

1 **Revealing the Causes of Groundwater Level Dynamics in Seasonally Frozen Soil Zones**

2 **Using Interpretable Deep Learning Models**

3 Han Li ^{a,b,c}, Hang Lyu ^{a,b,c*}, Boyuan Pang ^{a,b,c}, Xiaosi Su ^{a,b,c}, Weihong Dong ^{a,b,c}, Yuyu Wan ^{a,b,c},

4 Tiejun Song ^{a,b,c}, Xiaofang Shen ^{a,b,c}

5 ^aKey Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin
6 University, Changchun 130026, China

7 ^bJilin Provincial Key Laboratory of Water Resources and Environment, Jilin University,
8 Changchun 130026, China

9 ^cInstitute of Water Resources and Environment, Jilin University, Changchun,130021, China

10 *Corresponding author

11 Hang Lyu

12 E-mail: lvhangmail@163.com

13 **Abstract**

14 Accurately characterizing groundwater level dynamics in seasonal frozen soil regions is
15 of great significance for water resource management and ecosystem protection. To this end,
16 this study proposes a new interpretable deep learning method to reveal the underlying causes
17 of groundwater level dynamics on the basis of groundwater level simulation. Using the
18 Songnen Plain in China as the study area and daily data from 138 monitoring wells,
19 groundwater levels are simulated with an Long Short-Term Memory (LSTM) model, and the
20 Expected Gradients (EG) method is employed to quantitatively identify the dominant factors
21 and mechanisms of different groundwater level variation types. The results show that the LSTM
22 model performs well on the test set, with the Nash-Sutcliffe Efficiency (NSE) exceeding 0.7 at
23 81.88% of the monitoring sites, effectively capturing the temporal dynamics of groundwater
24 levels. At the annual scale, three typical groundwater level variation types are identified:
25 precipitation infiltration–evaporation type (29.0%), precipitation infiltration–runoff type
26 (18.1%), and extraction type (52.9%). Corresponding to the seasonal frozen-thaw period,
27 groundwater level dynamics are classified into “V”-shaped (38.4%), continuous decline
28 (23.2%), and continuous rise (38.4%) types. Quantitative analysis using the EG method
29 indicates that air temperature, precipitation, and snow thickness are the primary controlling
30 factors of the “V”-shaped dynamics, reflecting the regulatory role of the frozen-thaw process
31 on groundwater levels. When the initial groundwater level depth at the beginning of the freezing
32 period is shallower than the sum of the frozen-thaw influence depth and the capillary rise height,
33 a hydraulic connection is established between soil water and groundwater, resulting in typical
34 “V”-shaped fluctuations. Conversely, when the depth exceeds this critical threshold, the frozen-
35 thaw process cannot significantly influence the aquifer, and groundwater dynamics are mainly
36 manifested as continuous rise or continuous decline, driven respectively by groundwater
37 extraction and water level recovery following precipitation recharge. This study establishes an

38 integrated framework of “simulation–classification–interpretation,” which not only improves
39 the accuracy of groundwater level dynamic simulation and prediction but also provides new
40 methods and perspectives for revealing the underlying mechanisms. The findings offer
41 theoretical support and technical basis for regional groundwater resource management in cold
42 regions.

43 **Keywords:** Freezing-thawing process; Groundwater level dynamics; Seasonally frozen plain;
44 Interpretable deep learning models

45 **1. Introduction**

46 Groundwater level is a crucial indicator reflecting the water balance status of groundwater
47 systems, and its dynamic changes reveal the evolving trends of regional hydrological processes.
48 In terms of water resource management, monitoring groundwater level depth helps managers
49 understand changes in groundwater storage, optimize water extraction schemes, and prevent
50 resource depletion caused by overexploitation (Hao et al., 2014; Yang, 2012). Regarding
51 ecosystem protection, fluctuations in groundwater level depth directly affect regional
52 ecological patterns. Excessively low water levels may lead to wetland desiccation and
53 biodiversity loss, while rapid rises can cause soil salinization and vegetation degradation (Singh
54 et al., 2012). Relevant studies have also practically validated the significance of groundwater
55 level prediction. For example, Liu et al. (2022) demonstrated in the lower Tarim River that
56 machine learning-based groundwater level prediction models can quantitatively reveal current
57 and future groundwater changes, clarifying the critical role of ‘ecological water conveyance’
58 in regional ecological restoration. Therefore, in-depth identification of the controlling
59 mechanisms behind groundwater level depth variations and achieving high-precision
60 spatiotemporal simulation are of great significance for promoting sustainable groundwater
61 resource utilization and ecological environment protection (Yi et al., 2022).

62 Seasonally frozen soil areas are widely distributed globally. In China, they cover more
63 than half of the total land area, mainly in the northwest and northeast regions where water
64 scarcity is a prominent issue (Wang et al., 2019). Unlike non-frozen soils, seasonally frozen
65 soil is a unique water-soil system that contains ice, and changes in the ice content are
66 accompanied by the dynamic storage of liquid water and dynamic changes in heat (Wu et al.,
67 2023). The movement and storage behavior of groundwater in these regions differ from those
68 in warm, non-frozen areas (Ireson et al., 2013), as the freeze-thaw process results in more
69 frequent interactions between soil water and groundwater (Daniel and Staricka, 2000; Lyu et

70 al., 2022; Lyu et al., 2023; Miao et al., 2017). This leads to significant differences in the causes
71 of groundwater level dynamics between the freeze–thaw and non-freeze–thaw periods in
72 seasonally frozen soil areas, making it more challenging to accurately simulate the regional
73 groundwater levels.

74 Current models used for simulating groundwater level dynamics can generally be
75 categorized into two groups: physical models and machine learning models (Ao et al., 2021).
76 Most physical models are based on hydrodynamic processes and water balance principles, and
77 are capable of accurately representing the physical mechanisms of groundwater systems.
78 Therefore, they possess irreplaceable advantages in characterizing groundwater flow and
79 uncovering hydrological processes such as recharge, runoff, and discharge. However, in areas
80 with complex geological structures or highly heterogeneous aquifer systems, the construction,
81 parameter calibration, and validation of physical models typically require large amounts of
82 high-resolution geological, hydrological, and hydraulic data. These requirements make
83 physical modeling challenging to implement and time-consuming (Raghavendra N and Deka,
84 2014). Hence, there are few simulation studies on regional-scale groundwater level dynamics
85 in seasonally frozen soil areas. In comparison, machine learning models have demonstrated
86 significant advantages in simulating groundwater levels. These models explore the nonlinear
87 relationships between inputs (such as meteorological and topographic data) and outputs
88 (groundwater level) without the need to consider internal physical mechanisms (Rajaee et al.,
89 2019), nor do they require predefined parameters such as hydraulic characteristics or boundary
90 conditions (Ao et al., 2021). Despite this, machine learning models typically outperform
91 physical models in terms of simulation accuracy, particularly in medium-to-long-term
92 simulation studies (Demissie et al., 2009; Ebrahimi and Rajaee, 2017; Fienen et al., 2016;
93 Rahman et al., 2020). One of the most successful deep learning architectures for modeling
94 dynamic hydrological variables is the long short-term memory (LSTM) network (Jing et al.,

95 2023; Wu et al., 2021). The LSTM model, which is an improved version of the recurrent neural
96 network (RNN), can more effectively capture long-term dependencies in time-series data
97 (Hochreiter and Schmidhuber, 1997). In the seasonally frozen soil regions of Northwest China,
98 14 years of continuous groundwater level simulations have shown that the LSTM model can
99 effectively handle long-term data and accurately simulate groundwater levels in seasonally
100 frozen soil areas (Zhang et al., 2018).

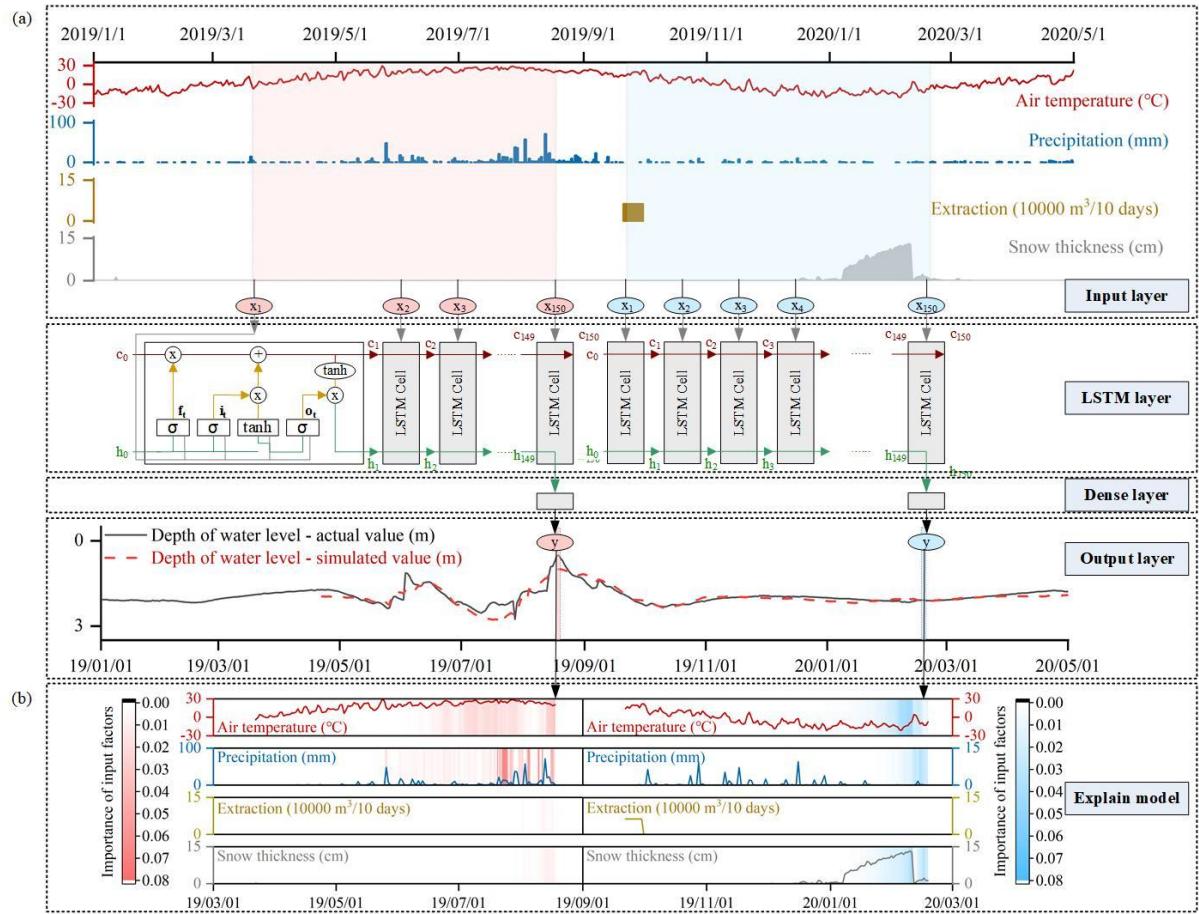
101 Although numerous studies have demonstrated the accuracy and predictive power of data-
102 driven models in hydrological fields, these models are essentially black boxes and cannot
103 explicitly explain the underlying physical processes and mechanisms (Zhou and Zhang, 2023).
104 To address this limitation, researchers have proposed various methods to interpret deep learning
105 models. Two widely used methods in groundwater research are the expected gradient (EG)
106 method (Jiang et al., 2022) and the Shapley additive explanations (SHAP) algorithm (Lundberg
107 and Lee, 2017). The broad application of the SHAP method is mainly attributed to its ability to
108 reveal, from a local perspective, the contribution of each input variable to the corresponding
109 model output at each time step (Wang et al., 2022) and, from a global perspective, the overall
110 influence of input variables on the model output over the entire simulation period (Liu et al.,
111 2022; Niu et al., 2023). However, the limitation of the SHAP method is that its interpretation
112 of input factors is static and independent, making it ineffective in capturing the complex
113 interactions between groundwater levels and long-term recharge and discharge dynamics. In
114 contrast, the EG method (Jiang et al., 2022) calculates the EG values of the input variables over
115 a specified time range, allowing for a better quantification of the impact of dynamic input
116 variables on output variables at a particular time. This capability theoretically makes the EG
117 method advantageous in groundwater level simulations with dynamic characteristics,
118 particularly in explaining the temporal effects of meteorological changes on groundwater level
119 across different periods. Nevertheless, there are currently no dedicated studies on the use of the

120 EG method to explain the causes of groundwater level dynamics, and its effectiveness in
121 understanding the relatively complex mechanisms of groundwater level dynamics in seasonally
122 frozen soil areas requires further validation.

123 In this study, the seasonally frozen soil area of the Songnen Plain in Northeastern China
124 was taken as an example. Through an in-depth analysis of three years of continuous monitoring
125 data from phreatic wells in this region, combined with meteorological, hydrological, and soil
126 texture data, the LSTM model was used to simulate the groundwater level dynamics. The
127 reverse interpretation technique, i.e., the EG method, was applied to explore the decision
128 principles of the deep learning model in simulating water levels during the non-freeze–thaw
129 and freeze–thaw periods, thus revealing the mechanisms behind groundwater level dynamics
130 across different periods in seasonally frozen soil areas. The research findings can demonstrate
131 and extend the application of interpretable deep learning models in the groundwater field,
132 providing essential support for groundwater resource assessment and ecological environment
133 protection in seasonally frozen soil areas.

134 **2. Data and methodology**

135 Figure 1 shows the workflow of this study, including three main steps. First, the LSTM
136 model is used to establish a nonlinear relationship between meteorological factors, human
137 activities, and groundwater level depths (Fig. 1a). The daily air temperature, precipitation,
138 extraction volume, and snow depth were used as input variables to predict the groundwater
139 level depths. Subsequently, the EG method (Jiang et al., 2022) was applied to the trained LSTM
140 model to obtain the EG scores of the input factors at different time steps. The EG scores
141 quantify the influence of the meteorological inputs (air temperature, precipitation, and snow
142 depth) and human activities (extraction volume) on the groundwater level depths during the
143 simulation process (Fig. 1b). Finally, the causes of groundwater level dynamics during the non-
144 freeze–thaw and freeze–thaw periods in seasonally frozen soil areas were identified.



