationally-constrained PO3. Using the empirical method, they generated the first 249 
maps of PO3 by combining bias-corrected TROPOMI HCHO and NO2 columns, simulated photolysis rates, 250 
and a global transport model designed for the conversion from column measurements to the PBL. 251 

To isolate the performance of the PO3 estimator used in Souri et al. (2025) in comparison to the 252 
proposed algorithm in this study, we will ensure that the input variables, including the mixing ratios of 253 
HCHO and NO2 within the PBL as well as the photolysis rates, remain identical for both the empirical 254 
product and our new algorithm. Hereafter, we will refer to this empirical product as “PO3LASSO”. 255 
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3. Methodology 256 

Figure 1 illustrates the three-stage process of our newly developed algorithm to operationally 257 
produce long-term maps of PO3 within the PBL along with the sensitivity and error maps. The product is 258 
called “PO3DNN”. 259 

Stage I –This stage serves as the foundation for the product, focusing on parameterizing PO3 using 260 
a regularized Deep Neural Network (DNN). The training dataset, detailed in Section 3.1, is derived from 261 
an observationally-constrained F0AM box model that provides simulated PO3 along with various 262 
atmospheric quantities directly or indirectly constrained by aircraft measurements. The decision to make 263 
use of aircraft data is based on two main factors: i) they capture real-world atmospheric conditions across 264 
diverse parts of the atmosphere and various geographic regions, and ii) the significant fluctuations inherent 265 
in the data rigorously test the DNN’s capability to generalize (i.e., to fit the model through the data rather 266 
than merely to the data). However, a notable limitation of aircraft data is its restriction to specific 267 
atmospheric conditions. To address this, we have expanded the training dataset by perturbing the inputs to 268 
the F0AM model (Section 3.1), resulting in a synthetic dataset. This expanded training dataset is then used 269 
for validation, testing, and calibration of the DNN algorithm. 270 

Stage II – The objective of this stage is to prepare spatiotemporal geophysical variables necessary 271 
for the prediction of PO3 (done in Stage III). We need five parameters on a global scale with daily frequency: 272 
jNO2, jO

1D, HCHO, NO2, and H2O(v). To generate global daily maps of near-surface photolysis rates, we 273 
use the NCAR’s look-up table as detailed in Section 2.4; this table relies on SZA, which varies with time 274 
and location, as well as surface UV-Vis albedo, ozone overhead columns, and surface altitudes. Both SZA 275 
and surface altitude are provided as auxiliary fields in the satellite L2 products. Ozone overhead columns 276 
are from MINDS. For surface UV-Vis albedo, we use two different wavelengths based on TROPOMI’s 277 
climatology (Section 2.1.4). These calculations assume clear sky conditions, which are somewhat achieved 278 
by the effective cloud fraction thresholds derived from both the OMI and TROPOMI products. Our 279 
algorithm uses HCHO and NO2 columns obtained from OMI or TROPOMI, which are bias-corrected 280 
against ground remote sensing data. These measurements are then transformed into the mixing ratios in the 281 
PBL region using the vertical distribution of HCHO and NO2 profiles simulated by MINDS. The final 282 
variable is the average number of water vapor (H2O(v)) molecules per cubic meters in the PBL region at 283 
the satellite overpass time, which is obtained directly from the MINDS simulation. It is important to note 284 
that the MINDS simulation is based on constraints from MERRA-2 reanalysis, underscoring that the H2O(v) 285 
simulations are constrained by many observations. 286 

Stage III – In the final stage, we predict PO3, generate sensitivity maps, and provide both systematic 287 
and random errors associated with these estimates. To create PO3 maps, we input the five parameters from 288 
Stage II into the DNN model developed in Stage I. To generate the sensitivity maps of PO3 in relation to 289 
NO2 and HCHO, we apply perturbations to NO2 and HCHO based on the methodology described in Section 290 
3.3. These perturbations also serve another purpose which is to propagate the errors associated with the 291 
retrievals of HCHO and NO2, as well as their corresponding conversion factors from MINDS into the final 292 
product. A comprehensive explanation of the error budget and characterization can be found in Section 3.4. 293 

While we perform Stage I only once to establish a PO3 estimator, we need to run Stage II and III 294 
for any desired location/time or spatial resolution. The need to operationally run these two stages has 295 
motivated us to create an open-source and object-oriented Python package called ozonerates v1.0 (Souri 296 
and Gonzalez Abad, 2025), which is capable of running all steps while leveraging parallel computation. 297 
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 298 

Figure 1. Processing stages developed to operationally generate PO3 and sensitivity maps along with daily 299 
frequency errors on a global scale. Stage I aims to establish a regularized DNN model based on synthetic 300 
and real-world aircraft measurements. Stage II prepares the necessary satellite-based input features used for 301 
PO3 prediction in Stage III. Stage III feeds the DNN model with Stage II values and some statistical error 302 
analysis to populate the final product. 303 
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3.1. Training dataset generation using F0AM box model 304 

To establish a relationship between several geophysical variables related to PO3, we use F0AM 305 
version 4 box model (Wolfe et al., 2016). This model is capable of simulating detailed chemical kinetics 306 
based on user inputs regarding meteorological variables, atmospheric compositions, and photolysis rates. 307 
F0AM uses a solver for ordinary differential equations (ODEs) designed for stiff systems, which allows it 308 
to determine the chemical evolution of all species included in the selected chemical mechanism. We adhere 309 
to previous configurations that apply the Carbon Bond 6 (CB06, r2) chemical mechanism within F0AM 310 
(Souri et al., 2020a; Souri et al., 2023a; Souri et al., 2025). The model is constrained by data collected 311 
during aircraft campaigns, including meteorological data, photolysis rates, and various trace gas 312 
concentrations. Additional details regarding the selection of instruments, bias corrections for photolysis, 313 
choices of dilution factors, and other configurations can be found in Souri et al. (2025). We incorporate data 314 
from seven aircraft campaigns, including DISCOVER-AQ (Texas, Washington D.C., Colorado), KORUS-315 
AQ, ATOMs, INTEX-B, and SENEX, to further constrain the model. Souri et al. (2025) demonstrated that 316 
this setup effectively reproduces several unconstrained yet measured compounds, such as HCHO, HO2, 317 
OH, and PAN; moreover, the performance of the model was on par with other studies (e.g., Brune et al., 318 
2020; Brune et al., 2022; Miller and Brune, 2022), indicating that it is a suitable model setup for 319 
understanding local ozone chemistry. This model-derived dataset consists of ~134k points. 320 

A limitation to the training dataset prepared by Souri et al. (2025) originates from the fact that only 321 
a subset of atmospheric conditions could be observed by the suborbital missions. A remedy for this 322 
limitation is to synthetically regenerate data by systematically perturbing several of the inputs used in the 323 
F0AM model. As a result, we apply a scaling factor, ranging from 0.1 up to 10 in 12 evenly-spaced steps, 324 
separately to NOX, VOCs, H2O(v), and photolysis rates. This expands the dataset to ~6.4 million datapoints, 325 
covering a much wider range of atmospheric states.  326 

Once the simulations are done, we determine simulated PO3 by:  327 

𝑃𝑂3 = 𝐹𝑂3 − 𝐿𝑂3 (1) 

where LO3 is all possible chemical loss pathways of ozone (negative stoichiometric multiplier matrix) and 328 
FO3 is all possible chemical pathways producing ozone molecules (positive stoichiometric multiplier 329 
matrix). This equation is also known as ozone tendency. This definition simplifies intercomparison with 330 
estimates derived from different chemical mechanisms by eliminating the requirement to explicitly match 331 
individual production and loss terms, which often exhibit inconsistencies across mechanisms, especially in 332 
their treatment of peroxy radicals. The calculation of PO3 is under a steady-state assumption.  333 

3.2. DNN architecture and configuration 334 

The overall architecture of the DNN model is portrayed in Figure 2. The design consists of three 335 
fully-connected hidden layers each having 32 neurons. The neurons are equipped with rectified linear unit 336 
(ReLU) activation functions. The training dataset (~6.4 millions) is split into 20% test, 24% validation, and 337 
56% training. Training inputs to the parametrization consists of HCHO, NO2, jO

1D, jNO2, and H2O(v). 338 
Prior to the training, we normalize them, such that each feature (x) is rescaled according to 𝑥′ =

