The manuscript presents a new global dataset of net ozone production rates (PO3) derived from
a neural network framework constrained by satellite observations. The authors develop a deep
neural network (DNN) model trained with simulations from the FOAM box model and aircraft
measurements with perturbations. The DNN employs as input a set of geophysical parameters
derived from multiple sources, including satellite retrievals of HCHO and NO2 (from OMI for
2005-2019 and TROPOMI for 2018-2023), as well as parameters from the MINDS model. The
MINDS framework provides the conversion factors from total column to planetary boundary
layer (PBL) mixing ratios for HCHO and NO2, simulated O3, and water vapor (H20).

The authors validate their DNN-derived PO3 product (termed PO3DNN) against the empirical
formulation described in Souri et al. (2025). The manuscript further examines several
applications: (i) the intercomparison of OMI- and TROPOMI-based products for 2019, (ii)
regional PO3 seasonality (2005—-2007) across selected sites worldwide, (iii) a heatwave case
study over the northeastern United States (August 2007), (iv) seasonal and spatial patterns over
the Middle East (2019), and (v) long-term PO3 trends from 2005—-2019 in Los Angeles and
Tehran.

Comprehensive uncertainty estimates are presented, including both systematic and random
errors, with the dominant source attributed to the column-to-PBL conversion factors from
MINDS. The total relative errors are reported to range from about 25% in polluted regions to
more than 200% in remote areas.

The manuscript is scientifically interesting and presents a valuable global dataset of ozone
production rates derived from satellite observations. However, several key methodological and
interpretational issues need to be clarified and better quantified before the study can be fully
evaluated. Therefore, I consider the following as major comments.

We thank the reviewer for his/her constructive comments and detailed summary, our
response follows.

Major Comments

1. Time period, harmonization, and trend (2005—-2023)

The title suggests that the study spans the full period of 2005-2023, implying a
continuous long-term trend analysis that combines OMI and TROPOMI data. However,
the actual trend analysis uses only OMI data (2005-2019), while TROPOMI is primarily
used for 2019 onward and inter-satellite comparison. The manuscript should clarify how
the two products were harmonized for consistency and provide quantitative evidence of
their agreement or bias (for example, regional mean differences, temporal overlap). It
would also strengthen the study to explicitly show the magnitude and spatial or temporal
characteristics of any applied corrections and to quantify how harmonization affects the
derived PO3 trends (for example, OMI-only vs. TROPOM]I-only vs. combined). Finally,



please discuss whether a unified 2005—-2023 trend is feasible and what systematic offsets
might influence its interpretation.

\ Response
We acknowledge that the title may create confusion about whether both products
(TROPOMI and OMI) have been fully harmonized for long-term trend applications.

Harmonization is inherently subjective and depends on user-defined tolerance levels.
While our products demonstrate consistency within 10% during a joint year (2019),
whether this level of agreement is sufficient for robust trend calculations depends on both
the user's tolerance requirements and the magnitude of the trends being analyzed.

Both products use identical models for conversion factors, photolysis rates, water vapor
calculations, and a forward DNN estimator. The primary differences come from
variations in NO2 and HCHO VCDs.

Complete harmonization requires consistent retrieval algorithms across both TROPOMI
and OMI, including:
e Identical RTMs with consistent assumptions for 02-O2 algorithms, surface
properties, ocean properties, and so forth.
e Uniform slant column fitting approaches (using identical spectral windows, cross-
sections, and fitting methods; whether DOAS or BOAS)
e Consistent a priori assumptions

This needs a substantial undertaking. Well-established, long-term projects such as
NASA's MEaSUREs and QA4ECYV have been developed specifically to create consistent
algorithms for robust long-term analysis. To our knowledge, such comprehensive
harmonization has not yet been achieved for TROPOMI, and our current budget
constraints prevent us from harmonizing the satellite VCDs to this extent.

We have proactively implemented robust bias correction against ground-based remote
sensing observations, which is a critical component of data harmonization. This
approach prevents both satellites from diverging significantly from established
benchmarks as a first-order approximation, resulting in our products' 10% agreement
(Figure*). Whether this makes up sufficient "data harmonization' ultimately depends on
users' requirements for trend derivation robustness.