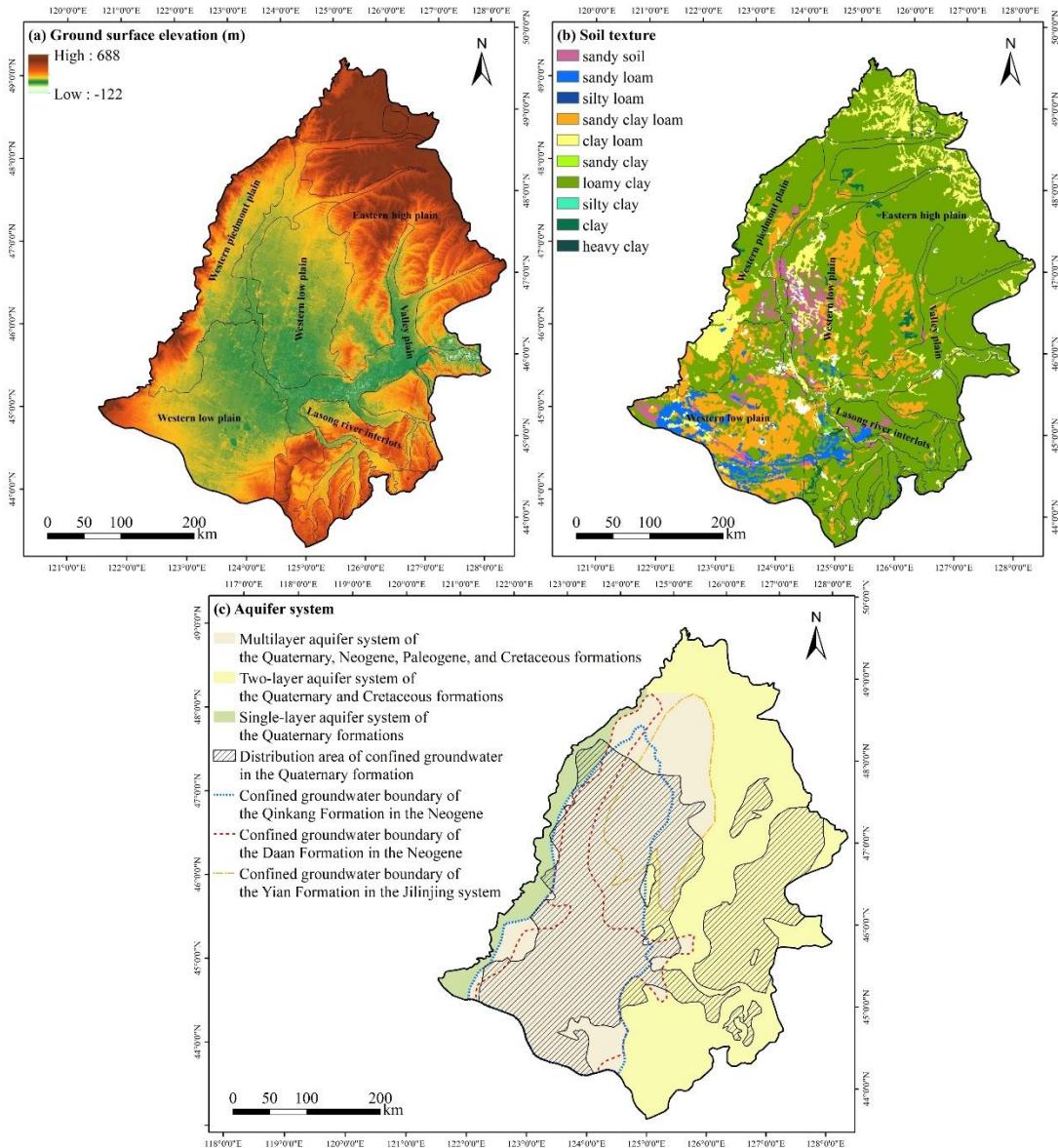
145

146 **Fig. 1.** Workflow of this study: (a) Model structure of the LSTM model, (b) EG scores of input
147 factors during the non-freeze–thaw and freeze–thaw periods.

148 **2.1. Study area**

149 The Songnen Plain is one of the three major plains in Northeast China. It is higher on the
150 periphery and lower at the center, with a total area of 182,800 km² (Fig. 2a). The study area is
151 surrounded by hills and mountains in the west, north, and east of the Greater and Lesser Xingan,
152 Zhangguangcai, and Changbai Mountains, respectively, and is connected to the West Liaohe
153 Plain by the micro-uplifted Songliao watershed in the south. The Songnen Plain primarily
154 comprises the eastern high plain, western piedmont sloping plain, western low plain, and valley
155 plain (Fig. 2a). The soil texture in the region mainly includes sandy loam, sandy clay loam,
156 clay loam, and loamy clay (Fig. 2b). The climate in the area can be mainly characterized by
157 two main types: first, it features a typical East Asian continental monsoon climate with hot,

158 rainy summers and cold, dry winters; second, although the distribution of the climatic factors
159 in the Songnen Plain is significantly influenced by latitude, there is a distinct east–west
160 difference, with arid conditions in the west and humid conditions in the east (Li et al., 2022).
161 The long-term average temperature of the Songnen Plain is 3.8 °C, the long-term average
162 precipitation is 484.57 mm, and the long-term average evaporation is 1,498.1 mm. The frost-
163 free period ranges from 115 to 160 days. Freezing starts in mid-October from north to south,
164 and thawing begins in April from south to north. The freezing depth ranges from 1.5 to 2.4 m
165 (Zhao et al., 2009). The area is crisscrossed by rivers, with the Songhua River, Nenjiang River,
166 and their tributaries forming a centripetal drainage system. The lower reaches of the Nenjiang
167 River and Taoer River, as well as the Second Songhua River, flow through the central plain
168 from the north, west, and southeast, respectively. The aquifer system in the Songnen Plain,
169 China, consists of multiple aquifers ranging from the Cretaceous, Paleogene, and Neogene to
170 the Quaternary. Among them, the Quaternary aquifer, whose distribution range is slightly
171 smaller than that of the Cretaceous aquifer, is the main groundwater exploitation layer in the
172 region and the aquifer in which the groundwater studied in this paper is located (Fig. 2c).



173

174 **Fig. 2.** Spatial distribution of the ground surface elevation (a), topography (b) and aquifer
 175 system (c) in the Songnen Plain, China.

176 **2.2. Dataset and selection of representative groundwater level values**

177 To simulate the dynamic changes in the groundwater level in seasonally frozen soil areas
 178 and to analyze the driving mechanisms of groundwater level dynamics during freezing and
 179 non-freezing periods, this study primarily used dynamic observational data from 2018 to 2021,
 180 including precipitation, air temperature, snow depth, groundwater extraction volume, and
 181 groundwater levels, as well as static data such as ground surface elevation and soil texture. The
 182 precipitation and air temperature data were obtained from the “ERA5 hourly data on single

183 levels from 1979 to present" dataset, provided by the European Centre for Medium-Range
184 Weather Forecasts (ECMWF). ERA5 is the fifth-generation re-analysis of the global climate
185 and weather data with a spatial resolution of $0.25^\circ \times 0.25^\circ$ and an hourly temporal resolution.
186 Daily snow depth data were sourced from the National Tibetan Plateau Data Center
187 (<http://data.tpdc.ac.cn>), with a spatial resolution of 25 km. The temporal and spatial resolution
188 of the groundwater extraction volume data was enhanced based on the spatial distribution and
189 water demand of major crops in the Songnen Plain, along with the precipitation data.
190 Groundwater level data from 138 phreatic wells were provided by the China Geological
191 Environment Monitoring Institute, while surface elevation data with a spatial resolution of 30
192 m were obtained from the Geospatial Data Cloud (<https://www.gscloud.cn/search>). Soil texture
193 data were sourced from the Resource and Environment Science and Data Center, compiled
194 from a 1:1,000,000 soil type map and soil profile data collected during the second national soil
195 survey of China.

196 In the Songnen Plain, approximately 70% of groundwater extraction is used for
197 agricultural irrigation; therefore, in this study, groundwater extraction was approximated based
198 on crop water deficits. Using spatial distribution data of the region's major crops, ten-day
199 period crop water requirements, and precipitation data, we estimated groundwater extraction
200 at a fine resolution, ultimately generating ten-day period groundwater extraction data with a
201 spatial resolution of $25 \text{ km} \times 25 \text{ km}$. Specifically, based on the water requirements of the main
202 crops (rice, soybean, and maize), we calculated the total crop water demand for each ten-day
203 period within each grid cell. These values were then weighted according to the crop planting
204 area to obtain the total water demand per grid. By comparing precipitation with crop water
205 demand, we determined whether precipitation could meet the crop water needs. When
206 precipitation was sufficient, crops relied entirely on natural rainfall, and the effective
207 precipitation equaled the water demand. When precipitation was insufficient, effective

208 precipitation was limited by actual rainfall, and the remaining crop water deficit was assumed
209 to be supplemented by other water sources. Finally, the difference between crop water demand
210 and effective precipitation was calculated as the crop water deficit, which was assumed to be
211 primarily supplied by groundwater. This allowed us to approximate ten-day period
212 groundwater extraction. To ensure consistency with the temporal resolution of other variables
213 used for model training, the ten-day period data were converted to daily averages by dividing
214 by the number of days in each period.

215 To identify the causes of groundwater level dynamics during freezing and non-freezing
216 periods, representative groundwater levels were selected for analysis using the EG method at
217 different time periods. Based on the annual pattern of the groundwater level dynamics,
218 groundwater levels during the non-freezing period are influenced by human activities, flood-
219 season precipitation, and other factors, leading to greater fluctuations compared with that
220 observed in the freezing period. Therefore, selecting extreme values (either maximum or
221 minimum) as representative groundwater levels can effectively capture the peak or trough of
222 the groundwater level, reflecting the most significant state of groundwater recharge or
223 discharge during this period. Based on this, the trends in the groundwater level were analyzed
224 to identify the different dynamic characteristics during the non-freezing period. If the
225 groundwater level shows an overall uptrend, the maximum value represents the peak of the
226 recharge process; if it shows a downtrend, the minimum value reflects the maximum extent of
227 discharge.

228 However, during the freezing period, groundwater level fluctuations are relatively small,
229 and extreme values do not respond significantly to external factors. During this period,
230 groundwater levels may be influenced by soil freezing and thawing processes. Therefore, the
231 groundwater levels at critical moments of soil freezing and thawing were chosen as
232 representative values to more accurately reflect the response of groundwater level to

233 environmental changes. During the freezing period, after the “Beginning of Winter” solar term
234 (November 7–8), the average temperature continuously dropped to below 0 °C, and a thin ice
235 layer gradually formed on the surface; after the “Rain Water” solar term (February 18–20),
236 temperatures increased, and the frozen soil began to thaw in both directions; finally, the frozen
237 soil fully thawed around the “Grain Rain” solar term (April 19–21) in spring (Lyu et al., 2023).
238 Based on this climatic pattern, we uniformly defined the freezing and thawing periods for all
239 monitoring wells in the study area. Specifically, the freezing period is defined as the interval
240 from “Beginning of Winter” to “Rain Water,” and the thawing period as from “Rain Water” to
241 “Grain Rain.” Therefore, the groundwater level at the “Rain Water” solar term was chosen as
242 the representative groundwater level during the freezing period to capture the rapid response
243 of the groundwater level to rising temperatures and thawing of the frozen soil.

244 **2.3. Research methods**

245 **2.3.1. LSTM model**

246 The LSTM neural network (Hochreiter and Schmidhuber, 1997) is an advanced RNN
247 widely applied in deep learning. It can store and associate previous information, effectively
248 addressing the issues of vanishing and exploding gradients that occur during the training of
249 long sequence data. The deep learning model used in this study comprises a single LSTM layer
250 and a dense layer. The LSTM layer is composed of recurrent cells arranged in a chain-like
251 structure, allowing information to be passed from the current time step to the next. The model
252 uses daily precipitation, air temperature, groundwater extraction volume, and snow depth from
253 the previous 150 days as input sequences to predict groundwater level depths. Each cell in the
254 LSTM layer includes four components: the input gate (i_t), the forget gate (f_t), the output gate
255 (o_t), and the cell state (c_t) (as shown in the LSTM layer in Fig. 1a). The input gate determines
256 how much input information is transferred to the cell state. The forget gate primarily controls
257 how much information from the previous cell state is discarded and how much is carried

258 forward to the current moment. The output gate calculates the output based on the updated cell
259 state from the forget and input gates. The cell state is used to record the current input, the
260 previous cell state, and the information from the gate structures. In this study, we adopted the
261 LSTM equations proposed by Graves et al. (2013), which are represented by the following key
262 equations:

263 $i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_t)$ (1)

264 $f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$ (2)

265 $c_t = f_t \odot c_{t-1} + i_t \odot \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c)$ (3)

266 $o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$ (4)

267 $h_t = o_t \odot \tanh(c_t)$ (5)

268 where the input and output vectors of the implicit layer of the LSTM at time step t are x_t and
269 h_t , respectively, the memory cell is c_t , and the values of the input, forget, and output gates are
270 i_t , f_t , and o_t , respectively. W and b represent the learnable weight and bias terms to be
271 estimated during the training period, respectively, $\sigma(\cdot)$ denotes the logistic sigmoid function,
272 $\tanh(\cdot)$ is the hyperbolic tangent function, and \odot represents elementwise multiplication.

273 Before training the model, the air temperature, precipitation, groundwater extraction
274 volume, and snow depth were normalized by mapping their values to a range between 0 and 1.
275 The adaptive moment estimation (Adam) algorithm (Kingma and Ba, 2014) was employed
276 during training, with an initial learning rate set to 0.03. The maximum training epoch number
277 was configured to 100, and an early stopping strategy was applied to prevent overfitting. For
278 each individual groundwater monitoring well, 70% of the input–output data pairs were
279 randomly sampled for training the LSTM model, and they were split into training and
280 validation samples at a ratio of 7:3. The training samples were repeatedly used to update the
281 model parameters until the loss function for the validation samples ceased to decrease. The
282 remaining 30% of the data were used for an independent evaluation of the model performance.