𝑥−𝜇

𝜎
𝑥, 339 

where μ and σ represent the mean and standard deviation of the feature, respectively, ensuring a mean of 340 
zero and a variance of one. The optimization (training) of the DNN follows the backpropagation rule armed 341 
with Adaptive Moment Estimation (ADAM) optimizer which is known to perform well with noisy data 342 
(Kingma and Ba, 2014). The initial learning rate is set to 10-5. We use 500 epochs. The loss function (L) of 343 
the optimalization problem is: 344 

𝐿 =
1

2
∑(𝑦𝑘 − 𝑜𝑘)2

𝑁

𝑘=1

+ 𝜆 ∑ 𝑤𝑖
2

𝑝

𝑖=1

 

(2) 
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where the first term on the right side represents the mean squares error (MSE) of the prediction derived 345 
from difference between the target PO3 (y) and the predicted PO3 (o). N represents the number of training 346 
datapoints. The second term is L2-regularization with a factor of 𝜆 to reduce the squares of p number of 347 
neuron weights (w).  348 

An important aspect of this optimization is the use of L2 regularization, which effectively helped 349 
us determine the optimal number of hidden layers and neurons. L2 regularization penalizes the cost function 350 
if an illusion of high prediction accuracy (the first term) is achieved with excessive variance in the solution 351 
(weights). Failing to balance the prediction error and the solution variance can lead to overfitting, which 352 
harms model performance in two ways: i) it results in erroneous predictions for atmospheric conditions that 353 
fall outside the training dataset; ii) it diminishes the physical interpretability of the statistical model because 354 
of large fluctuations in the weights, a common issue in regression models known as collinearity. When we 355 
used too many neurons or layers, the regularization penalized the weights, causing a substantial proportion 356 
to approach zero (not shown), indicating that those neurons were unnecessary. However, incorporating 357 
regularization does have some drawbacks: i) it requires a smaller initial learning rate (set to 10-5) to avoid 358 
falling into local minima, which demands more computational resources; and ii) the regularization factor 359 
also needs to be optimized. We found that a value of λ = 10-5 provided the best results among the set of 360 
values [10-4, 10-5, and 10-6], based on the symmetry in the statistical distributions of the test residuals, MSE, 361 
and the overall level of physical interpretability observed in the sensitivity tests. 362 

The implementation of the DNN model is done using the open-source TensorFlow application 363 
programming interface (API) package in Python (Abadi et al., 2016). To thoroughly validate the 364 
performance of this model from various angles we i) compare the DNN prediction with the test data using 365 
various standard metrics, ii) investigate the evolution of the loss function derived from both the training set 366 
and the validation one over epochs, iii) study the physical explanation of the response of PO3 to NO2 and 367 
HCHO, water vapor, and photolysis rates, and iv) finally compare the DNN results to PO3LASSO. We will 368 
use a number of statistical metrics, including the coefficient of the determination (R2), mean bias, mean 369 
square error, mean absolute error, and root mean square error (RMSE), to carry out the quantitative 370 
assessment (Section 4.1).  371 

 372 
Figure 2. The architecture of the DNN model. The model contains three hidden layers with 32 neurons 373 
each.  374 

3.3. Sensitivity calculations 375 

To elucidate the response of PO3 to its inputs, we calculate the semi-normalized sensitivities 376 
through the finite difference method: 377 
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𝑆𝑃𝑂3𝑖 =
[𝑃𝑂3]𝑖

110% − [𝑃𝑂3]𝑖
90%

0.2
 

(3) 

where [𝑃𝑂3]𝑖
110% and [𝑃𝑂3]𝑖

90% are PO3 from perturbing input parameters (i=1 for NO2, and i=2 for 378 
HCHO) by 1.1 and 0.9 scaling factors. A mathematical proof showing that these sensitivity calculations 379 
are equivalent to the directional derivative is provided in Appendix A.  380 

3.4. Error budget and characterization  381 

Since the PO3DNN integrates atmospheric models, satellite trace gas retrievals, ground remote 382 
sensing, and a machine learning approach, it contains various sources of errors, some of which will be 383 
formulated in this section. Spatially and temporally averaging satellite-based products is a common practice 384 
to reduce noise and fill gaps; therefore, we attempt to separate systematic errors (irreducible by averaging) 385 
from random ones (reducible by averaging). We assign the total PO3 within PBL region error (etotal) based 386 
on the following equation: 387 

𝑒𝑡𝑜𝑡𝑎𝑙 = √𝑒𝑠𝑦𝑠𝑡
2 + 𝑒𝑟𝑎𝑛𝑑

2  
(4) 

where esyst and erand are systematic and random errors associated with PO3 estimates. Systematic errors 388 
account for the errors associated with the bias correction of OMI and TROPOMI against ground remote 389 
sensing retrievals (eHCHO_bias_c and eNO2_bias_c), the model-based conversion of columns to the PBL mixing 390 
ratios (eHCHO_conversion, eNO2_conversion), and the DNN estimator error (eDDN), and are given by: 391 

𝑒𝑠𝑦𝑠𝑡 = √𝑒𝐻𝐶𝐻𝑂_𝑏𝑖𝑎𝑠_𝑐
2 + 𝑒𝑁𝑂2_𝑏𝑖𝑎𝑠_𝑐

2 + 𝑒𝐻𝐶𝐻𝑂_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
2 + 𝑒𝑁𝑂2_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

2 + 𝑒𝐷𝑁𝑁
2                   (5) 392 

𝑒𝐻𝐶𝐻𝑂_𝑏𝑖𝑎𝑠_𝑐
2 = (

𝜕𝑃𝑂3

𝜕𝐻𝐶𝐻𝑂
. 𝛾. 𝑒𝑏𝑐−𝐻𝐶𝐻𝑂)

2

                                                                           (6) 393 

𝑒𝑁𝑂2_𝑏𝑖𝑎𝑠_𝑐
2 =  (

𝜕𝑃𝑂3

𝜕𝑁𝑂2

. 𝛾. 𝑒𝑏𝑐−𝑁𝑂2
)

2

                                                           (7) 394 

𝑒𝐻𝐶𝐻𝑂_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
2 = (

𝜕𝑃𝑂3

𝜕𝐻𝐶𝐻𝑂
. 𝑉𝐶𝐷𝐻𝐶𝐻𝑂 . 𝑒𝑐𝑜𝑛𝑣−𝐻𝐶𝐻𝑂)

2

                                                (8) 395 

𝑒𝑁𝑂2_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
2 = (

𝜕𝑃𝑂3

𝜕𝑁𝑂2

. 𝑉𝐶𝐷𝑁𝑂2
. 𝑒

𝑐𝑜𝑛𝑣−𝑁𝑂2

)
2

                                          (9) 396 

where 𝛾 is the conversion factor of the satellite total to the PBL columns translation based on MINDS and 397 
the formulation by Souri et al. (2025); ebc-HCHO and ebc-NO2, in column units, are calculated following the 398 
formulation from Souri et al. (2025) who used the errors of slope and offset obtained from the comparison 399 
of satellite VCDs to ground remote sensing benchmarks; econv-HCHO and econv-NO2 are quantified by validating 400 
the simulated conversion factors compared to those of aircraft vertical spirals (Appendix B). The unit for 401 
these two errors is ppbv per the column unit; accordingly, we multiply these terms to satellite VCDs. The 402 
last term in Eq.5 is a fixed systematic error associated with the DNN estimates which will be quantified 403 
based on the MSE of the DNN prediction. Both 𝜕𝑃𝑂3

𝜕𝐻𝐶𝐻𝑂
 and 𝜕𝑃𝑂3

𝜕𝑁𝑂2
 are derived from the sensitivity calculations 404 

from Eq.3 divided by the satellite columns. All error terms in Eqs.6-9 are spatially and temporally invariant, 405 
but the derivatives vary from pixel to pixel resulting in spatiotemporally-varying systematic errors.  406 

Random errors originate from the uncertainty estimates coming with the TROPOMI and OMI L2 407 
products and are somewhat reducible by averaging, and are given by: 408 

𝑒𝑟𝑎𝑛𝑑 = √(
𝜕𝑃𝑂3

𝜕𝐻𝐶𝐻𝑂
. 𝛾. 𝑒𝑟𝑎𝑛𝑑−𝐻𝐶𝐻𝑂)

2

+ (
𝜕𝑃𝑂3

𝜕𝑁𝑂2

. 𝛾. 𝑒𝑟𝑎𝑛𝑑−𝑁𝑂2
)

2

 
(10) 
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where 𝑒𝑟𝑎𝑛𝑑−𝐻𝐶𝐻𝑂 and 𝑒𝑟𝑎𝑛𝑑−𝑁𝑂2
 are random retrieval errors. All terms in Eq.10 vary by time and location. 409 

