
This study develops global estimates of ozone production and its sensitivities using satellite 

observations from OMI and TROPOMI. The method is complicated, which involves box model, 

CTMs, observations from several field campaigns, synthetic data, satellite data etc. The authors 

provide a fairly detailed description of the methods, but it remains unclear how these new ozone 

production estimates advance our understanding of ozone chemistry. My detailed comments are 

provided below. 

We thank the reviewer for his/her constructive comments, our response follows. 

1. Title: The title begins with ‘Beyond HCHO/NO2’, which is confusing. What does the term 

‘Beyond’ mean here? How is your study relevant to HCHO/NO2 From the title, one 

would expect that satellite HCHO/NO2 ratios are central to the analysis, but that does 

not appear to be the case after reading the manuscript. I’d recommend remove ‘Beyond 

HCHO/NO2’. A novelty of this study (comparing with Souri 2025) is the use of neural 

network model, and it should be emphasized in the title. 

Response 

We understand that readers may find it difficult to see the connection between FNR and 

the present study at first sight. To address this ambiguity, we need to provide clearer 

context and revise the title accordingly. 

 

As stated in the introduction, our work aims to provide two key outputs: 

1. The magnitude of net PO3: essential for identifying where ozone is locally 

produced or lost through secondary chemical pathways. 

2. Sensitivity maps of PO3 to local NO2 (a proxy for reactive nitrogen) and HCHO 

(a proxy for VOC reactivity), which are critical for guiding emission control 

strategies. 

 

Traditional data-driven approaches that use satellite observations to diagnose ozone 

sensitivities to VOCs and NOx have primarily relied on FNR-based segregation of NOx-

sensitive, transitional, and VOC-sensitive regimes. These thresholds are derived from 

various model realizations, and their error structures have been characterized in Souri et 

al., 2023 and the references therein: https://acp.copernicus.org/articles/23/1963/2023/ 

 

However, FNR has major blind spots: 

1. Lack of sensitivity magnitudes: FNR only classifies regimes without quantifying 

the actual magnitude of ozone sensitivities. For example, if 𝛛𝑷𝑶𝟑
/𝛛𝑵𝑶𝟐is +10 s⁻¹ 

or +3 s⁻¹, both would be labeled “NOx-sensitive,” even though their regulatory 

implications might be different. What truly matters about emission control is the 

magnitude of these responses. For this reason, CTM-based calculations (either 

through direct decoupled methods, perturbation or adjoint approaches) are 

typically used. These, however, require extensive efforts to constrain model inputs 

with satellite data (see Souri et al., 2020: 

https://acp.copernicus.org/articles/20/9837/2020/).  

 

https://acp.copernicus.org/articles/23/1963/2023/
https://acp.copernicus.org/articles/20/9837/2020/


Our work provides quantitative first-order sensitivity maps, equivalent to 

directional derivatives (Appendix A), which is a major innovation of the new 

algorithm. 

 

2. Lack of adequate dimensions: FNR slices the inherently multidimensional, 

nonlinear system into just two dimensions. To demonstrate this shortcoming, we 

perturbed photolysis rates over polluted regions during the KORUS-AQ 

campaign using observationally-constrained F0AM model. Multiplying photolysis 

rates by factors of 0.5 (dim, left), 1.0 (default, middle), and 2.0 (bright, right) 

produced three sets of PO3 isopleths. 

 

 
 

The results clearly show that increasing light intensity raises both net PO3 and its 

sensitivities to NOx and VOC (the contours are more compact in the bright case; each 

contour corresponds to 3 ppbv/hr). This means that the same FNR can correspond to 

entirely different magnitude of sensitivities depending on available light. Although one 

might expect FNR to indirectly reflect variations in photolysis rates, our analysis of 

47,000 data points obtained from KORUS-AQ measurements showed no relationship 

between measured 𝒋𝐍𝐎𝟐and FNR: 

 

 



A similar limitation arises from FNR’s inability to account for water vapor effects on 

PO3. Capturing these complex nonlinear interactions between PO3, light, humidity, and 

precursor concentrations requires more advanced methods over a simple ratio, lacking 

any information about light intensity and humidity. In a data-driven framework, this is 

best achieved using nonlinear parameterizations such as DNNs. 

 

This new product therefore represents a paradigm shift away from oversimplified FNR 

approaches. It not only provides spatiotemporal sensitivity magnitudes, but also accounts 

for multidimensional dependencies. We highlight this feature in Section 4.3. 

 

For these reasons, we strongly believe this message deserves to be reflected in the title of 

the paper: it signals a shift toward a more rigorous, multidimensional exploitation of 

satellite observations for ozone chemistry. 

 

Modifications 

To better inform how the new sensitivity maps can eliminate the need for FNR and to 

highlight the machine learning aspect, we added:  

 

“Beyond Binary Maps from HCHO/NO₂: A Deep Neural Network Approach to Global Daily 

Mapping of Net Ozone Production Rates and Sensitivities Constrained by Satellite 

Observations (2005–2023)” 

 

While we had provided context about the advances made compared to FNR, we added a 

paragraph in the introduction describing why we should quantify the multidimensional 

magnitude of PO3 sensitivity, currently lacking in FNR-based approaches. We added in 

the introduction: 

 

The overarching goal of producing ozone chemistry sensitivity maps is to inform 

regulatory agencies about the impact of emission reductions on locally produced ozone. Unlike 

conventional FNR-based binary maps, these maps must quantify the magnitude of sensitivity 

rather than merely indicating its direction. This quantitative approach is essential because both 

the sign and magnitude of sensitivities are crucial for understanding the impact of emission 

changes. While detailed sensitivity maps can be derived from chemical transport models by 

perturbing underlying emissions, the lack of observational constraints on these models can 

introduce significant biases. Souri et al. (2025) attempted to address this limitation by providing 

magnitude-dependent sensitivity maps of PO₃ to NO2 and HCHO using piecewise linear 

regression. However, their approach yielded derivatives of PO₃ with respect to NO₂ and HCHO 

that remained invariant with changes in light and humidity conditions. This limitation is 

problematic because reduced light conditions are known to substantially dampen the sensitivity 

of PO₃ to NOₓ and VOCs, even under identical emission rates. The current work is therefore 

motivated by the need to capture the complex, multidimensional dependencies of PO₃ on ozone 

precursors, light intensity, and humidity using a more flexible data-driven approach through a 

machine learning algorithm. While these maps will not replace process-based chemical transport 

model experiments, they can efficiently provide first-order assessments to: (i) strategize top-

down modeling experiments, (ii) gauge the added value of satellites on predictions of PO3, and 

(iii) guide the design of sub-orbital missions in regions with poorly documented elevated PO3. 



 

 

2. For the abstract, the opening should clearly define the scientific question being 

addressed, rather than starting with the discussion of the FNR, which is not the main 

focus of this study. My understanding is that this work aims to derive PO3 from a DNN 

model, which is different from the indicator ratio or FNR approach. The repeated 

references to FNR throughout the abstract are confusing and should be reconsidered. 

Response 

Our work aims to generate two key products: the net PO3 and the magnitude of PO3 

sensitivities to NO2 and HCHO. These two pieces of information are essential for 

identifying ozone production hotspots and assessing their sensitivity to local pollution 

levels. This central message should be highlighted in the abstract. 

 

Over the past two decades, we have extensively explored the application of FNR in 

diagnosing ozone chemistry (e.g., Duncan et al., 2010; Souri et al., 2020; Souri et al., 

2023). While FNR has been a valuable first step in demonstrating the utility of satellite 

observations to classify ozone chemical regimes, it ultimately offers only a binary 

perspective on a fundamentally continuous and multidimensional problem. Therefore, it 

is essential to highlight this new fresh paradigm.   

 

Modifications 

In the supplementary, we added a new section describing the fundamental issues with 

FNR; we did not include it in the main draft because it is more of a reminder for people 

who may misuse FNR rather than bringing new insights into ozone chemistry. 

 

1. FNR is oblivious to the impact of photolysis rates and water vapor content on PO3 

The primary objective of using the formaldehyde-to-nitrogen dioxide ratio (FNR) is to reduce 

high-dimensional, non-linear ozone production rates into a two-dimensional framework based 

on volatile organic compound reactivity (VOCR) and reactive nitrogen. However, beyond the 

fact that HCHO and NO2 does not fully represent VOCR and reactive nitrogen, it is crucial to 

recognize that ozone production rate sensitivities and magnitudes depend on other geophysical 

variables independent of FNR. Among these variables, photolysis rates and water vapor are 

major drivers of atmospheric oxidation capacity, modulating numerous reactions related to 

ozone production (Kleinman et al., 2001). 