283 Random sampling allows for capturing the overall hydrometeorological variations observed
284 across different time periods.

285 **2.3.2. Model interpretations**

286 In 2017, Sundararajan et al. developed the integrated gradients (IG) method (Sundararajan
287 et al., 2017), which uses the gradient of the model's output to the input factors to infer the
288 specific contribution of the input variables to the output variable. The IG score for an input
289 factor x (e.g., the precipitation at the i -th time step), representing the degree of contribution of
290 the input variable to the output variable, is expressed as follows:

291
$$\phi_i^{IG}(f, x, x') = (x_i - x'_i) \int_{\alpha=0}^1 \frac{\partial f(x' + \alpha(x - x'))}{\partial x_i} d\alpha \quad (6)$$

292 where $\frac{\partial f(x' + \alpha(x - x'))}{\partial x_i}$ denotes the local gradient of the network f at the interpolation point from
293 the baseline input (x' , when $\alpha = 0$) to the target input (x , when $\alpha = 1$).

294 However, the baseline input x' in the above formula is a hyperparameter that must be
295 chosen carefully. In groundwater level studies, if the target input (e.g., a particular groundwater
296 level observation) is close to the chosen baseline input (e.g., long-term average groundwater
297 level), i.e., $x_i \approx x'_i$, the IG method may fail to capture the importance of current input factors,
298 such as precipitation or evaporation, on groundwater level changes (Sturmels et al., 2020). To
299 address this issue, Jiang et al. (2022) developed the EG method, which is based on the IG
300 method but assumes that the baseline inputs follow the basic distribution D sampled from a
301 background dataset (such as the training dataset), thus avoiding the need to specify a fixed
302 baseline input. Given the baseline distribution D , the EG score ϕ_i^{EG} for the i -th input factor
303 can be calculated by integrating the gradients over all possible baseline inputs $x' \in D$, weighted
304 by the probability density function p_D . The EG score represents the influence of input factors
305 on the model output, with a higher absolute EG score indicating a greater impact of the
306 corresponding input factor on the model output, while an EG score close to zero suggests that

307 the input factor has little effect on the output. The EG score can be expressed as follows:

308
$$\phi_i^{EG}(f, x) = \int_{x'} (\phi_i^{IG}(f, x, x') \times p_D(x') dx') \quad (7)$$

309 The above expression involves two integrals, which, according to Erion et al. (2021), can
310 both be considered expectations. Thus, the equation can be reformulated as:

311
$$\phi_i^{EG}(f, x) = E_{x' \sim D, \alpha \sim U(0,1)} \left[(x_i - x'_i) \int_{\alpha=0}^1 \frac{\partial f(x' + \alpha(x-x'))}{\partial x'_i} \right] \quad (8)$$

312 **2.3.3. Evaluation metrics**

313 The evaluation metrics used in this study include the Nash–Sutcliffe efficiency (NSE)
314 coefficient and the root-mean-square error (RMSE). The NSE is used to assess the degree of
315 fit of the regression model. The RMSE quantifies how well the predicted values match the
316 observed values. If the NSE is close to 1 and the RMSE is close to 0, the model is more reliable.

317
$$NSE = 1 - \frac{\sum_{i=1}^n (x_i - y_i)^2}{\sum_{i=1}^n (x_i - \bar{x}_i)^2} \quad (9)$$

318
$$RMSE = \sqrt{\frac{\sum_{i=1}^n (x_i - y_i)^2}{n}} \quad (10)$$

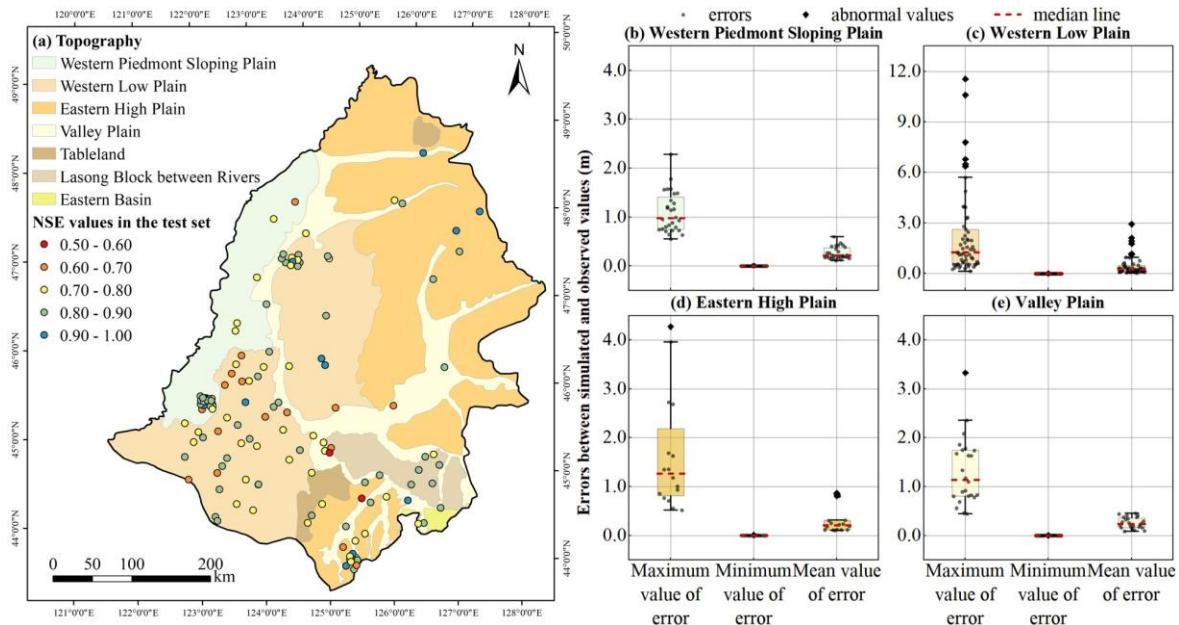
319 where x_i is the depth of the observed groundwater level, and \bar{x}_i is the average value of x_i ;
320 y_i is the groundwater level depth simulated by the LSTM model; and i denotes the specific
321 sample ordinal number, from 1 to n .

322 **3. Results**

323 **3.1. Simulation Accuracy of Deep Learning Model for Groundwater Level**

324 A data-driven model (LSTM model) was used to simulate the daily groundwater level
325 depth of 138 aquifer monitoring wells in the Songnen Plain, China, from 2019 to 2021. Overall,
326 the simulation accuracy of the groundwater level depth was relatively high across the western
327 piedmont sloping plain, the eastern high plain, and the valley plain regions. In these areas, the
328 NSE values at the monitoring points in the test set ranged from 0.53 to 0.96 (Fig. 3a), with
329 87.14% of the monitoring points showing NSE values greater than 0.7. Over the entire

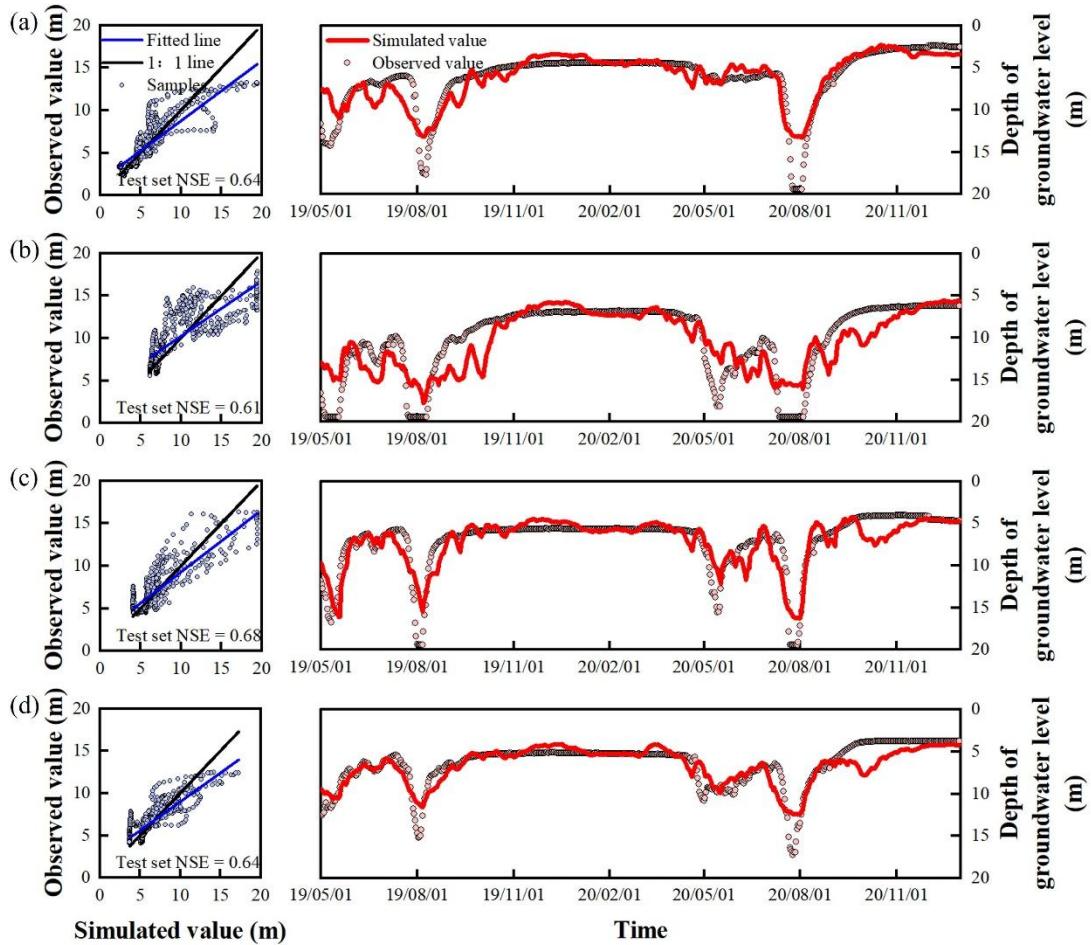
330 simulation period (including the training and test sets), the maximum error between the
 331 simulated and observed values at each monitoring point mainly ranged from 0.5 to 2.5 m (Fig.
 332 3b, d, and e), with 94.29% of the monitoring points having an average error of less than 0.5 m.
 333 The annual groundwater level fluctuation at the monitoring points in this region was relatively
 334 small, ranging from 0.41 to 6.54 m.



335 **Fig. 3.** (a) Spatial distribution of the NSE values on the test set for 138 groundwater level
 336 monitoring points in the Songnen Plain, China. (b)–(e) Maximum, minimum, and mean errors
 337 between simulated and observed groundwater levels at monitoring points in the western
 338 piedmont sloping plain, western low plain, eastern high plain, and valley plain during the
 339 simulation period.

341 Only 18.11% of the monitoring wells in the study area had a Nash-Sutcliffe Efficiency
 342 (NSE) below 0.7 on the test dataset, and these wells were primarily located in the southern part
 343 of the western low plain (Fig. 3a). In this region, the average absolute error between simulated
 344 and observed daily groundwater level depth ranged from 0.04 to 2.93 meters, although the
 345 maximum error reached as high as 11.56 meters (Fig. 3c), indicating that the model exhibited
 346 certain instability in localized areas. Figure 4 compares the simulated and observed

347 groundwater level depth series at several poorly performing wells in this region. As shown in
348 the figure, significant discrepancies occurred during certain periods, and the fitting
349 performance was unsatisfactory. The primary reason for this discrepancy is the large annual
350 fluctuation in groundwater level depth at many wells in this region: 21.43% of the monitoring
351 wells had a fluctuation range exceeding 10 meters. These extreme fluctuations posed
352 challenges for the LSTM model's simulation accuracy. In the training data used for the LSTM
353 model, samples with extreme values of groundwater level depth were relatively scarce, while
354 samples with moderate values were more abundant. Consequently, the model tended to fit the
355 data in the moderate range more accurately, resulting in limited predictive ability for the
356 extreme ends of the groundwater level series. Despite the reduced accuracy at certain wells,
357 the LSTM model is capable of accurately capturing the variation trend of groundwater levels,
358 and no significant lag is observed between the simulated and observed values (Fig. 4). The
359 Pearson correlation coefficients between the simulated water levels and the measured water
360 levels at the four representative monitoring points shown in the figure are 0.86, 0.81, 0.87, and
361 0.85, respectively. Moreover, the correlation coefficients reach their maximum values without
362 applying any time lag, indicating that the simulated values can effectively and promptly reflect
363 the actual variation trend of groundwater levels.



364

365 **Fig. 4.** Comparison of the simulated and observed groundwater level depths at typical points
 366 in the western low plain (NSE values on the test set < 0.7).

367 Overall, most of the groundwater monitoring points in the Songnen Plain, China, showed
 368 NSE values greater than 0.7 on the test set, indicating a relatively high simulation accuracy of
 369 the groundwater level depth based on the LSTM model. This suggests that the network
 370 structure of the LSTM model could accurately capture the dynamic relationships between the
 371 air temperature, precipitation, extraction volume, snow depth, and groundwater level.

