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Abstract 13 

Accurately characterizing groundwater level dynamics in seasonal frozen soil regions is 14 

of great significance for water resource management and ecosystem protection. To this end, 15 

this study proposes a new interpretable deep learning method to reveal the underlying causes 16 

of groundwater level dynamics on the basis of groundwater level simulation. Using the 17 

Songnen Plain in China as the study area and daily data from 138 monitoring wells, 18 

groundwater levels are simulated with an Long Short-Term Memory (LSTM) model, and the 19 

Expected Gradients (EG) method is employed to quantitatively identify the dominant factors 20 

and mechanisms of different groundwater level variation types.The results show that the LSTM 21 

model performs well on the test set, with the Nash-Sutcliffe Efficiency (NSE) exceeding 0.7 at 22 

81.88% of the monitoring sites, effectively capturing the temporal dynamics of groundwater 23 

levels. At the annual scale, three typical groundwater level variation types are identified: 24 

precipitation infiltration–evaporation type (29.0%), precipitation infiltration–runoff type 25 

(18.1%), and extraction type (52.9%). Corresponding to the seasonal frozen-thaw period, 26 

groundwater level dynamics are classified into “V”-shaped (38.4%), continuous decline 27 

(23.2%), and continuous rise (38.4%) types. Quantitative analysis using the EG method 28 

indicates that air temperature, precipitation, and snow thickness are the primary controlling 29 

factors of the “V”-shaped dynamics, reflecting the regulatory role of the frozen-thaw process 30 

on groundwater levels.When the initial groundwater level depth at the beginning of the freezing 31 

period is shallower than the sum of the frozen-thaw influence depth and the capillary rise height, 32 

a hydraulic connection is established between soil water and groundwater, resulting in typical 33 

“V”-shaped fluctuations. Conversely, when the depth exceeds this critical threshold, the frozen-34 

thaw process cannot significantly influence the aquifer, and groundwater dynamics are mainly 35 

manifested as continuous rise or continuous decline, driven respectively by groundwater 36 

extraction and water level recovery following precipitation recharge. This study establishes an 37 
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integrated framework of “simulation–classification–interpretation,” which not only improves 38 

the accuracy of groundwater level dynamic simulation and prediction but also provides new 39 

methods and perspectives for revealing the underlying mechanisms. The findings offer 40 

theoretical support and technical basis for regional groundwater resource management in cold 41 

regions. 42 

Keywords: Freezing-thawing process; Groundwater level dynamics; Seasonally frozen plain; 43 

Interpretable deep learning models44 
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1. Introduction 45 

Groundwater level is a crucial indicator reflecting the water balance status of groundwater 46 

systems, and its dynamic changes reveal the evolving trends of regional hydrological processes. 47 

In terms of water resource management, monitoring groundwater level depth helps managers 48 

understand changes in groundwater storage, optimize water extraction schemes, and prevent 49 

resource depletion caused by overexploitation (Hao et al., 2014; Yang, 2012). Regarding 50 

ecosystem protection, fluctuations in groundwater level depth directly affect regional 51 

ecological patterns. Excessively low water levels may lead to wetland desiccation and 52 

biodiversity loss, while rapid rises can cause soil salinization and vegetation degradation (Singh 53 

et al., 2012). Relevant studies have also practically validated the significance of groundwater 54 

level prediction. For example, Liu et al. (2022) demonstrated in the lower Tarim River that 55 

machine learning–based groundwater level prediction models can quantitatively reveal current 56 

and future groundwater changes, clarifying the critical role of ‘ecological water conveyance’ 57 

in regional ecological restoration. Therefore, in-depth identification of the controlling 58 

mechanisms behind groundwater level depth variations and achieving high-precision 59 

spatiotemporal simulation are of great significance for promoting sustainable groundwater 60 

resource utilization and ecological environment protection (Yi et al., 2022). 61 

Seasonally frozen soil areas are widely distributed globally. In China, they cover more 62 

than half of the total land area, mainly in the northwest and northeast regions where water 63 

scarcity is a prominent issue (Wang et al., 2019). Unlike non-frozen soils, seasonally frozen 64 

soil is a unique water–soil system that contains ice, and changes in the ice content are 65 

accompanied by the dynamic storage of liquid water and dynamic changes in heat (Wu et al., 66 

2023). The movement and storage behavior of groundwater in these regions differ from those 67 

in warm, non-frozen areas (Ireson et al., 2013), as the freeze–thaw process results in more 68 

frequent interactions between soil water and groundwater (Daniel and Staricka, 2000; Lyu et 69 
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al., 2022; Lyu et al., 2023; Miao et al., 2017). This leads to significant differences in the causes 70 

of groundwater level dynamics between the freeze–thaw and non-freeze–thaw periods in 71 

seasonally frozen soil areas, making it more challenging to accurately simulate the regional 72 

groundwater levels. 73 

Current models used for simulating groundwater level dynamics can generally be 74 

categorized into two groups: physical models and machine learning models (Ao et al., 2021). 75 

Most physical models are based on hydrodynamic processes and water balance principles, and 76 

are capable of accurately representing the physical mechanisms of groundwater systems. 77 

Therefore, they possess irreplaceable advantages in characterizing groundwater flow and 78 

uncovering hydrological processes such as recharge, runoff, and discharge. However, in areas 79 

with complex geological structures or highly heterogeneous aquifer systems, the construction, 80 

parameter calibration, and validation of physical models typically require large amounts of 81 

high-resolution geological, hydrological, and hydraulic data. These requirements make 82 

physical modeling challenging to implement and time-consuming (Raghavendra N and Deka, 83 

2014). Hence, there are few simulation studies on regional-scale groundwater level dynamics 84 

in seasonally frozen soil areas. In comparison, machine learning models have demonstrated 85 

significant advantages in simulating groundwater levels. These models explore the nonlinear 86 

relationships between inputs (such as meteorological and topographic data) and outputs 87 

(groundwater level) without the need to consider internal physical mechanisms (Rajaee et al., 88 

2019), nor do they require predefined parameters such as hydraulic characteristics or boundary 89 

conditions (Ao et al., 2021). Despite this, machine learning models typically outperform 90 

physical models in terms of simulation accuracy, particularly in medium-to-long-term 91 

simulation studies (Demissie et al., 2009; Ebrahimi and Rajaee, 2017; Fienen et al., 2016; 92 

Rahman et al., 2020). One of the most successful deep learning architectures for modeling 93 

dynamic hydrological variables is the long short-term memory (LSTM) network (Jing et al., 94 
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2023; Wu et al., 2021). The LSTM model, which is an improved version of the recurrent neural 95 

network (RNN), can more effectively capture long-term dependencies in time-series data 96 

(Hochreiter and Schmidhuber, 1997). In the seasonally frozen soil regions of Northwest China, 97 

14 years of continuous groundwater level simulations have shown that the LSTM model can 98 

effectively handle long-term data and accurately simulate groundwater levels in seasonally 99 

frozen soil areas (Zhang et al., 2018). 100 

Although numerous studies have demonstrated the accuracy and predictive power of data-101 

driven models in hydrological fields, these models are essentially black boxes and cannot 102 

explicitly explain the underlying physical processes and mechanisms (Zhou and Zhang, 2023). 103 

To address this limitation, researchers have proposed various methods to interpret deep learning 104 

models. Two widely used methods in groundwater research are the expected gradient (EG) 105 

method (Jiang et al., 2022) and the Shapley additive explanations (SHAP) algorithm (Lundberg 106 

and Lee, 2017). The broad application of the SHAP method is mainly attributed to its ability to 107 

reveal, from a local perspective, the contribution of each input variable to the corresponding 108 

model output at each time step (Wang et al., 2022) and, from a global perspective, the overall 109 

influence of input variables on the model output over the entire simulation period (Liu et al., 110 

