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Abstract

Accurately characterizing groundwater level dynamics in seasonal frozen soil regions is
of great significance for water resource management and ecosystem protection in cold areas.
Taking the Songnen Plain in China as the study area, this paper constructs a Long Short-Term
Memory (LSTM) model to simulate daily groundwater levels for 138 monitoring wells. The
Expected Gradients (EG) method is introduced to interpret the model results, thereby
identifying the dominant factors and underlying mechanisms of different groundwater level
variation types. The results show that the LSTM model performs well on the test set, with the
Nash-Sutcliffe Efficiency (NSE) exceeding 0.7 at 81.88% of the monitoring sites, effectively
capturing the temporal dynamics of groundwater levels. At the annual scale, three typical
groundwater level variation types are identified: precipitation infiltration—evaporation type
(29.0%), precipitation infiltration—runoff type (18.1%), and extraction type (52.9%). The first
two types are mainly controlled by natural processes, with water level variations depending on
climatic conditions, while the extraction type is significantly influenced by human activities,
characterized by violent water level fluctuations. During the frozen-thaw period, groundwater
level dynamics can be classified into three major types: “V”’-shaped variation (decline during
freezing, rise during thawing, accounting for 38.4%), continuous decline (23.2%), and
continuous rise (38.4%). EG analysis indicates that the “V”-shaped dynamics are mainly
governed by climatic factors such as air temperature, precipitation, and snow thickness, clearly
reflecting the dominant role of the frozen-thaw process. Further analysis reveals that when the
initial groundwater level depth at the start of the freezing period is shallower than the sum of
the “frozen-thaw influence depth plus capillary rise height,” a hydraulic connection is
established between the frozen soil layer and the aquifer, enabling frequent conversion between
soil water and groundwater and resulting in the characteristic “V”-shaped fluctuation.

Conversely, when the groundwater level depth exceeds this critical threshold, the frozen-thaw
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process has limited influence on the aquifer. Groundwater level variations are mainly driven
by the recovery process following groundwater extraction or prior precipitation replenishment,
exhibiting continuous rise or continuous decline, respectively. This study establishes an
integrated framework of “simulation—classification—interpretation,” which not only improves
the accuracy of groundwater level dynamic simulation and prediction but also provides new
methods and perspectives for revealing the underlying mechanisms. The findings offer
theoretical support and technical basis for regional groundwater resource management in cold
regions.

Keywords: Freezing-thawing process; Groundwater level dynamics; Seasonally frozen plain;

Interpretable deep learning models
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1. Introduction

Groundwater level is a crucial indicator reflecting the water balance status of groundwater
systems, and its dynamic changes reveal the evolving trends of regional hydrological processes.
In terms of water resource management, monitoring groundwater level depth helps managers
understand changes in groundwater storage, optimize water extraction schemes, and prevent
resource depletion caused by overexploitation (Hao et al., 2014; Yang, 2012). Regarding
ecosystem protection, fluctuations in groundwater level depth directly affect regional
ecological patterns. Excessively low water levels may lead to wetland desiccation and
biodiversity loss, while rapid rises can cause soil salinization and vegetation degradation (Singh
et al., 2012). Relevant studies have also practically validated the significance of groundwater
level prediction. For example, Liu et al. (2022) demonstrated in the lower Tarim River that
machine learning—based groundwater level prediction models can quantitatively reveal current
and future groundwater changes, clarifying the critical role of ‘ecological water conveyance’
in regional ecological restoration. Therefore, in-depth identification of the controlling
mechanisms behind groundwater level depth variations and achieving high-precision
spatiotemporal simulation are of great significance for promoting sustainable groundwater
resource utilization and ecological environment protection (Yi et al., 2022).

Seasonally frozen soil areas are widely distributed globally. In China, they cover more
than half of the total land area, mainly in the northwest and northeast regions where water
scarcity is a prominent issue (Wang et al., 2019). Unlike non-frozen soils, seasonally frozen
soil is a unique water—soil system that contains ice, and changes in the ice content are
accompanied by the dynamic storage of liquid water and dynamic changes in heat (Wu et al.,
2023). The movement and storage behavior of groundwater in these regions differ from those
in warm, non-frozen areas (Ireson et al., 2013), as the freeze—thaw process results in more

frequent interactions between soil water and groundwater (Daniel and Staricka, 2000; Lyu et
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al., 2022; Lyu et al., 2023; Miao et al., 2017). This leads to significant differences in the causes
of groundwater level dynamics between the freeze—thaw and non-freeze—thaw periods in
seasonally frozen soil areas, making it more challenging to accurately simulate the regional
groundwater levels.

Current models used for simulating groundwater level dynamics can generally be
categorized into two groups: physical models and machine learning models (Ao et al., 2021).
Most physical models are based on hydrodynamic processes and water balance principles, and
are capable of accurately representing the physical mechanisms of groundwater systems.
Therefore, they possess irreplaceable advantages in characterizing groundwater flow and
uncovering hydrological processes such as recharge, runoff, and discharge. However, in areas
with complex geological structures or highly heterogeneous aquifer systems, the construction,
parameter calibration, and validation of physical models typically require large amounts of
high-resolution geological, hydrological, and hydraulic data. These requirements make
physical modeling challenging to implement and time-consuming (Raghavendra N and Deka,
2014). Hence, there are few simulation studies on regional-scale groundwater level dynamics
in seasonally frozen soil areas. In comparison, machine learning models have demonstrated
significant advantages in simulating groundwater levels. These models explore the nonlinear
relationships between inputs (such as meteorological and topographic data) and outputs
(groundwater level) without the need to consider internal physical mechanisms (Rajaee et al.,
2019), nor do they require predefined parameters such as hydraulic characteristics or boundary
conditions (Ao et al., 2021). Despite this, machine learning models typically outperform
physical models in terms of simulation accuracy, particularly in medium-to-long-term
simulation studies (Demissie et al., 2009; Ebrahimi and Rajaee, 2017; Fienen et al., 2016;
Rahman et al., 2020). One of the most successful deep learning architectures for modeling