To demonstrate photolysis rate effects on both PO3 magnitudes and sensitivities, we conducted 

F0AM box model simulations constrained by geophysical variables during June 6-9 of the 

KORUS-AQ campaign (Souri et al., 2025). We perturbed NOx, VOCs, and photolysis rates to 

generate three sets of isopleths (Figure S1). The results clearly show larger ozone production 

rates under more intense light conditions. More importantly, the contours corresponding to 

identical PO3 intervals (3 ppbv/hr) become more compact under brighter conditions, indicating 

that PO3 becomes more sensitive to both NOX and VOCs with increased light intensity. This 

pattern suggests that identical FNR values under different photolysis rates can have 

fundamentally different implications for ozone production rate sensitivities. 



To confirm that FNR contains no photolysis rate information, we analyze paired FNR and 

jNO2 photolysis rate measurements from over 47,000 data points during the KORUS-AQ 

campaign, revealing no correlation between these variables (Figure S2). This demonstrates the 

need for additional dimensions in ozone sensitivity analysis, necessitating more sophisticated 

algorithms (like our approach) over traditional threshold-based methods. 

 
Figure S1. The PO3 isopleths generated using F0AM box models derived from observations 

taken during the KORUS-AQ campaign under three different photolysis rates scenarios: (left) 

multiplied by 0.5, (middle) default, (right) multiplied by 2.0. Each contour represents 3 

ppbv/hr. 

 
Figure S2. The comparison of measured FNR and measured jNO2 frequencies taken from 

aircraft observations during the KORUS-AQ campaigns. All measured points are used to make 

this plot. 

Figure S3 illustrates the representation of ozone sensitivities by mapping five variables derived 

from TROPOMI and our PO3DNN parameterization across two seasons over Los Angeles. 



FNR values are low during colder months due to abundant NO2 relative to HCHO, 

qualitatively suggesting the LA region should be predominantly VOC-sensitive. However, the 

derivatives and sensitivities of PO3 to both HCHO and NO2 remain muted due to limited 

photochemical activity, making PO3 unresponsive to NOX and VOC concentrations. 

Conversely, summer conditions yield larger derivatives, showing much stronger PO3 responses 

to both species. This example can be extended to different times of day, such as FNR values 

from geostationary satellites or morning versus afternoon measurements from low Earth orbit 

satellites. 

 
Figure S3. Five variables derived from our PO3DNN product based on TROPOMI dataset. 

The first row focuses on December-January-February (DJF), while the second row shows 

those variables for June-July-August 2023. The calculation of the sensitivities and derivatives 

are based on perturbation of the DNN algorithm described in the main paper. 

The absence of PO3-relevant geophysical information in FNR also applies to water vapor. 

F0AM box simulations over polluted regions show that increasing humidity enhances PO3 

through the generation of two OH molecules via H2O+O1D reactions (Figure S4). However, 

FNR contains no water vapor information, as humidity is driven by hydrological and 

meteorological factors decoupled from the processes determining FNR (Figure S5). This 

further necessitates adding water vapor as an additional dimension in ozone sensitivity 



analysis.

 
Figure S4. The effect of H2O(v) on PO3 during KORUS-AQ campaigns. Only highly polluted 

regions (HCHO×NO2 > 10) are selected for this experiment.  

 

 



Figure S5. The comparison of measured FNR and measured water vapor density taken from 

aircraft observations during the KORUS-AQ campaigns. All measured points are used to make 

this plot. 

3. This study appears to be a follow-up study of Souri et al. 2025 with some technical 

improvements, such as use of DNN. While the technical enhancements are clear, the 

added scientific value is not. It is unclear how the improved PO3 estimates advance our 

understanding of ozone formation processes. Many figures, including the spatial maps 

and seasonal variations, are quite similar to those presented in Souri et al. (2025). The 

main difference seems to be the extension of the study period from one year to multiple 

years (2005–2023), but only two regional case studies are analyzed for long-term trends. 

I suggest expanding the long-term trend analysis globally to better demonstrate the 

added value of this extended dataset. 

Response 

Thanks for the suggestion about expanding the trend analysis globally. While we 

recognize that our previous work has similarities with respect to PO3 predictions 

compared to the current work, there are distinct differences which are documented in in 

the paper (improved prediction, more cohesive between remote and polluted regions, 

substantially reduced noise, and less discretization). In fact, it is encouraging to see that 

both algorithms provided consistent results on average. The most innovative part of the 

current approach lies in its ability to provide a more comprehensive sensitivity maps 

compared to Souri et al., 2025.  

 

We decided to add a global trend analysis (2005-2019) of PO3 with respect to NO2 and 

HCHO using OMI in the manuscript. We do not intend to include TROPOMI in the 

long-term analysis because it will require a data harmonization approach which is still 

under investigation within our team (the objective of the third year of our ACMAP-Aura 

project). In addition, the long-term stability of OMI radiance has made it a great product 

to study trend. 

 

Modifications 

We moved the trend analysis of Tehran and LA to the supplementary material, and 

replaced that with a global analysis. 

 

We added these global findings to the abstract, introduction and conclusion. 

In the abstract: 

 

The stability and long-term records of OMI retrievals (2005-2019) enable us to provide the 

first global maps of PO3 linear trends showing a surge of >20% over China, the Middle East, 

and India, while a reduction in the eastern U.S., southern Europe, and several regions in 

Africa. 

 

In the conclusion: 

 



The long record of stable observations from OMI allowed us to generate the first-ever 

maps of PO3 linear trends from 2005 to 2019 globally. The global long-term trends revealed 

substantial spatial variability, with predominantly positive trends over Asia and the Middle East 

(>30% relative to 2005 in some regions) and negative trends across the eastern U.S., Europe, 

and parts of Africa. Analysis indicated that simultaneous changes in HCHO and NO2 boundary 

layer concentrations were the primary drivers of these trends. Although increases in both 

precursors over Asia and the Middle East, rising PO3 and reduced concentrations elsewhere lead 

to decreases, localized non-linearities complicated this relationship, as demonstrated by 

contrasting chemical regimes in Tehran vs. Los Angeles. Quantitative attribution of these trends 

presents significant challenges because of their small amplitudes relative to seasonal variations 

and non-linear sensitivities in the parameterization, necessitating “hold-one-out” approaches 

that account for complex interdependencies between input variables. 

 

4.4.3. Global PO3 linear trends using OMI (2005-2019) 

Using the linear trend calculation method outlined by Souri et al. (2024), we compute 

global long-term linear trends of PO3 from OMI data, shown in Figure 8. High-latitude regions 

(>65°) are excluded due to limited photochemical activity. We observe large variability in both 

the signs and magnitudes of the linear trends. Predominantly positive trends occur over the 

Middle East, India, and China, while negative trends are mostly found in the eastern U.S., 

maritime Southeast Asia, and several areas in Africa. The largest upward trend in PO3 over the 

U.S. occurs in oil and gas producing regions, including the Permian Basin. While various 

physicochemical processes beyond near-surface PO3 influence tropospheric ozone trends, the 

strong agreement between predominantly upward PO3 trends in Asia and the Middle East and 

satellite-based ozone observations (Gaudel et al., 2018; Boynar et al., 2025) is noteworthy. 

To gather a more relative perspective, Figure 9 shows relative PO3 trends (as percentages 

relative to 2005 annual averages) for regions where PO3 exceeds 0.5 ppbv/hr. The largest relative 

changes (>30%) are evident over the Persian Gulf, Chile, India, and China. Large negative 

values dominate over the eastern U.S. and over the central Africa (>20%).  

Multiple factors in our parameterization can simultaneously influence these trends, 

including changes in HCHO VCDs, NO2 VCDs, dynamic changes in column-to-PBL conversion 

factors from MINDS, water vapor, and photolysis rates. However, photolysis rate trends should 

be negligible because long-term changes in total overhead ozone are insignificant at midlatitudes 

(Souri et al., 2024), and surface albedo is based on a monthly climatology dataset. While water 

vapor increases over time in response to global warming (Souri et al., 2024; Borger et al., 2024), 

these changes are insufficient to explain the large variability in PO3 linear trends over polluted 

regions. Accordingly, simultaneous changes in HCHO and NO2 boundary layer mixing ratios 

are the main drivers of PO3 trends. 