A harmonization effort should be part of a “post-processing” step. Even if we had
implemented additional harmonization approaches for deriving 2005-2023 trends (an
objective of our final ACMAP-Aura project year), users would still need to apply their
preferred harmonization method, as no single standardized approach exists.

An important factor in trend analysis is that TROPOMI's long-term stability for HCHO
and NO2 measurements has not been as thoroughly validated as OMI's record. Recent
studies have documented potential drifts in TROPOMI data products that warrant
further investigation (https://amt.copernicus.org/articles/17/3969/2024/).



https://amt.copernicus.org/articles/17/3969/2024/

In summary, we are unable to fully harmonize TROPOMI and OMI NO2 and HCHO
retrieval algorithms to create a consistent PO3 product. While the application of the bias
correction using MAX-DOAS/FTIR has made both products agree well within 10%, we
think the users may need to apply a harmonization algorithm as a post-processing step.
We need to provide this caveat and limitation in the summary section.

| Modifications
We added this paragraph to the summary:

While the OMI- and TROPOMI-based PO3 products maintain algorithmic consistency
in several key components, including photolysis rates and water vapor, the underlying satellite
retrievals of HCHO and NO; VCDs remain unharmonized between the two instruments. To
address the resulting inter-instrument biases, we implemented bias correction using ground-
based remote sensing retrievals as reference standards. This approach achieved OMI and
TROPOMI POs3 agreement within 10% on average. However, this level of consistency may be
insufficient for robust joint trend analysis of the combined OMI-TROPOMI POs record over
areas with non-linear or small trends, potentially requiring the implementation of trend
harmonization algorithms (e.g., Hilboll et al., 2013) to warrant statistical reliability in long-term
analyses.

2. Bias correction using MAX-DOAS
The bias correction procedure for OMI and TROPOMI retrievals using MAX-DOAS
observations needs more detail. Were corrections applied globally or regionally, and are
they time dependent? How large were the typical corrections? The error treatment also

appears simplified for bias correction and may underestimate correlated uncertainties.

\ Response

The reviewer is right about the fact we did not account for correlated uncertainties
among HCHO and NO2 VCDs in the error budget or the linear fit between satellites vs.
benchmarks (although the errors in x and y are considered in Souri et al. 2025 based on
weighted chi2 minimization).

TROPOMI HCHO bias correction comes from Souri et al. (2025) who expanded the
analysis of Vigrouroux et al. (2021) using FTIR measurements. A similar work was
recently done with OMI HCHO with the same dataset (Ayazpour et al., 2025) whose
correction factors were used in our work. OMI NO2 correction factors were derived
from a established work done by Pinardi et al. (2021), and TROPOMI NO2 follows the
work we did in Souri et al. (2025) comparing MAX-DOAS and the satellite observations
based on an extension to Verhoelst et al. (2020).

We added a new section right after introducing TROPOMI and OMI retrievals to
elaborate on the number of stations, duration, and the magnitude of these corrections.




The ground remote sensing data used are global.

The reviewer raised concerns about the generalizability of our benchmarks, mentioning
their sparse distribution and potential for varying satellite discrepancies across seasons
and locations. However, numerous validation studies (Verhoelst et al., 2020; Vigouroux et
al., 2021; Ayazpour et al., 2025; and Table 1 in
https://acp.copernicus.org/articles/21/18227/2021/) have demonstrated that biases in
TROPOMI and OMI NO2 and HCHO columns consist of two components: an additive
term (offset that exists uniformly regardless of season or location) and a multiplicative
term (magnitude-dependent slope).

The rationale for parameterizing retrieval biases as a function of magnitude is to
enhance correction factor generalizability across seasons/locations. By understanding
how bias changes with magnitude, we can predict seasonal bias variations since column
densities vary seasonally.

A remaining question is whether these slopes and offsets remain consistent across
different locations and seasons? This is precisely why we included bias correction error
terms in our analysis. If the relationship between benchmarks and satellite retrievals
varied dramatically by location or season, linear fits would become highly uncertain,
resulting in large coefficient errors.