Table 2 summarizes the numbers used in the above equations and their origin. 410 

Table 2. Values used in error calculations. 411 

Error terms Systematic/Random Value Unit Source 

ebc-NO2 and ebc-HCHO Systematic 0.01×VCD+0.06 
×1015 
molec./cm2 

Souri et al. (2025) 

econv-HCHO and econv-NO2 Systematic 0.09  
ppbv/(1015 
molec./cm2) 

Appendix B 

eDNN Systematic 0.88 ppbv/hr Section 4.1 

erand-NO2 and erand-HCHO Random Variable 
×1015 

molec./cm2 
L2 Products 

 412 

It is important to acknowledge that the defined total error budget here is only a good guess and 413 
optimistic. Some underlying sources of error, which are difficult to quantify, are not included. For example, 414 
errors related to the training dataset derived from the F0AM model are challenging to assess because of the 415 
lack of PO3 measurements. We assume other inputs to the PO3 parametrization, such as the monthly 416 
climatology TROPOMI surface albedo to be error-free. Additionally, all datasets used to estimate PO3 417 
contain spatial representation errors (Souri et al. 2023), which are difficult to measure without knowing 418 
their true state of global spatial variability. Moreover, we do not consider correlated errors among HCHO 419 
and NO2 retrievals. It is worth noting that some of the inputs such as H2O(v) and the overhead ozone column 420 
have minimal biases because of MINDS simulations being observationally constrained (Fisher et al., 2024; 421 
Souri et al., 2024). 422 

There are also assumptions regarding the equations mentioned earlier. For instance, it is assumed 423 
that the validation of conversion factors can account for all systematic issues related to the vertical 424 
distribution of NO2 and HCHO in MINDS. Furthermore, we presume that the reported retrieval errors are 425 
mostly random; however, this is not the case (Eskes et al., 2003; Boersma et al. 2018) and distinguishing 426 
between these errors is not straightforward. 427 

Another source of uncertainty arises from partially cloudy pixels and aerosols, which can introduce 428 
errors in calculated photolysis rates. While we successfully filtered out cloud cover and strong aerosol 429 
loadings (e.g., from wildfires) using effective cloud fraction thresholds, some aerosol or cloud-430 
contaminated pixels may pass cloud screening due to low optical depth or height characteristics. Rigorously 431 
quantifying the errors coming from these effects would require running a radiative transfer model with 432 
detailed three-dimensional optical properties of clouds and aerosols on a global scale, particularly critical 433 
for aerosols, which can have complex effects on photolysis rates depending on their absorption and 434 
scattering properties and vertical distribution. Unfortunately, such comprehensive datasets are typically 435 
limited to the narrow swaths of spaceborne lidar observations, which themselves carry substantial 436 
uncertainties (Thorsen and Fu, 2015). While these complications cannot be entirely avoided, particularly 437 
for aerosol effects, users can apply additional quality control measures by filtering pixels using aerosol 438 
optical depth retrievals from TROPOMI, OMI, or other sensors to more rigorously identify contaminated 439 
observations. 440 

In case of oversampling of the PO3 product both temporally and spatially, the total error will be given by: 441 

𝑒𝑡𝑜𝑡𝑎𝑙 = √
1

𝑚
∑ 𝑒𝑠𝑦𝑠𝑡

2 +
1

𝑚2 ∑ 𝑒𝑟𝑎𝑛𝑑
2  (11) 
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where m is the total number of samples. Eq.11 suggests that the systematic errors are persistent across all 442 
samples and are not reducible by averaging, whereas the random errors become smaller by root square of 443 
samples. In this equation, the assumption is that the root-mean-square of the systematic errors is a good 444 
approximation of the systematic errors in the oversampled data because they are independent of each other. 445 

4. Results and Discussion 446 

In this section, we begin by validating and contrasting PO3DNN against PO3LASSO. Following 447 
that, we use OMI to investigate the spatiotemporal variability of PO3 and its sensitivity to photolysis rates, 448 
HCHO, and NO2 globally. We provide an application of the data to understand the effect of an extreme heat 449 
wave on PO3. Afterward, we offer a comprehensive global view of the PO3 estimates algorithm by 450 
integrating data from the TROPOMI compared with that one based on OMI. Finally, we document the total 451 
error budget of the products. 452 

4.1. DNN performance 453 

We investigate the predictive power of the DNN algorithm against both validation and test data for 454 
each air quality campaign or the entire aircraft dataset (Section 2.2). All training datasets described in 455 
Section 3.1 are used in this stage. Except for the early stages of training, both training and validation curves, 456 
explaining the evolution of the prediction against the number of epochs corresponding to the number of 457 
iterations of training the network for one cycle, closely follow each other, indicating that we possibly do 458 
not have overfitting issues (Figures S11). The curves are fairly smooth, resulting from using the ADAM 459 
optimizer with a strictly small learning rate initially. Both curves converge to RMSE below 0.88 ppbv/hr 460 
which we use to assign the error of PO3DNN prediction in Eq.5.   461 

PO3DNN has promising skill at predicting PO3 across various atmospheric conditions. Figure 3 462 
presents a comparison of the predicted PO3 values against observationally-constrained F0AM values for 463 
the test data for each suborbital mission. A similar comparison, which includes all data points measured 464 
during each mission, can be found in Figure S12. The primary reason for highlighting the test data is that 465 
they have never been used to fine-tune the DNN parameters. There is a strong correlation between the 466 
predictions and the benchmarks across most campaigns for both the test data points (Figure 3) and the 467 
complete set of aircraft measurements (Figure S12). Notably, the slope for the "All" test dataset is close to 468 
the unity line. The DNN algorithm can reproduce over 96% of the variance in the test data. Similar to the 469 
approach of Souri et al. (2025), we completely exclude each suborbital mission from the training dataset 470 
and use it as an independent benchmark to evaluate the model’s performance. The resulting accuracy is 471 
comparable to that achieved when 56% of the data are used for training, indicating that the PO₃ 472 
parameterization has reached a high degree of generalization (Figure S13). 473 

The model performs significantly better than PO3LASSO over INTEX-B compared to LASSO (as 474 
shown in Figure 7 in Souri et al., 2025). While the DNN's performance over the ATom campaigns is less 475 
impressive than in other areas, it still represents a considerable improvement over LASSO, which was 476 
unable to reproduce PO3 in pristine regions (R2 < 0.05). One key factor contributing to this improvement is 477 
the inclusion of H2O(v) in the input. Various parameters, including HOX, are known to influence PO3 in 478 
remote regions, but these factors were not included in our parametrization. The method does not artificially 479 
inflate results by introducing non-physical relationships in remote regions; the inability of the DNN to fully 480 
explain PO3 during AToms suggests that it does not force unrealistic relationships between PO3 and the 481 
inputs to completely align with the F0AM results, leaving areas for future improvement in parametrization 482 
over remote regions. 483 
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 484 

Figure 3. Scatterplots comparing observationally-constrained F0AM model PO3 and the predictions that 485 
were based on the DNN for the test data from each air quality campaign. The test data have never been used 486 
for hyper tuning the algorithm. “All” denotes all test data. 487 

4.2. Advantages of PO3DNN over PO3LASSO 488 

There are primarily four major benefits of PO3DNN over PO3LASSO that make the former parameterization 489 
a superior algorithm. The discussion of these advantages is as follows: 490 

— Higher predictive power: PO3LASSO predicted PO3 for all datapoints collected from the suborbital 491 
missions with a R2=0.88, RMSE=1.2 ppbv/hr, and a slope of 0.87 (Souri et al., 2025), whereas PO3DNN 492 
reproduced the exact datapoints (Figure S12) with a R2=0.96, RMSE=0.7 ppbv/hr, and a slope of 1.00. 493 
Furthermore, as shown in Figure 4, PO3DNN has a great degree of generalization for datapoints outside 494 
of the training/validation data points. Consequently, these statistics suggest that DNN is a more 495 
powerful predictor.  496 