The PO3 trends are generally explained by changes in ozone precursor concentrations 

which are mapped in Figures S10 and S11. The attribution of trends in OMI HCHO and NO2 

have been partly discussed in Souri et al., 2024 and the references therein. Increases in both 

HCHO and NO2 over the Middle East, India, and China drive rising PO3 over time. Conversely, 

reduced HCHO and NO2 concentrations over parts of Africa, the eastern U.S., and maritime 

Southeast Asia, have led to PO3 reductions. However, many localized areas exhibit strong non-

linearity. For instance, Tehran (Iran) shows positive PO3 trends (Figure S13) caused by NO2 

increases in a predominantly VOC-sensitive regime, reducing ozone loss through NO2+OH 



reactions. Los Angeles (USA) shows upward trends attributed to rapid NO2 reductions, resulting 

in the opposite effect (Figure S14).  

The quantitative characterization of these trends (similar to our analysis of PO3 

seasonality in Section 4.4.2 or rapid PO3 changes during a heatwave in Text S2) presents 

significant challenges for several reasons: (i) the amplitudes of these trends are generally an 

order of magnitude smaller than seasonal changes, requiring more stringent attribution methods, 

(ii) the sensitivities of PO3 to input parameterization can behave non-linearly, making a linear 

trend analysis ill-suited for some localized areas, and (iii) changes in ozone precursors have 

effects on the sensitivity of PO3 to photolysis rates as described in Section 4.4.2, introducing a 

convoluted problem.  

Since our PO3 parameterization encapsulates non-linear and interdependent relationships 

between pollution levels, light intensity, and water vapor, fully isolating individual effects on 

PO3 trends requires reproducing the product while holding either NO2 or HCHO constant 

individually and allowing others to evolve over time (an approach similar to modeling 

experiments in Souri et al., 2024). This approach comprehensively captures the non-linear 

dependencies between input variables and PO3, circumventing the need for crude linear 

approximations.  

 
Figure 8. The linear trend maps of PO3 within PBL derived from our new algorithm using 

OMI in 2005-2019. Dots indicate that the trend has passed the Mann–Kendall test at 95% 

confidence interval. 



 
Figure 9. Similar to Figure 8 but percentage changes are instead shown over PO3>0.5 ppbv/hr. 

4. It is unclear to me why a satellite-based PO3 product is needed. PO3 is essentially a 

“modeled” quantity, which is not directly observable. There is no way to evaluate the 

robustness of PO3 estimates. The magnitude of PO3 can vary depending on how you 

define the PO3, whether it’s accumulative production or instantaneous production. It 

seems that the authors are looking into net production of O3, but it is not clear how the 

chemical loss of O3 is defined, and how the uncertainties of chemical loss terms would 

influence the magnitude of PO3. 

Response 

We respectfully disagree with this comment. 

 

PO3 is not purely a modeling quantity but is measurable using specialized dual-tube 

instruments (Cazorla and Brune, 2010; Sadanaga et al., 2017; Sklaveniti et al., 2018), as 

mentioned in our introduction. These instruments can provide valuable insights into 

chemistry representation in models. While measurement uncertainties are decreasing 

over time, these instruments remain in the development stage, and we believe our 

product could help accelerate their improvement and deployment. 

 

We carefully considered how to define PO3 to enable seamless intercomparison with 

future PO3 estimates. Previously, we examined individual reaction rates defining both 

production and loss terms (e.g., Souri et al., 2020). However, explicitly defining these 

terms creates challenges for direct comparison across different chemical mechanisms. 

For instance, peroxy radicals (RO2) are defined differently among various chemical 

mechanisms, and some VOC and organic nitrate definitions are inconsistent (some 

mechanisms use lumped species while others separate them). 

 

A practical approach for defining PO3 in this context is to calculate the instantaneous 

PO3 tendency by summing all chemical loss pathways of ozone (negative stoichiometric 



coefficients) and all chemical production pathways (positive stoichiometric coefficients). 

This approach closely matches the output from chemical solvers in atmospheric models 

under steady-state conditions and facilitates intercomparison procedures. While we lose 

some chemical interpretation regarding individual chemical terms shaping PO3, our 

product focuses on net values rather than parameterizing individual terms. 

 

We acknowledge that we cannot directly validate F0AM PO3 against measurements due 

to the absence of PO3 observations during the suborbital missions. However, PO3 is 

influenced by numerous geophysical variables that are either directly or indirectly 

constrained in our box model (Section 4.1 in 

https://acp.copernicus.org/articles/25/2061/2025/). Examination of individual terms 

defining PO3 in the CB06 mechanism shows that nearly all are well-constrained in our 

simulations: we accurately reproduced NO and NO2 compared to aircraft 

measurements, constrained many VOCs yielding reasonable HCHO simulations against 

observations, and reproduced HO2 and OH with minimal biases and high 

correspondence within instrument noise levels. The first-order approximation of PO3 in 

urban settings (NO+HO2 minus NO2+OH) involves species that are all well-captured in 

our model.  

The primary uncertainty lies in RO2, which serves as a proxy, highlighting where 

specialized PO3 instruments could help validate constrained PO3 estimates across 

different chemical mechanisms and heterogeneous chemistry treatments. 

While we do not claim complete alignment with actual PO3 values (which cannot be 

verified due to absent measurements), we believe our box model simulations provide 

reasonable constraints on the various terms contributing to PO3. 

 

Modifications 

We improved the wording around the PO3 definition in the methodology: 

 

Once the simulations are done, we determine simulated PO3 by:  

𝑃𝑂3 = 𝐹𝑂3 − 𝐿𝑂3 (1) 

where LO3 is all possible chemical loss pathways of ozone (negative stoichiometric multiplier 

matrix) and FO3 is all possible chemical pathways producing ozone molecules (positive 

stoichiometric multiplier matrix). This equation is also known as ozone tendency. This definition 

simplifies intercomparison with estimates derived from different chemical mechanisms by 

eliminating the requirement to explicitly match individual production and loss terms, which 

often exhibit inconsistencies across mechanisms, especially in their treatment of peroxy radicals. 

The calculation of PO3 is under a steady-state assumption.  

 

 

5. The authors claim that photolysis rates and water vapor have large influence on PO3. 

However, their calculations of these quantities appear oversimplified. It is unclear how 

cloud and aerosol effects on photolysis are accounted for. Water vapor and total ozone 

columns are taken from MINDS simulations, even though satellite-based observations for 

https://acp.copernicus.org/articles/25/2061/2025/


these variables are available. It is not clear why satellite data are only used for NO2 and 

HCHO but not for other relevant parameters. This inconsistency needs to be addressed. 

Response 

No single satellite can reliably measure near-surface water vapor (H2O(v)) at the spatial 

coverage provided by TROPOMI and OMI. Available satellite capabilities vary 

significantly: some measure only total column water vapor (MODIS, OMI, TROPOMI), 

others provide vertical profiles with limited near-surface sensitivity (IASI, AIRS), and 

GPS radio occultation provides sparse but accurate profiles. The diversity of surface-

based, sounding, and satellite instruments for water vapor retrieval, each with unique 

strengths and limitations, has motivated efforts to integrate them within harmonized 

frameworks through data assimilation. This approach provides optimal H2O estimates 

by accounting for varying vertical sensitivity, spatial representation, and sensor-specific 

artifacts and errors. 

 

We leveraged the well-established MERRA-2 "replay" data assimilation framework, 

which constrains water vapor using numerous observational products. Our validation 

against SSMIS integrated water vapor (IWV) (recognized as the most robust water vapor 

product over oceans, which comprise 71% of Earth's surface) shows minimal biases in 

2005 with replay mode enabled in a GEOS-simulation performed in Souri et al. (2024) 

(figure below). 

 

Our sensitivity analysis reveals that PO3 responses to H2O variations are generally an 

order of magnitude smaller than those for photolysis rates (Js), NO2, and HCHO, 

typically ranging around 1-2 ppbv/hr per unit of water vapor density. Therefore, having 

1-5% uncertainties in simulated water vapor should not significantly impact our results 

and would remain even smaller than DNN estimator errors. 