2022; Niu et al., 2023). However, the limitation of the SHAP method is that its interpretation 111 

of input factors is static and independent, making it ineffective in capturing the complex 112 

interactions between groundwater levels and long-term recharge and discharge dynamics. In 113 

contrast, the EG method (Jiang et al., 2022) calculates the EG values of the input variables over 114 

a specified time range, allowing for a better quantification of the impact of dynamic input 115 

variables on output variables at a particular time. This capability theoretically makes the EG 116 

method advantageous in groundwater level simulations with dynamic characteristics, 117 

particularly in explaining the temporal effects of meteorological changes on groundwater level 118 

across different periods. Nevertheless, there are currently no dedicated studies on the use of the 119 
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EG method to explain the causes of groundwater level dynamics, and its effectiveness in 120 

understanding the relatively complex mechanisms of groundwater level dynamics in seasonally 121 

frozen soil areas requires further validation. 122 

In this study, the seasonally frozen soil area of the Songnen Plain in Northeastern China 123 

was taken as an example. Through an in-depth analysis of three years of continuous monitoring 124 

data from phreatic wells in this region, combined with meteorological, hydrological, and soil 125 

texture data, the LSTM model was used to simulate the groundwater level dynamics. The 126 

reverse interpretation technique, i.e., the EG method, was applied to explore the decision 127 

principles of the deep learning model in simulating water levels during the non-freeze–thaw 128 

and freeze–thaw periods, thus revealing the mechanisms behind groundwater level dynamics 129 

across different periods in seasonally frozen soil areas. The research findings can demonstrate 130 

and extend the application of interpretable deep learning models in the groundwater field, 131 

providing essential support for groundwater resource assessment and ecological environment 132 

protection in seasonally frozen soil areas. 133 

2. Data and methodology 134 

Figure 1 shows the workflow of this study, including three main steps. First, the LSTM 135 

model is used to establish a nonlinear relationship between meteorological factors, human 136 

activities, and groundwater level depths (Fig. 1a). The daily air temperature, precipitation, 137 

extraction volume, and snow depth were used as input variables to predict the groundwater 138 

level depths. Subsequently, the EG method (Jiang et al., 2022) was applied to the trained LSTM 139 

model to obtain the EG scores of the input factors at different time steps. The EG scores 140 

quantify the influence of the meteorological inputs (air temperature, precipitation, and snow 141 

depth) and human activities (extraction volume) on the groundwater level depths during the 142 

simulation process (Fig. 1b). Finally, the causes of groundwater level dynamics during the non-143 

freeze–thaw and freeze–thaw periods in seasonally frozen soil areas were identified. 144 
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 145 

Fig. 1. Workflow of this study: (a) Model structure of the LSTM model, (b) EG scores of input 146 

factors during the non-freeze–thaw and freeze–thaw periods. 147 

2.1. Study area 148 

The Songnen Plain is one of the three major plains in Northeast China. It is higher on the 149 

periphery and lower at the center, with a total area of 182,800 km² (Fig. 2a). The study area is 150 

surrounded by hills and mountains in the west, north, and east of the Greater and Lesser Xingan, 151 

Zhangguangcai, and Changbai Mountains, respectively, and is connected to the West Liaohe 152 

Plain by the micro-uplifted Songliao watershed in the south. The Songnen Plain primarily 153 

comprises the eastern high plain, western piedmont sloping plain, western low plain, and valley 154 

plain (Fig. 2a). The soil texture in the region mainly includes sandy loam, sandy clay loam, 155 

clay loam, and loamy clay (Fig. 2b). The climate in the area can be mainly characterized by 156 

two main types: first, it features a typical East Asian continental monsoon climate with hot, 157 
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rainy summers and cold, dry winters; second, although the distribution of the climatic factors 158 

in the Songnen Plain is significantly influenced by latitude, there is a distinct east–west 159 

difference, with arid conditions in the west and humid conditions in the east (Li et al., 2022). 160 

The long-term average temperature of the Songnen Plain is 3.8 ℃, the long-term average 161 

precipitation is 484.57 mm, and the long-term average evaporation is 1,498.1 mm. The frost-162 

free period ranges from 115 to 160 days. Freezing starts in mid-October from north to south, 163 

and thawing begins in April from south to north. The freezing depth ranges from 1.5 to 2.4 m 164 

(Zhao et al., 2009). The area is crisscrossed by rivers, with the Songhua River, Nenjiang River, 165 

and their tributaries forming a centripetal drainage system. The lower reaches of the Nenjiang 166 

River and Taoer River, as well as the Second Songhua River, flow through the central plain 167 

from the north, west, and southeast, respectively. The aquifer system in the Songnen Plain, 168 

China, consists of multiple aquifers ranging from the Cretaceous, Paleogene, and Neogene to 169 

the Quaternary. Among them, the Quaternary aquifer, whose distribution range is slightly 170 

smaller than that of the Cretaceous aquifer, is the main groundwater exploitation layer in the 171 

region and the aquifer in which the groundwater studied in this paper is located (Fig. 2c). 172 
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 173 

Fig. 2. Spatial distribution of the ground surface elevation (a), topography (b) and aquifer 174 

system (c) in the Songnen Plain, China. 175 

2.2. Dataset and selection of representative groundwater level values 176 

To simulate the dynamic changes in the groundwater level in seasonally frozen soil areas 177 

and to analyze the driving mechanisms of groundwater level dynamics during freezing and 178 

non-freezing periods, this study primarily used dynamic observational data from 2018 to 2021, 179 

including precipitation, air temperature, snow depth, groundwater extraction volume, and 180 

groundwater levels, as well as static data such as ground surface elevation and soil texture. The 181 

precipitation and air temperature data were obtained from the “ERA5 hourly data on single 182 
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levels from 1979 to present” dataset, provided by the European Centre for Medium-Range 183 

Weather Forecasts (ECMWF). ERA5 is the fifth-generation re-analysis of the global climate 184 

and weather data with a spatial resolution of 0.25° × 0.25° and an hourly temporal resolution. 185 

Daily snow depth data were sourced from the National Tibetan Plateau Data Center 186 

(http://data.tpdc.ac.cn), with a spatial resolution of 25 km. The temporal and spatial resolution 187 

of the groundwater extraction volume data was enhanced based on the spatial distribution and 188 

water demand of major crops in the Songnen Plain, along with the precipitation data. 189 

Groundwater level data from 138 phreatic wells were provided by the China Geological 190 

Environment Monitoring Institute, while surface elevation data with a spatial resolution of 30 191 

m were obtained from the Geospatial Data Cloud (https://www.gscloud.cn/search). Soil texture 192 

data were sourced from the Resource and Environment Science and Data Center, compiled 193 

from a 1:1,000,000 soil type map and soil profile data collected during the second national soil 194 

survey of China. 195 

In the Songnen Plain, approximately 70% of groundwater extraction is used for 196 

agricultural irrigation; therefore, in this study, groundwater extraction was approximated based 197 

on crop water deficits. Using spatial distribution data of the region’s major crops, ten-day 198 

period crop water requirements, and precipitation data, we estimated groundwater extraction 199 

at a fine resolution, ultimately generating ten-day period groundwater extraction data with a 200 

spatial resolution of 25 km × 25 km. Specifically, based on the water requirements of the main 201 

crops (rice, soybean, and maize), we calculated the total crop water demand for each ten-day 202 

period within each grid cell. These values were then weighted according to the crop planting 203 

area to obtain the total water demand per grid. By comparing precipitation with crop water 204 

demand, we determined whether precipitation could meet the crop water needs. When 205 

precipitation was sufficient, crops relied entirely on natural rainfall, and the effective 206 

precipitation equaled the water demand. When precipitation was insufficient, effective 207 
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precipitation was limited by actual rainfall, and the remaining crop water deficit was assumed 208 

to be supplemented by other water sources. Finally, the difference between crop water demand 209 

and effective precipitation was calculated as the crop water deficit, which was assumed to be 210 

primarily supplied by groundwater. This allowed us to approximate ten-day period 211 

groundwater extraction. To ensure consistency with the temporal resolution of other variables 212 

used for model training, the ten-day period data were converted to daily averages by dividing 213 

by the number of days in each period. 214 

To identify the causes of groundwater level dynamics during freezing and non-freezing 215 