dynamic hydrological variables is the long short-term memory (LSTM) network (Jing et al.,
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2023; Wu et al., 2021). The LSTM model, which is an improved version of the recurrent neural
network (RNN), can more effectively capture long-term dependencies in time-series data
(Hochreiter and Schmidhuber, 1997). In the seasonally frozen soil regions of Northwest China,
14 years of continuous groundwater level simulations have shown that the LSTM model can
effectively handle long-term data and accurately simulate groundwater levels in seasonally
frozen soil areas (Zhang et al., 2018).

Although numerous studies have demonstrated the accuracy and predictive power of data-
driven models in hydrological fields, these models are essentially black boxes and cannot
explicitly explain the underlying physical processes and mechanisms (Zhou and Zhang, 2023).
To address this limitation, researchers have proposed various methods to interpret deep learning
models. Two widely used methods in groundwater research are the expected gradient (EG)
method (Jiang et al., 2022) and the Shapley additive explanations (SHAP) algorithm (Lundberg
and Lee, 2017). The broad application of the SHAP method is mainly attributed to its ability to
reveal, from a local perspective, the contribution of each input variable to the corresponding
model output at each time step (Wang et al., 2022) and, from a global perspective, the overall
influence of input variables on the model output over the entire simulation period (Liu et al.,
2022; Niu et al., 2023). However, the limitation of the SHAP method is that its interpretation
of input factors is static and independent, making it ineffective in capturing the complex
interactions between groundwater levels and long-term recharge and discharge dynamics. In
contrast, the EG method (Jiang et al., 2022) calculates the EG values of the input variables over
a specified time range, allowing for a better quantification of the impact of dynamic input
variables on output variables at a particular time. This capability theoretically makes the EG
method advantageous in groundwater level simulations with dynamic characteristics,
particularly in explaining the temporal effects of meteorological changes on groundwater level

across different periods. Nevertheless, there are currently no dedicated studies on the use of the
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EG method to explain the causes of groundwater level dynamics, and its effectiveness in
understanding the relatively complex mechanisms of groundwater level dynamics in seasonally
frozen soil areas requires further validation.

In this study, the seasonally frozen soil area of the Songnen Plain in Northeastern China
was taken as an example. Through an in-depth analysis of three years of continuous monitoring
data from phreatic wells in this region, combined with meteorological, hydrological, and soil
texture data, the LSTM model was used to simulate the groundwater level dynamics. The
reverse interpretation technique, i.e., the EG method, was applied to explore the decision
principles of the deep learning model in simulating water levels during the non-freeze—thaw
and freeze—thaw periods, thus revealing the mechanisms behind groundwater level dynamics
across different periods in seasonally frozen soil areas. The research findings can demonstrate
and extend the application of interpretable deep learning models in the groundwater field,
providing essential support for groundwater resource assessment and ecological environment
protection in seasonally frozen soil areas.

2. Data and methodology

Figure 1 shows the workflow of this study, including three main steps. First, the LSTM
model is used to establish a nonlinear relationship between meteorological factors, human
activities, and groundwater level depths (Fig. 1a). The daily air temperature, precipitation,
extraction volume, and snow depth were used as input variables to predict the groundwater
level depths. Subsequently, the EG method (Jiang et al., 2022) was applied to the trained LSTM
model to obtain the EG scores of the input factors at different time steps. The EG scores
quantify the influence of the meteorological inputs (air temperature, precipitation, and snow
depth) and human activities (extraction volume) on the groundwater level depths during the
simulation process (Fig. 1b). Finally, the causes of groundwater level dynamics during the non-

freeze—thaw and freeze—thaw periods in seasonally frozen soil areas were identified.
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Fig. 1. Workflow of this study: (a) Model structure of the LSTM model, (b) EG scores of input
factors during the non-freeze—thaw and freeze—thaw periods.
2.1. Study area

The Songnen Plain is one of the three major plains in Northeast China. It is higher on the
periphery and lower at the center, with a total area of 182,800 km? (Fig. 2a). The study area is
surrounded by hills and mountains in the west, north, and east of the Greater and Lesser Xingan,
Zhangguangcai, and Changbai Mountains, respectively, and is connected to the West Liaohe
Plain by the micro-uplifted Songliao watershed in the south. The Songnen Plain primarily
comprises the eastern high plain, western piedmont sloping plain, western low plain, and valley
plain (Fig. 2a). The soil texture in the region mainly includes sandy loam, sandy clay loam,
clay loam, and loamy clay (Fig. 2b). The climate in the area can be mainly characterized by

two main types: first, it features a typical East Asian continental monsoon climate with hot,