 
Likewise, total ozone columns are constrained by satellites in MINDS with only 2-3% 

error (see Figure S1 in https://acp.copernicus.org/articles/24/8677/2024/acp-24-8677-

2024-supplement.pdf). Their errors can be safely ignored.  

https://acp.copernicus.org/articles/24/8677/2024/acp-24-8677-2024-supplement.pdf
https://acp.copernicus.org/articles/24/8677/2024/acp-24-8677-2024-supplement.pdf


 

Regarding the impact of aerosols and clouds on photolysis rates, we agree that they can 

partly introduce biases in our estimates, as discussed in the paper. This error has been 

largely mitigated by removing clouds/aerosol using the effective cloud fraction being 

sensitive to all those particles.  

 

There are known physical models to scale photolysis rates given the optical properties of 

particles (such as FAST-JX or RACM). However, it is not feasible to source 3D optical 

properties of aerosols and clouds at the same resolution and time as of TROPOMI and 

OMI globally. While some instruments like TROPOMI can provide 2D optical 

properties, we are required to know how much of these are below PBL and how much 

are above it. There are also complexities about the height of aerosols, because aerosol 

layer height from TROPOMI or OMI is optical centroid and not the physical top 

boundary. Knowing these optical properties (partial AOD, SSA, and phase functions) is 

essential.  

 

Similar to the discussion about water vapor, we need a data assimilation approach to 

exploit various ground and space remote sensing instruments to constrain aerosols and 

cloud optical properties in models. But this is much more challenging compared to the 

water vapor problem, because aerosols and clouds are affected by a larger number of 

physiochemical processes. While we could have used MINDS cloud/aerosol optical 

properties to supposedly scale photolysis rates, we think the errors and mismatches of 

the model would have harmed the analysis.  

 

We also need to emphasize that the effective cloud fraction is not equal to geometrical 

cloud fraction (defined in meteorology). The O2-O2 algorithm is sensitive to the amount 

of contamination by clouds (even over sensitive to thin clouds), making the cloud flag a 

effective to mask them. To show some showcases for our daily OMI PO3 product: 

 



 
 

and TROPOMI: 

 



 
This is another TROPOMI case that shows in strong smoky areas in California, the 

quality flags removed most of the contaminated pixels (but not all). 

 

 



 
 



 
Modifications 

To address this comment, we moved the discussion about the effect of clouds and aerosol 

in Stage 1 to the error analysis part and added more caveats: 

 

It is important to acknowledge that the defined total error budget here is only a good 

guess and optimistic. Some underlying sources of error, which are difficult to quantify, are not 

included. For example, errors related to the training dataset derived from the F0AM model are 

challenging to assess because of the lack of PO3 measurements. We assume other inputs to the 

PO3 parametrization, such as the monthly climatology TROPOMI surface albedo to be error-

free. Additionally, all datasets used to estimate PO3 contain spatial representation errors (Souri 

et al. 2023), which are difficult to measure without knowing their true state of global spatial 

variability. It is worth noting that some of the inputs such as H2O(v) and the overhead ozone 

column have minimal biases because of MINDS simulations being observationally constrained 

(Fisher et al., 2024; Souri et al., 2024). 

 

Another source of uncertainty arises from partially cloudy pixels and aerosols, which 

can introduce errors in calculated photolysis rates. While we successfully filtered out cloud 

cover and strong aerosol loadings (e.g., from wildfires) using effective cloud fraction thresholds, 

some aerosol or cloud-contaminated pixels may pass cloud screening due to low optical depth 

or height characteristics. Rigorously quantifying the errors coming from these effects would 

require running a radiative transfer model with detailed three-dimensional optical properties of 



clouds and aerosols on a global scale, particularly critical for aerosols, which can have complex 

effects on photolysis rates depending on their absorption and scattering properties and vertical 

distribution. Unfortunately, such comprehensive datasets are typically limited to the narrow 

swaths of spaceborne lidar observations, which themselves carry substantial uncertainties 

(Thorsen and Fu, 2015). While these complications cannot be entirely avoided, particularly for 

aerosol effects, users can apply additional quality control measures by filtering pixels using 

aerosol optical depth retrievals from TROPOMI, OMI, or other sensors to more rigorously 

identify contaminated observations. 

 

6. The authors demonstrate the use of PO3 through some case studies, but these studies are 

somewhat disconnected. Each focuses on a different region and time period (e.g., 

northeastern U.S., Middle East, Los Angeles, Tehran), resulting in a fragmented narrative 

that feels like a collection of isolated examples. I recommend reorganizing these sections 

to tell a more cohesive scientific story. The analysis of long-term trends is promising. 

Expanding this analysis to the global scale, and examining how ozone production 

sensitivities have evolved over time, would substantially strengthen the manuscript. 

Response 

We agree that these are different applications which were meant to provide more 

confidence in the utility of our product from different angles. We reordered some of the 

sections and moved some to the supplementary materials to have a more cohesive flow. 

  

Modifications 

We renamed Section 4.4: 

 

PO3 Maps and Sensitivities using OMI and TROPOMI: A General View, Long-term analysis, 

and Intercomparisons 

 

Now this section starts with 4.4.1. Global PO3 and Seasonality using OMI in 2005-2007 

The reason behind it is that 2005-2007 is when OMI signal was strong and did not go 

through the row anomaly issues.  We then have their attributions in 4.4.2. The attribution 

of PO3 seasonality.  

 

We then introduced “4.4.3. Global PO3 linear trends using OMI (2005-2019)” to keep the 

discussion focused on OMI. 

 

Then we introduce TROPOMI and its intercomparison with OMI. This is good bridge to 

move from OMI to TROPOMI while having some joint discussion: 4.4.4. High resolution 

TROPOMI-based PO3 maps contrasted with OMI in 2019 

 

Then we have 4.4.5. Error Analysis to discuss both OMI and TROPOMI errors on a 

monthly basis. 

 



Finally, we have this section separating the sensitivity map analysis from the rest: 4.4.6. 

Beyond binary maps: Ozone sensitivity maps using high-resolution TROPOMI data 

 

As a result, the discussion about LA and Tehran and the heatwave effect have been 

moved to the supplementary. We think the new layout is more cohesive than before.  

 

 

7. The DNN model is trained using F0AM-simulated data. Although the model shows 

reasonable performance, the derived relationships remain model-dependent and limited 

by the diversity of available field campaigns. Rather than randomly withholding data for 

testing, it would be more informative to exclude one or two entire field campaigns from 

training and test whether the DNN performs well out-of-sample. This approach would 

better demonstrate the model’s robustness and generalizability. 

Response 

Thanks for the suggestion! We performed the similar experiment as the reviewer 

suggested for PO3LASSO in Souri et al., 2025, but we decided to show “test” data as they 

were never used for hyperparameter tuning. We added this new figure in the 

supplementary with the campaign-specific withholding figure, compare to Figure 7 in 

Souri et al., 2025. 

  

Modifications 

We added: 

 

Similar to the approach of Souri et al. (2025), we completely exclude each suborbital mission 

from the training dataset and use it as an independent benchmark to evaluate the model’s 

performance. The resulting accuracy is comparable to that achieved when 56% of the data are 

used for training, indicating that the PO₃ parameterization has reached a high degree of 

generalization (Figure S10). 

 



Figure S10. Each campaign dropped from training PO3DNN and subsequently used as an 

independent benchmark.  

 

 

Specific comments: 

1. Line 155: Unclear what the offset and slope mean. 

Response 

Corrected. 

  

Modifications 

To correct for offset (additive bias) and slope (multiplicative bias) in this product  

 

2. Line 167: Why different cloud fraction thresholds are applied to NO2 vs. HCHO. 

Response 

We strictly used the recommended values based on their user guide or commonly-used 

thresholds. However, it is important to note that, because PO3 is produced on daily basis 

from both HCHO and NO2, a stricter flag between these products dictate where we 

should discard the unfit pixels. For instance, if ECF threshold is set to 10% for NO2, but 

90% for HCHO,  the 10% becomes the determining factor. As shown in this response 

letter, we don’t think clouds will be a major problem in our analysis.  

  

 

3. Line 401: The assumption stated here seems questionable. MINDS-simulated water vapor 

and photolysis rates carry uncertainties, the influence of clouds and aerosols is not 

accounted for. These sources of uncertainty should be incorporated into the error 

analysis. 

Response 

We addressed this in the reviewer’s major comment. 

 

It is not straightforward to characterize the errors in photolysis rates without precisely 

knowing 3D optical properties of clouds/aerosols and surface albedo reflectivity. While 

we could have thrown some numbers to propagate the errors, we think the quality of 

error characterization should be on par with the rest of the analysis.  

 

 

4. Figure 6: While the absolute PO3 values vary between bright and dim conditions, the 

spatial patterns (e.g., the ridgeline) appear consistent? It would be helpful to label the 

ridgeline across all panels. 