— Better representation of PO3 over remote regions: One notable limitation of PO3LASSO was its 497 
inadequate representation of PO3 in remote regions, such as during the ATOMs or INTEX-B campaigns. 498 
This led Souri et al. (2025) to entirely mask PO3 estimates below 1 ppbv/hr. In these remote areas, PO3 499 
is typically influenced by the reactions between ozone and HOX in addition to jO1D and H2O. While 500 
Souri et al. (2025) attempted to incorporate H2O into the LASSO parametrization, the algorithm 501 
assigned a zero coefficient to this parameter because of the use of the L1-regularization term. This term 502 
typically assigns a zero coefficient for a geophysical variable that is either irrelevant to the target or 503 
shows strong non-linear relationship with the target. PO3LASSO did not factor in H2O(v) because 504 
H2O(v) exhibits a non-linear relationship with PO3 – although the reaction between O1D and H2O can 505 
suppress ozone formation through the removal of O1D, it produces two molecules of OH regenerating 506 
ozone in polluted places (Bates and Jacob, 2019). Consequently, the non-linear relationship between 507 
H2O and PO3 is one that LASSO was unable to capture. While we could have addressed this by dividing 508 
the training dataset into different humidity levels (i.e., dry and humid), such an approach would have 509 
resulted in more discretization in the parametrization. Conversely, PO3DNN can consider the non-linear 510 
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relationship between H2O and PO3 without the need for empirical linearization. We observe a significant 511 
improvement in predicted PO3 for both AToms and INTEX-B campaigns compared to Souri et al. 512 
(2025). 513 

— Diminished satellite error effects: The reliance of PO3LASSO on FNR increases the contamination of 514 
PO3 predictions from satellite random noise. This primarily occurs because satellite errors associated 515 
with HCHO and NO2 adversely influence FNR (see Figure 12 in Souri et al. (2023a)), resulting in noise 516 
in the empirical linearization approach used in PO3LASSO. Even if we assume that all inputs to the 517 
PO3LASSO parameterization, except for FNR, are error-free, the inherent randomness from choosing 518 
among four different sets of equations segregated by the noisy FNR will still feed noise into the final 519 
estimate. Although PO3DNN is inevitably influenced by satellite errors because of its dependence on 520 
HCHO and NO2 columns, it does not exacerbate these errors because it operates independently of FNR. 521 
To demonstrate this tendency, Figure 4 shows the global PO3 random error maps induced by OMI 522 
HCHO and NO2 retrieval random errors averaged in June 2006. We use identical inputs and errors for 523 
both algorithms. Figure 4 is evidence of the diminished contamination of satellite random errors in 524 
PO3DNN as compared to PO3LASSO. The error differences tend to be larger over clean areas, because 525 
FNR random errors are higher when both HCHO and NO2 levels are small.  526 

 527 
Figure 4. The comparison of the effect of satellite random errors in HCHO and NO2 on PO3 predictions 528 
based on PO3LASSO and PO3DNN algorithms in June 2006. The data used for generating these maps are 529 
based on OMI retrievals.  530 
 531 
— Continuity: It is known that neural networks equipped with three hidden layers can well approximate 532 

almost any high-dimensional non-linear function (Shen et al., 2021). An important superiority of 533 
PO3DNN over PO3LASSO lies in the strength of the DNN algorithm at approximating high-534 
dimensional non-linear relationships between PO3 and HCHO (a proxy for VOCR), NO2 (a proxy for 535 
reactive nitrogen), jNO2 and jO1D (a proxy for photochemistry), and H2O. While some of these non-536 
linearities were reasonably approximated in PO3LASSO by empirically segregating the chemical 537 
conditions using FNR, the non-linear ozone photochemistry can go beyond the dependency on VOCs 538 
and NOX levels. In fact, the relationship between PO3 and VOCs and NOX can behave non-linearly 539 
depending on the available light and water vapor as discussed in Section 4.3. This indicates that 540 
traditional linear models, such as those using VOCR/NOX (or HCHO/NO2) ratios, often fall short in 541 
capturing this complexity because of the continuous and non-linear nature of these relationships. 542 

4.3. PO3DNN can capture non-linear PO3 chemistry as a function of pollution, light, and 543 
humidity 544 

To further elaborate on the capability of PO3DNN to reasonably respond to variations in its five 545 
major parameters in a mathematically continuous fashion, we create six isopleths, each specifically 546 
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designed to represent a particular atmospheric condition listed in Table 3. These isopleths are based on 547 
perturbing HCHO and NO2 in PO3DNN and are shown in Figure 5.  548 

It is immediately apparent that the hyperbolic shape of the PO3 curve relative to NO2 and HCHO 549 
can be recreated by our algorithm, displaying a positive response to both HCHO and NO2 on the right and 550 
left sides of the ridgelines. This observation underscores the effective parametrization of the non-linearities 551 
in ozone photochemistry achieved through the DNN algorithm. In the subplot representing normal 552 
conditions, we overlaid three lines indicating FNR values of 1.5 (blue), 2.5 (green), and 3.5 (cyan). Souri 553 
et al. (2025) used these lines to determine various coefficients in the PO3LASSO parameterization. For 554 
instance, the derivative of PO3 with respect to NO2 was determined to be -0.14 ppbv/hr for FNR < 1.5 but 555 
increased to 6.54 ppbv/hr for FNR > 3.5. However, in practice, the thickness and curvature of the PO3 556 
isopleths vary based on the prevailing atmospheric conditions, implying that the derivatives cannot 557 
consistently retain the same values across the broad range of conditions.  558 

In bright conditions, not only do we observe a significantly accelerated response of PO3 compared 559 
to the norm at identical NO2 and HCHO concentrations, but the responses of PO3 to these two compounds 560 
also become more pronounced. Conversely, in dim conditions, both the magnitudes and responses are 561 
weaker.  562 

These results underscore the importance of including photolysis rates in ozone sensitivity analysis, 563 
rather than relying solely on FNR in former studies. For example, a lower FNR in the morning (~0930 LST) 564 
compared to the afternoon may wrongly suggest that PO3 would become more sensitive to VOCs earlier in 565 
the day. However, decreased light in the morning reduces the sensitivity of PO3 to VOCs, despite a lower 566 
FNR (Text S1).  567 

The contrast between dry and humid isopleths suggests that the presence of H2O(v) enhances PO3 568 
when abundant NO2 and HCHO are present. This trend is similarly observed in the F0AM model, as 569 
depicted in Figure S4, indicating that an increase in H2O(v) over polluted regions (arbitrarily defined as 570 
HCHO×NO2 > 10) increases PO3. Nonetheless, more humidity suppresses PO3 especially where VOC is 571 
limited and NO2 is elevated possibly because the generated OH molecules from O1D+H2O(v) 572 
predominantly react with elevated NO2.  573 

Lastly, we see the highest PO3 rates recorded among all scenarios under a hypothetical condition 574 
characterized by high humidity and photolysis rates. This condition is rare in nature because large amounts 575 
of H2O(v) (0.8×1018) are confined to marine regions where surface reflectivity is low; nonetheless, an 576 
intuitive tendency from PO3DNN suggests that the algorithm does not create non-physical extrapolation 577 
values.  578 

  579 
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 580 

Table 3. Six different atmospheric conditions defined to understand the response of PO3 to HCHO 581 
and NO2 changes. 582 

Labels H2O [molec/m
3
] jO

1
D [1/s] jNO2 [1/s] Notes 

Norm 0.4×1018 4×10-5 1.2×10-2 
A typical condition in summer in 

the eastern US at noon 

Bright 0.4×1018 7×10-5 1.4×10-2 
Central America with abundant 
sunshine in the afternoon 

Dim 0.4×1018 3×10-5 0.7×10-2 
Scandinavia in the afternoon 
summer 

Dry 0.1×1018 4×10-5 1.2×10-2 
An arid region such as Spain 
Meseta Central in the afternoon 

summer 

Humid 0.8×1018 4×10-5 1.2×10-2 

A place the like Persian Gulf 

with high humidity and abundant 

sunshine 

Humid and 
Bright 

0.8×1018 7×10-5 1.4×10-2 

Since accelerated photolysis 
rates close-to-surface usually 
occur over bright regions (arid) 
with low humidity, this condition 

is rare in nature. 
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Figure 5. The contour maps of PO3 isopleth generated by PO3DNN algorithm for six different atmospheric 585 
conditions defined in Table 3. In the first subplot, blue, green, and cyan lines indicate FNR=1.5, 2.5, and 586 
3.5, respectively. Numbers on isopleths are in ppbv/hr.  587 