161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

rainy summers and cold, dry winters; second, although the distribution of the climatic factors
in the Songnen Plain is significantly influenced by latitude, there is a distinct east—west
difference, with arid conditions in the west and humid conditions in the east (Li et al., 2022).
The long-term average temperature of the Songnen Plain is 3.8 °C, the long-term average
precipitation is 484.57 mm, and the long-term average evaporation is 1,498.1 mm. The frost-
free period ranges from 115 to 160 days. Freezing starts in mid-October from north to south,
and thawing begins in April from south to north. The freezing depth ranges from 1.5 to 2.4 m
(Zhao et al., 2009). The area is crisscrossed by rivers, with the Songhua River, Nenjiang River,
and their tributaries forming a centripetal drainage system. The lower reaches of the Nenjiang
River and Taoer River, as well as the Second Songhua River, flow through the central plain
from the north, west, and southeast, respectively. The aquifer system in the Songnen Plain,
China, consists of multiple aquifers ranging from the Cretaceous, Paleogene, and Neogene to
the Quaternary. Among them, the Quaternary aquifer, whose distribution range is slightly
smaller than that of the Cretaceous aquifer, is the main groundwater exploitation layer in the

region and the aquifer in which the groundwater studied in this paper is located (Fig. 2c¢).
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Fig. 2. Spatial distribution of the ground surface elevation (a), topography (b) and aquifer
system (c) in the Songnen Plain, China.
2.2. Dataset and selection of representative groundwater level values

To simulate the dynamic changes in the groundwater level in seasonally frozen soil areas
and to analyze the driving mechanisms of groundwater level dynamics during freezing and
non-freezing periods, this study primarily used dynamic observational data from 2018 to 2021,
including precipitation, air temperature, snow depth, groundwater extraction volume, and
groundwater levels, as well as static data such as ground surface elevation and soil texture. The

precipitation and air temperature data were obtained from the “ERAS hourly data on single

10
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levels from 1979 to present” dataset, provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF). ERAS is the fifth-generation re-analysis of the global climate
and weather data with a spatial resolution of 0.25° x 0.25° and an hourly temporal resolution.
Daily snow depth data were sourced from the National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn), with a spatial resolution of 25 km. The temporal and spatial resolution
of the groundwater extraction volume data was enhanced based on the spatial distribution and
water demand of major crops in the Songnen Plain, along with the precipitation data.
Groundwater level data from 138 phreatic wells were provided by the China Geological
Environment Monitoring Institute, while surface elevation data with a spatial resolution of 30
m were obtained from the Geospatial Data Cloud (https://www.gscloud.cn/search). Soil texture
data were sourced from the Resource and Environment Science and Data Center, compiled
from a 1:1,000,000 soil type map and soil profile data collected during the second national soil
survey of China.

In the Songnen Plain, approximately 70% of groundwater extraction is used for
agricultural irrigation; therefore, in this study, groundwater extraction was approximated based
on crop water deficits. Using spatial distribution data of the region’s major crops, ten-day
period crop water requirements, and precipitation data, we estimated groundwater extraction
at a fine resolution, ultimately generating ten-day period groundwater extraction data with a
spatial resolution of 25 km x 25 km. Specifically, based on the water requirements of the main
crops (rice, soybean, and maize), we calculated the total crop water demand for each ten-day
period within each grid cell. These values were then weighted according to the crop planting
area to obtain the total water demand per grid. By comparing precipitation with crop water
demand, we determined whether precipitation could meet the crop water needs. When
precipitation was sufficient, crops relied entirely on natural rainfall, and the effective

precipitation equaled the water demand. When precipitation was insufficient, effective
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precipitation was limited by actual rainfall, and the remaining crop water deficit was assumed
to be supplemented by other water sources. Finally, the difference between crop water demand
and effective precipitation was calculated as the crop water deficit, which was assumed to be
primarily supplied by groundwater. This allowed us to approximate ten-day period
groundwater extraction. To ensure consistency with the temporal resolution of other variables
used for model training, the ten-day period data were converted to daily averages by dividing
by the number of days in each period.

To identify the causes of groundwater level dynamics during freezing and non-freezing
periods, representative groundwater levels were selected for analysis using the EG method at
different time periods. Based on the annual pattern of the groundwater level dynamics,
groundwater levels during the non-freezing period are influenced by human activities, flood-
season precipitation, and other factors, leading to greater fluctuations compared with that
observed in the freezing period. Therefore, selecting extreme values (either maximum or
minimum) as representative groundwater levels can effectively capture the peak or trough of
the groundwater level, reflecting the most significant state of groundwater recharge or
discharge during this period. Based on this, the trends in the groundwater level were analyzed
to identify the different dynamic characteristics during the non-freezing period. If the
groundwater level shows an overall uptrend, the maximum value represents the peak of the
recharge process; if it shows a downtrend, the minimum value reflects the maximum extent of
discharge.

However, during the freezing period, groundwater level fluctuations are relatively small,
and extreme values do not respond significantly to external factors. During this period,
groundwater levels may be influenced by soil freezing and thawing processes. Therefore, the
groundwater levels at critical moments of soil freezing and thawing were chosen as

representative values to more accurately reflect the response of groundwater level to

12



236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

environmental changes. During the freezing period, after the “Beginning of Winter” solar term
(November 7-8), the average temperature continuously dropped to below 0 °C, and a thin ice
layer gradually formed on the surface; after the “Rain Water” solar term (February 18-20),
temperatures increased, and the frozen soil began to thaw in both directions; finally, the frozen
soil fully thawed around the “Grain Rain” solar term (April 19-21) in spring (Lyu et al., 2023).
Based on this climatic pattern, we uniformly defined the freezing and thawing periods for all
monitoring wells in the study area. Specifically, the freezing period is defined as the interval
from “Beginning of Winter” to “Rain Water,” and the thawing period as from “Rain Water” to
“Grain Rain.” Therefore, the groundwater level at the “Rain Water” solar term was chosen as
the representative groundwater level during the freezing period to capture the rapid response
of the groundwater level to rising temperatures and thawing of the frozen soil.
2.3. Research methods
2.3.1. LSTM model