periods, representative groundwater levels were selected for analysis using the EG method at 216 

different time periods. Based on the annual pattern of the groundwater level dynamics, 217 

groundwater levels during the non-freezing period are influenced by human activities, flood-218 

season precipitation, and other factors, leading to greater fluctuations compared with that 219 

observed in the freezing period. Therefore, selecting extreme values (either maximum or 220 

minimum) as representative groundwater levels can effectively capture the peak or trough of 221 

the groundwater level, reflecting the most significant state of groundwater recharge or 222 

discharge during this period. Based on this, the trends in the groundwater level were analyzed 223 

to identify the different dynamic characteristics during the non-freezing period. If the 224 

groundwater level shows an overall uptrend, the maximum value represents the peak of the 225 

recharge process; if it shows a downtrend, the minimum value reflects the maximum extent of 226 

discharge. 227 

However, during the freezing period, groundwater level fluctuations are relatively small, 228 

and extreme values do not respond significantly to external factors. During this period, 229 

groundwater levels may be influenced by soil freezing and thawing processes. Therefore, the 230 

groundwater levels at critical moments of soil freezing and thawing were chosen as 231 

representative values to more accurately reflect the response of groundwater level to 232 
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environmental changes. During the freezing period, after the “Beginning of Winter” solar term 233 

(November 7–8), the average temperature continuously dropped to below 0 ℃, and a thin ice 234 

layer gradually formed on the surface; after the “Rain Water” solar term (February 18–20), 235 

temperatures increased, and the frozen soil began to thaw in both directions; finally, the frozen 236 

soil fully thawed around the “Grain Rain” solar term (April 19–21) in spring (Lyu et al., 2023). 237 

Based on this climatic pattern, we uniformly defined the freezing and thawing periods for all 238 

monitoring wells in the study area. Specifically, the freezing period is defined as the interval 239 

from “Beginning of Winter” to “Rain Water,” and the thawing period as from “Rain Water” to 240 

“Grain Rain.” Therefore, the groundwater level at the “Rain Water” solar term was chosen as 241 

the representative groundwater level during the freezing period to capture the rapid response 242 

of the groundwater level to rising temperatures and thawing of the frozen soil. 243 

2.3. Research methods 244 

2.3.1. LSTM model 245 

The LSTM neural network (Hochreiter and Schmidhuber, 1997) is an advanced RNN 246 

widely applied in deep learning. It can store and associate previous information, effectively 247 

addressing the issues of vanishing and exploding gradients that occur during the training of 248 

long sequence data. The deep learning model used in this study comprises a single LSTM layer 249 

and a dense layer. The LSTM layer is composed of recurrent cells arranged in a chain-like 250 

structure, allowing information to be passed from the current time step to the next. The model 251 

uses daily precipitation, air temperature, groundwater extraction volume, and snow depth from 252 

the previous 150 days as input sequences to predict groundwater level depths. Each cell in the 253 

LSTM layer includes four components: the input gate (𝑖𝑡), the forget gate (𝑓𝑡), the output gate 254 

(𝑜𝑡), and the cell state (𝑐𝑡) (as shown in the LSTM layer in Fig. 1a). The input gate determines 255 

how much input information is transferred to the cell state. The forget gate primarily controls 256 

how much information from the previous cell state is discarded and how much is carried 257 
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forward to the current moment. The output gate calculates the output based on the updated cell 258 

state from the forget and input gates. The cell state is used to record the current input, the 259 

previous cell state, and the information from the gate structures. In this study, we adopted the 260 

LSTM equations proposed by Graves et al. (2013), which are represented by the following key 261 

equations: 262 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑡) (1) 263 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (2) 264 

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (3) 265 

 𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (4) 266 

 ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (5) 267 

where the input and output vectors of the implicit layer of the LSTM at time step t are 𝑥𝑡 and 268 

ℎ𝑡, respectively, the memory cell is 𝑐𝑡, and the values of the input, forget, and output gates are 269 

𝑖𝑡 , 𝑓𝑡 , and 𝑜𝑡 , respectively. W and b represent the learnable weight and bias terms to be 270 

estimated during the training period, respectively, σ(⋅) denotes the logistic sigmoid function, 271 

tanh(⋅) is the hyperbolic tangent function, and ⊙ represents elementwise multiplication. 272 

Before training the model, the air temperature, precipitation, groundwater extraction 273 

volume, and snow depth were normalized by mapping their values to a range between 0 and 1. 274 

The adaptive moment estimation (Adam) algorithm (Kingma and Ba, 2014) was employed 275 

during training, with an initial learning rate set to 0.03. The maximum training epoch number 276 

was configured to 100, and an early stopping strategy was applied to prevent overfitting. For 277 

each individual groundwater monitoring well, 70% of the input–output data pairs were 278 

randomly sampled for training the LSTM model, and they were split into training and 279 

validation samples at a ratio of 7:3. The training samples were repeatedly used to update the 280 

model parameters until the loss function for the validation samples ceased to decrease. The 281 

remaining 30% of the data were used for an independent evaluation of the model performance. 282 
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Random sampling allows for capturing the overall hydrometeorological variations observed 283 

across different time periods. 284 

2.3.2. Model interpretations 285 

In 2017, Sundararajan et al. developed the integrated gradients (IG) method (Sundararajan 286 

et al., 2017), which uses the gradient of the model’s output to the input factors to infer the 287 

specific contribution of the input variables to the output variable. The IG score for an input 288 

factor x (e.g., the precipitation at the i-th time step), representing the degree of contribution of 289 

the input variable to the output variable, is expressed as follows: 290 

 ∅𝑖
𝐼𝐺(𝑓, 𝑥, 𝑥′) = (𝑥𝑖 − 𝑥𝑖

′) ∫
𝜕𝑓(𝑥′+𝛼(𝑥−𝑥′))

𝜕𝑥𝑖
𝑑𝛼

1

𝛼=0
 (6) 291 

where 
𝜕𝑓(𝑥′+𝛼(𝑥−𝑥′))

𝜕𝑥𝑖
 denotes the local gradient of the network f at the interpolation point from 292 

the baseline input (𝑥′, when α = 0) to the target input (x, when α = 1). 293 

However, the baseline input 𝑥′ in the above formula is a hyperparameter that must be 294 

chosen carefully. In groundwater level studies, if the target input (e.g., a particular groundwater 295 

level observation) is close to the chosen baseline input (e.g., long-term average groundwater 296 

level), i.e., 𝑥𝑖 ≈ 𝑥𝑖
′, the IG method may fail to capture the importance of current input factors, 297 

such as precipitation or evaporation, on groundwater level changes (Sturmfels et al., 2020). To 298 

address this issue, Jiang et al. (2022) developed the EG method, which is based on the IG 299 

method but assumes that the baseline inputs follow the basic distribution D sampled from a 300 

background dataset (such as the training dataset), thus avoiding the need to specify a fixed 301 

baseline input. Given the baseline distribution D, the EG score ∅𝑖
𝐸𝐺  for the i-th input factor 302 

can be calculated by integrating the gradients over all possible baseline inputs x′∈D, weighted 303 

by the probability density function 𝑝𝐷. The EG score represents the influence of input factors 304 

on the model output, with a higher absolute EG score indicating a greater impact of the 305 

corresponding input factor on the model output, while an EG score close to zero suggests that 306 
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the input factor has little effect on the output. The EG score can be expressed as follows: 307 

 ∅𝑖
𝐸𝐺(𝑓, 𝑥) = ∫ (∅𝑖

𝐼𝐺(𝑓, 𝑥, 𝑥′) × 𝑝𝐷(𝑥′)𝑑𝑥′)
 

𝑥′  (7) 308 

The above expression involves two integrals, which, according to Erion et al. (2021), can 309 

both be considered expectations. Thus, the equation can be reformulated as: 310 

 ∅𝑖
𝐸𝐺(𝑓, 𝑥) = 𝐸𝑥′~𝐷,𝛼~𝑈(0,1) [(𝑥𝑖 − 𝑥𝑖

′) ∫
𝜕𝑓(𝑥′+𝛼(𝑥−𝑥′))