372 **3.2. Dynamic Characteristics of Regional Groundwater Level and their Distribution Laws**

373 **3.2.1. Annual Dynamics Variations and Spatial Distribution**

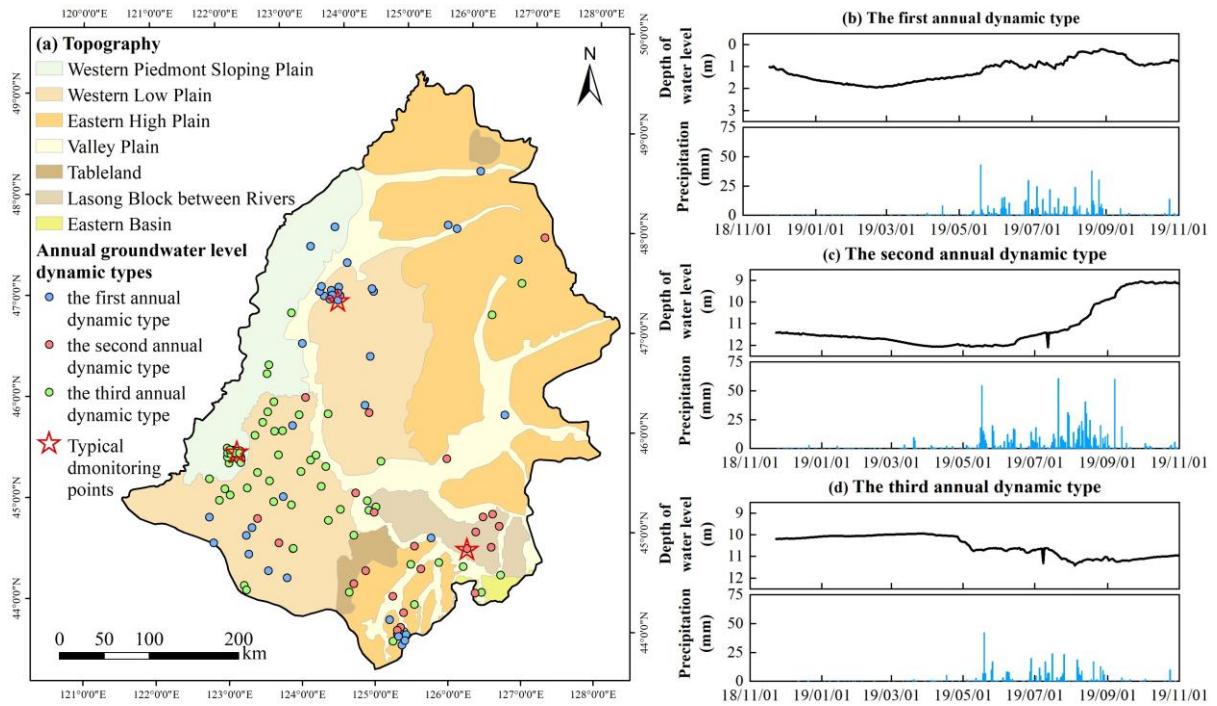
374 Based on the characteristics of the annual groundwater level dynamic curves in the
 375 Songnen Plain, China, the annual groundwater level dynamics can be categorized into three
 376 types (Fig. 5).

377 The monitoring wells located in areas with a shallow groundwater level (less than 7 m) in
378 the northern part of the western low plain and valley plain (Fig. 5a) exhibited annual
379 groundwater level fluctuations of less than 4 m. Typically, the dynamic change in the
380 groundwater level is as follows: during the dry season from January to April, precipitation is
381 almost zero, and the groundwater level depth is significantly greater compared with those in
382 the other months; with the onset of the rainy season (May to August), precipitation increases,
383 causing the groundwater level to rise; after the rainy season ends (September to December),
384 the groundwater level depth gradually increases with decreasing precipitation (Fig. 5b). This
385 dynamic type of the groundwater level is the first annual dynamic type in the Songnen Plain,
386 with its corresponding monitoring wells accounting for 29.0% of all wells in the study area.

387 The monitoring wells located on Tableland, the Lasong Block between rivers, and the
388 eastern high plain (Fig. 5a) have relatively greater groundwater level depths, ranging from
389 approximately 5 to 11 m. From January to May each year, groundwater levels show a
390 continuous decline; with the increase in precipitation, the groundwater level begins to gradually
391 rise, reaching their annual peak in early October (Fig. 5c). The timing of the groundwater peak
392 is delayed by 1 to 2 months compared with the first dynamic type, indicating that the response
393 of the groundwater level to precipitation is slower (Fig. 5b and c). The annual groundwater
394 level fluctuation is within 5 m. This dynamic type is the second annual dynamic type in the
395 Songnen Plain, with its corresponding monitoring wells accounting for only 18.1% of all wells
396 in the study area.

397 In agricultural irrigation areas, such as the southern part of the western low plain and the
398 western piedmont sloping plain (Fig. 5a), the groundwater level depth typically ranges from 5
399 to 20 m. The dynamic curves of the groundwater level in the aquifer monitoring wells in these
400 areas exhibit distinct periodicity, showing a funnel-like and sawtooth pattern. The lowest
401 groundwater levels typically occur in May or August, while the highest level typically occurs

402 in November or later (Fig. 5d). During the irrigation season, groundwater levels drop
 403 significantly, with annual fluctuations being generally within 15 m. This dynamic groundwater
 404 type is widely distributed in the study area, with its corresponding monitoring wells accounting
 405 for 52.9% of all wells, representing the third annual dynamic type in the Songnen Plain.



406
 407 **Fig. 5.** (a) Spatial distribution of different annual groundwater level dynamic types in the
 408 Songnen Plain, China; (b–d) Dynamic curves of different annual groundwater types and their
 409 corresponding precipitation variations. (b) The first annual dynamic type is represented by an
 410 unconfined aquifer monitoring well, numbered 230204210070, located in the western low plain;
 411 (c) The second annual dynamic type is represented by an unconfined aquifer monitoring well,
 412 numbered 220182210411, located in the Lasong Block between rivers; (d) The third annual
 413 dynamic type is represented by an unconfined aquifer monitoring well, numbered
 414 220802210145, located in the western piedmont sloping plain.

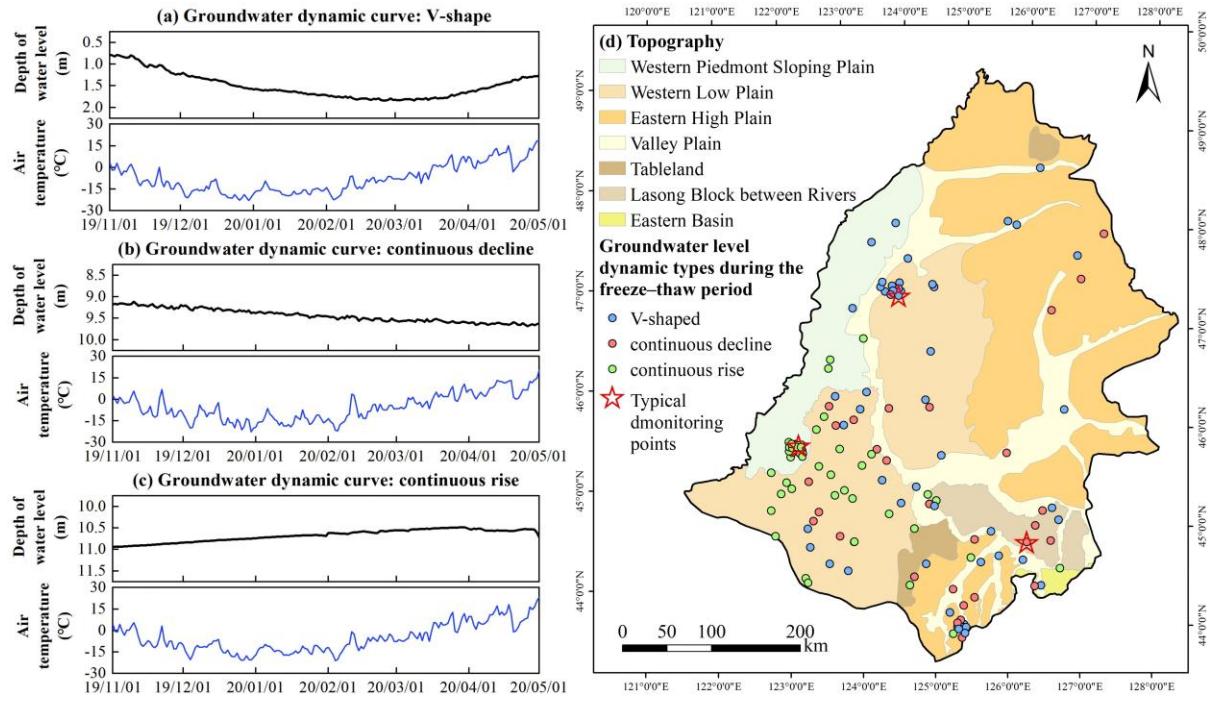
415 3.2.2. Freeze–Thaw Period Dynamics Variations and Spatial Distribution

416 Freeze–thaw processes increase the frequency of interactions between soil water and
 417 groundwater (Daniel and Staricka, 2000; Lyu et al., 2022; Miao et al., 2017). As a typical

418 seasonally frozen soil region, the Songnen Plain, China, exhibits three main forms of the
419 dynamic curves of the groundwater level during the freeze–thaw period: “decline during
420 freezing, rise during thawing,” “continuous decline,” and “continuous rise” (Fig. 6). The
421 monitoring points of the different dynamic types during the freeze–thaw period accounted for
422 38.4% (V-shaped), 23.2% (continuous decline type) and 38.4% (continuous rise type),
423 respectively.

424 At monitoring points with a “V-shaped” groundwater level dynamic curve, characterized
425 by “decline during freezing, rise during thawing” (Fig. 6a), the groundwater level fluctuated
426 by approximately 0.2–0.9 m during the freeze–thaw period. The time when the groundwater
427 level reached its maximum depth roughly coincided with the time when the soil reached its
428 maximum frozen thickness. These monitoring wells are primarily distributed in areas with a
429 shallow groundwater level in the northern part of the western low plain and the valley plain,
430 with a few located in the southern part of the western low plain. At the beginning of the freezing
431 period, groundwater level depths at these wells were typically within 5 m (Fig. 6d).

432 For the continuous decline and continuous rise types, the dynamic curves of the
433 groundwater level during the freeze–thaw period exhibited either a “continuous decline” or
434 “continuous rise” (Fig. 6b and c), with the rate of change remaining consistent throughout both
435 the freezing and thawing periods. Monitoring points with the continuous decline in the
436 groundwater level were mainly distributed in areas, such as the eastern high plain and the
437 Lasong Block between rivers, where the groundwater level depth ranged from 4.52 to 11.51 m
438 at the start of the freezing period (Fig. 6d). In contrast, monitoring wells with a continuous rise
439 in the groundwater level during the freeze–thaw period were mainly found in agricultural
440 irrigation areas such as the southern part of the western low plain and the western piedmont
441 sloping plain, where the groundwater level depth at the beginning of the freezing period ranged
442 from 4.71 to 19.91 m (Fig. 6d).

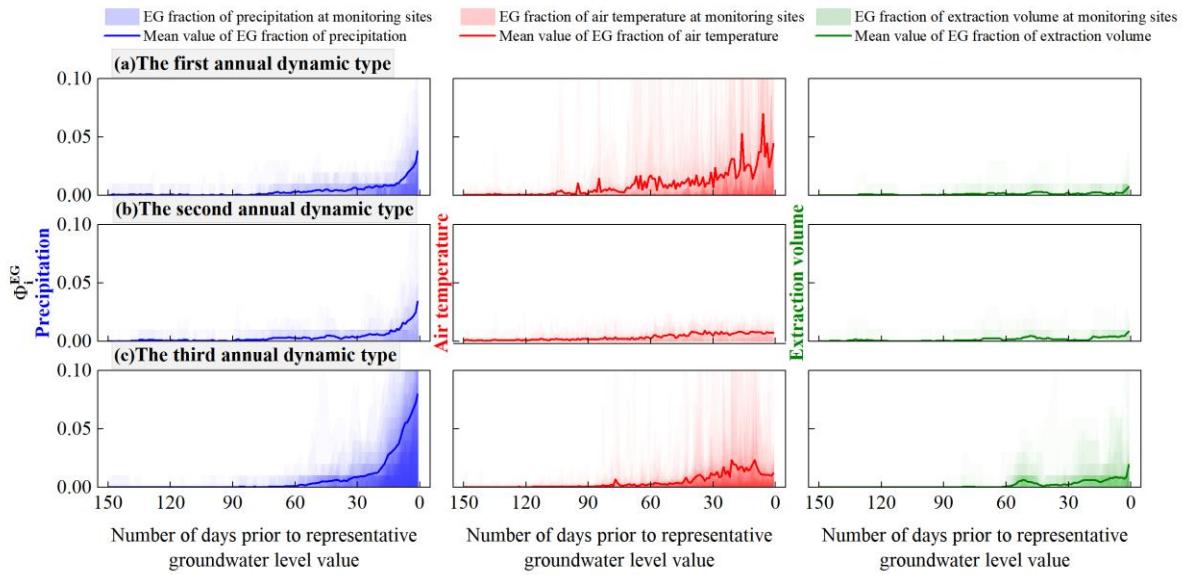


443

444 **Fig. 6.** (a–c) Dynamic curves of different groundwater types during the freeze–thaw period and
 445 corresponding changes in air temperature; (d) Spatial distribution of different groundwater
 446 level dynamic types during the freeze–thaw period in the Songnen Plain, China. The dynamic
 447 curves of the groundwater level exhibiting patterns of (a) V-shaped, (b) continuous decline, and
 448 (c) continuous rise correspond to the unconfined aquifer monitoring wells numbered
 449 230204210070, 220182210411, and 220802210145, respectively.