Figure 8 and the validation studies referenced above
(https://acp.copernicus.org/articles/25/2061/2025/acp-25-2061-2025.pdf) suggest the
opposite, indicating that these parameters are mostly reliable. Similarly, if we had
insufficient samples, this would have resulted in larger uncertainties associated with the
slopes and offsets.

Lastly, would adding a new instrument over a different area change the correction
factors? This question would fall into the area of “unknown unknown”. We won’t know
until we measure. The current correction factors applied are based on the most recent
and credible validation efforts (the known known).

| Modifications
We clarified that the correlated errors aren’t considered in the error characterization:

It is important to acknowledge that the defined total error budget here is only a good guess and
optimistic. Some underlying sources of error, which are difficult to quantify, are not included.
For example, errors related to the training dataset derived from the FOAM model are challenging
to assess because of the lack of PO3; measurements. We assume other inputs to the PO3
parametrization, such as the monthly climatology TROPOMI surface albedo to be error-free.
Additionally, all datasets used to estimate PO3 contain spatial representation errors (Souri et al.
2023), which are difficult to measure without knowing their true state of global spatial
variability. Moreover, we do not consider correlated errors among HCHO and NO; retrievals.

We added a new section right after defining the TROPOMI and OMI datasets:



https://acp.copernicus.org/articles/21/18227/2021/
https://acp.copernicus.org/articles/25/2061/2025/acp-25-2061-2025.pdf

1.1.1.

Bias correction using ground-based remote sensing data

In order to remove large biases in both TROPOMI and OMI products, we bias correct
their columns using the offset (additive term) and slope (multiplicative term) determined from
a linear fit to paired MAX-DOAS/FTIR and these datasets, as described by Souri et al. (2025).
The rationale for defining retrieval biases as a function of magnitude is to enhance correction
factor generalizability across seasons and locations. We take advantage of three studies
characterizing the bias correction factors, listed in Table 1. The application of these correction
factors yields consistency across OMI and TROPOMI NO> and HCHO columns within 10%
(Section 4.4.4.)

Table 1. The slopes and offsets derived from various validations studies, used to bias
correct the satellite retrievals used in the parameterization of POs.

Product Slope Offset Benchmark Time period Reference
of validation
TROPOMI 0.59  0.90x10% Global MAX- 2018-2023 Souri et al.,
NO» molecs/cm? DOAS (2025)
observations
TROPOMI 0.66  0.32x10% Global FTIR 2018-2023 Souri et al.,
HCHO molecs/cm? observations (2025)
OMINO: 0.83  0.26x10" Global MAX- Varies foreach Pinardi et
molecs/cm? DOAS station al., (2020)
observations spanning from
2010-2018
OMI 0.79  0.82x10" Global FTIR Varies foreach Ayazpour
HCHO molecs/cm? observations station et al.,
spanning from (2025)

2004-2020

3. Comparison with FNR

The authors argue that the PO3 framework provides more detailed and continuous
information on ozone production and sensitivity than the traditional formaldehyde-
nitrogen ratio (FNR). I agree with this conceptual advantage. However, the manuscript
does not clearly demonstrate how much additional information PO3 offers beyond FNR
in a quantitative or diagnostic sense. It would strengthen the paper if the authors could
illustrate specific cases or regions where PO3 reveals gradients or features that are not
captured by FNR-based classifications.

The manuscript also describes FNRs as "binary,” but it would be more accurate to say




that the interpretation of FNRs is often binary, based on thresholding between VOC-
limited and NOx-limited regimes, while the FNR values themselves are continuous.
Clarifying this distinction would help avoid oversimplifying the FNR framework.

Finally, the description of Figure 14 qualitatively compares the spatial patterns of PO3
sensitivities to HCHO and NO2. This section could be improved by quantifying those
relationships, for example by providing correlation or regression metrics between PO3
sensitivities and FNRs, or by showing how the two indicators diverge under different
chemical conditions (for example, high-HCHO/low-NO2 versus low-HCHO/high-NO?2).
Such quantitative comparisons would make the claimed improvement of the PO3
framework more convincing and scientifically interpretable.

| Response
When someone gives us an FNR value (assuming no measurement errors and that
HCHO and NO2 perfectly represent VOCR and reactive nitrogen), how do we actually
assign a sensitivity value to it in units like ppbv/hr or 1/hr (in case of dPO3/dNO2 or
dHCHO)? The main reason we use FNR is to help regulators. What regulators really
need from us are the first and second-order derivatives of ozone production rates relative
to NOX and VOC emissions, so they can estimate how PO3 will change under different
emission scenarios. Where does FNR fit into this? It only tells us the sign of the
sensitivities, and by itself it's not enough to translate varying FNR values into actual
derivatives or sensitivities.