The LSTM neural network (Hochreiter and Schmidhuber, 1997) is an advanced RNN
widely applied in deep learning. It can store and associate previous information, effectively
addressing the issues of vanishing and exploding gradients that occur during the training of
long sequence data. The deep learning model used in this study comprises a single LSTM layer
and a dense layer. The LSTM layer is composed of recurrent cells arranged in a chain-like
structure, allowing information to be passed from the current time step to the next. The model
uses daily precipitation, air temperature, groundwater extraction volume, and snow depth from
the previous 150 days as input sequences to predict groundwater level depths. Each cell in the
LSTM layer includes four components: the input gate (i;), the forget gate (f;), the output gate
(0¢), and the cell state (c;) (as shown in the LSTM layer in Fig. 1a). The input gate determines
how much input information is transferred to the cell state. The forget gate primarily controls

how much information from the previous cell state is discarded and how much is carried
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forward to the current moment. The output gate calculates the output based on the updated cell
state from the forget and input gates. The cell state is used to record the current input, the
previous cell state, and the information from the gate structures. In this study, we adopted the

LSTM equations proposed by Graves et al. (2013), which are represented by the following key

equations:
ip = c(Wyixe + Wpihe_q + by) (1)
fe = o(Wapxe + Wypheoq + by) (2)
¢t = fr O co1 + i O tanh(Wyexy + Wyche 1 + be) 3)
0r = 0(WyoXe + Wiohe—1 + b,) 4
h; = o, © tanh(c;) (5)

where the input and output vectors of the implicit layer of the LSTM at time step ¢ are x; and
h;, respectively, the memory cell is ¢;, and the values of the input, forget, and output gates are
ir, ft, and o, respectively. W and b represent the learnable weight and bias terms to be

estimated during the training period, respectively, o(-) denotes the logistic sigmoid function,
tanh(-) is the hyperbolic tangent function, and © represents elementwise multiplication.

Before training the model, the air temperature, precipitation, groundwater extraction
volume, and snow depth were normalized by mapping their values to a range between 0 and 1.
The adaptive moment estimation (Adam) algorithm (Kingma and Ba, 2014) was employed
during training, with an initial learning rate set to 0.03. The maximum training epoch number
was configured to 100, and an early stopping strategy was applied to prevent overfitting. For
each individual groundwater monitoring well, 70% of the input—output data pairs were
randomly sampled for training the LSTM model, and they were split into training and
validation samples at a ratio of 7:3. The training samples were repeatedly used to update the
model parameters until the loss function for the validation samples ceased to decrease. The

remaining 30% of the data were used for an independent evaluation of the model performance.
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Random sampling allows for capturing the overall hydrometeorological variations observed
across different time periods.
2.3.2. Model interpretations

In 2017, Sundararajan et al. developed the integrated gradients (IG) method (Sundararajan
et al., 2017), which uses the gradient of the model’s output to the input factors to infer the
specific contribution of the input variables to the output variable. The IG score for an input
factor x (e.g., the precipitation at the i-th time step), representing the degree of contribution of

the input variable to the output variable, is expressed as follows:

OIS (f,x,x") = (x; — x}) f;zOWda 6)

6f(x’+a(x—x’))

where
ox i

denotes the local gradient of the network fat the interpolation point from

the baseline input (x', when « = 0) to the target input (x, when a = 1).

However, the baseline input x' in the above formula is a hyperparameter that must be
chosen carefully. In groundwater level studies, if the target input (e.g., a particular groundwater
level observation) is close to the chosen baseline input (e.g., long-term average groundwater
level),ie., x; = x;, the IG method may fail to capture the importance of current input factors,
such as precipitation or evaporation, on groundwater level changes (Sturmfels et al., 2020). To
address this issue, Jiang et al. (2022) developed the EG method, which is based on the IG
method but assumes that the baseline inputs follow the basic distribution D sampled from a
background dataset (such as the training dataset), thus avoiding the need to specify a fixed
baseline input. Given the baseline distribution D, the EG score @F¢ for the i-th input factor

can be calculated by integrating the gradients over all possible baseline inputs x' € D, weighted

by the probability density function pp. The EG score represents the influence of input factors
on the model output, with a higher absolute EG score indicating a greater impact of the

corresponding input factor on the model output, while an EG score close to zero suggests that
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the input factor has little effect on the output. The EG score can be expressed as follows:
07° (f, x) = [ (8 (f, x,x") x pp(x")dx') (7)
The above expression involves two integrals, which, according to Erion et al. (2021), can

both be considered expectations. Thus, the equation can be reformulated as:

1 Of(x +a(x—x")
052 (£ ) = Eyr-pa-uion |t — ) 1y ) ®

2.3.3. Evaluation metrics

The evaluation metrics used in this study include the Nash—Sutcliffe efficiency (NSE)
coefficient and the root-mean-square error (RMSE). The NSE is used to assess the degree of
fit of the regression model. The RMSE quantifies how well the predicted values match the
observed values. If the NSE is close to 1 and the RMSE is close to 0, the model is more reliable.