Response 

While this is a valid point, we are against binarization of the atmospheric conditions. 

Having more red tapes on these contours will indirectly encourage people to see only the 

sign of the sensitivities, however, as stated in our work, we should consider the magnitude 

of the sensitivities to better describe ozone responses to its precursors. 

 

5. Figure 8: I’m having a hard time interpreting the sensitivity terms. What exactly do these 

sensitivities represent? Given that the magnitudes of photolysis rate, HCHO, and NO2 

differ substantially, and that ozone chemistry is highly nonlinear, are these sensitivities 

additive? 

Response 

We had provided the mathematical meaning of these sensitivities in Appendix A. They 

are the directional derivative providing the first-order sensitivity. 

 

If we sum them, using a Taylor expansion, they will explain the first order approximation 

of PO3 minus a constant value. However, as the reviewer stated, PO3 is a non-linear 

problem and so is the DNN. So in order to better approximate PO3, we should also 

calculate higher order derivatives. We did not provide second-order sensitivities (which 

can be calculated in this way: ), but we think the 

first-order sensitivities are adequate to describe the seasonality of PO3. Basically, the 

sum of these three terms explain most of the amplitude of the seasonality minus a 

constant offset.  

  

 

6. Figure 8: The higher sensitivity of PO3 to HCHO in summer does not necessarily imply 

stronger sensitivity to VOC emissions. This may simply reflect the shared temperature 

dependence of PO3 and HCHO. In CTMs, ozone sensitivity is typically analyzed with 

respect to VOC emissions, whereas HCHO is an intermediate oxidation product rather 

than a primary species. The production of HCHO varies with VOC speciation, NOx levels 

and temperature. 

Response 

This is a valid point, which is why we carefully specify that these sensitivities relate PO3 

to HCHO and NO2 concentrations rather than emissions. The observed HCHO and NO2 

concentrations reflect the integrated effects of emissions, meteorology, transport, 

deposition, and chemistry. Our approach captures these combined processes within the 

product, though we cannot separate their individual contributions. 

  

Modifications 

To reemphasize it we added: 

 

Photolysis rates, which serve as crucial indicators of photochemical activity, are the primary 

determinants of PO3 seasonality. Figure 8 illustrates the sensitivity of PO3 to NO2, HCHO, and 



combined J-values (jNO2 and jO1D) based on Eq.3 across the same regions and months 

presented in Figure 7. The absolute values of PBL HCHO, NO2, and jNO2 are shown in Figure 

S3. As shown in Appendix A, these sensitivity values are influenced by both the magnitude of 

the precursor and the first derivative of PO3 with respect to that precursor. Thus, the sensitivity 

values should be interpreted as the result of these combined effects. Moreover, these 

sensitivities are calculated with respect to local HCHO and NO2 concentrations rather than 

local emissions (unlike typical modeling experiments). Local concentrations reflect the 

combined influence of both local and external emissions through various physicochemical 

processes. 

 



The manuscript presents a new global dataset of net ozone production rates (PO3) derived from 

a neural network framework constrained by satellite observations. The authors develop a deep 

neural network (DNN) model trained with simulations from the F0AM box model and aircraft 

measurements with perturbations. The DNN employs as input a set of geophysical parameters 

derived from multiple sources, including satellite retrievals of HCHO and NO2 (from OMI for 

2005–2019 and TROPOMI for 2018–2023), as well as parameters from the MINDS model. The 

MINDS framework provides the conversion factors from total column to planetary boundary 

layer (PBL) mixing ratios for HCHO and NO2, simulated O3, and water vapor (H2O). 

The authors validate their DNN-derived PO3 product (termed PO3DNN) against the empirical 

formulation described in Souri et al. (2025). The manuscript further examines several 

applications: (i) the intercomparison of OMI- and TROPOMI-based products for 2019, (ii) 

regional PO3 seasonality (2005–2007) across selected sites worldwide, (iii) a heatwave case 

study over the northeastern United States (August 2007), (iv) seasonal and spatial patterns over 

the Middle East (2019), and (v) long-term PO3 trends from 2005–2019 in Los Angeles and 

Tehran. 

Comprehensive uncertainty estimates are presented, including both systematic and random 

errors, with the dominant source attributed to the column-to-PBL conversion factors from 

MINDS. The total relative errors are reported to range from about 25% in polluted regions to 

more than 200% in remote areas. 

The manuscript is scientifically interesting and presents a valuable global dataset of ozone 

production rates derived from satellite observations. However, several key methodological and 

interpretational issues need to be clarified and better quantified before the study can be fully 

evaluated. Therefore, I consider the following as major comments. 

We thank the reviewer for his/her constructive comments and detailed summary, our 

response follows. 

Major Comments 

1. Time period, harmonization, and trend (2005–2023) 

 

The title suggests that the study spans the full period of 2005–2023, implying a 

continuous long-term trend analysis that combines OMI and TROPOMI data. However, 

the actual trend analysis uses only OMI data (2005–2019), while TROPOMI is primarily 

used for 2019 onward and inter-satellite comparison. The manuscript should clarify how 

the two products were harmonized for consistency and provide quantitative evidence of 

their agreement or bias (for example, regional mean differences, temporal overlap). It 

would also strengthen the study to explicitly show the magnitude and spatial or temporal 

characteristics of any applied corrections and to quantify how harmonization affects the 

derived PO3 trends (for example, OMI-only vs. TROPOMI-only vs. combined). Finally, 



please discuss whether a unified 2005–2023 trend is feasible and what systematic offsets 

might influence its interpretation. 

Response 

We acknowledge that the title may create confusion about whether both products 

(TROPOMI and OMI) have been fully harmonized for long-term trend applications. 

 

Harmonization is inherently subjective and depends on user-defined tolerance levels. 

While our products demonstrate consistency within 10% during a joint year (2019), 

whether this level of agreement is sufficient for robust trend calculations depends on both 

the user's tolerance requirements and the magnitude of the trends being analyzed. 

 

Both products use identical models for conversion factors, photolysis rates, water vapor 

calculations, and a forward DNN estimator. The primary differences come from 

variations in NO2 and HCHO VCDs.  

 

Complete harmonization requires consistent retrieval algorithms across both TROPOMI 

and OMI, including: 

• Identical RTMs with consistent assumptions for O2-O2 algorithms, surface 

properties, ocean properties, and so forth. 

• Uniform slant column fitting approaches (using identical spectral windows, cross-

sections, and fitting methods; whether DOAS or BOAS) 

• Consistent a priori assumptions 

 

This needs a substantial undertaking. Well-established, long-term projects such as 

NASA's MEaSUREs and QA4ECV have been developed specifically to create consistent 

algorithms for robust long-term analysis. To our knowledge, such comprehensive 

harmonization has not yet been achieved for TROPOMI, and our current budget 

constraints prevent us from harmonizing the satellite VCDs to this extent. 

 

We have proactively implemented robust bias correction against ground-based remote 

sensing observations, which is a critical component of data harmonization. This 

approach prevents both satellites from diverging significantly from established 

benchmarks as a first-order approximation, resulting in our products' 10% agreement 

(Figure*). Whether this makes up sufficient "data harmonization" ultimately depends on 

users' requirements for trend derivation robustness.  

 

A harmonization effort should be part of a “post-processing” step. Even if we had 

implemented additional harmonization approaches for deriving 2005-2023 trends (an 

objective of our final ACMAP-Aura project year), users would still need to apply their 

preferred harmonization method, as no single standardized approach exists. 

 

An important factor in trend analysis is that TROPOMI's long-term stability for HCHO 

and NO2 measurements has not been as thoroughly validated as OMI's record. Recent 

studies have documented potential drifts in TROPOMI data products that warrant 

further investigation (https://amt.copernicus.org/articles/17/3969/2024/). 

https://amt.copernicus.org/articles/17/3969/2024/


 

In summary, we are unable to fully harmonize TROPOMI and OMI NO2 and HCHO 

retrieval algorithms to create a consistent PO3 product. While the application of the bias 

correction using MAX-DOAS/FTIR has made both products agree well within 10%, we 

think the users may need to apply a harmonization algorithm as a post-processing step. 

We need to provide this caveat and limitation in the summary section. 