𝜕𝑥𝑖
′

1

𝛼=0
] (8) 311 

2.3.3. Evaluation metrics 312 

The evaluation metrics used in this study include the Nash–Sutcliffe efficiency (NSE) 313 

coefficient and the root-mean-square error (RMSE). The NSE is used to assess the degree of 314 

fit of the regression model. The RMSE quantifies how well the predicted values match the 315 

observed values. If the NSE is close to 1 and the RMSE is close to 0, the model is more reliable. 316 

 𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−𝑥𝑖̅)2𝑛
𝑖=1

 (9) 317 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
 (10) 318 

where 𝑥𝑖 is the depth of the observed groundwater level, and 𝑥𝑖̅ is the average value of 𝑥𝑖; 319 

𝑦𝑖 is the groundwater level depth simulated by the LSTM model; and i denotes the specific 320 

sample ordinal number, from 1 to n. 321 

3. Results 322 

3.1. Simulation Accuracy of Deep Learning Model for Groundwater Level 323 

A data-driven model (LSTM model) was used to simulate the daily groundwater level 324 

depth of 138 aquifer monitoring wells in the Songnen Plain, China, from 2019 to 2021. Overall, 325 

the simulation accuracy of the groundwater level depth was relatively high across the western 326 

piedmont sloping plain, the eastern high plain, and the valley plain regions. In these areas, the 327 

NSE values at the monitoring points in the test set ranged from 0.53 to 0.96 (Fig. 3a), with 328 

87.14% of the monitoring points showing NSE values greater than 0.7. Over the entire 329 
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simulation period (including the training and test sets), the maximum error between the 330 

simulated and observed values at each monitoring point mainly ranged from 0.5 to 2.5 m (Fig. 331 

3b, d, and e), with 94.29% of the monitoring points having an average error of less than 0.5 m. 332 

The annual groundwater level fluctuation at the monitoring points in this region was relatively 333 

small, ranging from 0.41 to 6.54 m. 334 

 335 

Fig. 3. (a) Spatial distribution of the NSE values on the test set for 138 groundwater level 336 

monitoring points in the Songnen Plain, China. (b)–(e) Maximum, minimum, and mean errors 337 

between simulated and observed groundwater levels at monitoring points in the western 338 

piedmont sloping plain, western low plain, eastern high plain, and valley plain during the 339 

simulation period. 340 

Only 18.11% of the monitoring wells in the study area had a Nash-Sutcliffe Efficiency 341 

(NSE) below 0.7 on the test dataset, and these wells were primarily located in the southern part 342 

of the western low plain (Fig. 3a). In this region, the average absolute error between simulated 343 

and observed daily groundwater level depth ranged from 0.04 to 2.93 meters, although the 344 

maximum error reached as high as 11.56 meters (Fig. 3c), indicating that the model exhibited 345 

certain instability in localized areas. Figure 4 compares the simulated and observed 346 
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groundwater level depth series at several poorly performing wells in this region. As shown in 347 

the figure, significant discrepancies occurred during certain periods, and the fitting 348 

performance was unsatisfactory. The primary reason for this discrepancy is the large annual 349 

fluctuation in groundwater level depth at many wells in this region: 21.43% of the monitoring 350 

wells had a fluctuation range exceeding 10 meters. These extreme fluctuations posed 351 

challenges for the LSTM model’s simulation accuracy. In the training data used for the LSTM 352 

model, samples with extreme values of groundwater level depth were relatively scarce, while 353 

samples with moderate values were more abundant. Consequently, the model tended to fit the 354 

data in the moderate range more accurately, resulting in limited predictive ability for the 355 

extreme ends of the groundwater level series. Despite the reduced accuracy at certain wells, 356 

the LSTM model is capable of accurately capturing the variation trend of groundwater levels, 357 

and no significant lag is observed between the simulated and observed values (Fig. 4). The 358 

Pearson correlation coefficients between the simulated water levels and the measured water 359 

levels at the four representative monitoring points shown in the figure are 0.86, 0.81, 0.87, and 360 

0.85, respectively. Moreover, the correlation coefficients reach their maximum values without 361 

applying any time lag, indicating that the simulated values can effectively and promptly reflect 362 

the actual variation trend of groundwater levels. 363 
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 364 

Fig. 4. Comparison of the simulated and observed groundwater level depths at typical points 365 

in the western low plain (NSE values on the test set < 0.7). 366 

Overall, most of the groundwater monitoring points in the Songnen Plain, China, showed 367 

NSE values greater than 0.7 on the test set, indicating a relatively high simulation accuracy of 368 

the groundwater level depth based on the LSTM model. This suggests that the network 369 

structure of the LSTM model could accurately capture the dynamic relationships between the 370 

air temperature, precipitation, extraction volume, snow depth, and groundwater level. 371 

3.2. Dynamic Characteristics of Regional Groundwater Level and their Distribution Laws 372 

3.2.1. Annual Dynamics Variations and Spatial Distribution 373 

Based on the characteristics of the annual groundwater level dynamic curves in the 374 

Songnen Plain, China, the annual groundwater level dynamics can be categorized into three 375 

types (Fig. 5). 376 
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The monitoring wells located in areas with a shallow groundwater level (less than 7 m) in 377 

the northern part of the western low plain and valley plain (Fig. 5a) exhibited annual 378 

groundwater level fluctuations of less than 4 m. Typically, the dynamic change in the 379 

groundwater level is as follows: during the dry season from January to April, precipitation is 380 

almost zero, and the groundwater level depth is significantly greater compared with those in 381 

the other months; with the onset of the rainy season (May to August), precipitation increases, 382 

causing the groundwater level to rise; after the rainy season ends (September to December), 383 

the groundwater level depth gradually increases with decreasing precipitation (Fig. 5b). This 384 

dynamic type of the groundwater level is the first annual dynamic type in the Songnen Plain, 385 

with its corresponding monitoring wells accounting for 29.0% of all wells in the study area. 386 

The monitoring wells located on Tableland, the Lasong Block between rivers, and the 387 

eastern high plain (Fig. 5a) have relatively greater groundwater level depths, ranging from 388 

approximately 5 to 11 m. From January to May each year, groundwater levels show a 389 

continuous decline; with the increase in precipitation, the groundwater level begins to gradually 390 

rise, reaching their annual peak in early October (Fig. 5c). The timing of the groundwater peak 391 

is delayed by 1 to 2 months compared with the first dynamic type, indicating that the response 392 

of the groundwater level to precipitation is slower (Fig. 5b and c). The annual groundwater 393 

level fluctuation is within 5 m. This dynamic type is the second annual dynamic type in the 394 

Songnen Plain, with its corresponding monitoring wells accounting for only 18.1% of all wells 395 

in the study area. 396 

In agricultural irrigation areas, such as the southern part of the western low plain and the 397 

western piedmont sloping plain (Fig. 5a), the groundwater level depth typically ranges from 5 398 

to 20 m. The dynamic curves of the groundwater level in the aquifer monitoring wells in these 399 

areas exhibit distinct periodicity, showing a funnel-like and sawtooth pattern. The lowest 400 

groundwater levels typically occur in May or August, while the highest level typically occurs 401 
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in November or later (Fig. 5d). During the irrigation season, groundwater levels drop 402 

significantly, with annual fluctuations being generally within 15 m. This dynamic groundwater 403 

type is widely distributed in the study area, with its corresponding monitoring wells accounting 404 

for 52.9% of all wells, representing the third annual dynamic type in the Songnen Plain. 405 

 406 

Fig. 5. (a) Spatial distribution of different annual groundwater level dynamic types in the 407 

Songnen Plain, China; (b–d) Dynamic curves of different annual groundwater types and their 408 

corresponding precipitation variations. (b) The first annual dynamic type is represented by an 409 

unconfined aquifer monitoring well, numbered 230204210070, located in the western low plain; 410 

(c) The second annual dynamic type is represented by an unconfined aquifer monitoring well, 411 

numbered 220182210411, located in the Lasong Block between rivers; (d) The third annual 412 

dynamic type is represented by an unconfined aquifer monitoring well, numbered 413 