Y (—y)?
I, G2 ©)

RMSE = /%‘”2 (10)

where x; is the depth of the observed groundwater level, and X, is the average value of x;;

NSE =1-—

y; 1s the groundwater level depth simulated by the LSTM model; and i denotes the specific
sample ordinal number, from 1 to n.
3. Results
3.1. Simulation Accuracy of Deep Learning Model for Groundwater Level

A data-driven model (LSTM model) was used to simulate the daily groundwater level
depth of 138 aquifer monitoring wells in the Songnen Plain, China, from 2019 to 2021. Overall,
the simulation accuracy of the groundwater level depth was relatively high across the western
piedmont sloping plain, the eastern high plain, and the valley plain regions. In these areas, the
NSE values at the monitoring points in the test set ranged from 0.53 to 0.96 (Fig. 3a), with

87.14% of the monitoring points showing NSE values greater than 0.7. Over the entire

16



333

334

335

336

337

338
339

340

341

342

343

344

345

346

347

348

349

simulation period (including the training and test sets), the maximum error between the
simulated and observed values at each monitoring point mainly ranged from 0.5 to 2.5 m (Fig.
3b, d, and e), with 94.29% of the monitoring points having an average error of less than 0.5 m.
The annual groundwater level fluctuation at the monitoring points in this region was relatively

small, ranging from 0.41 to 6.54 m.
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Fig. 3. (a) Spatial distribution of the NSE values on the test set for 138 groundwater level
monitoring points in the Songnen Plain, China. (b)—(e) Maximum, minimum, and mean errors
between simulated and observed groundwater levels at monitoring points in the western
piedmont sloping plain, western low plain, eastern high plain, and valley plain during the
simulation period.

Only 18.11% of the monitoring wells in the study area had a Nash-Sutcliffe Efficiency
(NSE) below 0.7 on the test dataset, and these wells were primarily located in the southern part
of the western low plain (Fig. 3a). In this region, the average absolute error between simulated
and observed daily groundwater level depth ranged from 0.04 to 2.93 meters, although the
maximum error reached as high as 11.56 meters (Fig. 3c), indicating that the model exhibited

certain instability in localized areas. Figure 4 compares the simulated and observed
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groundwater level depth series at several poorly performing wells in this region. As shown in
the figure, significant discrepancies occurred during certain periods, and the fitting
performance was unsatisfactory. The primary reason for this discrepancy is the large annual
fluctuation in groundwater level depth at many wells in this region: 21.43% of the monitoring
wells had a fluctuation range exceeding 10 meters. These extreme fluctuations posed
challenges for the LSTM model’s simulation accuracy. In the training data used for the LSTM
model, samples with extreme values of groundwater level depth were relatively scarce, while
samples with moderate values were more abundant. Consequently, the model tended to fit the
data in the moderate range more accurately, resulting in limited predictive ability for the
extreme ends of the groundwater level series. Despite the reduced accuracy at certain wells,
the LSTM model is capable of accurately capturing the variation trend of groundwater levels,
and no significant lag is observed between the simulated and observed values (Fig. 4). The
Pearson correlation coefficients between the simulated water levels and the measured water
levels at the four representative monitoring points shown in the figure are 0.86, 0.81, 0.87, and
0.85, respectively. Moreover, the correlation coefficients reach their maximum values without
applying any time lag, indicating that the simulated values can effectively and promptly reflect

the actual variation trend of groundwater levels.
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Fig. 4. Comparison of the simulated and observed groundwater level depths at typical points
in the western low plain (NSE values on the test set <0.7).

Overall, most of the groundwater monitoring points in the Songnen Plain, China, showed
NSE values greater than 0.7 on the test set, indicating a relatively high simulation accuracy of
the groundwater level depth based on the LSTM model. This suggests that the network
structure of the LSTM model could accurately capture the dynamic relationships between the
air temperature, precipitation, extraction volume, snow depth, and groundwater level.

3.2. Dynamic Characteristics of Regional Groundwater Level and their Distribution Laws
3.2.1. Annual Dynamics Variations and Spatial Distribution
Based on the characteristics of the annual groundwater level dynamic curves in the

Songnen Plain, China, the annual groundwater level dynamics can be categorized into three

types (Fig. 5).
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The monitoring wells located in areas with a shallow groundwater level (less than 7 m) in
the northern part of the western low plain and valley plain (Fig. 5a) exhibited annual
groundwater level fluctuations of less than 4 m. Typically, the dynamic change in the
groundwater level is as follows: during the dry season from January to April, precipitation is
almost zero, and the groundwater level depth is significantly greater compared with those in
the other months; with the onset of the rainy season (May to August), precipitation increases,
causing the groundwater level to rise; after the rainy season ends (September to December),
the groundwater level depth gradually increases with decreasing precipitation (Fig. 5b). This
dynamic type of the groundwater level is the first annual dynamic type in the Songnen Plain,
with its corresponding monitoring wells accounting for 29.0% of all wells in the study area.

The monitoring wells located on Tableland, the Lasong Block between rivers, and the
eastern high plain (Fig. 5a) have relatively greater groundwater level depths, ranging from
approximately 5 to 11 m. From January to May each year, groundwater levels show a
continuous decline; with the increase in precipitation, the groundwater level begins to gradually
rise, reaching their annual peak in early October (Fig. 5¢). The timing of the groundwater peak
is delayed by 1 to 2 months compared with the first dynamic type, indicating that the response
of the groundwater level to precipitation is slower (Fig. 5b and c). The annual groundwater
level fluctuation is within 5 m. This dynamic type is the second annual dynamic type in the
Songnen Plain, with its corresponding monitoring wells accounting for only 18.1% of all wells
in the study area.