4.4. PO3 Maps and Sensitivities using OMI and TROPOMI: A General View, Long-term 588 
analysis, and Intercomparisons 589 

4.4.1. Global PO3 and Seasonality using OMI in 2005-2007 590 

Figure 6 shows the global distribution of PO3 rates averaged over a quarter-degree in 2005-2007, 591 
using OMI HCHO and NO2 retrievals. It also includes whisker-box plots highlighting seasonal variations 592 
in PO3 for selected regions and cities. We selected the 2005-2007 timeframe for this analysis because the 593 
OMI data were free from degradation issues, including the row anomaly. The map indicates accelerated 594 
PO3 rates across heavily polluted regions, such as cities in the Middle East, Asia, the U.S., Central Europe, 595 
and Africa, aligning with what we observed in Souri et al. (2025). While some areas exhibit significant 596 
seasonal fluctuations, others show little variability throughout the seasons. Notably, the east coast of the 597 
U.S., Central Europe, China, Tehran, and Johannesburg experience peak PO3 rates in summer. This pattern 598 
is primarily attributed to enhanced photochemistry and the elevated sensitivity of PO3 to NOX, driven by 599 
increases in VOCR/NOX (Souri et al., 2025).  600 

The seasonal variability of PO3 in two African regions, characterized by biomass burning, exhibits 601 
an anti-correlation. This occurs because biomass burning in the northern hemisphere of Africa occurs from 602 
November to March, while the southern hemisphere in Africa experiences it from June to September 603 
(Roberts et al., 2009). Maritime Southeast Asia also shows a peak in PO3 during the biomass burning season 604 
(August-September).  605 

Places like Mexico City, several major Brazilian cities (including Sao Paulo and Rio de Janeiro), 606 
northern India, and the southwest coast of the U.S. show minimal seasonal variability in PO3. The lack of 607 
pronounced seasonal changes may be attributed to less pronounced fluctuations in photolysis rates or 608 
substantial spatial heterogeneity in the seasonal variabilities of HCHO and NO2, resulting in reduced 609 
seasonal variations but with greater variance. Nonetheless, certain weather conditions can influence these 610 
results; for instance, monsoon flows can disperse and scavenge pollution from the northern India around 611 
July-September (David and Nair, 2013), dampening PO3. Mexico City also experiences a monsoon season 612 
in summer causing pollution to subside temporarily. The attribution of the seasonality will be discussed in 613 
the next section.   614 
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 615 
Figure 6.  (center) The averaged global PO3 map at 0.25o×0.25o in 2005-2007 based on the new algorithm. 616 
OMI data are used to populate HCHO and NO2 abundance. (margins) the whisker-box plots of PO3 617 
seasonality over various selected regions. In the box plot, the central red line shows the median, and the top 618 
and bottom edges of the box show the 25th (q1) and 75th (q3) percentiles. The dark solid lines at the very 619 
beginning and the end of each plot show the minimum and maximum values excluding the outliers. The 620 
outliers are removed based on by any value above q3+1.5×(q3−q1) or below q1−1.5 × (q3−q1). 621 

4.4.2. The attribution of PO3 seasonality 622 

Photolysis rates, which serve as crucial indicators of photochemical activity, are the primary 623 
determinants of PO3 seasonality. Figure 7 illustrates the sensitivity of PO3 to NO2, HCHO, and combined 624 
J-values (jNO2 and jO1D) based on Eq.3 across the same regions and months presented in Figure 6. The 625 
absolute values of PBL HCHO, NO2, and jNO2 are shown in Figure S14. As shown in Appendix A, these 626 
sensitivity values are influenced by both the magnitude of the precursor and the first derivative of PO3 with 627 
respect to that precursor. Thus, the sensitivity values should be interpreted as the result of these combined 628 
effects. Moreover, these sensitivities are calculated with respect to local HCHO and NO2 concentrations 629 
rather than local emissions (unlike typical modeling experiments). Local concentrations reflect the 630 
combined influence of both local and external emissions through various physicochemical processes. We 631 
exclude water vapor from sensitivity analysis because its impact is an order of magnitude smaller than the 632 
three other factors.  633 

The amplitude of photolysis rates dictates the amplitude of the sensitivity of PO3 to NO2 and 634 
HCHO. For instance, over East Coast, Central Europe, and Tehran, the first derivative of PO3 to NO2 tends 635 
to be small during colder months, primarily because of reduced photochemistry and non-linear chemistry. 636 
As a result, despite significantly higher NO2 concentrations in these months, the sensitivity of PO3 to NO2 637 
is muted; this tendency indicates that the derivative effect can overshadow the increase in NO2 638 
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concentrations. Conversely, in warmer months, the larger positive derivative of PO3 relative to NO2, driven 639 
by increased HCHO levels (shifting away from VOC-sensitive regimes) and enhanced photolysis rates, 640 
markedly increases the contributions of low summer NO2 levels to PO3. Likewise, we observe substantially 641 
higher sensitivity of PO3 to HCHO concentrations during warmer seasons. This increase is attributed to 642 
both the elevated levels of HCHO and the growing derivative of PO3 with respect to HCHO, both of which 643 
are directly influenced by enhanced photochemistry. One might argue that summer conditions should lead 644 
to a shift towards extremely NOX-sensitive regimes, resulting in a reduced first-order derivative of PO3 to 645 
HCHO. However, most polluted regions chosen for this figure are in transitional regimes during the 646 
summer, which renders PO3 fairly responsive to HCHO concentrations.  647 

The sensitivity of PO₃ to photolysis rates is dependent on pollution levels, just as its sensitivity to 648 
HCHO and NO₂ concentrations is influenced by photolysis rates. This is primary reason for seeing minimal 649 
seasonality of PO3 over Mexico City, various Brazilian cities, and northern India. These minimal changes 650 
in photolysis rate sensitivities are caused by the less pronounced seasonality in both photolysis rates and 651 
pollution levels compared to other areas (Figure S3). Souri et al. (2025) found that photolysis rates 652 
significantly contribute to the production of PO3 when there is an adequate amount of ozone precursors. 653 
This was reflected in larger coefficients associated with photolysis rates in PO3LASSO algorithm for 654 
FNR<1.5, where pollution levels were high. For example, high photolysis rates over the Sahara do not 655 
significantly contribute to PO3 because of the limited availability of ozone precursors needed to initiate the 656 
ROX-HOX cycle. A notable example can be observed in Africa, where photolysis rates tend to remain 657 
consistent throughout the year under near cloud-free conditions (Figure S14). However, there is a marked 658 
seasonality in the sensitivity of PO3 with respect to photolysis rates during polluted months suggesting that 659 
the ample precursors can leverage available lights to form more ozone molecules. This pattern underscores 660 
the algorithm's capability to understand the intertwined relationships between the photolysis rate 661 
sensitivities and pollution levels, as well as the pollution sensitivities and photolysis rates.  662 

 663 
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Figure 7. The bar plots of the sensitivity of PO3 to photolysis rates, NO2, and HCHO concentrations within 664 
the PBL over the selected regions shown in Figure 6. These sensitivities are influenced by both the 665 
magnitude of the precursors and the first-order derivative of PO3 to the precursor, detailed in Appendix A. 666 
jNO2 values are in 1×10-3/s units. 667 

4.4.3. Global PO3 linear trends using OMI (2005-2019) 668 

Using the linear trend calculation method outlined by Souri et al. (2024), we compute global long-669 
term linear trends of PO3 from OMI data, shown in Figure 8. High-latitude regions (>65°) are excluded due 670 
to limited photochemical activity. We observe large variability in both the signs and magnitudes of the linear 671 
trends. Predominantly positive trends occur over the Middle East, India, and China, while negative trends 672 
are mostly found in the eastern U.S., southern parts of Europe, maritime Southeast Asia, and several areas 673 
in Africa. The largest upward trend in PO3 over the U.S. occurs in oil and gas producing regions, including 674 
the Permian Basin. While various physicochemical processes beyond near-surface PO3 influence 675 
tropospheric ozone trends, the strong agreement between predominantly upward PO3 trends in Asia and the 676 
Middle East suggested by satellite-based ozone observations (Gaudel et al., 2018; Boynar et al., 2025) is 677 
noteworthy. 678 

To gather a more relative perspective, Figure 9 shows relative PO3 trends (as percentages relative 679 
to 2005 annual averages) for regions where PO3 exceeds 0.5 ppbv/hr. The largest relative changes (>30%) 680 
are evident over the Persian Gulf, Chile, India, and China. Large negative values dominate over the eastern 681 
U.S. and over the central Africa (>20%).  682 

Multiple factors in our parameterization can simultaneously influence these trends, including 683 
changes in HCHO VCDs, NO2 VCDs, dynamic changes in column-to-PBL conversion factors from 684 
MINDS, water vapor, and photolysis rates. However, photolysis rate trends should be negligible because 685 
long-term changes in total overhead ozone are insignificant at midlatitudes (Figure S2 in Souri et al., 2024), 686 
and surface albedo is based on a monthly climatology dataset. While water vapor increases over time in 687 
response to global warming (Souri et al., 2024; Borger et al., 2024), these changes are insufficient to explain 688 
the large variability in PO3 linear trends over polluted regions. Accordingly, simultaneous changes in HCHO 689 
and NO2 boundary layer mixing ratios are the main drivers of PO3 trends. 690 