220802210145, located in the western piedmont sloping plain. 414 

3.2.2. Freeze–Thaw Period Dynamics Variations and Spatial Distribution 415 

Freeze–thaw processes increase the frequency of interactions between soil water and 416 

groundwater (Daniel and Staricka, 2000; Lyu et al., 2022; Miao et al., 2017). As a typical 417 
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seasonally frozen soil region, the Songnen Plain, China, exhibits three main forms of the 418 

dynamic curves of the groundwater level during the freeze–thaw period: “decline during 419 

freezing, rise during thawing,” “continuous decline,” and “continuous rise” (Fig. 6). The 420 

monitoring points of the different dynamic types during the freeze–thaw period accounted for 421 

38.4% (V-shaped), 23.2% (continuous decline type) and 38.4% (continuous rise type), 422 

respectively.  423 

At monitoring points with a “V-shaped” groundwater level dynamic curve, characterized 424 

by “decline during freezing, rise during thawing” (Fig. 6a), the groundwater level fluctuated 425 

by approximately 0.2–0.9 m during the freeze–thaw period. The time when the groundwater 426 

level reached its maximum depth roughly coincided with the time when the soil reached its 427 

maximum frozen thickness. These monitoring wells are primarily distributed in areas with a 428 

shallow groundwater level in the northern part of the western low plain and the valley plain, 429 

with a few located in the southern part of the western low plain. At the beginning of the freezing 430 

period, groundwater level depths at these wells were typically within 5 m (Fig. 6d). 431 

For the continuous decline and continuous rise types, the dynamic curves of the 432 

groundwater level during the freeze–thaw period exhibited either a “continuous decline” or 433 

“continuous rise” (Fig. 6b and c), with the rate of change remaining consistent throughout both 434 

the freezing and thawing periods. Monitoring points with the continuous decline in the 435 

groundwater level were mainly distributed in areas, such as the eastern high plain and the 436 

Lasong Block between rivers, where the groundwater level depth ranged from 4.52 to 11.51 m 437 

at the start of the freezing period (Fig. 6d). In contrast, monitoring wells with a continuous rise 438 

in the groundwater level during the freeze–thaw period were mainly found in agricultural 439 

irrigation areas such as the southern part of the western low plain and the western piedmont 440 

sloping plain, where the groundwater level depth at the beginning of the freezing period ranged 441 

from 4.71 to 19.91 m (Fig. 6d). 442 
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 443 

Fig. 6. (a–c) Dynamic curves of different groundwater types during the freeze–thaw period and 444 

corresponding changes in air temperature; (d) Spatial distribution of different groundwater 445 

level dynamic types during the freeze–thaw period in the Songnen Plain, China. The dynamic 446 

curves of the groundwater level exhibiting patterns of (a) V-shaped, (b) continuous decline, and 447 

(c) continuous rise correspond to the unconfined aquifer monitoring wells numbered 448 

230204210070, 220182210411, and 220802210145, respectively. 449 

3.3. Main Controlling Factors and Identification of Causes for Various Groundwater Level 450 

Dynamic Types 451 

After the application of the EG method to the trained models for the 138 groundwater 452 

level simulations, the EG scores ( 𝜙𝑖
𝐸𝐺  ) were obtained for precipitation, air temperature, 453 

extraction volume, and snow depth within 150 days prior to the representative groundwater 454 

level values for each annual and freeze–thaw period groundwater level dynamic type (Figs. 7 455 

and 8). 456 
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 457 

Fig. 7. EG scores (𝜙𝑖
𝐸𝐺  ) of the precipitation, air temperature, and extraction volume for 458 

different annual groundwater level dynamic types in the study area at different time steps. 459 

 460 

Fig. 8. EG scores (𝜙𝑖
𝐸𝐺) of the precipitation, air temperature, and snow depth for different 461 

groundwater level dynamic types during the freeze–thaw period in the study area at different 462 

time steps. 463 

3.3.1. Annual Dynamics: Influencing Factors and Dynamics Mechanisms 464 

Within 90 days before the representative groundwater level values, the average EG scores 465 

for the precipitation and air temperature in the first annual dynamic type ranged from 0 to 0.04 466 



25 

and from 0 to 0.07, respectively, while the average EG score for the extraction volume did not 467 

exceed 0.01 (Fig. 7a). This indicates that the groundwater level depth in this dynamic type was 468 

significantly influenced by precipitation and air temperature, while the effect of extraction was 469 

negligible. Thus, the changes in the groundwater level depth may be related to the precipitation 470 

infiltration–evaporation process. When a pronounced precipitation peak occurred (Fig. 9b), the 471 

EG score increased significantly (exceeding 0.15), corresponding to a rise in groundwater level 472 

(Fig. 9e), indicating that precipitation infiltration made a substantial contribution to the 473 

groundwater level increase. Within the 90 days when precipitation influenced the 474 

representative groundwater level value, a total precipitation of 408.09 mm led to an overall rise 475 

in the groundwater level by 1.12 m (Fig. 9b and e). During periods without precipitation, the 476 

air temperature continued to rise (Fig. 9a), reflecting higher soil evaporation. At this time, the 477 

EG score for the air temperature was also relatively high (ranging from 0.10 to 0.20), and the 478 

groundwater level showed a slight decline (Fig. 9e). This suggests that evaporation was the 479 

primary discharge mechanism for groundwater in this dynamic type. Therefore, based on the 480 

groundwater recharge and discharge mechanisms, the first annual groundwater dynamic type 481 

is summarized as the precipitation infiltration–evaporation type.  482 

In contrast, in the second annual dynamic type, only the precipitation had a significant 483 

impact on the groundwater level depth within 90 days before the representative groundwater 484 

level value (with the EG scores ranging from 0 to 0.03), while the average EG scores for the 485 

air temperature and extraction volume remained between 0 and 0.01 (Fig. 7b). Precipitation 486 

almost consistently recharged the groundwater during the 90 days before the representative 487 

groundwater level values (with an average EG score of approximately 0.012), causing a gradual 488 

rise in the groundwater level (Fig. 9j). However, the rate of groundwater rise was relatively 489 

slow, with an average value of approximately 0.02 m/d. The air temperature fluctuated 490 

significantly over the 90-day period (Fig. 9f), ranging from 4.41 to 28.57 ℃, but had no 491 



26 

significant impact on the groundwater level (Fig. 9j). The EG score during periods of high 492 

temperatures was also below 0.01, indicating that evaporation had little effect on the 493 

groundwater level. There was some groundwater extraction in local areas around July and 494 

October (Fig. 9h); however, it had a minimal impact on the groundwater level, with the EG 495 

scores remaining below 0.01. The relatively deep groundwater level (nearly 13 m) suggests 496 

that this groundwater type was primarily discharged through runoff. Therefore, the second 497 

annual groundwater dynamic type was classified as the precipitation infiltration–runoff type. 498 

In the third annual dynamic type, the precipitation, air temperature, and extraction volume 499 

had a significant impact on groundwater level within a shorter period before the representative 500 

groundwater level values (within 60 days), with the average EG scores in the ranges of 0–0.08, 501 

0–0.02, and 0–0.02, respectively (Fig. 7c). This dynamic type is mainly distributed in 502 

agricultural irrigation areas, such as the southern part of the western low plain and the western 503 

piedmont sloping plain (Fig. 5a). The main crops in these areas are rice, soybeans, and corn 504 

(You et al., 2021), and their water demand is concentrated in the summer, particularly between 505 

June and August (Xing et al., 2022). During this period, the air temperature shows a fluctuating 506 

uptrend (Fig. 9k), with the EG scores reaching a maximum of 0.02, indicating that high 507 

temperatures increase soil evaporation and crop transpiration. This leads to a higher water 508 

demand from the crops; however, the low rainfall was insufficient to meet this demand during 509 

these periods (Fig. 9l, with a daily maximum precipitation of only 33.80 mm), necessitating 510 

additional groundwater extraction for irrigation to maintain crop growth (Fig. 9m). As a result, 511 

the EG score for the extraction volume reached approximately 0.20 during this period, and 512 

groundwater level decreased accordingly (Fig. 9o). This dynamic type indicates that 513 

groundwater recharge comes from precipitation infiltration, and groundwater extraction is the 514 

main discharge mechanism. Thus, the third annual groundwater dynamic type was classified 515 

as the extraction type.  516 
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 517 