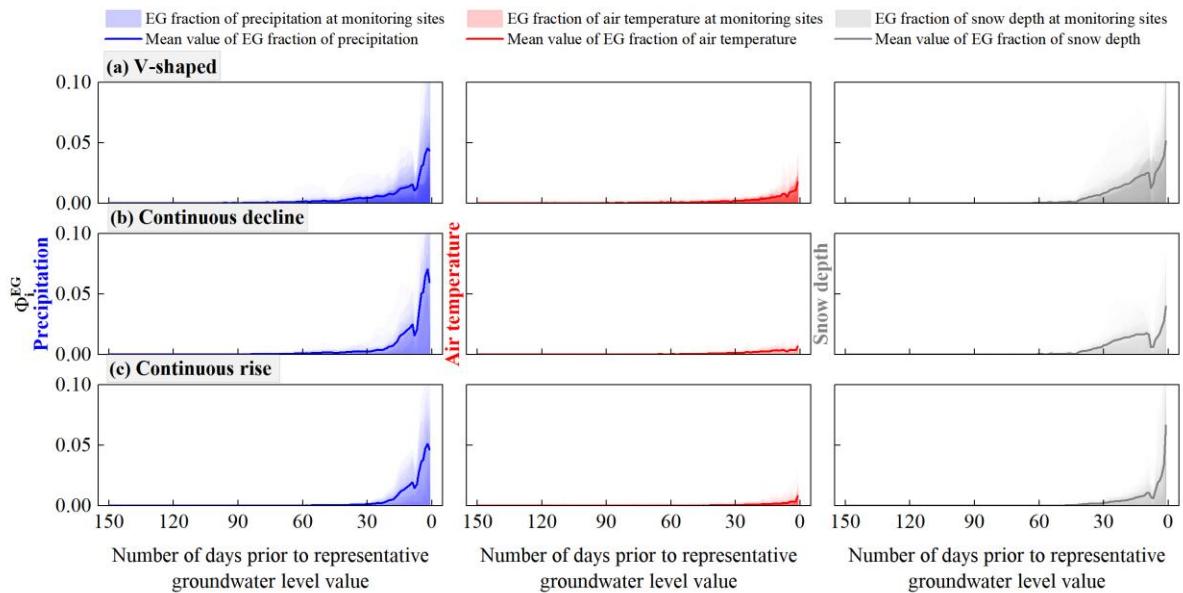
450 **3.3. Main Controlling Factors and Identification of Causes for Various Groundwater Level
 451 Dynamic Types**

452 After the application of the EG method to the trained models for the 138 groundwater
 453 level simulations, the EG scores (ϕ_i^{EG}) were obtained for precipitation, air temperature,
 454 extraction volume, and snow depth within 150 days prior to the representative groundwater
 455 level values for each annual and freeze–thaw period groundwater level dynamic type (Figs. 7
 456 and 8).



457

458 **Fig. 7.** EG scores (ϕ_i^{EG}) of the precipitation, air temperature, and extraction volume for
459 different annual groundwater level dynamic types in the study area at different time steps.



460

461 **Fig. 8.** EG scores (ϕ_i^{EG}) of the precipitation, air temperature, and snow depth for different
462 groundwater level dynamic types during the freeze–thaw period in the study area at different
463 time steps.

464 3.3.1. Annual Dynamics: Influencing Factors and Dynamics Mechanisms

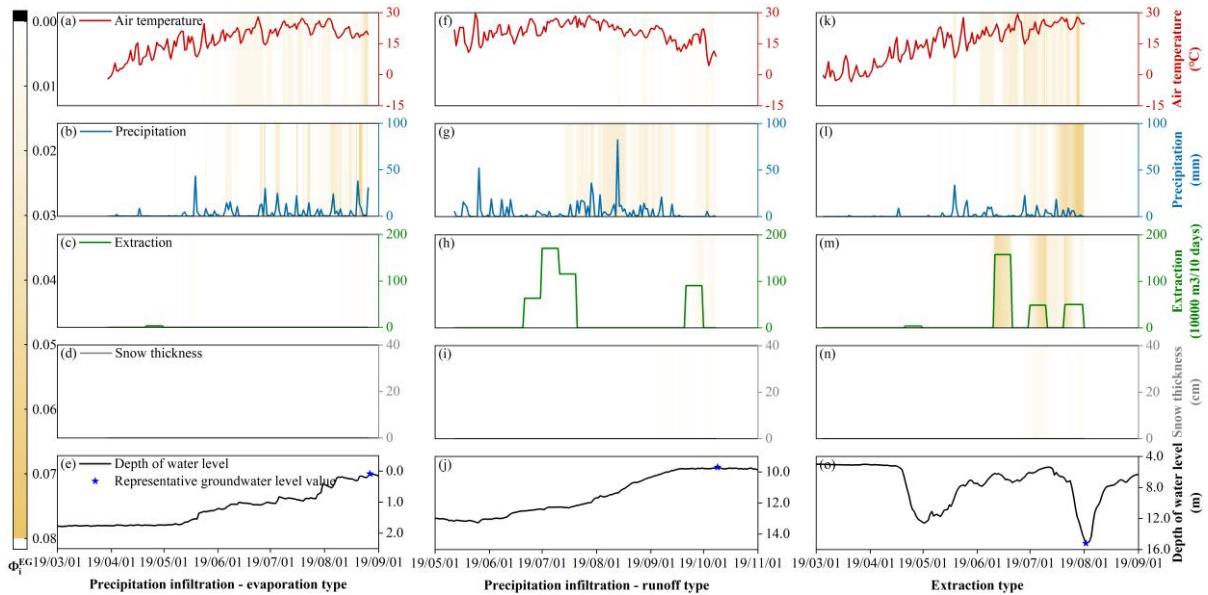
465 Within 90 days before the representative groundwater level values, the average EG scores
466 for the precipitation and air temperature in the first annual dynamic type ranged from 0 to 0.04

467 and from 0 to 0.07, respectively, while the average EG score for the extraction volume did not
468 exceed 0.01 (Fig. 7a). This indicates that the groundwater level depth in this dynamic type was
469 significantly influenced by precipitation and air temperature, while the effect of extraction was
470 negligible. Thus, the changes in the groundwater level depth may be related to the precipitation
471 infiltration–evaporation process. When a pronounced precipitation peak occurred (Fig. 9b), the
472 EG score increased significantly (exceeding 0.15), corresponding to a rise in groundwater level
473 (Fig. 9e), indicating that precipitation infiltration made a substantial contribution to the
474 groundwater level increase. Within the 90 days when precipitation influenced the
475 representative groundwater level value, a total precipitation of 408.09 mm led to an overall rise
476 in the groundwater level by 1.12 m (Fig. 9b and e). During periods without precipitation, the
477 air temperature continued to rise (Fig. 9a), reflecting higher soil evaporation. At this time, the
478 EG score for the air temperature was also relatively high (ranging from 0.10 to 0.20), and the
479 groundwater level showed a slight decline (Fig. 9e). This suggests that evaporation was the
480 primary discharge mechanism for groundwater in this dynamic type. Therefore, based on the
481 groundwater recharge and discharge mechanisms, the first annual groundwater dynamic type
482 is summarized as the precipitation infiltration–evaporation type.

483 In contrast, in the second annual dynamic type, only the precipitation had a significant
484 impact on the groundwater level depth within 90 days before the representative groundwater
485 level value (with the EG scores ranging from 0 to 0.03), while the average EG scores for the
486 air temperature and extraction volume remained between 0 and 0.01 (Fig. 7b). Precipitation
487 almost consistently recharged the groundwater during the 90 days before the representative
488 groundwater level values (with an average EG score of approximately 0.012), causing a gradual
489 rise in the groundwater level (Fig. 9j). However, the rate of groundwater rise was relatively
490 slow, with an average value of approximately 0.02 m/d. The air temperature fluctuated
491 significantly over the 90-day period (Fig. 9f), ranging from 4.41 to 28.57 °C, but had no

492 significant impact on the groundwater level (Fig. 9j). The EG score during periods of high
493 temperatures was also below 0.01, indicating that evaporation had little effect on the
494 groundwater level. There was some groundwater extraction in local areas around July and
495 October (Fig. 9h); however, it had a minimal impact on the groundwater level, with the EG
496 scores remaining below 0.01. The relatively deep groundwater level (nearly 13 m) suggests
497 that this groundwater type was primarily discharged through runoff. Therefore, the second
498 annual groundwater dynamic type was classified as the precipitation infiltration–runoff type.

499 In the third annual dynamic type, the precipitation, air temperature, and extraction volume
500 had a significant impact on groundwater level within a shorter period before the representative
501 groundwater level values (within 60 days), with the average EG scores in the ranges of 0–0.08,
502 0–0.02, and 0–0.02, respectively (Fig. 7c). This dynamic type is mainly distributed in
503 agricultural irrigation areas, such as the southern part of the western low plain and the western
504 piedmont sloping plain (Fig. 5a). The main crops in these areas are rice, soybeans, and corn
505 (You et al., 2021), and their water demand is concentrated in the summer, particularly between
506 June and August (Xing et al., 2022). During this period, the air temperature shows a fluctuating
507 uptrend (Fig. 9k), with the EG scores reaching a maximum of 0.02, indicating that high
508 temperatures increase soil evaporation and crop transpiration. This leads to a higher water
509 demand from the crops; however, the low rainfall was insufficient to meet this demand during
510 these periods (Fig. 9l, with a daily maximum precipitation of only 33.80 mm), necessitating
511 additional groundwater extraction for irrigation to maintain crop growth (Fig. 9m). As a result,
512 the EG score for the extraction volume reached approximately 0.20 during this period, and
513 groundwater level decreased accordingly (Fig. 9o). This dynamic type indicates that
514 groundwater recharge comes from precipitation infiltration, and groundwater extraction is the
515 main discharge mechanism. Thus, the third annual groundwater dynamic type was classified
516 as the extraction type.



517

518 **Fig. 9.** Observed values and EG scores (ϕ_i^{EG}) of the precipitation, air temperature, extraction
 519 volume, and snow depth within 150 days before the representative groundwater level values
 520 for various annual groundwater level dynamic types, as well as the corresponding annual
 521 groundwater level depth dynamic curves. The precipitation infiltration–evaporation type,
 522 precipitation infiltration–runoff type, and extraction type are represented by monitoring wells
 523 230204210072, 220183210399, and 220821210024, with representative groundwater level
 524 values corresponding to August 27, 2019, October 9, 2019, and August 2, 2019, respectively.

525 **3.3.2. Freeze–Thaw Dynamics: Influencing Factors and Dynamics Mechanisms**

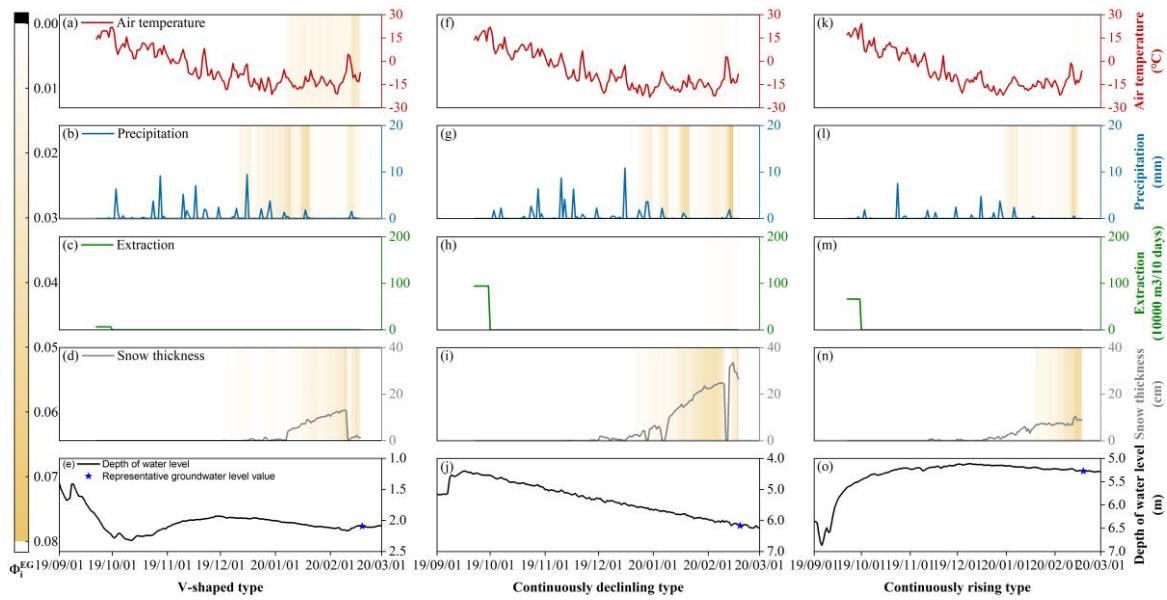
526 A further analysis focused on the groundwater dynamic types during the freeze–thaw
 527 period. In the V-shaped dynamic type, the average EG scores for precipitation and snow depth
 528 within 60 days before the representative groundwater level values ranged from 0 to 0.05, while
 529 the average EG score for the air temperature within 30 days before the representative
 530 groundwater level values ranged from 0 to 0.02 (Fig. 8a). This suggests that the air temperature,
 531 precipitation, and snow depth had a combined effect on the groundwater level depth of the V-
 532 shaped dynamic type during the freeze–thaw period. Within 30 days before the representative
 533 groundwater level values, the air temperature ranged from -21.10°C to 4.40°C , with the
 534 overall temperature being below 0°C (Fig. 10b). As the air and soil temperatures dropped

535 below 0 °C, the effective soil porosity decreased significantly due to water freezing, and the
536 low-temperature suction related to the soil water potential between ice and water in the frozen
537 soil increased gradually (Lyu et al., 2022). Under the combined effect of the capillary force and
538 low-temperature suction, groundwater migrated upward continuously, thereby increasing the
539 groundwater level depth (Fig. 10e). During this period, the snow depth increased with the
540 decrease in temperature, reaching a maximum value of 13.22 cm on February 9, 2020 (Fig.
541 10d). The maximum EG score for the snow depth reached 0.03, indicating that snow had an
542 impact on the groundwater level depth during the freeze–thaw period. When the air temperature
543 exceeded 0 °C, the snow thawed rapidly (Fig. 10d), and the snow and frozen soil thaw water
544 infiltrated to recharge the groundwater, causing the groundwater level to rise for the first time
545 (Fig. 10e).

546 For the continuously declining and continuously rising dynamic types, only precipitation
547 and snow depth affected the groundwater level depth during the freeze–thaw period. In the
548 continuously declining groundwater dynamic type, the precipitation and snow depth influenced
549 the groundwater level depth over a longer period before the representative groundwater level
550 values (within 60 days), with the average EG scores below 0.07 and 0.04, respectively (Fig.
551 8b). In the continuously rising groundwater dynamic type, the average EG scores for the
552 precipitation and snow depth within 30 days before the representative groundwater level values
553 ranged from 0 to 0.05 and from 0 to 0.07, respectively, indicating that precipitation and snow
554 depth affected the groundwater level depth in this dynamic type during the freeze–thaw period
555 (Fig. 8c). Compared with precipitation and snow depth, the impact of the air temperature on
556 the groundwater level in both dynamic types was negligible (Fig. 8b and c), with the average
557 EG scores ranging from 0 to 0.01.