The PO3 trends are generally explained by changes in ozone precursor concentrations which are 691 
mapped in Figures S15 and S16. The attribution of trends in OMI HCHO and NO2 have been partly 692 
discussed in Souri et al., 2024 and the references therein. Increases in both HCHO and NO2 over the Middle 693 
East, India, and China drive rising PO3 over time. Conversely, reduced HCHO and NO2 concentrations over 694 
parts of Africa, the eastern U.S., and maritime Southeast Asia, have led to PO3 reductions. However, many 695 
localized areas exhibit strong non-linearity. For instance, Tehran (Iran) shows positive PO3 trends caused 696 
by NO2 increases in a predominantly VOC-sensitive regime, reducing ozone loss through NO2+OH 697 
reactions. Los Angeles (USA) shows upward trends attributed to rapid NO2 reductions, resulting in the 698 
opposite effect (Text S2)  699 

The quantitative characterization of these trends (similar to our analysis of PO3 seasonality in 700 
Section 4.4.2 or rapid PO3 changes during a heatwave in Text S3) presents significant challenges for several 701 
reasons: (i) the amplitudes of these trends are generally an order of magnitude smaller than seasonal 702 
changes, requiring more stringent attribution methods, (ii) the sensitivities of PO3 to input parameterization 703 
can behave non-linearly, making a linear trend analysis ill-suited for some localized areas, and (iii) changes 704 
in ozone precursors have effects on the sensitivity of PO3 to photolysis rates as described in Section 4.4.2, 705 
introducing a convoluted problem.  706 

Since our PO3 parameterization encapsulates non-linear and interdependent relationships between 707 
pollution levels, light intensity, and water vapor, fully isolating individual effects on PO3 trends requires 708 
reproducing the product while holding either NO2 or HCHO constant individually and allowing others to 709 
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evolve over time (an approach similar to modeling experiments in Souri et al., 2024). This approach 710 
comprehensively captures the non-linear dependencies between input variables and PO3, circumventing the 711 
need for crude linear approximations.  712 

 713 

Figure 8. The linear trend maps of PO3 within PBL derived from our new algorithm using OMI in 2005-714 
2019. Dots indicate that the trend has passes a statistical test based on the Mann–Kendall test at 95% 715 
confidence interval. 716 

 717 

 718 

Figure 9. Similar to Figure 8 but percentage changes are instead shown over PO3>0.5 ppbv/hr. 719 
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4.4.4. High resolution TROPOMI-based PO3 maps contrasted with OMI in 2019 720 

Accelerated rates of PO3 at approximately 1330 LST are observed consistently across polluted 721 
midlatitude regions characterized by high photolysis rates. This pattern is substantiated by the global PO3 722 
maps derived from TROPOMI and OMI data for the year 2019 illustrated in Figure 10. While the maps 723 
presented are averages for 2019, significant PO3 hotspots (exceeding 8 ppbv/hr) are identified over 724 
metropolitan/industrial areas including Mexico City (Mexico), Tehran (Iran), the Persian Gulf, and Hunan 725 
Province (China). There are less documented regions undergoing elevated locally-produced ozone such as 726 
Johannesburg (South Africa), Rio de Janeiro (Brazil), Sao Paulo (Brazil), and Santiago (Chile). In contrast, 727 
Europe emerges as a region with comparatively low PO3 levels despite its dense population. This tendency 728 
may be attributed to lower photolysis rates (characterized by high solar zenith angles and low surface 729 
reflectivity) as well as effective emissions mitigation strategies. A notable similarity exists between these 730 
identified hotspots and those reported by Souri et al. (2025), although the contrast between clean and 731 
polluted areas is more pronounced in the PO3DNN product because of an improved representation of 732 
PO3DNN in clean regions.  733 

 PO3 exhibits a slight negative value over oceanic and densely forested areas (such as the Amazon 734 
and Congo), primarily because of ozone sinks associated with water vapor (H2O(v)) and alkenes, which are 735 
implicitly included in our parametrization. However, a marked contrast is observed between the slightly 736 
negative and positive PO3 levels along marine vessel pathways. These ship paths are informed not only by 737 
remote sensing data (Georgoulias et al., 2020) but also by the conversion of column measurements to PBL 738 
mixing ratios thorough the MINDS simulation, which accounts for ship emissions. Given that the PBL is 739 
typically shallow over marine regions, the conversion factor is expected to be substantial for these 740 
pathways, resulting in a pronounced contrast in pollution levels within the PBL.  741 

The finer spatial resolution of the TROPOMI dataset enhances the detail of the PO3 maps compared 742 
to those derived from OMI, yielding less noise and fuller data. This reduction in gaps in TROPOMI-based 743 
PO3 is attributed to a lower likelihood of cloud contamination and the full coverage of all detectors, in 744 
contrast to OMI, which suffers from the row anomaly. Visual analysis of the two datasets indicates that 745 
TROPOMI consistently shows higher PO3 than OMI over polluted regions. Except for NO2 and HCHO 746 
VCDs, the inputs to the parametrization are identical across both products.  747 

To further investigate these differences, we synchronized the TROPOMI datasets at the OMI-based 748 
spatial resolution and produced scatterplots, as displayed in Figure 11. The correspondence between the 749 
two products is high (R2 = 0.86). Nonetheless, TROPOMI-based PO3 levels are approximately 10% greater 750 
than those derived from OMI. The fact that we observe this overestimation given that TROPOMI has been 751 
coarsened to match OMI’s footprint suggests that the differing spatial resolutions (0.25 degrees versus 0.1 752 
degrees) are unlikely to account for the discrepancy. Moreover, we undertake a comparative analysis of 753 
NO2 and HCHO mixing ratios within the PBL region as obtained from MINDS alongside these two satellite 754 
datasets. Given that the conversion factor remains consistent between the two products, any observed 755 
differences can be attributed to variations in their respective VCDs. Our analysis reveals that both NO2 and 756 
HCHO mixing ratios are higher in TROPOMI relative to OMI (by 5-6%), thereby providing a solid 757 
explanation for the elevated TROPOMI-based PO3 in comparison to OMI. 758 
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 759 

Figure 10. Global maps of PO3 derived from TROPOMI (top) and OMI (bottom) datasets based on the 760 
PO3DNN algorithm in 2019. These values are estimated within the PBL region at ~1330 LST. The data 761 
exclude cloudy pixels, strong smoke, sensor anomalies, and snow based on the recommended quality flags 762 
coming with TROPOMI and OMI products.   763 

 764 

 765 
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 766 

Figure 11. Scatterplots of (left) OMI PO3 vs. TROPOMI PO3, (middle) OMI PBL NO2 vs. TROPOMI PBL 767 
NO2, and (right) OMI PBL HCHO vs. TROPOMI PBL HCHO based on 2019. We coarsen TROPOMI 768 
dataset to match OMI’s spatial resolution to remove the effect of spatial footprint on these results.  769 

4.4.5. Error Analysis 770 

Based on the formulation outlined in Section 3.4, we evaluate both the systematic and random error 771 
components of PO3 for July 2019, based on data from both OMI and TROPOMI retrievals. Figure 12 772 
presents the average error values for the month. Total PO3 errors range from 25% to 80% in areas 773 
characterized by moderate to extreme pollution, while in more remote regions, errors can surpass 200%. 774 

On average, random errors constitute only a small fraction of the total error budget, with OMI 775 
showing consistently larger random errors than TROPOMI across the region. This is primarily a result of 776 
OMI's limited sampling caused by row anomaly issues. As mentioned in Section 4.2, these random errors 777 
are significantly lower when compared to the PO3LASSO random errors (Souri et al., 2025). 778 

Systematic errors account for most of the total error, exceeding 90%. These systematic errors are 779 
comprised of three components: biases arising from the correction of VCDs using ground-based remote 780 
sensing data, errors related to DNN predictions, and conversion factors derived from the MINDS 781 
framework. The first two components contribute minimally to the overall error (less than 5%), making the 782 
MINDS conversion factors the dominant contributor to the total error budget. Therefore, any 783 
parametrization aimed at converting satellite-based VCDs to near-surface concentrations, including the one 784 
presented in this study, should always seek out a model that accurately reflects the shape of the profiles. 785 