Going back to the original question: how do we provide these sensitivities given just an
FNR value? That requires us to know a lot more about the underlying atmospheric
conditions like light levels, humidity, how well HCHO and NO2 represent VOCR and
reactive nitrogen, and in some cases heterogeneous chemistry, chlorine chemistry, HONO
chemistry, and so on. FNR simply can't capture all these dimensions.

So, can our new product fully meet what regulators need? Not fully; but it is a step
forward. It provides first-order derivatives based on how HCHO, NO2, water vapor, and
photolysis rates change. We're missing second-order derivatives, and there's a more
fundamental hurdle: HCHO and NO2 do not fully represent local emissions because they
go through other physical and chemical processes like transport.

That said, we don't think it's very useful to compare an incomplete two-dimensional
representation of multidimensional nonlinear ozone chemistry with a product that has
more dimensions.

To elaborate more; FNR has three blind spots:

1. Lack of sensitivity magnitudes: FNR only classifies regimes without quantifying
the actual magnitude of ozone sensitivities. For example, if P, /ONO,is +10 s
or +3 s, both would be labeled “NOx-sensitive,” even though their regulatory
implications might be different. What truly matters about emission control is the
magnitude of these responses. For this reason, CTM-based calculations (either




through direct decoupled methods, perturbation or adjoint approaches) are
typically used. These, however, require extensive efforts to constrain model inputs
with satellite data (see Souri et al., 2020:
https://acp.copernicus.org/articles/20/9837/2020/).

Our work provides quantitative first-order sensitivity maps, equivalent to
directional derivatives (Appendix A), which is a major innovation of the new

algorithm.

2. Varying FNR values cannot be directly linked to varying magnitude of
sensitivities without accounting for photolysis rates, water vapor, and so forth.
These geophysical variables are not articulated by FNR.

3. Lack of adequate dimensions: FNR slices the inherently multidimensional,
nonlinear system into just two dimensions. To demonstrate this shortcoming, we
perturbed photolysis rates over polluted regions during the KORUS-AQ
campaign using observationally-constrained FOAM model. Multiplying photolysis
rates by factors of 0.5 (dim, left), 1.0 (default, middle), and 2.0 (bright, right)
produced three sets of PO3 isopleths.
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The results clearly show that increasing light intensity raises both net PO3 and its
sensitivities to NOx and VOC (the contours are more compact in the bright case; each
contour corresponds to 3 ppbv/hr).

This means that the same FNR can correspond to entirely different magnitude of
sensitivities depending on available light. There is where FNR falls apart.

Although one might expect FNR to indirectly reflect variations in photolysis rates, our
analysis of 47,000 data points obtained from KORUS-AQ measurements showed no
relationship between measured jNO,and FNR:



https://acp.copernicus.org/articles/20/9837/2020/

o
o
]
Ul

Measured JNO2
o
=
(O]

5 10 15 20 25 30
Measured FNR

A similar limitation arises from FNR’s inability to account for water vapor effects on
PO3. Capturing these complex nonlinear interactions between PO3, light, humidity, and
precursor concentrations requires more advanced methods over a simple ratio, lacking
any information about light intensity and humidity. In a data-driven framework, this is
best achieved using nonlinear parameterizations such as DNNs.