558 In both the freeze–thaw dynamic types, the air temperature fluctuated significantly over
559 the past 150 days (Fig. 10f and k), whereas the EG scores remained below 0.01, indicating that

560 the freeze–thaw effects had no significant impact on groundwater levels. Snow depth continued
 561 to increase during the winter when the air temperature was below 0 °C (Fig. 10i and n). When
 562 the air temperature rose above 0 °C, the snow gradually thawed, and the meltwater had some
 563 recharging effect on groundwater levels (with maximum EG scores reaching 0.04). However,
 564 due to the limited amount of snow and the high groundwater levels, the impact of snowmelt on
 565 the groundwater level was gradual and limited, failing to significantly alter the original trends
 566 in the continuously declining or continuously rising groundwater levels (Fig. 10j and o).
 567 Therefore, the causes of the continuously declining and continuously rising groundwater level
 568 dynamic types were related to the recovery process of the annual groundwater levels.



569
 570 **Fig. 10.** Observed values and EG scores (ϕ_i^{EG}) of the precipitation, air temperature, extraction
 571 volume, and snow depth within 150 days before the representative groundwater level values
 572 for various groundwater level dynamic types during the freeze–thaw period, as well as the
 573 corresponding annual groundwater level depth dynamic curves. The V-shaped, continuous
 574 decline, and continuous rise types are represented by monitoring wells 220106210371,
 575 220182210410, and 220821210024, respectively. The representative groundwater level
 576 corresponds to February 19, 2020.

577 **3.4. Regional Distribution Characteristics of the Dynamic Causes of Groundwater Level in**

578 ***the Songnen Plain, China***

579 Based on the dynamic variations and spatial distribution characteristics of the groundwater
580 levels in the study area, groundwater monitoring points where the groundwater levels dropped
581 in the freezing period and rose in the thawing period, driven by soil freeze–thaw processes,
582 typically showed a precipitation infiltration–evaporation dynamic in terms of the groundwater
583 level dynamics during the year (Figs. 5b and 6a). These points were mainly distributed in areas
584 with shallow groundwater level depths, such as the northern part of the western low plain and
585 valley plain (Figs. 11a and 12a). Groundwater level dynamics unaffected by soil freeze–thaw
586 processes generally showed two trends: continuous decline or continuous rise (Fig. 6b and c).
587 Monitoring points with a continuous decline trend were mainly located in areas with a
588 significant groundwater level depth, such as the eastern high plain and the Lasong Block
589 between the rivers, where the annual groundwater level dynamics showed typical dynamic
590 characteristics of precipitation infiltration–runoff type (Fig. 5c). The monitoring points in
591 agricultural irrigation areas in the southern part of the western low plain and the western
592 piedmont sloping plain showed a continuous rise in the groundwater level during the freeze–
593 thaw period (Fig. 12a), and the dynamic type of the groundwater level in the year was mainly
594 the extraction type (Fig. 5d). Therefore, the “continuous decline” groundwater dynamic during
595 the freeze–thaw period was the recession phase of the groundwater level after the flood season
596 peak in the precipitation infiltration–runoff-type groundwater, while the “continuous rise”
597 groundwater dynamic was the recovery phase of the groundwater level after the extraction in
598 the extraction-type groundwater.

599 However, under the classification based on the freeze–thaw period, the proportions of the
600 V-shaped, continuous decline, and continuous rise types accounted for 38.4%, 23.2%, and 38.4%
601 of all monitoring points, respectively. These proportions did not completely align with the
602 annual classification of the precipitation infiltration–evaporation (29.0%), precipitation

603 infiltration–runoff (18.1%), and extraction (52.9%) types. This discrepancy can be partly
604 attributed to differences in the groundwater level depth. In some extraction monitoring points,
605 although the annual groundwater level dynamics showed typical extraction characteristics,
606 because the groundwater level at these monitoring points was shallow, the soil freezing and
607 thawing processes still had a significant impact on it, resulting in a V-shape water level change
608 at these points during the freeze–thaw period. The presence of such monitoring points increased
609 the proportion of the V-shape type during the freeze–thaw period, while reducing the proportion
610 of the continuous-rise type. Thus, the proportions of the freeze–thaw and annual classifications
611 were not entirely consistent, particularly in areas with a shallow groundwater level depth,
612 where soil freezing and thawing caused groundwater levels at some points of the extraction
613 type to exhibit V-shaped variations during the freeze–thaw period.

614 In the northern part of the western low plain, where groundwater level was shallow (less
615 than 5 m), the predominant annual groundwater dynamic was the precipitation infiltration–
616 evaporation type (Fig. 11a). Due to the proximity of the groundwater level to the surface, the
617 groundwater levels in these areas are more sensitive to meteorological factors. The dynamic
618 curves of the groundwater level show a characteristic in that the high water level period
619 corresponds to the rainy season. Specifically, in the Songnen Plain, peak precipitation and
620 groundwater level in this dynamic type occur simultaneously, typically between July and
621 August (Fig. 11d and f). The annual variation in the groundwater level was small, generally
622 less than 4 m (Fig. 11c). During the freeze–thaw period, the groundwater level dynamics in this
623 type exhibited a V-shaped pattern, with the groundwater level declining during the freezing
624 period and rising during the thawing period, with a fluctuation range of 0.2–0.9 m. However,
625 this V-shaped variation in the groundwater level is not accidental. At monitoring points with V-
626 shaped dynamics, the initial groundwater level depth and soil freezing depth at the beginning
627 of the freezing period were in the ranges of 0–5 m (Fig. 12d) and 1.6–2.1 m (Fig. 12c),

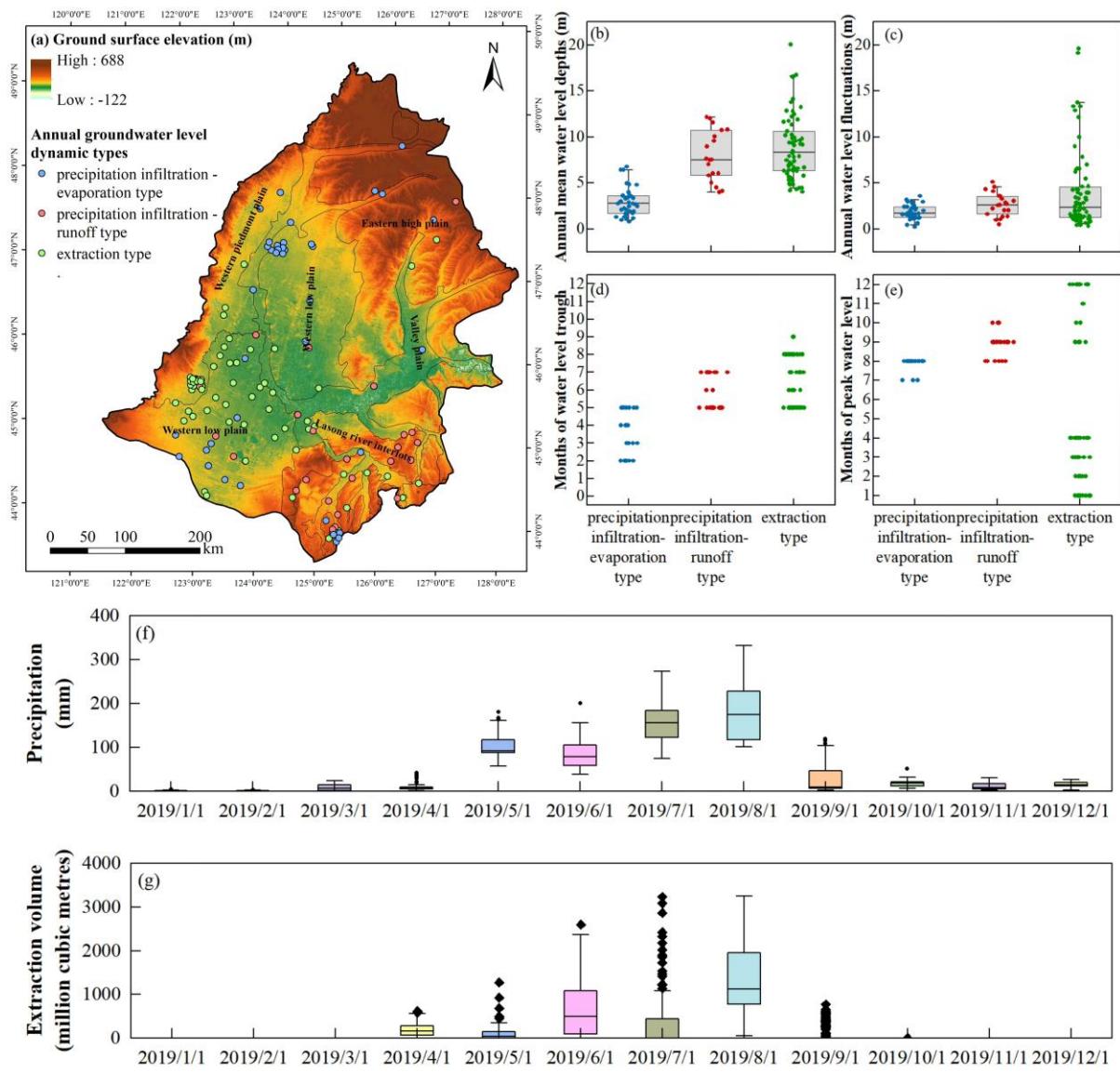
628 respectively. The soil was predominantly silty clay, with a maximum capillary rise height of up
629 to 5 m (Rui, 2004). Therefore, the initial groundwater level depth at these points was generally
630 less than the sum of the soil freezing depth and the maximum capillary rise height (Fig. 12a).
631 This means that during the freezing period, the low-temperature suction caused by soil freezing
632 and the pre-existing capillary forces in the soil form a complete hydraulic connection between
633 the frozen layer and the groundwater, causing the groundwater to continuously migrate toward
634 the freezing front during the freezing period.

635 Groundwater monitoring points exhibiting the precipitation infiltration-runoff type were
636 mainly distributed in the eastern high plain and the Lasong Block between rivers. In these areas,
637 the groundwater level is deeper, typically ranging from 5 to 12 m (Fig. 11b), and runoff is the
638 primary mode of groundwater discharge. The deeper groundwater level prolongs the infiltration
639 time of precipitation, resulting in a delayed response of the groundwater level dynamics to
640 precipitation recharge. Groundwater level peaks typically occur between August and October
641 (Fig. 11d), lagging behind the precipitation peak by approximately one month (Fig. 11f). Due
642 to the low recharge rate, groundwater level fluctuations are relatively moderate, with annual
643 variations generally within 4 m (Fig. 11c). During the freeze-thaw period, groundwater
644 monitoring points with continuously declining trends have greater initial groundwater level
645 depths, ranging from 4.52 to 11.51 m at the beginning of the freezing period (Fig. 12d). This
646 feature is primarily caused by the groundwater level rebound following the cessation of
647 extraction after the irrigation period. With the cessation of agricultural water withdrawal, the
648 depression cone formed by intensive extraction in the earlier stage begins to be replenished,
649 and the groundwater level subsequently rises slowly. Due to the previously high extraction
650 intensity and the relatively deep groundwater table, the recovery process does not occur
651 instantaneously; instead, it is jointly constrained by the delayed response of the groundwater
652 system and the regional recharge conditions. As a result, the groundwater level exhibits a steady

653 and sustained upward trend. In addition, the soil freezing depth in this dynamic type was
654 shallower (between 1.6 and 1.8 m), and the soil was still primarily silty clay (Fig. 12b and c).
655 The greater groundwater level depth and shallower soil freezing depth prevented a complete
656 hydraulic connection between the frozen soil and groundwater (Fig. 12a), resulting in the
657 groundwater level being unaffected by the soil freeze–thaw process. Therefore, under
658 conditions where no groundwater extraction occurs during the freeze–thaw period and the
659 groundwater level is not influenced by freeze–thaw processes, the groundwater system
660 continues the post-irrigation recovery process, presenting a “sustained rising” groundwater
661 level pattern.

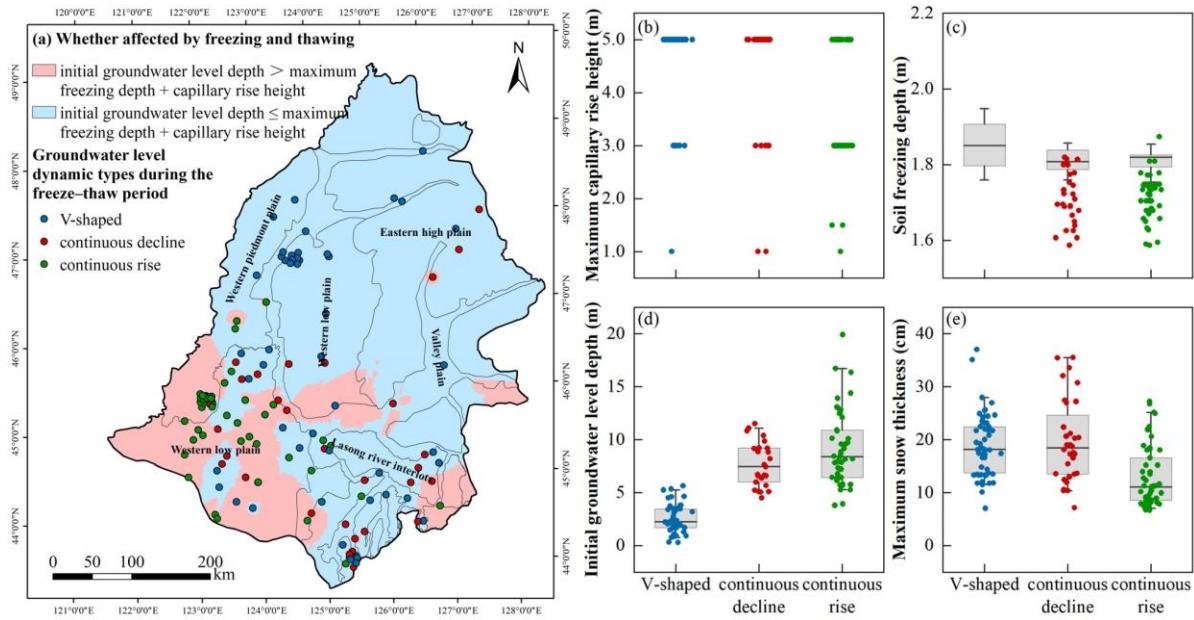
662 In the agricultural irrigation areas of the southern part of the western low plain and the
663 western piedmont sloping plain, the groundwater level depth corresponding to the extraction
664 types typically ranged from 5 to 20 m (Fig. 11b). During the agricultural irrigation period,
665 significant groundwater extraction led to a marked decline in the groundwater level (Fig. 11c).
666 The low groundwater level period coincided with the peak extraction period, typically between
667 June and August (Fig. 11e and g). In areas with substantial groundwater extraction, a
668 groundwater depression cone had already formed, with annual groundwater level fluctuations
669 reaching up to 15 m (Fig. 11c). During the freeze–thaw period, the groundwater level dynamics
670 exhibited a continuous rising trend. In the southern part of the western low plain and the
671 western piedmont sloping plain, the initial groundwater level depth at the beginning of the
672 freezing period and the soil freezing depth were in the ranges of 5–20 m (Fig. 12d) and 1.6–
673 1.8 m (Fig. 12c), respectively, with the soil primarily comprising silty clay and sandy clay loam
674 (with a maximum capillary rise height of 3 m) (Fig. 12b). In this region, the initial groundwater
675 level depth was generally greater than the sum of the soil freezing depth and the maximum
676 capillary rise height, causing the hydraulic connection between the vadose and saturated zones
677 to be severed (Fig. 12a), and the groundwater level was unaffected by the soil freeze–thaw

678 process.