 

Modifications 

We added this paragraph to the summary: 

 

While the OMI- and TROPOMI-based PO3 products maintain algorithmic consistency 

in several key components, including photolysis rates and water vapor, the underlying satellite 

retrievals of HCHO and NO2 VCDs remain unharmonized between the two instruments. To 

address the resulting inter-instrument biases, we implemented bias correction using ground-

based remote sensing retrievals as reference standards. This approach achieved OMI and 

TROPOMI PO3 agreement within 10% on average. However, this level of consistency may be 

insufficient for robust joint trend analysis of the combined OMI-TROPOMI PO3 record over 

areas with non-linear or small trends, potentially requiring the implementation of trend 

harmonization algorithms (e.g., Hilboll et al., 2013) to warrant statistical reliability in long-term 

analyses. 

 

 

2. Bias correction using MAX-DOAS 

The bias correction procedure for OMI and TROPOMI retrievals using MAX-DOAS 

observations needs more detail. Were corrections applied globally or regionally, and are 

they time dependent? How large were the typical corrections? The error treatment also 

appears simplified for bias correction and may underestimate correlated uncertainties. 

Response 

The reviewer is right about the fact we did not account for correlated uncertainties 

among HCHO and NO2 VCDs in the error budget or the linear fit between satellites vs. 

benchmarks (although the errors in x and y are considered in Souri et al. 2025 based on 

weighted chi2 minimization).  

 

TROPOMI HCHO bias correction comes from Souri et al. (2025) who expanded the 

analysis of Vigrouroux et al. (2021) using FTIR measurements. A similar work was 

recently done with OMI HCHO with the same dataset (Ayazpour et al., 2025) whose 

correction factors were used in our work. OMI NO2 correction factors were derived 

from a established work done by Pinardi et al. (2021), and TROPOMI NO2 follows the 

work we did in Souri et al. (2025) comparing MAX-DOAS and the satellite observations 

based on an extension to Verhoelst et al. (2020). 

 

We added a new section right after introducing TROPOMI and OMI retrievals to 

elaborate on the number of stations, duration, and the magnitude of these corrections.  

 



The ground remote sensing data used are global. 

 

The reviewer raised concerns about the generalizability of our benchmarks, mentioning 

their sparse distribution and potential for varying satellite discrepancies across seasons 

and locations. However, numerous validation studies (Verhoelst et al., 2020; Vigouroux et 

al., 2021; Ayazpour et al., 2025; and Table 1 in 

https://acp.copernicus.org/articles/21/18227/2021/) have demonstrated that biases in 

TROPOMI and OMI NO2 and HCHO columns consist of two components: an additive 

term (offset that exists uniformly regardless of season or location) and a multiplicative 

term (magnitude-dependent slope). 

 

The rationale for parameterizing retrieval biases as a function of magnitude is to 

enhance correction factor generalizability across seasons/locations. By understanding 

how bias changes with magnitude, we can predict seasonal bias variations since column 

densities vary seasonally.  

 

A remaining question is whether these slopes and offsets remain consistent across 

different locations and seasons? This is precisely why we included bias correction error 

terms in our analysis. If the relationship between benchmarks and satellite retrievals 

varied dramatically by location or season, linear fits would become highly uncertain, 

resulting in large coefficient errors. 

Figure 8 and the validation studies referenced above 

(https://acp.copernicus.org/articles/25/2061/2025/acp-25-2061-2025.pdf) suggest the 

opposite, indicating that these parameters are mostly reliable. Similarly, if we had 

insufficient samples, this would have resulted in larger uncertainties associated with the 

slopes and offsets. 

 

Lastly, would adding a new instrument over a different area change the correction 

factors? This question would fall into the area of “unknown unknown”. We won’t know 

until we measure. The current correction factors applied are based on the most recent 

and credible validation efforts (the known known).  

 

Modifications 

We clarified that the correlated errors aren’t considered in the error characterization: 

 

It is important to acknowledge that the defined total error budget here is only a good guess and 

optimistic. Some underlying sources of error, which are difficult to quantify, are not included. 

For example, errors related to the training dataset derived from the F0AM model are challenging 

to assess because of the lack of PO3 measurements. We assume other inputs to the PO3 

parametrization, such as the monthly climatology TROPOMI surface albedo to be error-free. 

Additionally, all datasets used to estimate PO3 contain spatial representation errors (Souri et al. 

2023), which are difficult to measure without knowing their true state of global spatial 

variability. Moreover, we do not consider correlated errors among HCHO and NO2 retrievals. 

 

We added a new section right after defining the TROPOMI and OMI datasets: 

 

https://acp.copernicus.org/articles/21/18227/2021/
https://acp.copernicus.org/articles/25/2061/2025/acp-25-2061-2025.pdf


1.1.1. Bias correction using ground-based remote sensing data 

In order to remove large biases in both TROPOMI and OMI products, we bias correct 

their columns using the offset (additive term) and slope (multiplicative term) determined from 

a linear fit to paired MAX-DOAS/FTIR and these datasets, as described by Souri et al. (2025). 

The rationale for defining retrieval biases as a function of magnitude is to enhance correction 

factor generalizability across seasons and locations. We take advantage of three studies 

characterizing the bias correction factors, listed in Table 1. The application of these correction 

factors yields consistency across OMI and TROPOMI NO2 and HCHO columns within 10% 

(Section 4.4.4.)  

Table 1. The slopes and offsets derived from various validations studies, used to bias 

correct the satellite retrievals used in the parameterization of PO3. 

Product Slope Offset  Benchmark  Time period 

of validation 

Reference 

TROPOMI 

NO2 

0.59 0.90×1015 

molecs/cm2 

Global MAX-

DOAS 

observations  

2018-2023 Souri et al., 

(2025) 

TROPOMI 

HCHO 

0.66 0.32×1015 

molecs/cm2 

Global FTIR 

observations  

2018-2023 Souri et al., 

(2025) 

OMI NO2 0.83 0.26×1015 

molecs/cm2 

Global MAX-

DOAS 

observations  

Varies for each 

station 

spanning from 

2010-2018 

Pinardi et 

al., (2020) 

OMI 

HCHO 

0.79 0.82×1015 

molecs/cm2 

Global FTIR 

observations 

Varies for each 

station 

spanning from 

2004-2020 

Ayazpour 

et al., 

(2025) 

 

 

3. Comparison with FNR 

 

The authors argue that the PO3 framework provides more detailed and continuous 

information on ozone production and sensitivity than the traditional formaldehyde-

nitrogen ratio (FNR). I agree with this conceptual advantage. However, the manuscript 

does not clearly demonstrate how much additional information PO3 offers beyond FNR 

in a quantitative or diagnostic sense. It would strengthen the paper if the authors could 

illustrate specific cases or regions where PO3 reveals gradients or features that are not 

captured by FNR-based classifications. 

 

The manuscript also describes FNRs as "binary," but it would be more accurate to say 



that the interpretation of FNRs is often binary, based on thresholding between VOC-

limited and NOx-limited regimes, while the FNR values themselves are continuous. 

Clarifying this distinction would help avoid oversimplifying the FNR framework. 

 

Finally, the description of Figure 14 qualitatively compares the spatial patterns of PO3 

sensitivities to HCHO and NO2. This section could be improved by quantifying those 

relationships, for example by providing correlation or regression metrics between PO3 

sensitivities and FNRs, or by showing how the two indicators diverge under different 

chemical conditions (for example, high-HCHO/low-NO2 versus low-HCHO/high-NO2). 

Such quantitative comparisons would make the claimed improvement of the PO3 

framework more convincing and scientifically interpretable. 

Response 

When someone gives us an FNR value (assuming no measurement errors and that 

HCHO and NO2 perfectly represent VOCR and reactive nitrogen), how do we actually 

assign a sensitivity value to it in units like ppbv/hr or 1/hr (in case of dPO3/dNO2 or 

dHCHO)? The main reason we use FNR is to help regulators. What regulators really 

need from us are the first and second-order derivatives of ozone production rates relative 

to NOX and VOC emissions, so they can estimate how PO3 will change under different 

emission scenarios. Where does FNR fit into this? It only tells us the sign of the 

sensitivities, and by itself it's not enough to translate varying FNR values into actual 

derivatives or sensitivities. 

 

Going back to the original question: how do we provide these sensitivities given just an 

FNR value? That requires us to know a lot more about the underlying atmospheric 

conditions like light levels, humidity, how well HCHO and NO2 represent VOCR and 

reactive nitrogen, and in some cases heterogeneous chemistry, chlorine chemistry, HONO 

chemistry, and so on. FNR simply can't capture all these dimensions. 