This new product therefore represents a paradigm shift away from oversimplified FNR
approaches. It not only provides spatiotemporal sensitivity magnitudes, but also accounts
for multidimensional dependencies. We highlight this feature in Section 4.3.

| Modifications |
To better inform how the new sensitivity maps can eliminate the need for FNR, we
added:

“Beyond Binary Maps from HCHO/NO:: A Deep Neural Network Approach to Global Daily
Mapping of Net Ozone Production Rates and Sensitivities Constrained by Satellite
Observations (2005-2023)”

While we had provided context about the advances made compared to FNR, we added a
paragraph in the introduction describing why we should quantify the multidimensional
magnitude of PO3 sensitivity, currently lacking in FNR-based approaches. We added in
the introduction:

The overarching goal of producing ozone chemistry sensitivity maps is to inform
regulatory agencies about the impact of emission reductions on locally produced ozone. Unlike
conventional FNR-based binary maps, these maps must quantify the magnitude of sensitivity
rather than merely indicating its direction. This quantitative approach is essential because both




the sign and magnitude of sensitivities are crucial for understanding the impact of emission
changes. While detailed sensitivity maps can be derived from chemical transport models by
perturbing underlying emissions, the lack of observational constraints on these models can
introduce significant biases. Souri et al. (2025) attempted to address this limitation by providing
magnitude-dependent sensitivity maps of POs to NO2 and HCHO using piecewise linear
regression. However, their approach yielded derivatives of POs with respect to NO. and HCHO
that remained invariant with changes in light and humidity conditions. This limitation is
problematic because reduced light conditions are known to substantially dampen the sensitivity
of POs to NOy and VOCs, even under identical emission rates. The current work is therefore
motivated by the need to capture the complex, multidimensional dependencies of POs on ozone
precursors, light intensity, and humidity using a more flexible data-driven approach through a
machine learning algorithm. While these maps will not replace process-based chemical transport
model experiments, they can efficiently provide first-order assessments to: (i) strategize top-
down modeling experiments, (ii) gauge the added value of satellites on predictions of PO3, and
(ii1) guide the design of sub-orbital missions in regions with poorly documented elevated POs.

In the supplementary, we added a new section describing the fundamental issues with
FNR; we did not include it in the main draft because it is more of a reminder for people
who may misuse FNR rather than bringing new insights into ozone chemistry.

1. FNR is oblivious to the impact of photolysis rates and water vapor content
on PO3

The primary objective of using the formaldehyde-to-nitrogen dioxide ratio (FNR) is to reduce
high-dimensional, non-linear ozone production rates into a two-dimensional framework based
on volatile organic compound reactivity (VOCR) and reactive nitrogen. However, beyond the
fact that HCHO and NO: does not fully represent VOCR and reactive nitrogen, it is crucial to
recognize that ozone production rate sensitivities and magnitudes depend on other geophysical
variables independent of FNR. Among these variables, photolysis rates and water vapor are
major drivers of atmospheric oxidation capacity, modulating numerous reactions related to
ozone production (Kleinman et al., 2001).

To demonstrate photolysis rate effects on both PO3; magnitudes and sensitivities, we conducted
FOAM box model simulations constrained by geophysical variables during June 6-9 of the
KORUS-AQ campaign (Souri et al., 2025). We perturbed NOx, VOCs, and photolysis rates to
generate three sets of isopleths (Figure S1). The results clearly show larger ozone production
rates under more intense light conditions. More importantly, the contours corresponding to
identical POs3 intervals (3 ppbv/hr) become more compact under brighter conditions, indicating
that PO3 becomes more sensitive to both NOx and VOCs with increased light intensity. This
pattern suggests that identical FNR values under different photolysis rates can have
fundamentally different implications for ozone production rate sensitivities.

To confirm that FNR contains no photolysis rate information, we analyze paired FNR and
JNO2 photolysis rate measurements from over 47,000 data points during the KORUS-AQ
campaign, revealing no correlation between these variables (Figure S2). This demonstrates the
need for additional dimensions in ozone sensitivity analysis, necessitating more sophisticated
algorithms (like our approach) over traditional threshold-based methods.
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Figure S1. The POs isopleths generated using FOAM box models derived from observations
taken during the KORUS-AQ campaign under three different photolysis rates scenarios: (left)
multiplied by 0.5, (middle) default, (right) multiplied by 2.0. Each contour represents 3
ppbv/hr.
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Figure S2. The comparison of measured FNR and measured jNO: frequencies taken from
aircraft observations during the KORUS-AQ campaigns. All measured points are used to make
this plot.