In agricultural irrigation areas, such as the southern part of the western low plain and the
western piedmont sloping plain (Fig. 5a), the groundwater level depth typically ranges from 5
to 20 m. The dynamic curves of the groundwater level in the aquifer monitoring wells in these
areas exhibit distinct periodicity, showing a funnel-like and sawtooth pattern. The lowest

groundwater levels typically occur in May or August, while the highest level typically occurs
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405 in November or later (Fig. 5d). During the irrigation season, groundwater levels drop
406  significantly, with annual fluctuations being generally within 15 m. This dynamic groundwater
407  typeis widely distributed in the study area, with its corresponding monitoring wells accounting

408  for 52.9% of all wells, representing the third annual dynamic type in the Songnen Plain.
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410  Fig. 5. (a) Spatial distribution of different annual groundwater level dynamic types in the
411  Songnen Plain, China; (b—d) Dynamic curves of different annual groundwater types and their
412  corresponding precipitation variations. (b) The first annual dynamic type is represented by an
413  unconfined aquifer monitoring well, numbered 230204210070, located in the western low plain;
414 (c) The second annual dynamic type is represented by an unconfined aquifer monitoring well,
415  numbered 220182210411, located in the Lasong Block between rivers; (d) The third annual
416  dynamic type is represented by an unconfined aquifer monitoring well, numbered
417 220802210145, located in the western piedmont sloping plain.

418  3.2.2. Freeze—Thaw Period Dynamics Variations and Spatial Distribution

419 Freeze—thaw processes increase the frequency of interactions between soil water and

420  groundwater (Daniel and Staricka, 2000; Lyu et al., 2022; Miao et al., 2017). As a typical
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seasonally frozen soil region, the Songnen Plain, China, exhibits three main forms of the
dynamic curves of the groundwater level during the freeze—thaw period: “decline during

2 ¢¢

freezing, rise during thawing,” “continuous decline,” and “continuous rise” (Fig. 6). The
monitoring points of the different dynamic types during the freeze—thaw period accounted for
38.4% (V-shaped), 23.2% (continuous decline type) and 38.4% (continuous rise type),
respectively.

At monitoring points with a “V-shaped” groundwater level dynamic curve, characterized
by “decline during freezing, rise during thawing” (Fig. 6a), the groundwater level fluctuated
by approximately 0.2-0.9 m during the freeze-thaw period. The time when the groundwater
level reached its maximum depth roughly coincided with the time when the soil reached its
maximum frozen thickness. These monitoring wells are primarily distributed in areas with a
shallow groundwater level in the northern part of the western low plain and the valley plain,
with a few located in the southern part of the western low plain. At the beginning of the freezing
period, groundwater level depths at these wells were typically within 5 m (Fig. 6d).

For the continuous decline and continuous rise types, the dynamic curves of the
groundwater level during the freeze—thaw period exhibited either a “continuous decline” or
“continuous rise” (Fig. 6b and c), with the rate of change remaining consistent throughout both
the freezing and thawing periods. Monitoring points with the continuous decline in the
groundwater level were mainly distributed in areas, such as the eastern high plain and the
Lasong Block between rivers, where the groundwater level depth ranged from 4.52 to 11.51 m
at the start of the freezing period (Fig. 6d). In contrast, monitoring wells with a continuous rise
in the groundwater level during the freeze-thaw period were mainly found in agricultural
irrigation areas such as the southern part of the western low plain and the western piedmont
sloping plain, where the groundwater level depth at the beginning of the freezing period ranged

from 4.71 to 19.91 m (Fig. 6d).
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Fig. 6. (a—c) Dynamic curves of different groundwater types during the freeze—thaw period and
corresponding changes in air temperature; (d) Spatial distribution of different groundwater
level dynamic types during the freeze—thaw period in the Songnen Plain, China. The dynamic
curves of the groundwater level exhibiting patterns of (a) V-shaped, (b) continuous decline, and
(c) continuous rise correspond to the unconfined aquifer monitoring wells numbered
230204210070, 220182210411, and 220802210145, respectively.
3.3. Main Controlling Factors and ldentification of Causes for Various Groundwater Level
Dynamic Types

After the application of the EG method to the trained models for the 138 groundwater
level simulations, the EG scores (¢F£%) were obtained for precipitation, air temperature,
extraction volume, and snow depth within 150 days prior to the representative groundwater

level values for each annual and freeze—thaw period groundwater level dynamic type (Figs. 7

and 8).
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Fig. 7. EG scores (¢£¢) of the precipitation, air temperature, and extraction volume for

different annual groundwater level dynamic types in the study area at different time steps.
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Fig. 8. EG scores (¢p£¢) of the precipitation, air temperature, and snow depth for different
groundwater level dynamic types during the freeze—thaw period in the study area at different
time steps.
3.3.1. Annual Dynamics: Influencing Factors and Dynamics Mechanisms

Within 90 days before the representative groundwater level values, the average EG scores

for the precipitation and air temperature in the first annual dynamic type ranged from 0 to 0.04
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and from 0 to 0.07, respectively, while the average EG score for the extraction volume did not
exceed 0.01 (Fig. 7a). This indicates that the groundwater level depth in this dynamic type was
significantly influenced by precipitation and air temperature, while the effect of extraction was
negligible. Thus, the changes in the groundwater level depth may be related to the precipitation
infiltration—evaporation process. When a pronounced precipitation peak occurred (Fig. 9b), the
EG score increased significantly (exceeding 0.15), corresponding to a rise in groundwater level
(Fig. 9e), indicating that precipitation infiltration made a substantial contribution to the
groundwater level increase. Within the 90 days when precipitation influenced the
representative groundwater level value, a total precipitation of 408.09 mm led to an overall rise
in the groundwater level by 1.12 m (Fig. 9b and e). During periods without precipitation, the
air temperature continued to rise (Fig. 9a), reflecting higher soil evaporation. At this time, the
EG score for the air temperature was also relatively high (ranging from 0.10 to 0.20), and the
groundwater level showed a slight decline (Fig. 9¢). This suggests that evaporation was the
primary discharge mechanism for groundwater in this dynamic type. Therefore, based on the
groundwater recharge and discharge mechanisms, the first annual groundwater dynamic type
is summarized as the precipitation infiltration—evaporation type.