We also quantify the impact of inconsistent shape factors used in the retrievals and the MINDS 786 
profile on PO3 estimates and find them introducing systematic errors of 5-25% over PO3>0.5 ppbv/hr 787 
(Figures S17-S20). Refining TROPOMI and OMI products with MINDS shape factors would require 788 
reproducing several large-scale validation efforts (e.g., Verhoelst et al., 2021; Vigouroux et al., 2020; 789 
Pinardi et al., 2021; Ayazpour et al., 2025), which is beyond the practical scope and resources of this study. 790 
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 791 
Figure 12. The maps of total error, systematic, and random errors for (a) OMI, and (b) TROPOMI 792 
computed for July 2019.   793 

4.5.6. Beyond binary maps: Ozone sensitivity maps using high-resolution TROPOMI data  794 

We explore the spatially varying sensitivity of PO3 to HCHO and NO2 worldwide using TROPOMI. 795 
These maps provide finer information compared to binary maps obtained from FNRs. Figure 13 illustrates 796 
global maps of these sensitivities averaged for the year 2019. We observe negative sensitivity values of PO3 797 
to NO2 in urban areas, which aligns with our understanding of non-linear ozone chemistry. These negative 798 
values are particularly pronounced in northern China, where VOC/NOX ratios remain low throughout the 799 
year. Similar non-linear feedback patterns can be seen in the Benelux region and the United Kingdom, 800 
primarily driven by elevated NO2 levels. In contrast, NO2 significantly contributes to higher PO3 levels in 801 
southern China, India, Mexico, and several regions across Africa.  802 

As indicated in Souri et al. (2025), the influence of HCHO on PO3 is largely governed by NOX 803 
emissions. This relationship explains why the sensitivity of PO3 to HCHO closely mirrors global NO2 levels, 804 
which dictates the locations of VOC-sensitive regimes. We observe slightly negative sensitivity of PO3 to 805 
HCHO in remote and densely vegetated regions, likely a result of the effects of alkenes on ozone. However, 806 
the implicit nature of DNN makes it challenging to identify the exact chemical reasons behind these 807 
patterns. Noteworthy examples of areas where PO3 is significantly influenced by HCHO include eastern 808 
China, Los Angeles (USA), Tehran (Iran), Mexico City (Mexico), and Johannesburg (South Africa).  809 
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 810 

Figure 13. The sensitivity of PO3 to NO2 (top) and HCHO (bottom) based on our algorithm using 811 
TROPOMI data in 2019. 812 

 813 

  814 
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Figure 14 presents the maps of PO3 along with sensitivities across four seasons in 2019 over Middle 815 
East, derived from TROPOMI data. Notably, PO3 values surge during the summer months in several densely 816 
populated and industrial regions of the Middle East. Furthermore, we observe considerable PO3 values in 817 
the fall, primarily caused by the influence of HCHO. This fall peak is consistent with the observations made 818 
by Souri et al. (2025), who reported a sharp rise in PO3 in late fall 2019 over Tehran (Iran). The overall 819 
seasonality of PO3 is well aligned with the discussions presented in Section 4.4.1. The sensitivity of PO3 to 820 
NO2 exhibits notable variation, shifting from low and negative values during the colder months to positive 821 
and high values in the warmer months. We identify HCHO as the predominant contributor to PO3 in these 822 
regions, as the majority of these cities fall in VOC-sensitive environments and emit significant amounts of 823 
anthropogenic HCHO, whether from primary or secondary sources.  824 

These maps eliminate the need for binarization of chemical conditions, as they effectively illustrate 825 
the spatial variability in ozone response to HCHO and NO2 while accounting for light and humidity, two 826 
important dimensions missing in FNR-based ozone sensitivity diagnosis. A more detailed discussion about 827 
FNR’s inability to fully describe PO3 chemistry is documented in Text S1. 828 

 829 

Figure 14. The magnitude of PO3 and the corresponding sensitivity to NO2 and HCHO over Middle East 830 
grouped into four different seasons. DJF: December-January-February, MAM: March-April-May, JJA: 831 
June-July-August, and SON: September-October-November. Sens. means sensitivity. 832 

4. Summary 833 

Early data-driven analyses of ozone chemistry sensitivity primarily relied on "ratio-based" 834 
indicators to partially linearize the non-linear aspects of urban ozone chemistry, which are influenced by 835 
pollution levels, light, and water vapor. With the development of more sophisticated algorithms, including 836 
machine learning techniques capable of fitting high-dimensional non-linear functions, we have shown that 837 
a highly effective parameterization of net ozone production rates (PO3) can be achieved. This approach not 838 
only eliminates the need for empirical linearization of ozone chemistry through various indicators, but it 839 
also allows for the primary inputs to be accurately constrained using satellite observations. This 840 
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advancement allowed us to move beyond the previously employed formaldehyde-to-nitrogen dioxide ratio 841 
(FNR) and to generate more comprehensive sensitivity maps, which account for variations not only in 842 
HCHO and NO2 but also in light and water vapor.  843 

We significantly enhanced the empirical parametrization of PO3 described in Souri et al. (2025), in 844 
several key ways: (i) we improved the representation of PO3 in both polluted and clean areas using a L2-845 
regularized deep neural network (DNN) and eliminated the need for empirical linearization of atmospheric 846 
conditions with the FNR approach, resulting in reduced complexity and noise in the final estimates; (ii) we 847 
used a finer, up-to-date global transport model called MINDS to convert satellite-retrieved vertical column 848 
density (VCD) into planetary boundary layer (PBL) mixing ratios; (iii) we incorporated the error from these 849 
conversion factors, derived from comprehensive validation against aircraft spirals, into the total error 850 
budget; and (iv) we generated long-term records of PO3 magnitudes and sensitivities to nitrogen dioxide 851 
(NO2) and formaldehyde (HCHO) using bias-corrected data from the Ozone Monitoring Instrument (OMI) 852 
for the years 2005-2019 (at a resolution of 0.25° × 0.25°) and the TROPOspheric Monitoring Instrument 853 
(TROPOMI) for 2018-2023 (at a resolution of 0.1° × 0.1°). These datasets were collected under partially 854 
cloud-free conditions around 13:30 equatorial local standard time. The two products show strong 855 
agreement, with TROPOMI-based PO3 being approximately 10% higher than OMI, which is attributed to 856 
higher NO2 and HCHO concentrations noted by TROPOMI.  857 

The DNN algorithm (PO3DNN) accounted for more than 96% of the variance in both the test and 858 
training datasets derived from observationally-constrained box simulations across various atmospheric 859 
composition campaigns, with a slope close to the unity line. The new algorithm improved the representation 860 
of PO3 in remote regions compared to the version developed in Souri et al. (2025), due to the inclusion of 861 
water vapor and the use of a more robust regression model. We found PO3DNN to be logically responsive 862 
to its inputs during various idealized experiments that involved changing light conditions, pollution levels, 863 
and water vapor.  864 

Expectedly, our results indicate that PO3 magnitudes and sensitivity maps are primarily influenced 865 
by the levels of ozone precursors, non-linearity of ozone chemistry, and photolysis rates. We revisited the 866 
accelerated PO3 observed in Souri et al. (2025) across polluted areas, such as major cities and during 867 
biomass burning activities in photochemically active environments. Using sensitivity calculations derived 868 
from the new algorithm, we investigated the contributors to PO3 seasonality around the globe. We found 869 
that photolysis rates were the primary drivers of PO3 seasonality. During darker months, both the magnitude 870 
of PO3 and its sensitivity to NO2 and HCHO decrease due to limited light availability to initiate the ROX-871 
HOX cycle. This critical trend is not represented by the pollution levels alone, highlighting the necessity of 872 
including photolysis rates in ozone sensitivity analyses. Fortunately, we can largely constrain these rates 873 
using satellite observations. In regions with minimal variability in photolysis rates (such as the tropics), 874 
pollution levels became the main driver of PO3 seasonality. 875 

The long record of stable observations from OMI allowed us to generate the first-ever maps of PO3 876 
linear trends from 2005 to 2019 globally. The global long-term trends revealed substantial spatial variability, 877 
with predominantly positive trends over Asia and the Middle East (>30% relative to 2005 in some regions) 878 
and negative trends across the eastern U.S., Europe, and parts of Africa. Analysis indicated that 879 
simultaneous changes in HCHO and NO2 boundary layer concentrations were the primary drivers of these 880 
trends. Although increases in both precursors over Asia and the Middle East, rising PO3 and reduced 881 
concentrations elsewhere lead to decreases, localized non-linearities complicated this relationship, as 882 
demonstrated by contrasting chemical regimes in Tehran vs. Los Angeles. Quantitative attribution of these 883 
trends presents challenges because of their small amplitudes relative to seasonal variations and non-linear 884 
sensitivities in the parameterization, necessitating “hold-one-out” approaches that account for complex 885 
interdependencies between input variables. 886 