679

680 **Fig. 11.** (a) Spatial distribution of the ground surface elevation and three dynamic types of
 681 annual groundwater level (precipitation infiltration-evaporation type, precipitation infiltration-
 682 runoff type, and extraction type) in Songnen Plain, China. The correlation between the three
 683 dynamic types of annual groundwater level and (b) annual mean groundwater level depths, (c)
 684 annual water level fluctuations, (d) months of peak water level and (e) months of water level
 685 trough. (f) and (g) Monthly distribution of the precipitation and extraction volume in Songnen
 686 Plain, China in 2019, respectively. Each point in (b)–(e) represents a groundwater level
 687 monitoring point.



688

689 **Fig. 12.** (a) Spatial distribution of whether the groundwater level is affected by the soil freeze–
690 thaw process and the three groundwater level dynamic types during the freeze–thaw period (V–
691 shaped, continuously declining, and continuously rising) in the Songnen Plain, China.
692 Correlations between the groundwater level dynamic types in the three freeze–thaw period and
693 (b) maximum capillary rise height of the soil, (c) the soil freezing depth, (d) the initial
694 groundwater level depth at the start of the freezing period, and (e) maximum snow thickness.
695 Each point in (b)–(e) represents a groundwater monitoring well.

696 4. Discussion

697 4.1. Implications of Groundwater Level Dynamics Classification for Water Resources 698 Management

699 This study identified three main types of annual groundwater level dynamics in the
700 Songnen Plain: the precipitation infiltration–evaporation type (29.0%), the precipitation
701 infiltration–runoff type (18.1%), and the extraction type (52.9%). This classification helps to
702 reveal in greater depth the spatiotemporal distribution characteristics and response patterns of
703 regional groundwater dynamics. Xu et al. (2024) demonstrated, based on random forest model
704 analysis, that precipitation is the primary source of recharge for shallow groundwater in the

705 Songnen Plain. This finding is consistent with the identification of the precipitation infiltration–
706 type groundwater dynamics in this study, supporting the regulatory role of natural processes in
707 groundwater levels. Meanwhile, Wu et al. (2025) reported that the significant groundwater
708 decline in Jilin Province is mainly due to over-extraction for agricultural irrigation, particularly
709 the large water demand associated with extensive rice cultivation. This observation echoes the
710 finding that the extraction type accounts for the largest proportion of groundwater dynamics in
711 this study, highlighting the substantial impact of human pumping activities on groundwater
712 resources. On this basis, differentiated management strategies should be implemented for
713 different groundwater dynamics types: in areas dominated by natural processes, ecological
714 water requirements should be safeguarded and precipitation resources should be utilized
715 comprehensively; in areas with significant human extraction, pumping schemes should be
716 optimized to prevent ecological and social risks associated with excessive groundwater level
717 decline.

718 During the freezing–thawing period, groundwater level dynamics are mainly divided into
719 V-shaped type (38.4%), continuously declining type (23.2%), and continuously rising type
720 (38.4%), reflecting different response patterns of the groundwater system under the complex
721 hydrological processes in seasonally frozen soil areas. Previous studies have indicated that soil
722 freezing and thawing during the freezing–thawing period have significant impacts on
723 groundwater recharge and discharge processes (e.g., Wang et al., 2023; Xie et al., 2021). The
724 classification method adopted in this study, by identifying the overall dynamic characteristics
725 during the freezing–thawing period, provides a more comprehensive description of
726 groundwater response patterns. This classification not only facilitates accurate delineation of
727 potential recharge and deficit zones in spring but also provides a theoretical basis for
728 formulating differentiated water resources management strategies tailored to the freezing–
729 thawing cycle, thereby enhancing the capacity to regulate groundwater dynamics in seasonally

730 frozen soil areas.

731 ***4.2 A New Perspective on Identifying Groundwater Level Dynamics Mechanisms***

732 Previous studies on the causes of groundwater level dynamics have generally relied on
733 two main approaches. The first involves statistical methods such as trend analysis, correlation
734 regression, or principal component analysis combined with the temporal variations of driving
735 factors like precipitation, temperature, and water usage to infer potential dominant controls
736 (Sarkhel et al., 2024). The second approach constructs numerical groundwater models or
737 hydrogeological process-based models that quantify the influence of different drivers through
738 parameter inversion, based on known aquifer structures, boundary conditions, and recharge-
739 discharge processes (Petio et al., 2024). However, these methods face significant limitations
740 when applied at the regional scale: statistical methods struggle to fully characterize complex
741 nonlinear responses with multiple time lags and scales, while process-based models depend
742 heavily on high-precision hydrogeological parameters that are often unavailable in most
743 regions, and their results are susceptible to biases introduced by prior assumptions.

744 Differing from previous groundwater level dynamics research, this study explores the
745 dominant factors and their mechanisms controlling various groundwater level changes in the
746 Songnen Plain from the perspective of extracting information embedded within the LSTM
747 model, thereby achieving a data-driven, bottom-up mechanism identification. This approach
748 relies solely on multi-source observational data (precipitation, temperature, snow thickness,
749 groundwater extraction, etc.) and can reveal the spatial (across monitoring wells) and temporal
750 (intra-annual and seasonally frozen soil periods) patterns of dominant factor effects without
751 requiring inaccessible hydrogeological data such as aquifer parameters and recharge-discharge
752 relationships. Compared to traditional process-based models, this method not only enhances
753 the feasibility and applicability of causative analysis but also reduces biases stemming from
754 prior assumptions, providing a more realistic reflection of the groundwater system's response

755 mechanisms (Jiang et al., 2022).

756 ***4.3. Limitations of existing models***

757 A deep learning model was successfully developed in this study to simulate the
758 groundwater level in the seasonally frozen ground regions of Northeast China, with 81.88% of
759 the monitoring wells in the study area achieving an $NSE > 0.7$ on the test set. A common issue
760 with deep learning models is that they are often considered black-box models, making it
761 difficult to interpret their internal decision-making processes, which limits their credibility and
762 interpretability in practical applications (Gunning et al., 2019). In groundwater level simulation
763 studies, this research is the first to apply the EG method to quantify the importance of input
764 factors in simulating groundwater level during non-freezing and freezing periods, revealing the
765 driving forces behind groundwater level dynamics in different seasons. The introduction of this
766 method offers a novel approach to understanding the groundwater level dynamics in seasonally
767 frozen regions.

768 We opted for a local modeling approach (i.e., training a separate model for each
769 groundwater monitoring well) rather than a regional approach (training a single model with
770 data from multiple monitoring wells). This decision was based on our goal to identify the
771 contribution patterns of the input factors (precipitation, air temperature, extraction volume, and
772 snow depth) to groundwater level at the regional scale, including the duration of their influence
773 and the significance of their impact. From a prediction standpoint, a regional model might be
774 more suitable for areas where data are scarce or incomplete (Frame et al., 2022; Nearing et al.,
775 2021), as it can learn more general relationships between input and output factors from
776 historical data (Kratzert et al., 2019). However, regional models are associated with the issue
777 of multicollinearity between static factors, and this issue must be addressed. Collinear input
778 factors may share a substantial amount of information, making it difficult for the model to
779 accurately distinguish the independent influence of each input factor on the output, leading to

780 challenges in interpreting the impact of inputs on the output. Therefore, using regional models
781 to explain the causes of groundwater level dynamics in seasonally frozen regions could be more
782 challenging than using local models. Nevertheless, we acknowledge the advantages of regional
783 models. Future research could further explore how to address the multicollinearity issues
784 associated with static factors in regional models. In conclusion, we successfully combined deep
785 learning models with the EG method to reveal the causes of groundwater level dynamics in
786 seasonally frozen regions.

787 **5. Conclusions**

788 Groundwater dynamics in seasonally frozen regions are complex, influenced by both
789 climate variability and human activities. Deep learning models require more sophisticated
790 architectures and broader input variables to improve simulation accuracy, but this increases the
791 difficulty of interpreting their internal mechanisms. Therefore, this study applies an
792 interpretable deep learning approach to reveal the driving mechanisms behind groundwater
793 level dynamics in seasonally frozen soil regions. High-precision simulations of groundwater
794 levels at 138 monitoring points were conducted using an LSTM model, and combined with the
795 EG method, the main controlling factors and underlying mechanisms of different types of water
796 level changes were identified. The main findings are as follows:

797 First, the LSTM model demonstrated high accuracy in simulating groundwater level
798 variations in seasonally frozen areas, with NSE values on the test set ranging from 0.53 to 0.96,
799 indicating its effectiveness in capturing complex groundwater dynamics.

800 Second, by applying the EG method, three dominant intra-annual groundwater dynamic
801 types in the Songnen Plain of China were identified: precipitation infiltration–evaporation type
802 (29.0%), precipitation infiltration–runoff type (18.1%), and extraction type (52.9%).
803 Correspondingly, during the freeze–thaw period, these types are reflected as V-shaped,
804 continuously declining, and continuously rising patterns, accounting for 38.4%, 23.2%, and

805 38.4% of the monitoring wells, respectively.

806 Third, while all three intra-annual types are primarily recharged by precipitation
807 infiltration, their discharge pathways differ: evaporation, runoff, and groundwater extraction,
808 respectively. During the freeze–thaw period, changes in the soil water potential gradient due to
809 freezing and thawing lead to interactions between soil water and groundwater, resulting in the
810 V-shaped variation. In contrast, the continuously rising and types declining reflect gradual
811 water level changes primarily driven by groundwater extraction and precipitation recharge,
812 without strong influence from freeze–thaw processes. These dynamic types represent
813 groundwater fluctuations jointly driven by multiple factors across different temporal scales.

814 The results demonstrate the great potential of the EG method to bridge model accuracy
815 and interpretability, offering a new perspective for analyzing complex hydrological processes.
816 Future research may incorporate more advanced interpretability techniques to further enhance
817 understanding of deep learning models. The significance of deep learning lies not only in high-
818 accuracy simulations, but also in advancing the discovery of hydrological mechanisms. This
819 study provides new methodological support and theoretical insights for groundwater resource
820 management in seasonally frozen soil regions.

821 **Code and data availability**

822 The precipitation and air temperature data were obtained from the ERA5 hourly data on
823 single levels from 1979 to present dataset, available at
824 <https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download>
825 (Hersbach et al., 2023). The snow depth data were provided by the National Tibetan Plateau
826 Data Center, accessible at <http://data.tpdc.ac.cn/> (Che et al., 2015). The surface elevation data
827 were obtained from the Geospatial Data Cloud (<https://www.gscloud.cn/search>). The
828 groundwater level data were provided by the China Institute of Geo-Environment Monitoring.
829 The code for the explainable machine learning framework is available at

830 <https://doi.org/10.5281/zenodo.4686106> (Jiang, 2022).

831 **Credit authorship contribution statement**

832 H.L.: Conceptualization, Investigation, Formal analysis, Data curation, Visualization,
833 Writing—original draft. H.Ly.: Conceptualization, Validation, Formal analysis, Resources,
834 Investigation, Data curation, Visualization, Supervision. B.P.: Investigation, Visualization.
835 X.Su.: Investigation, Supervision. W.D.: Resources, Data curation. Y.W.: Resources, Data
836 curation. T.S.: Data curation. X.Sh.: Data curation.

837 **Declaration of interests**

838 The authors declare that they have no known competing financial interests or personal
839 relationships that could have appeared to influence the work reported in this paper.

840 **Disclaimer**

841 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional
842 claims in published maps and institutional affiliations.

843 **Acknowledgments**

844 This research was supported by the Jilin Provincial Science and Technology Development
845 Plan Project (No.20230508036RC) and National Natural Science Foundation of China
846 (42172267, 42230204, U19A20107). Thanks to Groundwater Monitoring Project of China
847 Institute of Geo-Environment Monitoring for providing data support.

848 **References**

849 Ao, C., Zeng, W., Wu, L., Qian, L., Srivastava, A. K., and Gaiser, T.: Time-delayed machine
850 learning models for estimating groundwater depth in the Hetao Irrigation District, China,
851 Agr. Water Manage., 255, 107032, <https://doi.org/10.1016/j.agwat.2021.107032>, 2021.
852 Che, T., Dai, L., Li, X.: Long-term series of daily snow depth dataset in China (1979-2024).
853 National Tibetan Plateau / Third Pole Environment Data Center.
854 <https://doi.org/10.11888/Geogra.tpdc.270194>, 2015.

855 Daniel, J. A., and Staricka, J. A.: Frozen soil impact on ground water–surface water interaction,
856 J. Am. Water Resour. Assoc., 36, 151–160, <https://doi.org/10.1111/j.1752-1688.2000.tb04256.x>, 2000.