Fig. 9. Observed values and EG scores (𝜙𝑖
𝐸𝐺) of the precipitation, air temperature, extraction 518 

volume, and snow depth within 150 days before the representative groundwater level values 519 

for various annual groundwater level dynamic types, as well as the corresponding annual 520 

groundwater level depth dynamic curves. The precipitation infiltration–evaporation type, 521 

precipitation infiltration–runoff type, and extraction type are represented by monitoring wells 522 

230204210072, 220183210399, and 220821210024, with representative groundwater level 523 

values corresponding to August 27, 2019, October 9, 2019, and August 2, 2019, respectively. 524 

3.3.2. Freeze–Thaw Dynamics: Influencing Factors and Dynamics Mechanisms 525 

A further analysis focused on the groundwater dynamic types during the freeze–thaw 526 

period. In the V-shaped dynamic type, the average EG scores for precipitation and snow depth 527 

within 60 days before the representative groundwater level values ranged from 0 to 0.05, while 528 

the average EG score for the air temperature within 30 days before the representative 529 

groundwater level values ranged from 0 to 0.02 (Fig. 8a). This suggests that the air temperature, 530 

precipitation, and snow depth had a combined effect on the groundwater level depth of the V-531 

shaped dynamic type during the freeze–thaw period. Within 30 days before the representative 532 

groundwater level values, the air temperature ranged from −21.10 ℃ to 4.40 ℃, with the 533 

overall temperature being below 0 ℃ (Fig. 10b). As the air and soil temperatures dropped 534 
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below 0 ℃, the effective soil porosity decreased significantly due to water freezing, and the 535 

low-temperature suction related to the soil water potential between ice and water in the frozen 536 

soil increased gradually (Lyu et al., 2022). Under the combined effect of the capillary force and 537 

low-temperature suction, groundwater migrated upward continuously, thereby increasing the 538 

groundwater level depth (Fig. 10e). During this period, the snow depth increased with the 539 

decrease in temperature, reaching a maximum value of 13.22 cm on February 9, 2020 (Fig. 540 

10d). The maximum EG score for the snow depth reached 0.03, indicating that snow had an 541 

impact on the groundwater level depth during the freeze–thaw period. When the air temperature 542 

exceeded 0 ℃, the snow thawed rapidly (Fig. 10d), and the snow and frozen soil thaw water 543 

infiltrated to recharge the groundwater, causing the groundwater level to rise for the first time 544 

(Fig. 10e). 545 

For the continuously declining and continuously rising dynamic types, only precipitation 546 

and snow depth affected the groundwater level depth during the freeze–thaw period. In the 547 

continuously declining groundwater dynamic type, the precipitation and snow depth influenced 548 

the groundwater level depth over a longer period before the representative groundwater level 549 

values (within 60 days), with the average EG scores below 0.07 and 0.04, respectively (Fig. 550 

8b). In the continuously rising groundwater dynamic type, the average EG scores for the 551 

precipitation and snow depth within 30 days before the representative groundwater level values 552 

ranged from 0 to 0.05 and from 0 to 0.07, respectively, indicating that precipitation and snow 553 

depth affected the groundwater level depth in this dynamic type during the freeze–thaw period 554 

(Fig. 8c). Compared with precipitation and snow depth, the impact of the air temperature on 555 

the groundwater level in both dynamic types was negligible (Fig. 8b and c), with the average 556 

EG scores ranging from 0 to 0.01. 557 

In both the freeze–thaw dynamic types, the air temperature fluctuated significantly over 558 

the past 150 days (Fig. 10f and k), whereas the EG scores remained below 0.01, indicating that 559 
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the freeze–thaw effects had no significant impact on groundwater levels. Snow depth continued 560 

to increase during the winter when the air temperature was below 0 ℃ (Fig. 10i and n). When 561 

the air temperature rose above 0 ℃, the snow gradually thawed, and the meltwater had some 562 

recharging effect on groundwater levels (with maximum EG scores reaching 0.04). However, 563 

due to the limited amount of snow and the high groundwater levels, the impact of snowmelt on 564 

the groundwater level was gradual and limited, failing to significantly alter the original trends 565 

in the continuously declining or continuously rising groundwater levels (Fig. 10j and o). 566 

Therefore, the causes of the continuously declining and continuously rising groundwater level 567 

dynamic types were related to the recovery process of the annual groundwater levels. 568 

 569 

Fig. 10. Observed values and EG scores (𝜙𝑖
𝐸𝐺) of the precipitation, air temperature, extraction 570 

volume, and snow depth within 150 days before the representative groundwater level values 571 

for various groundwater level dynamic types during the freeze–thaw period, as well as the 572 

corresponding annual groundwater level depth dynamic curves. The V-shaped, continuous 573 

decline, and continuous rise types are represented by monitoring wells 220106210371, 574 

220182210410, and 220821210024, respectively. The representative groundwater level 575 

corresponds to February 19, 2020. 576 

3.4. Regional Distribution Characteristics of the Dynamic Causes of Groundwater Level in 577 
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the Songnen Plain, China 578 

Based on the dynamic variations and spatial distribution characteristics of the groundwater 579 

levels in the study area, groundwater monitoring points where the groundwater levels dropped 580 

in the freezing period and rose in the thawing period, driven by soil freeze–thaw processes, 581 

typically showed a precipitation infiltration-evaporation dynamic in terms of the groundwater 582 

level dynamics during the year (Figs. 5b and 6a). These points were mainly distributed in areas 583 

with shallow groundwater level depths, such as the northern part of the western low plain and 584 

valley plain (Figs. 11a and 12a). Groundwater level dynamics unaffected by soil freeze–thaw 585 

processes generally showed two trends: continuous decline or continuous rise (Fig. 6b and c). 586 

Monitoring points with a continuous decline trend were mainly located in areas with a 587 

significant groundwater level depth, such as the eastern high plain and the Lasong Block 588 

between the rivers, where the annual groundwater level dynamics showed typical dynamic 589 

characteristics of precipitation infiltration–runoff type (Fig. 5c). The monitoring points in 590 

agricultural irrigation areas in the southern part of the western low plain and the western 591 

piedmont sloping plain showed a continuous rise in the groundwater level during the freeze–592 

thaw period (Fig. 12a), and the dynamic type of the groundwater level in the year was mainly 593 

the extraction type (Fig. 5d). Therefore, the “continuous decline” groundwater dynamic during 594 

the freeze–thaw period was the recession phase of the groundwater level after the flood season 595 

peak in the precipitation infiltration–runoff-type groundwater, while the “continuous rise” 596 

groundwater dynamic was the recovery phase of the groundwater level after the extraction in 597 

the extraction-type groundwater. 598 

However, under the classification based on the freeze–thaw period, the proportions of the 599 

V-shaped, continuous decline, and continuous rise types accounted for 38.4%, 23.2%, and 38.4% 600 

of all monitoring points, respectively. These proportions did not completely align with the 601 

annual classification of the precipitation infiltration–evaporation (29.0%), precipitation 602 
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infiltration–runoff (18.1%), and extraction (52.9%) types. This discrepancy can be partly 603 

attributed to differences in the groundwater level depth. In some extraction monitoring points, 604 

although the annual groundwater level dynamics showed typical extraction characteristics, 605 

because the groundwater level at these monitoring points was shallow, the soil freezing and 606 

thawing processes still had a significant impact on it, resulting in a V-shape water level change 607 

at these points during the freeze–thaw period. The presence of such monitoring points increased 608 

the proportion of the V-shape type during the freeze–thaw period, while reducing the proportion 609 

of the continuous-rise type. Thus, the proportions of the freeze–thaw and annual classifications 610 

were not entirely consistent, particularly in areas with a shallow groundwater level depth, 611 

where soil freezing and thawing caused groundwater levels at some points of the extraction 612 

type to exhibit V-shaped variations during the freeze–thaw period. 613 

In the northern part of the western low plain, where groundwater level was shallow (less 614 

than 5 m), the predominant annual groundwater dynamic was the precipitation infiltration-615 

evaporation type (Fig. 11a). Due to the proximity of the groundwater level to the surface, the 616 

groundwater levels in these areas are more sensitive to meteorological factors. The dynamic 617 

curves of the groundwater level show a characteristic in that the high water level period 618 

corresponds to the rainy season. Specifically, in the Songnen Plain, peak precipitation and 619 

groundwater level in this dynamic type occur simultaneously, typically between July and 620 