We error characterized both systematic and random errors associated with PO3DNN for both OMI 887 
and TROPOMI-based products. We showed that total errors range from 25% to over 200%, with smaller 888 
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errors in polluted areas. Random errors are minor on monthly-basis, with OMI exhibiting larger errors due 889 
to row anomaly issues. Systematic errors exceed 90% of the total error, primarily driven by MINDS 890 
conversion factors. The total errors budget emphasizes on the role of model used for converting satellite-891 
based VCDs to near-surface concentrations and its importance for precisely determining ozone precursors 892 
levels near to the surface. Furthermore, in future efforts, we also need to refine satellite retrievals using 893 
spatially higher-resolution AMFs derived from MINDS while simultaneously performing retrieval 894 
validation against ground-based remote sensing observations. 895 

We developed a novel product aimed at enhancing our understanding of the variability in PO3 and 896 
its interactions with NOX and VOCs on a global scale. This advanced algorithm has undergone meticulous 897 
tuning and training using an extensive dataset derived from a reliable box model, which is further 898 
constrained by intensive atmospheric composition campaigns conducted by NASA and NOAA. The 899 
algorithm not only yields accurate estimates of PO3 with minimal bias in comparison to observationally-900 
constrained values but also facilitates the derivation of PO3 in relation to HCHO and NO2. However, as 901 
indicated by Souri et al. (2025), there remain several opportunities for further improvement, including: i) 902 
the incorporation of heterogeneous chemistry; ii) consideration of the impact of partially cloudy regions 903 
and aerosols on photolysis rates; iii) the inclusion of more sophisticated chemical mechanisms for the 904 
generation of the training dataset; and iv) enhanced representation of vertical profiles of NO2 and HCHO 905 
using observationally-constrained chemical transport models with more rigorous column to near-surface 906 
conversion factors (Cooper et al. 2020). Some of these enhancements present significant challenges, 907 
particularly the fine-resolution three-dimensional characterization of aerosol and cloud properties on a 908 
global scale, which is not obtainable with current reanalysis data. However, with the advent of newer 909 
satellite technologies such as PACE and MAIA, there may be opportunities to improve the representation 910 
of atmospheric models with respect to cloud and aerosol characteristics.  911 

While the OMI- and TROPOMI-based PO₃ products maintain algorithmic consistency in several 912 
key components, including photolysis rates and water vapor calculations, the underlying satellite retrievals 913 
of HCHO and NO2 VCDs remain unharmonized between the two instruments. To address the resulting 914 
inter-instrument biases, we implemented bias correction using ground-based remote sensing retrievals as 915 
reference standards. This approach achieved OMI and TROPOMI PO3 agreement within 10% on average. 916 
However, this level of consistency may be insufficient for robust joint trend analysis of the combined OMI-917 
TROPOMI PO3 record over areas with non-linear or minor trends, potentially requiring the implementation 918 
of trend harmonization algorithms (e.g., Hilboll et al., 2013) to ensure statistical reliability in long-term 919 
analyses. 920 

The emergence of novel geosynchronous orbit (GEO) technologies is becoming increasingly 921 
important for monitoring the daylight hourly variability in ozone precursors. In particular, the finer spatial 922 
and temporal resolution offered by the Tropospheric Emissions: Monitoring of Pollution (TEMPO), 923 
Geostationary Environment Monitoring Spectrometer (GEMS), and Sentinel-4 instruments will aid in 924 
distinguishing exceptional events from typical atmospheric conditions. In light of the success of emission 925 
mitigation strategies over high income countries, the occurrences of elevated PO3 are becoming more 926 
infrequent, thereby necessitating a more detailed and rapid observational strategy for monitoring such 927 
events. This presents a timely opportunity to address ozone exceedance events using TEMPO in conjunction 928 
with our PO3 estimator, especially since the algorithm is designed to handle light-limited conditions—such 929 
as those encountered during early morning and late afternoon periods when TEMPO collects data—930 
conditions that are not feasible to analyze via the FNR approach.  931 

Appendix A: The sensitivity maps are the directional derivative 932 

To demonstrate that the sensitivity calculation of PO3 to its inputs resembles (Eq.5) a directional derivative 933 
output, we can approximate the perturbations in the PO3DNN (denoted as f(x), where x is the targeted 934 
sensitivity parameter) using the Taylor expansion: 935 
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𝑓(1.1𝑥) ≈ 𝑓(𝑥) + (1.1𝑥 − 𝑥)∇𝑓(𝑥) = 𝑓(𝑥) + 0.1𝑥. ∇𝑓(𝑥)                 (12) 936 

𝑓(0.9𝑥) ≈ 𝑓(𝑥) + (0.9𝑥 − 𝑥)∇𝑓(𝑥) = 𝑓(𝑥) − 0.1𝑥. ∇𝑓(𝑥)                 (13) 937 

The sensitivity calculation presented in Eq.3 can be rewritten in the following form: 938 

𝑆 =
(𝑓(𝑥) + 0.1∇𝑓(𝑥)) − (𝑓(𝑥) − 0.1∇𝑓(𝑥))

0.2
=

0.2𝑥. ∇𝑓(𝑥)

0.2
= 𝑥. ∇𝑓(𝑥) (14) 

Therefore, the first-order approximation of the DNN prediction, when using the given sensitivity 939 
calculation, is 𝑥. ∇𝑓(𝑥) which represents the first-order Taylor expansion term that describes how the output 940 
changes with respect to both the gradient and the magnitude of x (i.e., directional derivative). 941 

Appendix B. MINDS conversion factor validation 942 

We validate the column conversion factors obtained from the MINDS simulations against 943 
corresponding values derived from aircraft spirals from several suborbital missions. The concentrations of 944 
HCHO and NO2 in both datasets are collocated in time and space and are resampled onto a common vertical 945 
grid, ranging from the near surface up to 450 hPa in 20 hPa increments. To determine the conversion factors, 946 
these resampled concentrations are averaged within the PBL and then divided by the vertically integrated 947 
partial columns from the surface to 450 hPa. The PBLH is based on the MINDS simulations. Figure B.1 948 
displays scatterplots of the paired conversion factor binned at 12:15 LST and 15:15 LST (±45 minutes 949 
around the TROPOMI/OMI local revisit time) for NO2 and HCHO, respectively. The unit for these 950 
conversion factors is ppbv/col, where col represents 1×1015 molec.cm-2. The comparison shows a good level 951 
of agreement between the two datasets for both species (R2>0.7). The MINDS simulations perform slightly 952 
better for NO2 than for HCHO. This performance difference may arise from the fact that HCHO is mainly 953 
a secondary product, meaning various uncertain VOC emissions, along with uncertain chemical processes 954 
in the model, could pile up leading to discrepancies in the vertical distribution of simulated HCHO 955 
compared to observations. Furthermore, HCHO vertical profiles can be easily affected by local circulation 956 
patterns that are difficult to resolve in coarse models (Souri et al., 2023b). We observe consistent model 957 
performance across various campaigns, except for DISCOVER-AQ Colorado. This discrepancy may result 958 
from complex topography and wind conditions in that region that the model might not fully capture. The 959 
differences between the two datasets can also be attributed to sources of error beyond the model 960 
deficiencies. For instance, the MINDS simulations represent a quarter-degree averaged concentration, 961 
which differs from the localized air samples derived from aircraft, known as the spatial representation error 962 
(Souri et al., 2022).  963 

To account for the systematic errors resulting from the MINDS simulation in our error budget, we 964 
assign econv-HCHO and econv- NO2 in Eq.5 to RMSE values obtained from the comparison. The choice of RMSE 965 
is based on the fact that it contains information about the bias and the dispersion of MINDS with respect to 966 
the observations. We assume these errors to be invariant by time or location, mainly because of limited 967 
aircraft spirals (N=57) we have from the suborbital missions.  968 

 969 
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 970 
Figure B.1. The scatterplot of the column to the PBL conversion factor for (a) NO2 and (b) HCHO obtained 971 
from aircraft spirals (x-axis) and MINDS simulation (y-axis) at the same time and location from four 972 
different suborbital missions. These 57 spirals are limited to OMI/TROPOMI overpass ±45 min buffering 973 
time. “col” denotes 1×1015 molec.cm-2. 974 

  975 
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