858 Demissie, Y. K., Valocchi, A. J., Minsker, B. S., and Bailey, B. A.: Integrating a calibrated
859 groundwater flow model with error-correcting data-driven models to improve predictions,
860 J. Hydrol., 364, 257–271, <https://doi.org/10.1016/j.jhydrol.2008.11.007>, 2009.

861 Ebrahimi, H., and Rajaee, T.: Simulation of groundwater level variations using wavelet
862 combined with neural network, linear regression and support vector machine, Glob. Planet.
863 Change, 148, 181–191, <https://doi.org/10.1016/j.gloplacha.2016.11.014>, 2017.

864 Erion, G., Janizek, J. D., Sturmfels, P., Lundberg, S. M., and Lee, S.-I.: Improving performance
865 of deep learning models with axiomatic attribution priors and expected gradients, Nat.
866 Mach. Intell., 3, 620–631, <https://doi.org/10.1038/s42256-021-00343-w>, 2021.

867 Fienen, M. N., Nolan, B. T., and Feinstein, D. T.: Evaluating the sources of water to wells:
868 Three techniques for metamodeling of a groundwater flow model, Environ. Model. Softw.,
869 77, 95–107, <https://doi.org/10.1016/j.envsoft.2015.11.023>, 2016.

870 Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shelev, G., Gilon, O., Qualls, L. M., Gupta,
871 H. V., and Nearing, G. S.: Deep learning rainfall–runoff predictions of extreme events,
872 Hydrol. Earth Syst. Sci., 26, 3377–3392, <https://doi.org/10.5194/hess-26-3377-2022>,
873 2022.

874 Graves, A., Jaitly, N., and Mohamed, A.R.: Hybrid speech recognition with deep bidirectional
875 LSTM, in: Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition
876 and Understanding (ASRU), IEEE Workshop on Automatic Speech Recognition and
877 Understanding, Olomouc, Czech Republic, 8–13 December 2013, pp. 273–278, 2013.

878 Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G.-Z.: XAI—Explainable
879 artificial intelligence, Sci. Robot., 4, eaay7120,

880 <https://doi.org/10.1126/scirobotics.aay7120>, 2019.

881 Hao, Q., Shao, J., Cui, Y., and Xie, Z.: Applicability of artificial recharge of groundwater in the
882 Yongding River alluvial fan in Beijing through numerical simulation, *J. Earth Sci.*, 25,
883 575–586, <https://doi.org/10.1007/s12583-014-0442-6>, 2014.

884 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J.,
885 Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut,
886 J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate
887 Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47

888 Hochreiter, S., and Schmidhuber, J.: Long short-term memory, *Neural Comput.*, 9, 1735–1780,
889 <https://doi.org/10.1162/neco.1997.9.8.1735>, 1997.

890 Ireson, A. M., van der Kamp, G., Ferguson, G., Nachshon, U., and Wheater, H. S.:
891 Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps
892 and challenges, *Hydrogeol. J.*, 21, 53–66, <https://doi.org/10.1007/s10040-012-0916-5>,
893 2013.

894 Jiang, S., Zheng, Y., Wang, C., and Babovic, V.: Uncovering flooding mechanisms across the
895 contiguous United States through interpretive deep learning on representative catchments,
896 *Water Resour. Res.*, 58, e2021WR030185, <https://doi.org/10.1029/2021WR030185>, 2022.

897 Jing, H., He, X., Tian, Y., Lancia, M., Cao, G., Crivellari, A., Guo, Z., and Zheng, C.:
898 Comparison and interpretation of data-driven models for simulating site-specific human-
899 impacted groundwater dynamics in the North China Plain, *J. Hydrol.*, 616, 128751,
900 <https://doi.org/10.1016/j.jhydrol.2022.128751>, 2023.

901 Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, in: 3rd International
902 Conference on Learning Representations, 7–9 May 2015, San Diego,
903 <https://doi.org/10.48550/arXiv.1412.6980>, 2015.

904 Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards

905 learning universal, regional, and local hydrological behaviors via machine learning
906 applied to large-sample datasets, *Hydrol. Earth Syst. Sci.*, 23, 5089–5110,
907 <https://doi.org/10.5194/hess-23-5089-2019>, 2019.

908 Li, L., Li, X., Zheng, X., Li, X., Jiang, T., Ju, H., and Wan, X.: The effects of declining soil
909 moisture levels on suitable maize cultivation areas in Northeast China, *J. Hydrol.*, 608,
910 127636, <https://doi.org/10.1016/j.jhydrol.2022.127636>, 2022.

911 Liu, Q., Gui, D., Zhang, L., Niu, J., Dai, H., Wei, G., and Hu, B. X.: Simulation of regional
912 groundwater levels in arid regions using interpretable machine learning models, *Sci. Total
913 Environ.*, 831, 154902, <https://doi.org/10.1016/j.scitotenv.2022.154902>, 2022.

914 Lundberg, S.M., and Lee, S.-I.: A unified approach to interpreting model predictions, in:
915 *Advances in Neural Information Processing Systems*, Vol. 30, 31st Annual Conference on
916 Neural Information Processing Systems (NIPS), Long Beach, CA, 4–9 December 2017,
917 2017.

918 Lyu, H., Li, H., Zhang, P., Cheng, C., Zhang, H., Wu, S., Ma, Q., and Su, X.: Response
919 mechanism of groundwater dynamics to freeze–thaw process in seasonally frozen soil
920 areas: A comprehensive analysis from site to regional scale, *J. Hydrol.*, 625, 129861,
921 <https://doi.org/10.1016/j.jhydrol.2023.129861>, 2023.

922 Lyu, H., Wu, T., Su, X., Wang, Y., Wang, C., and Yuan, Z.: Factors controlling the rise and fall
923 of groundwater level during the freezing-thawing period in seasonal frozen regions, *J.
924 Hydrol.*, 606, 127442, <https://doi.org/10.1016/j.jhydrol.2022.127442>, 2022.

925 Miao, C., Chen, J., Zheng, X., Zhang, Y., Xu, Y., and Du, Q.: Soil water and phreatic
926 evaporation in shallow groundwater during a freeze–thaw period, *Water*, 9, 396,
927 <https://doi.org/10.3390/w9060396>, 2017.

928 Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto,
929 C., and Gupta, H. V.: What role does hydrological science play in the age of machine

930 learning?, Water Resour. Res., 57, e2020WR028091,
931 <https://doi.org/10.1029/2020WR028091>, 2021.

932 Niu, X., Lu, C., Zhang, Y., Zhang, Y., Wu, C., Saidy, E., Liu, B., and Shu, L.: Hysteresis
933 response of groundwater depth on the influencing factors using an explainable learning
934 model framework with Shapley values, Sci. Total Environ., 904, 166662,
935 <https://doi.org/10.1016/j.scitotenv.2023.166662>, 2023.

936 Petio, P., Liso, I. S., Pastore, N., Pagliarulo, P., Refice, A., Parise, M., Mastronuzzi, G., Caldara,
937 M. A., and Capolongo, D.: Application of hydrological and hydrogeological models for
938 evaluating groundwater budget in a shallow aquifer in a semi-arid region under three
939 pumping rate scenarios (Tavoliere di Puglia, Italy), Water, 16, 3253,
940 <https://doi.org/10.3390/w16223253>, 2024.

941 Raghavendra, S. N. and Deka, P. C.: Support vector machine applications in the field of
942 hydrology: A review, Appl. Soft Comput., 19, 372–386,
943 <https://doi.org/10.1016/j.asoc.2014.02.002>, 2014.

944 Rahman, A. T. M. S., Hosono, T., Quilty, J. M., Das, J., and Basak, A.: Multiscale groundwater
945 level forecasting: Coupling new machine learning approaches with wavelet transforms,
946 Adv. Water Resour., 141, 103595, <https://doi.org/10.1016/j.advwatres.2020.103595>, 2020.

947 Rajaee, T., Ebrahimi, H., and Nourani, V.: A review of the artificial intelligence methods in
948 groundwater level modeling, Journal of Hydrology, 572, 336–351,
949 <https://doi.org/10.1016/j.jhydrol.2018.12.037>, 2019.

950 Rui, X.F.: Hydrologic principle, China Water & Power Press, Beijing, China, 386 pp., ISBN:
951 7-5084-2164-7, 2004.

952 Sarkhel, H. M., Flores, Y. G., Mohammed Al-Manmi, D. A., Mikita, V., and Szűcs, P.:
953 Assessment of groundwater level fluctuation using integrated trend analysis approaches
954 in the Kapran sub-basin, North East of Iraq, Groundw. Sustain. Dev., 26, 101292,

955 <https://doi.org/10.1016/j.gsd.2024.101292>, 2024.

956 Singh, A., Nath Panda, S., Flugel, W.-A., and Krause, P.: Waterlogging and farmland
957 salinisation: causes and remedial measures in an irrigated semi-arid region of India, *Irrig.*
958 *Drain.*, 61, 357–365, <https://doi.org/10.1002/ird.651>, 2012.

959 Sturmfels, P., Lundberg, S., and Lee, S.-I.: Visualizing the impact of feature attribution
960 baselines, *Distill.*, 5, e22, <https://doi.org/10.23915/distill.00022>, 2020.

961 Sundararajan, M., Taly, A., and Yan, Q.Q.: Axiomatic Attribution for Deep Networks, in:
962 *Proceedings of Machine Learning Research*, Vol. 70, 34th International Conference on
963 Machine Learning, Sydney, Australia, 6–11 August 2017, 2017.

964 Wang, J., Ouyang, W., Liu, X., and Wang, L.: Monitoring hydrological changes with satellite
965 data: Spring thaw's effect on soil moisture and groundwater in seasonal freezing-thawing
966 zones, *J. Hydrol.*, 626, Part B, 130365, <https://doi.org/10.1016/j.jhydrol.2023.130365>,
967 2023.

968 Wang, S., Peng, H., and Liang, S.: Prediction of estuarine water quality using interpretable
969 machine learning approach, *J. Hydrol.*, 605, 127320,
970 <https://doi.org/10.1016/j.jhydrol.2021.127320>, 2022.

971 Wang, T., Li, P., Li, Z. B., Hou, J. M., Xiao, L., Ren, Z. P., Xu, G. C., Yu, K. X., and Su, Y. Y.:
972 The effects of freeze–thaw process on soil water migration in dam and slope farmland on
973 the Loess Plateau, China, *Sci. Total Environ.*, 666, 721–730,
974 <https://doi.org/10.1016/j.scitotenv.2019.02.284>, 2019.

975 Wu, C., Zhang, X., Wang, W., Lu, C., Zhang, Y., Qin, W., Tick, G. R., Liu, B., and Shu, L.:
976 Groundwater level modeling framework by combining the wavelet transform with a long
977 short-term memory data-driven model, *Sci. Total Environ.*, 783, 146948,
978 <https://doi.org/10.1016/j.scitotenv.2021.146948>, 2021.

979 Wu, H., Ye, X., Du, X., Wang, W., Li, H., and Dong, W.: Assessing groundwater level

980 variability in response to climate change: A case study of large plain areas, *J. Hydrol. Reg.*
981 *Stud.*, 57, 102180, <https://doi.org/10.1016/j.ejrh.2025.102180>, 2025.

982 Wu, T., Li, H., and Lyu, H.: Effect of freeze–thaw process on heat transfer and water migration
983 between soil water and groundwater, *J. Hydrol.*, 617, Part B, 128987,
984 <https://doi.org/10.1016/j.jhydrol.2022.128987>, 2023.

985 Xie, H.Y., Jiang, X.W., Tan, S.C., Wan, L., Wang, X.S., Liang, S.H., and Zeng, Y.: Interaction
986 of soil water and groundwater during the freezing–thawing cycle: field observations and
987 numerical modeling, *Hydrol. Earth Syst. Sci.*, 25, 4243–4257,
988 <https://doi.org/10.5194/hess-25-4243-2021>, 2021.

989 Xing, Z., Yu, Y., Li, F., Wang, L., Fu, Q., and Wang, H.: Change trend and key influencing
990 factors identification of main crops water demand in Jiansanjiang, *Trans. Chin. Soc. Agric.*
991 *Mach.*, 53, 308–315, <https://doi.org/10.6041/j.issn.1000-1298.2022.07.033>, 2022.

992 Xu, L., Cui, X., Bian, J., Wang, Y., and Wu, J.: Dynamic change and driving response of shallow
993 groundwater level based on random forest in southwest Songnen Plain, *J. Hydrol. Reg.*
994 *Stud.*, 53, 101800, <https://doi.org/10.1016/j.ejrh.2024.101800>, 2024.

995 Yang, X.: Application of the conceptualization groundwater data model to study the Upper
996 Arkansas River corridor, Western Kansas, *J. Earth Sci.*, 23, 77–87,
997 <https://doi.org/10.1007/s12583-012-0234-9>, 2012.

998 Yi, C., Huang, R., Xu, J., Xing, J., and Yi, D.: Dynamic response characteristics of shallow
999 groundwater level to hydro-meteorological factors and well irrigation water withdrawals
1000 under different conditions of groundwater buried depth, *Water*, 14, 3937,
1001 <https://doi.org/10.3390/w14233937>, 2022.

1002 You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-
1003 m crop type maps in Northeast China during 2017–2019, *Sci. Data*, 8, 41,
1004 <https://doi.org/10.1038/s41597-021-00827-9>, 2021.

1005 Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J.: Developing a Long Short-Term Memory
1006 (LSTM) based model for predicting water table depth in agricultural areas, *J. Hydrol.*, 561,
1007 918–929, <https://doi.org/10.1016/j.jhydrol.2018.04.065>, 2018.

1008 Zhao, H.Q. et al.: Investigation and evaluation of groundwater resources and their
1009 environmental problems in the Songnen Plain, Geological Publishing House, Beijing,
1010 China, 270 pp., ISBN: 978-7-116-06095-1, 2009.

1011 Zhou, R. and Zhang, Y.: Predicting and explaining karst spring dissolved oxygen using
1012 interpretable deep learning approach, *Hydrol. Process.*, 37, e14948,
1013 <https://doi.org/10.1002/hyp.14948>, 2023.