August (Fig. 11d and f). The annual variation in the groundwater level was small, generally 621 

less than 4 m (Fig. 11c). During the freeze–thaw period, the groundwater level dynamics in this 622 

type exhibited a V-shaped pattern, with the groundwater level declining during the freezing 623 

period and rising during the thawing period, with a fluctuation range of 0.2–0.9 m. However, 624 

this V-shaped variation in the groundwater level is not accidental. At monitoring points with V-625 

shaped dynamics, the initial groundwater level depth and soil freezing depth at the beginning 626 

of the freezing period were in the ranges of 0–5 m (Fig. 12d) and 1.6–2.1 m (Fig. 12c), 627 
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respectively. The soil was predominantly silty clay, with a maximum capillary rise height of up 628 

to 5 m (Rui, 2004). Therefore, the initial groundwater level depth at these points was generally 629 

less than the sum of the soil freezing depth and the maximum capillary rise height (Fig. 12a). 630 

This means that during the freezing period, the low-temperature suction caused by soil freezing 631 

and the pre-existing capillary forces in the soil form a complete hydraulic connection between 632 

the frozen layer and the groundwater, causing the groundwater to continuously migrate toward 633 

the freezing front during the freezing period. 634 

Groundwater monitoring points exhibiting the precipitation infiltration-runoff type were 635 

mainly distributed in the eastern high plain and the Lasong Block between rivers. In these areas, 636 

the groundwater level is deeper, typically ranging from 5 to 12 m (Fig. 11b), and runoff is the 637 

primary mode of groundwater discharge. The deeper groundwater level prolongs the infiltration 638 

time of precipitation, resulting in a delayed response of the groundwater level dynamics to 639 

precipitation recharge. Groundwater level peaks typically occur between August and October 640 

(Fig. 11d), lagging behind the precipitation peak by approximately one month (Fig. 11f). Due 641 

to the low recharge rate, groundwater level fluctuations are relatively moderate, with annual 642 

variations generally within 4 m (Fig. 11c). During the freeze–thaw period, groundwater 643 

monitoring points with continuously declining trends have greater initial groundwater level 644 

depths, ranging from 4.52 to 11.51 m at the beginning of the freezing period (Fig. 12d). This 645 

feature is primarily caused by the groundwater level rebound following the cessation of 646 

extraction after the irrigation period. With the cessation of agricultural water withdrawal, the 647 

depression cone formed by intensive extraction in the earlier stage begins to be replenished, 648 

and the groundwater level subsequently rises slowly. Due to the previously high extraction 649 

intensity and the relatively deep groundwater table, the recovery process does not occur 650 

instantaneously; instead, it is jointly constrained by the delayed response of the groundwater 651 

system and the regional recharge conditions. As a result, the groundwater level exhibits a steady 652 
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and sustained upward trend. In addition, the soil freezing depth in this dynamic type was 653 

shallower (between 1.6 and 1.8 m), and the soil was still primarily silty clay (Fig. 12b and c). 654 

The greater groundwater level depth and shallower soil freezing depth prevented a complete 655 

hydraulic connection between the frozen soil and groundwater (Fig. 12a), resulting in the 656 

groundwater level being unaffected by the soil freeze–thaw process. Therefore, under 657 

conditions where no groundwater extraction occurs during the freeze–thaw period and the 658 

groundwater level is not influenced by freeze–thaw processes, the groundwater system 659 

continues the post-irrigation recovery process, presenting a “sustained rising” groundwater 660 

level pattern. 661 

In the agricultural irrigation areas of the southern part of the western low plain and the 662 

western piedmont sloping plain, the groundwater level depth corresponding to the extraction 663 

types typically ranged from 5 to 20 m (Fig. 11b). During the agricultural irrigation period, 664 

significant groundwater extraction led to a marked decline in the groundwater level (Fig. 11c). 665 

The low groundwater level period coincided with the peak extraction period, typically between 666 

June and August (Fig. 11e and g). In areas with substantial groundwater extraction, a 667 

groundwater depression cone had already formed, with annual groundwater level fluctuations 668 

reaching up to 15 m (Fig. 11c). During the freeze–thaw period, the groundwater level dynamics 669 

exhibited a continuous rising trend. In the southern part of the western low plain and the 670 

western piedmont sloping plain, the initial groundwater level depth at the beginning of the 671 

freezing period and the soil freezing depth were in the ranges of 5–20 m (Fig. 12d) and 1.6–672 

1.8 m (Fig. 12c), respectively, with the soil primarily comprising silty clay and sandy clay loam 673 

(with a maximum capillary rise height of 3 m) (Fig. 12b). In this region, the initial groundwater 674 

level depth was generally greater than the sum of the soil freezing depth and the maximum 675 

capillary rise height, causing the hydraulic connection between the vadose and saturated zones 676 

to be severed (Fig. 12a), and the groundwater level was unaffected by the soil freeze–thaw 677 
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process. 678 

 679 

Fig. 11. (a) Spatial distribution of the ground surface elevation and three dynamic types of 680 

annual groundwater level (precipitation infiltration-evaporation type, precipitation infiltration-681 

runoff type, and extraction type) in Songnen Plain, China. The correlation between the three 682 

dynamic types of annual groundwater level and (b) annual mean groundwater level depths, (c) 683 

annual water level fluctuations, (d) months of peak water level and (e) months of water level 684 

trough. (f) and (g) Monthly distribution of the precipitation and extraction volume in Songnen 685 

Plain, China in 2019, respectively. Each point in (b)–(e) represents a groundwater level 686 

monitoring point. 687 
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 688 

Fig. 12. (a) Spatial distribution of whether the groundwater level is affected by the soil freeze–689 

thaw process and the three groundwater level dynamic types during the freeze–thaw period (V-690 

shaped, continuously declining, and continuously rising) in the Songnen Plain, China. 691 

Correlations between the groundwater level dynamic types in the three freeze–thaw period and 692 

(b) maximum capillary rise height of the soil, (c) the soil freezing depth, (d) the initial 693 

groundwater level depth at the start of the freezing period, and (e) maximum snow thickness. 694 

Each point in (b)–(e) represents a groundwater monitoring well. 695 

4. Discussion 696 

4.1. Implications of Groundwater Level Dynamics Classification for Water Resources 697 

Management 698 

This study identified three main types of annual groundwater level dynamics in the 699 

Songnen Plain: the precipitation infiltration–evaporation type (29.0%), the precipitation 700 

infiltration–runoff type (18.1%), and the extraction type (52.9%). This classification helps to 701 

reveal in greater depth the spatiotemporal distribution characteristics and response patterns of 702 

regional groundwater dynamics. Xu et al. (2024) demonstrated, based on random forest model 703 

analysis, that precipitation is the primary source of recharge for shallow groundwater in the 704 
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Songnen Plain. This finding is consistent with the identification of the precipitation infiltration–705 

type groundwater dynamics in this study, supporting the regulatory role of natural processes in 706 

groundwater levels. Meanwhile, Wu et al. (2025) reported that the significant groundwater 707 

decline in Jilin Province is mainly due to over-extraction for agricultural irrigation, particularly 708 

the large water demand associated with extensive rice cultivation. This observation echoes the 709 

finding that the extraction type accounts for the largest proportion of groundwater dynamics in 710 

this study, highlighting the substantial impact of human pumping activities on groundwater 711 

resources. On this basis, differentiated management strategies should be implemented for 712 

different groundwater dynamics types: in areas dominated by natural processes, ecological 713 

water requirements should be safeguarded and precipitation resources should be utilized 714 

comprehensively; in areas with significant human extraction, pumping schemes should be 715 

optimized to prevent ecological and social risks associated with excessive groundwater level 716 

decline. 717 

During the freezing–thawing period, groundwater level dynamics are mainly divided into 718 