 

So, can our new product fully meet what regulators need? Not fully; but it is a step 

forward. It provides first-order derivatives based on how HCHO, NO2, water vapor, and 

photolysis rates change. We're missing second-order derivatives, and there's a more 

fundamental hurdle: HCHO and NO2 do not fully represent local emissions because they 

go through other physical and chemical processes like transport. 

 

That said, we don't think it's very useful to compare an incomplete two-dimensional 

representation of multidimensional nonlinear ozone chemistry with a product that has 

more dimensions.  

 

To elaborate more; FNR has three blind spots: 

1. Lack of sensitivity magnitudes: FNR only classifies regimes without quantifying 

the actual magnitude of ozone sensitivities. For example, if 𝛛𝑷𝑶𝟑
/𝛛𝑵𝑶𝟐is +10 s⁻¹ 

or +3 s⁻¹, both would be labeled “NOx-sensitive,” even though their regulatory 

implications might be different. What truly matters about emission control is the 

magnitude of these responses. For this reason, CTM-based calculations (either 



through direct decoupled methods, perturbation or adjoint approaches) are 

typically used. These, however, require extensive efforts to constrain model inputs 

with satellite data (see Souri et al., 2020: 

https://acp.copernicus.org/articles/20/9837/2020/).  

 

Our work provides quantitative first-order sensitivity maps, equivalent to 

directional derivatives (Appendix A), which is a major innovation of the new 

algorithm. 

 

2. Varying FNR values cannot be directly linked to varying magnitude of 

sensitivities without accounting for photolysis rates, water vapor, and so forth. 

These geophysical variables are not articulated by FNR. 

 

3. Lack of adequate dimensions: FNR slices the inherently multidimensional, 

nonlinear system into just two dimensions. To demonstrate this shortcoming, we 

perturbed photolysis rates over polluted regions during the KORUS-AQ 

campaign using observationally-constrained F0AM model. Multiplying photolysis 

rates by factors of 0.5 (dim, left), 1.0 (default, middle), and 2.0 (bright, right) 

produced three sets of PO3 isopleths. 

 

 
 

The results clearly show that increasing light intensity raises both net PO3 and its 

sensitivities to NOx and VOC (the contours are more compact in the bright case; each 

contour corresponds to 3 ppbv/hr).  

This means that the same FNR can correspond to entirely different magnitude of 

sensitivities depending on available light. There is where FNR falls apart. 

 

Although one might expect FNR to indirectly reflect variations in photolysis rates, our 

analysis of 47,000 data points obtained from KORUS-AQ measurements showed no 

relationship between measured 𝒋𝐍𝐎𝟐and FNR: 

 

https://acp.copernicus.org/articles/20/9837/2020/


 
A similar limitation arises from FNR’s inability to account for water vapor effects on 

PO3. Capturing these complex nonlinear interactions between PO3, light, humidity, and 

precursor concentrations requires more advanced methods over a simple ratio, lacking 

any information about light intensity and humidity. In a data-driven framework, this is 

best achieved using nonlinear parameterizations such as DNNs. 

 

This new product therefore represents a paradigm shift away from oversimplified FNR 

approaches. It not only provides spatiotemporal sensitivity magnitudes, but also accounts 

for multidimensional dependencies. We highlight this feature in Section 4.3. 

 

 

Modifications 

To better inform how the new sensitivity maps can eliminate the need for FNR, we 

added:  

 

“Beyond Binary Maps from HCHO/NO₂: A Deep Neural Network Approach to Global Daily 

Mapping of Net Ozone Production Rates and Sensitivities Constrained by Satellite 

Observations (2005–2023)” 

 

While we had provided context about the advances made compared to FNR, we added a 

paragraph in the introduction describing why we should quantify the multidimensional 

magnitude of PO3 sensitivity, currently lacking in FNR-based approaches. We added in 

the introduction: 

 

The overarching goal of producing ozone chemistry sensitivity maps is to inform 

regulatory agencies about the impact of emission reductions on locally produced ozone. Unlike 

conventional FNR-based binary maps, these maps must quantify the magnitude of sensitivity 

rather than merely indicating its direction. This quantitative approach is essential because both 



the sign and magnitude of sensitivities are crucial for understanding the impact of emission 

changes. While detailed sensitivity maps can be derived from chemical transport models by 

perturbing underlying emissions, the lack of observational constraints on these models can 

introduce significant biases. Souri et al. (2025) attempted to address this limitation by providing 

magnitude-dependent sensitivity maps of PO₃ to NO2 and HCHO using piecewise linear 

regression. However, their approach yielded derivatives of PO₃ with respect to NO₂ and HCHO 

that remained invariant with changes in light and humidity conditions. This limitation is 

problematic because reduced light conditions are known to substantially dampen the sensitivity 

of PO₃ to NOₓ and VOCs, even under identical emission rates. The current work is therefore 

motivated by the need to capture the complex, multidimensional dependencies of PO₃ on ozone 

precursors, light intensity, and humidity using a more flexible data-driven approach through a 

machine learning algorithm. While these maps will not replace process-based chemical transport 

model experiments, they can efficiently provide first-order assessments to: (i) strategize top-

down modeling experiments, (ii) gauge the added value of satellites on predictions of PO3, and 

(iii) guide the design of sub-orbital missions in regions with poorly documented elevated PO3. 

 

In the supplementary, we added a new section describing the fundamental issues with 

FNR; we did not include it in the main draft because it is more of a reminder for people 

who may misuse FNR rather than bringing new insights into ozone chemistry. 

1. FNR is oblivious to the impact of photolysis rates and water vapor content 

on PO3 

The primary objective of using the formaldehyde-to-nitrogen dioxide ratio (FNR) is to reduce 

high-dimensional, non-linear ozone production rates into a two-dimensional framework based 

on volatile organic compound reactivity (VOCR) and reactive nitrogen. However, beyond the 

fact that HCHO and NO2 does not fully represent VOCR and reactive nitrogen, it is crucial to 

recognize that ozone production rate sensitivities and magnitudes depend on other geophysical 

variables independent of FNR. Among these variables, photolysis rates and water vapor are 

major drivers of atmospheric oxidation capacity, modulating numerous reactions related to 

ozone production (Kleinman et al., 2001). 

To demonstrate photolysis rate effects on both PO3 magnitudes and sensitivities, we conducted 

F0AM box model simulations constrained by geophysical variables during June 6-9 of the 

KORUS-AQ campaign (Souri et al., 2025). We perturbed NOx, VOCs, and photolysis rates to 

generate three sets of isopleths (Figure S1). The results clearly show larger ozone production 

rates under more intense light conditions. More importantly, the contours corresponding to 

identical PO3 intervals (3 ppbv/hr) become more compact under brighter conditions, indicating 

that PO3 becomes more sensitive to both NOX and VOCs with increased light intensity. This 

pattern suggests that identical FNR values under different photolysis rates can have 

fundamentally different implications for ozone production rate sensitivities. 

To confirm that FNR contains no photolysis rate information, we analyze paired FNR and 

jNO2 photolysis rate measurements from over 47,000 data points during the KORUS-AQ 

campaign, revealing no correlation between these variables (Figure S2). This demonstrates the 

need for additional dimensions in ozone sensitivity analysis, necessitating more sophisticated 
algorithms (like our approach) over traditional threshold-based methods. 



 
Figure S1. The PO3 isopleths generated using F0AM box models derived from observations 

taken during the KORUS-AQ campaign under three different photolysis rates scenarios: (left) 

multiplied by 0.5, (middle) default, (right) multiplied by 2.0. Each contour represents 3 

ppbv/hr. 

 
Figure S2. The comparison of measured FNR and measured jNO2 frequencies taken from 

aircraft observations during the KORUS-AQ campaigns. All measured points are used to make 

this plot. 

Figure S3 illustrates the representation of ozone sensitivities by mapping five variables derived 

from TROPOMI and our PO3DNN parameterization across two seasons over Los Angeles. 

FNR values are low during colder months due to abundant NO2 relative to HCHO, 

qualitatively suggesting the LA region should be predominantly VOC-sensitive. However, the 

derivatives and sensitivities of PO3 to both HCHO and NO2 remain muted due to limited 

photochemical activity, making PO3 unresponsive to NOX and VOC concentrations. 

Conversely, summer conditions yield larger derivatives, showing much stronger PO3 responses 

to both species. This example can be extended to different times of day, such as FNR values 



from geostationary satellites or morning versus afternoon measurements from low Earth orbit 

satellites. 