Figure S3 illustrates the representation of ozone sensitivities by mapping five variables derived
from TROPOMI and our PO3DNN parameterization across two seasons over Los Angeles.
FNR values are low during colder months due to abundant NO: relative to HCHO,
qualitatively suggesting the LA region should be predominantly VOC-sensitive. However, the
derivatives and sensitivities of PO3 to both HCHO and NO: remain muted due to limited
photochemical activity, making PO3; unresponsive to NOx and VOC concentrations.
Conversely, summer conditions yield larger derivatives, showing much stronger PO3 responses
to both species. This example can be extended to different times of day, such as FNR values




from geostationary satellites or morning versus afternoon measurements from low Earth orbit
satellites.
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Figure S3. Five variables derived from our PO3sDNN product based on TROPOMI dataset.
The first row focuses on December-January-February (DJF), while the second row shows
those variables for June-July-August 2023. The calculation of the sensitivities and derivatives
are based on perturbation of the DNN algorithm described in the main paper.

The absence of POs-relevant geophysical information in FNR also applies to water vapor.
FOAM box simulations over polluted regions show that increasing humidity enhances PO3
through the generation of two OH molecules via HO+O'D reactions (Figure S4). However,
FNR contains no water vapor information, as humidity is driven by hydrological and
meteorological factors decoupled from the processes determining FNR (Figure S5). This
further necessitates adding water vapor as an additional dimension in ozone sensitivity




analysis.
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Figure S4. The effect of H2O(v) on PO3; during KORUS-AQ campaigns. Only highly polluted
regions (HCHOXNO> > 10) are selected for this experiment.
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Figure SS. The comparison of measured FNR and measured water vapor density taken
from aircraft observations during the KORUS-AQ campaigns. All measured points are used to
make this plot.




4. Conversion factor and averaging kernel

It is unclear whether satellite averaging kernels were applied when deriving the column-
to-PBL conversion factors using MINDS. If they were applied, please specify how, if not,
discuss the potential influence on near-surface concentrations and the resulting PO3

estimates.

| Response |
There are two main approaches to remove or mitigate the influence of the a priori
assumptions used in OMI and TROPOMI AMFs in order to obtain a consistent, MINDS-
driven conversion factor that reflects the satellite vertical sensitivity.

Approach 1: Convolving MINDS Conversion Factors with Satellite Averaging Kernels
In this approach, the conversion factor is defined as

fak = qpBL/ XX,

where qpg; is MINDS PBL mixing ratio and x = x, + A(xynps — Xo)- Here, x, and
Xminps represent the a priori and MINDS partial columns, respectively, and A is the
averaging kernels.

While this method is scientifically sound, it introduces significant complexity: the
resulting conversion factor becomes dependent on satellite viewing geometry, scene-
specific averaging kernels, and the a priori vertical profiles. This dependency makes
validation of the conversion factors against in situ observations extremely difficult.

As noted in the manuscript, the dominant source of systematic error in our product
comes from the conversion factors themselves. If these factors are entangled with
averaging kernel and a priori uncertainties, they lose generalization and consistency
across retrievals and a priori frameworks. By maintaining a sensitivity- and a priori-
agnostic formulation (as validated in Appendix B), we ensure that conversion factors can
be robustly validated using aircraft observations and applied consistently across models.
In other words, the question of “which model does better convert columns to the near
surface concentrations?” can be more easily answered without delving into the nuances
of satellite sensitivities.

Approach 2: Recalculating AMFs Using MINDS Vertical Shape Factors

This alternative approach recalculates the AMFs using MINDS vertical profiles (section
2.1 in https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD028009 ), allowing
the conversion factor to remain independent of the satellite retrieval. This is a preferred
algorithm over approach #1. However, it introduces a circular problem: recalculating
AMFs would necessitate revalidating and bias-correcting TROPOMI and OMI NO2 and
HCHO columns against ground-based datasets. Repeating the extensive work of
Verhoelst et al. (2020), Vigouroux et al. (2021), Pinardi et al. (2021), and Ayazpour et al.
(2025) would be a major undertaking.