In contrast, in the second annual dynamic type, only the precipitation had a significant
impact on the groundwater level depth within 90 days before the representative groundwater
level value (with the EG scores ranging from 0 to 0.03), while the average EG scores for the
air temperature and extraction volume remained between 0 and 0.01 (Fig. 7b). Precipitation
almost consistently recharged the groundwater during the 90 days before the representative
groundwater level values (with an average EG score of approximately 0.012), causing a gradual
rise in the groundwater level (Fig. 9j). However, the rate of groundwater rise was relatively
slow, with an average value of approximately 0.02 m/d. The air temperature fluctuated

significantly over the 90-day period (Fig. 9f), ranging from 4.41 to 28.57 °C, but had no
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significant impact on the groundwater level (Fig. 9j). The EG score during periods of high
temperatures was also below 0.01, indicating that evaporation had little effect on the
groundwater level. There was some groundwater extraction in local areas around July and
October (Fig. 9h); however, it had a minimal impact on the groundwater level, with the EG
scores remaining below 0.01. The relatively deep groundwater level (nearly 13 m) suggests
that this groundwater type was primarily discharged through runoff. Therefore, the second
annual groundwater dynamic type was classified as the precipitation infiltration—runoft type.
In the third annual dynamic type, the precipitation, air temperature, and extraction volume
had a significant impact on groundwater level within a shorter period before the representative
groundwater level values (within 60 days), with the average EG scores in the ranges of 0-0.08,
0-0.02, and 0-0.02, respectively (Fig. 7c). This dynamic type is mainly distributed in
agricultural irrigation areas, such as the southern part of the western low plain and the western
piedmont sloping plain (Fig. 5a). The main crops in these areas are rice, soybeans, and corn
(You et al., 2021), and their water demand is concentrated in the summer, particularly between
June and August (Xing et al., 2022). During this period, the air temperature shows a fluctuating
uptrend (Fig. 9k), with the EG scores reaching a maximum of 0.02, indicating that high
temperatures increase soil evaporation and crop transpiration. This leads to a higher water
demand from the crops; however, the low rainfall was insufficient to meet this demand during
these periods (Fig. 91, with a daily maximum precipitation of only 33.80 mm), necessitating
additional groundwater extraction for irrigation to maintain crop growth (Fig. 9m). As a result,
the EG score for the extraction volume reached approximately 0.20 during this period, and
groundwater level decreased accordingly (Fig. 90). This dynamic type indicates that
groundwater recharge comes from precipitation infiltration, and groundwater extraction is the
main discharge mechanism. Thus, the third annual groundwater dynamic type was classified

as the extraction type.
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Fig. 9. Observed values and EG scores (¢£¢) of the precipitation, air temperature, extraction
volume, and snow depth within 150 days before the representative groundwater level values
for various annual groundwater level dynamic types, as well as the corresponding annual
groundwater level depth dynamic curves. The precipitation infiltration—evaporation type,
precipitation infiltration—runoff type, and extraction type are represented by monitoring wells
230204210072, 220183210399, and 220821210024, with representative groundwater level
values corresponding to August 27, 2019, October 9, 2019, and August 2, 2019, respectively.
3.3.2. Freeze-Thaw Dynamics: Influencing Factors and Dynamics Mechanisms

A further analysis focused on the groundwater dynamic types during the freeze—thaw
period. In the V-shaped dynamic type, the average EG scores for precipitation and snow depth
within 60 days before the representative groundwater level values ranged from 0 to 0.05, while
the average EG score for the air temperature within 30 days before the representative
groundwater level values ranged from 0 to 0.02 (Fig. 8a). This suggests that the air temperature,
precipitation, and snow depth had a combined effect on the groundwater level depth of the V-
shaped dynamic type during the freeze—thaw period. Within 30 days before the representative
groundwater level values, the air temperature ranged from —21.10 °C to 4.40 °C, with the

overall temperature being below 0 °C (Fig. 10b). As the air and soil temperatures dropped
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below 0 °C, the effective soil porosity decreased significantly due to water freezing, and the
low-temperature suction related to the soil water potential between ice and water in the frozen
soil increased gradually (Lyu et al., 2022). Under the combined effect of the capillary force and
low-temperature suction, groundwater migrated upward continuously, thereby increasing the
groundwater level depth (Fig. 10e). During this period, the snow depth increased with the
decrease in temperature, reaching a maximum value of 13.22 cm on February 9, 2020 (Fig.
10d). The maximum EG score for the snow depth reached 0.03, indicating that snow had an
impact on the groundwater level depth during the freeze—thaw period. When the air temperature
exceeded 0 °C, the snow thawed rapidly (Fig. 10d), and the snow and frozen soil thaw water
infiltrated to recharge the groundwater, causing the groundwater level to rise for the first time
(Fig. 10e).

For the continuously declining and continuously rising dynamic types, only precipitation
and snow depth affected the groundwater level depth during the freeze—thaw period. In the
continuously declining groundwater dynamic type, the precipitation and snow depth influenced
the groundwater level depth over a longer period before the representative groundwater level
values (within 60 days), with the average EG scores below 0.07 and 0.04, respectively (Fig.
8b). In the continuously rising groundwater dynamic type, the average EG scores for the
precipitation and snow depth within 30 days before the representative groundwater level values
ranged from 0 to 0.05 and from 0 to 0.07, respectively, indicating that precipitation and snow
depth affected the groundwater level depth in this dynamic type during the freeze—thaw period
(Fig. 8c). Compared with precipitation and snow depth, the impact of the air temperature on
the groundwater level in both dynamic types was negligible (Fig. 8b and c), with the average
EG scores ranging from 0 to 0.01.