 
Figure S3. Five variables derived from our PO3DNN product based on TROPOMI dataset. 

The first row focuses on December-January-February (DJF), while the second row shows 

those variables for June-July-August 2023. The calculation of the sensitivities and derivatives 

are based on perturbation of the DNN algorithm described in the main paper. 

The absence of PO3-relevant geophysical information in FNR also applies to water vapor. 

F0AM box simulations over polluted regions show that increasing humidity enhances PO3 

through the generation of two OH molecules via H2O+O1D reactions (Figure S4). However, 

FNR contains no water vapor information, as humidity is driven by hydrological and 

meteorological factors decoupled from the processes determining FNR (Figure S5). This 

further necessitates adding water vapor as an additional dimension in ozone sensitivity 



analysis.

 
Figure S4. The effect of H2O(v) on PO3 during KORUS-AQ campaigns. Only highly polluted 

regions (HCHO×NO2 > 10) are selected for this experiment.  

 

 
Figure S5. The comparison of measured FNR and measured water vapor density taken 

from aircraft observations during the KORUS-AQ campaigns. All measured points are used to 

make this plot. 



 

 

4. Conversion factor and averaging kernel 

 

It is unclear whether satellite averaging kernels were applied when deriving the column-

to-PBL conversion factors using MINDS. If they were applied, please specify how; if not, 

discuss the potential influence on near-surface concentrations and the resulting PO3 

estimates. 

Response 

There are two main approaches to remove or mitigate the influence of the a priori 

assumptions used in OMI and TROPOMI AMFs in order to obtain a consistent, MINDS-

driven conversion factor that reflects the satellite vertical sensitivity. 

 

Approach 1: Convolving MINDS Conversion Factors with Satellite Averaging Kernels 

In this approach, the conversion factor is defined as 

𝒇𝑨𝑲 = 𝒒𝑷𝑩𝑳/∑𝒙, 

where 𝒒𝑷𝑩𝑳  is MINDS PBL mixing ratio and  𝒙 = 𝒙𝒂 + 𝑨(𝒙𝑴𝑰𝑵𝑫𝑺 − 𝒙𝒂). Here, 𝒙𝒂 and 

𝒙𝑴𝑰𝑵𝑫𝑺  represent the a priori and MINDS partial columns, respectively, and A is the 

averaging kernels. 

While this method is scientifically sound, it introduces significant complexity: the 

resulting conversion factor becomes dependent on satellite viewing geometry, scene-

specific averaging kernels, and the a priori vertical profiles. This dependency makes 

validation of the conversion factors against in situ observations extremely difficult. 

As noted in the manuscript, the dominant source of systematic error in our product 

comes from the conversion factors themselves. If these factors are entangled with 

averaging kernel and a priori uncertainties, they lose generalization and consistency 

across retrievals and a priori frameworks. By maintaining a sensitivity- and a priori-

agnostic formulation (as validated in Appendix B), we ensure that conversion factors can 

be robustly validated using aircraft observations and applied consistently across models. 

In other words, the question of “which model does better convert columns to the near 

surface concentrations?” can be more easily answered without delving into the nuances 

of satellite sensitivities.  

 

Approach 2: Recalculating AMFs Using MINDS Vertical Shape Factors 

This alternative approach recalculates the AMFs using MINDS vertical profiles (section 

2.1 in https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD028009 ), allowing 

the conversion factor to remain independent of the satellite retrieval. This is a preferred 

algorithm over approach #1. However, it introduces a circular problem: recalculating 

AMFs would necessitate revalidating and bias-correcting TROPOMI and OMI NO2 and 

HCHO columns against ground-based datasets. Repeating the extensive work of 

Verhoelst et al. (2020), Vigouroux et al. (2021), Pinardi et al. (2021), and Ayazpour et al. 

(2025) would be a major undertaking. 

For these reasons, we chose not to refine the TROPOMI and OMI VCDs using MINDS 

shape factors at the cost of introducing some biases in our product. 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD028009


 

To show the impact of neglecting this step on PO3, we recalculate AMF with MINDS 

shape factors over the CONUS, an area with varying emissions and meteorological 

conditions, using our OI-SAT-GMI package (https://github.com/ahsouri/OI-SAT-

GMI/tree/main), and quantify the impact on PO3. 

 

Regarding NO2, we see AMF (thus VCDs and PBL mixing ratios) to vary within 5±9% 

on average with minimal changes over polluted regions while seeing bigger values over 

higher latitudes  or dark albedo where the retrieval becomes more dependent on the a 

priori. These changes induce minimal changes on PO3 (<20%) over PO3>0.5 ppbv area, 

especially hotpots of PO3. The changes can reach to 40-50% over remote high latitude 

regions, but PO3 errors are already extremely large (>200%) because of the errors in 

MINDS conversion factors: 

 
 

https://github.com/ahsouri/OI-SAT-GMI/tree/main
https://github.com/ahsouri/OI-SAT-GMI/tree/main


 
 

Concerning HCHO, AMFs changed around the same magnitude as those of NO2 

(10±7%) resulting in PO3 changing to <15% over PO3>0.5 ppbv/hr.  

 

Therefore, skipping AMFs recalculation should result in ~25% errors in PO3 estimates. 

However, the consideration of AMFs without redoing the bias-correction would have 

resulted in the same level of errors, suggesting the most robust way is to adjust both (bias 

correction and AMFs) at the same time which is not feasible given our budget constraint. 

 



 
 

Modifications 

We added: 

 

We also quantify the impact of inconsistent shape factors used in the retrievals and the 

MINDS profile on PO3 estimates and find them introducing systematic errors of 5-25% over 

PO3>0.5 ppbv/hr (Figures S14-S17). Refining TROPOMI and OMI products with MINDS shape 

factors would require reproducing several large-scale validation efforts (e.g., Verhoelst et al., 



2020; Vigouroux et al., 2021; Pinardi et al., 2021; Ayazpour et al., 2025), which is beyond the 

practical scope and resources of this study. 

In the summary section: 

 

The total errors budget emphasizes on the role of model used for converting satellite-

based VCDs to near-surface concentrations and its importance for precisely determining ozone 

precursors levels near to the surface. Furthermore, in future efforts, we also need to refine 

satellite retrievals using spatially higher-resolution AMFs derived from MINDS while 

simultaneously performing retrieval validation against ground-based remote sensing 

observations. 

 

iii) the inclusion of more sophisticated chemical mechanisms for the generation of the training 

dataset; and iv) enhanced representation of vertical profiles of NO2 and HCHO using 

observationally-constrained chemical transport models with more rigorous column to near-

surface conversion factors (Cooper et al. 2020). 

 

We added the above figures to the supplementary material. 

 

Minor Comments 

 

It would be helpful to clarify whether H2O values are directly inherited from MERRA-2 or 

modified within the MINDS model. 

Response 

MERRA2 is used to constrain U,V, QV, and T using the replay mode at 3-hourly basis in 

MINDS. So, meteorology is resolved in MINDS through GEOS. MERRA2 only adds a 

constraint. 

 

Modifications 

We added: 

 

Meteorology is resolved using GEOS with several prognostic inputs, including water vapor, 

being constrained by MERRA-2 reanalysis using “replay” mode at 3-hourly basis (Orbe et al., 

2017). 

 

 

The description of “Southeast Asia” may be misleading; the text refers to August–September 

biomass burning, which applies mainly to maritime Southeast Asia, while continental Southeast 

Asia (Thailand, Myanmar, Laos, Cambodia) experiences its peak burning during February–

April. Please clarify the regional definition. 



Response 

Thanks for pointing out this geographic mistake. 

 

Modifications 

We renamed the region to “maritime Southeast Asia” throughout the manuscript. 

 

The expression “SZA acquired from the satellite L2 products” could be misleading, since SZA is 

not directly observed but computed from geometry information. Suggest rephrasing to “SZA 

derived from the geometry information in the L2 products.” 

Response 

SZA is actually already computed and provided with L2 products. It’s true that we can 

calculate that given time, location, and altitude, but the operation team has done it 

already.  

 

Modifications 

We modified it to: 

 

Both SZA and surface altitude are provided as auxiliary fields in the satellite L2 products. 

 

Check typographical errors (for example, “trend trends” to “trends”; “Tehan” to “Tehran”). 

Response 

Corrected 

 

 

The phrase “textbook example of non-linear chemistry” could be softened to “a clear 

demonstration of non-linear ozone chemistry.” 

Response 

Corrected 

 

 