For these reasons, we chose not to refine the TROPOMI and OMI VCDs using MINDS
shape factors at the cost of introducing some biases in our product.



https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD028009

To show the impact of neglecting this step on PO3, we recalculate AMF with MINDS
shape factors over the CONUS, an area with varying emissions and meteorological
conditions, using our OI-SAT-GMI package (https://github.com/ahsouri/OI-SAT-
GMl/tree/main), and quantify the impact on PO3.

Regarding NO2, we see AMF (thus VCDs and PBL mixing ratios) to vary within 5£9%
on average with minimal changes over polluted regions while seeing bigger values over
higher latitudes or dark albedo where the retrieval becomes more dependent on the a
priori. These changes induce minimal changes on PO3 (<20%) over PO3>0.5 ppbv area,
especially hotpots of PO3. The changes can reach to 40-50% over remote high latitude

regions, but PO3 errors are already extremely large (>200%) because of the errors in
MINDS conversion factors:
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Concerning HCHO, AMFs changed around the same magnitude as those of NO2
(10£7%) resulting in PO3 changing to <15% over PO3>0.5 ppbv/hr.

Therefore, skipping AMFs recalculation should result in ~25% errors in PO3 estimates.
However, the consideration of AMFs without redoing the bias-correction would have
resulted in the same level of errors, suggesting the most robust way is to adjust both (bias
correction and AMFs) at the same time which is not feasible given our budget constraint.
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| Modifications |
We added:

We also quantify the impact of inconsistent shape factors used in the retrievals and the
MINDS profile on PO3 estimates and find them introducing systematic errors of 5-25% over
PO3>0.5 ppbv/hr (Figures S14-S17). Refining TROPOMI and OMI products with MINDS shape
factors would require reproducing several large-scale validation efforts (e.g., Verhoelst et al.,




2020; Vigouroux et al., 2021; Pinardi et al., 2021; Ayazpour et al., 2025), which is beyond the
practical scope and resources of this study.

In the summary section:

The total errors budget emphasizes on the role of model used for converting satellite-
based VCDs to near-surface concentrations and its importance for precisely determining ozone
precursors levels near to the surface. Furthermore, in future efforts, we also need to refine
satellite retrievals using spatially higher-resolution AMFs derived from MINDS while
simultaneously performing retrieval validation against ground-based remote sensing
observations.

ii1) the inclusion of more sophisticated chemical mechanisms for the generation of the training
dataset; and iv) enhanced representation of vertical profiles of NO, and HCHO using
observationally-constrained chemical transport models with more rigorous column to near-
surface conversion factors (Cooper et al. 2020).

We added the above figures to the supplementary material.

Minor Comments

It would be helpful to clarify whether H2O values are directly inherited from MERRA-2 or
modified within the MINDS model.

\ Response \
MERRAZ? is used to constrain U,V, QV, and T using the replay mode at 3-hourly basis in
MINDS. So, meteorology is resolved in MINDS through GEOS. MERRA?2 only adds a
constraint.

\ Modifications
We added:

Meteorology is resolved using GEOS with several prognostic inputs, including water vapor,
being constrained by MERRA-2 reanalysis using “replay” mode at 3-hourly basis (Orbe et al.,
2017).

The description of “Southeast Asia” may be misleading; the text refers to August—September
biomass burning, which applies mainly to maritime Southeast Asia, while continental Southeast
Asia (Thailand, Myanmar, Laos, Cambodia) experiences its peak burning during February—
April. Please clarify the regional definition.



\ Response

Thanks for pointing out this geographic mistake.

\ Modifications
We renamed the region to “maritime Southeast Asia” throughout the manuscript.

The expression “SZA acquired from the satellite L2 products” could be misleading, since SZA is
not directly observed but computed from geometry information. Suggest rephrasing to “SZA
derived from the geometry information in the L2 products.”

Response

SZA is actually already computed and provided with L2 products. It’s true that we can
calculate that given time, location, and altitude, but the operation team has done it
already.

Modifications

We modified it to:

Both SZA and surface altitude are provided as auxiliary fields in the satellite L2 products.

Check typographical errors (for example, “trend trends” to “trends”; “Tehan” to “Tehran”).

\ Response \
Corrected

“«

The phrase “textbook example of non-linear chemistry” could be softened to “a clear

demonstration of non-linear ozone chemistry.”

\ Response ‘
Corrected