V-shaped type (38.4%), continuously declining type (23.2%), and continuously rising type 719 

(38.4%), reflecting different response patterns of the groundwater system under the complex 720 

hydrological processes in seasonally frozen soil areas. Previous studies have indicated that soil 721 

freezing and thawing during the freezing–thawing period have significant impacts on 722 

groundwater recharge and discharge processes (e.g., Wang et al., 2023; Xie et al., 2021). The 723 

classification method adopted in this study, by identifying the overall dynamic characteristics 724 

during the freezing–thawing period, provides a more comprehensive description of 725 

groundwater response patterns. This classification not only facilitates accurate delineation of 726 

potential recharge and deficit zones in spring but also provides a theoretical basis for 727 

formulating differentiated water resources management strategies tailored to the freezing–728 

thawing cycle, thereby enhancing the capacity to regulate groundwater dynamics in seasonally 729 
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frozen soil areas. 730 

4.2 A New Perspective on Identifying Groundwater Level Dynamics Mechanisms 731 

Previous studies on the causes of groundwater level dynamics have generally relied on 732 

two main approaches. The first involves statistical methods such as trend analysis, correlation 733 

regression, or principal component analysis combined with the temporal variations of driving 734 

factors like precipitation, temperature, and water usage to infer potential dominant controls 735 

(Sarkhel et al., 2024). The second approach constructs numerical groundwater models or 736 

hydrogeological process-based models that quantify the influence of different drivers through 737 

parameter inversion, based on known aquifer structures, boundary conditions, and recharge-738 

discharge processes (Petio et al., 2024). However, these methods face significant limitations 739 

when applied at the regional scale: statistical methods struggle to fully characterize complex 740 

nonlinear responses with multiple time lags and scales, while process-based models depend 741 

heavily on high-precision hydrogeological parameters that are often unavailable in most 742 

regions, and their results are susceptible to biases introduced by prior assumptions. 743 

Differing from previous groundwater level dynamics research, this study explores the 744 

dominant factors and their mechanisms controlling various groundwater level changes in the 745 

Songnen Plain from the perspective of extracting information embedded within the LSTM 746 

model, thereby achieving a data-driven, bottom-up mechanism identification. This approach 747 

relies solely on multi-source observational data (precipitation, temperature, snow thickness, 748 

groundwater extraction, etc.) and can reveal the spatial (across monitoring wells) and temporal 749 

(intra-annual and seasonally frozen soil periods) patterns of dominant factor effects without 750 

requiring inaccessible hydrogeological data such as aquifer parameters and recharge-discharge 751 

relationships. Compared to traditional process-based models, this method not only enhances 752 

the feasibility and applicability of causative analysis but also reduces biases stemming from 753 

prior assumptions, providing a more realistic reflection of the groundwater system’s response 754 
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mechanisms (Jiang et al., 2022). 755 

4.3. Limitations of existing models 756 

A deep learning model was successfully developed in this study to simulate the 757 

groundwater level in the seasonally frozen ground regions of Northeast China, with 81.88% of 758 

the monitoring wells in the study area achieving an NSE > 0.7 on the test set. A common issue 759 

with deep learning models is that they are often considered black-box models, making it 760 

difficult to interpret their internal decision-making processes, which limits their credibility and 761 

interpretability in practical applications (Gunning et al., 2019). In groundwater level simulation 762 

studies, this research is the first to apply the EG method to quantify the importance of input 763 

factors in simulating groundwater level during non-freezing and freezing periods, revealing the 764 

driving forces behind groundwater level dynamics in different seasons. The introduction of this 765 

method offers a novel approach to understanding the groundwater level dynamics in seasonally 766 

frozen regions. 767 

We opted for a local modeling approach (i.e., training a separate model for each 768 

groundwater monitoring well) rather than a regional approach (training a single model with 769 

data from multiple monitoring wells). This decision was based on our goal to identify the 770 

contribution patterns of the input factors (precipitation, air temperature, extraction volume, and 771 

snow depth) to groundwater level at the regional scale, including the duration of their influence 772 

and the significance of their impact. From a prediction standpoint, a regional model might be 773 

more suitable for areas where data are scarce or incomplete (Frame et al., 2022; Nearing et al., 774 

2021), as it can learn more general relationships between input and output factors from 775 

historical data (Kratzert et al., 2019). However, regional models are associated with the issue 776 

of multicollinearity between static factors, and this issue must be addressed. Collinear input 777 

factors may share a substantial amount of information, making it difficult for the model to 778 

accurately distinguish the independent influence of each input factor on the output, leading to 779 



39 

challenges in interpreting the impact of inputs on the output. Therefore, using regional models 780 

to explain the causes of groundwater level dynamics in seasonally frozen regions could be more 781 

challenging than using local models. Nevertheless, we acknowledge the advantages of regional 782 

models. Future research could further explore how to address the multicollinearity issues 783 

associated with static factors in regional models. In conclusion, we successfully combined deep 784 

learning models with the EG method to reveal the causes of groundwater level dynamics in 785 

seasonally frozen regions. 786 

5. Conclusions 787 

Groundwater dynamics in seasonally frozen regions are complex, influenced by both 788 

climate variability and human activities. Deep learning models require more sophisticated 789 

architectures and broader input variables to improve simulation accuracy, but this increases the 790 

difficulty of interpreting their internal mechanisms. Therefore, this study applies an 791 

interpretable deep learning approach to reveal the driving mechanisms behind groundwater 792 

level dynamics in seasonally frozen soil regions. High-precision simulations of groundwater 793 

levels at 138 monitoring points were conducted using an LSTM model, and combined with the 794 

EG method, the main controlling factors and underlying mechanisms of different types of water 795 

level changes were identified. The main findings are as follows: 796 

First, the LSTM model demonstrated high accuracy in simulating groundwater level 797 

variations in seasonally frozen areas, with NSE values on the test set ranging from 0.53 to 0.96, 798 

indicating its effectiveness in capturing complex groundwater dynamics. 799 

Second, by applying the EG method, three dominant intra-annual groundwater dynamic 800 

types in the Songnen Plain of China were identified: precipitation infiltration–evaporation type 801 

(29.0%), precipitation infiltration–runoff type (18.1%), and extraction type (52.9%). 802 

Correspondingly, during the freeze–thaw period, these types are reflected as V-shaped, 803 

continuously declining, and continuously rising patterns, accounting for 38.4%, 23.2%, and 804 
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38.4% of the monitoring wells, respectively. 805 

Third, while all three intra-annual types are primarily recharged by precipitation 806 

infiltration, their discharge pathways differ: evaporation, runoff, and groundwater extraction, 807 

respectively. During the freeze–thaw period, changes in the soil water potential gradient due to 808 

freezing and thawing lead to interactions between soil water and groundwater, resulting in the 809 

V-shaped variation. In contrast, the continuously rising and types declining reflect gradual 810 

water level changes primarily driven by groundwater extraction and precipitation recharge, 811 

without strong influence from freeze–thaw processes. These dynamic types represent 812 

groundwater fluctuations jointly driven by multiple factors across different temporal scales. 813 

The results demonstrate the great potential of the EG method to bridge model accuracy 814 

and interpretability, offering a new perspective for analyzing complex hydrological processes. 815 

Future research may incorporate more advanced interpretability techniques to further enhance 816 

understanding of deep learning models. The significance of deep learning lies not only in high-817 

accuracy simulations, but also in advancing the discovery of hydrological mechanisms. This 818 

study provides new methodological support and theoretical insights for groundwater resource 819 

management in seasonally frozen soil regions. 820 
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