In both the freeze-thaw dynamic types, the air temperature fluctuated significantly over

the past 150 days (Fig. 10f and k), whereas the EG scores remained below 0.01, indicating that
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the freeze—thaw effects had no significant impact on groundwater levels. Snow depth continued
to increase during the winter when the air temperature was below 0 °C (Fig. 101 and n). When
the air temperature rose above 0 °C, the snow gradually thawed, and the meltwater had some
recharging effect on groundwater levels (with maximum EG scores reaching 0.04). However,
due to the limited amount of snow and the high groundwater levels, the impact of snowmelt on
the groundwater level was gradual and limited, failing to significantly alter the original trends
in the continuously declining or continuously rising groundwater levels (Fig. 10j and o).
Therefore, the causes of the continuously declining and continuously rising groundwater level

dynamic types were related to the recovery process of the annual groundwater levels.
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Fig. 10. Observed values and EG scores (¢£¢) of the precipitation, air temperature, extraction
volume, and snow depth within 150 days before the representative groundwater level values
for various groundwater level dynamic types during the freeze—thaw period, as well as the
corresponding annual groundwater level depth dynamic curves. The V-shaped, continuous
decline, and continuous rise types are represented by monitoring wells 220106210371,
220182210410, and 220821210024, respectively. The representative groundwater level

corresponds to February 19, 2020.

3.4. Regional Distribution Characteristics of the Dynamic Causes of Groundwater Level in

29



581  the Songnen Plain, China

582 Based on the dynamic variations and spatial distribution characteristics of the groundwater
583 levels in the study area, groundwater monitoring points where the groundwater levels dropped
584  in the freezing period and rose in the thawing period, driven by soil freeze—thaw processes,
585  typically showed a precipitation infiltration-evaporation dynamic in terms of the groundwater
586  level dynamics during the year (Figs. 5b and 6a). These points were mainly distributed in areas
587  with shallow groundwater level depths, such as the northern part of the western low plain and
588  valley plain (Figs. 11a and 12a). Groundwater level dynamics unaffected by soil freeze—thaw
589  processes generally showed two trends: continuous decline or continuous rise (Fig. 6b and c).
590 Monitoring points with a continuous decline trend were mainly located in areas with a
591  significant groundwater level depth, such as the eastern high plain and the Lasong Block
592  between the rivers, where the annual groundwater level dynamics showed typical dynamic
593  characteristics of precipitation infiltration—runoff type (Fig. 5c). The monitoring points in
594  agricultural irrigation areas in the southern part of the western low plain and the western
595  piedmont sloping plain showed a continuous rise in the groundwater level during the freeze—
596  thaw period (Fig. 12a), and the dynamic type of the groundwater level in the year was mainly
597  the extraction type (Fig. 5d). Therefore, the “continuous decline” groundwater dynamic during
598 the freeze—thaw period was the recession phase of the groundwater level after the flood season
599 peak in the precipitation infiltration—runoff-type groundwater, while the “continuous rise”
600  groundwater dynamic was the recovery phase of the groundwater level after the extraction in
601 the extraction-type groundwater.

602 However, under the classification based on the freeze—thaw period, the proportions of the
603  V-shaped, continuous decline, and continuous rise types accounted for 38.4%, 23.2%, and 38.4%
604  of all monitoring points, respectively. These proportions did not completely align with the

605 annual classification of the precipitation infiltration—evaporation (29.0%), precipitation
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infiltration—runoft (18.1%), and extraction (52.9%) types. This discrepancy can be partly
attributed to differences in the groundwater level depth. In some extraction monitoring points,
although the annual groundwater level dynamics showed typical extraction characteristics,
because the groundwater level at these monitoring points was shallow, the soil freezing and
thawing processes still had a significant impact on it, resulting in a V-shape water level change
at these points during the freeze—thaw period. The presence of such monitoring points increased
the proportion of the V-shape type during the freeze—thaw period, while reducing the proportion
of the continuous-rise type. Thus, the proportions of the freeze—thaw and annual classifications
were not entirely consistent, particularly in areas with a shallow groundwater level depth,
where soil freezing and thawing caused groundwater levels at some points of the extraction
type to exhibit V-shaped variations during the freeze—thaw period.

In the northern part of the western low plain, where groundwater level was shallow (less
than 5 m), the predominant annual groundwater dynamic was the precipitation infiltration-
evaporation type (Fig. 11a). Due to the proximity of the groundwater level to the surface, the
groundwater levels in these areas are more sensitive to meteorological factors. The dynamic
curves of the groundwater level show a characteristic in that the high water level period
corresponds to the rainy season. Specifically, in the Songnen Plain, peak precipitation and
groundwater level in this dynamic type occur simultaneously, typically between July and
August (Fig. 11d and f). The annual variation in the groundwater level was small, generally
less than 4 m (Fig. 11c). During the freeze—thaw period, the groundwater level dynamics in this
type exhibited a V-shaped pattern, with the groundwater level declining during the freezing
period and rising during the thawing period, with a fluctuation range of 0.2—-0.9 m. However,
this V-shaped variation in the groundwater level is not accidental. At monitoring points with V-
shaped dynamics, the initial groundwater level depth and soil freezing depth at the beginning

of the freezing period were in the ranges of 0—5 m (Fig. 12d) and 1.6-2.1 m (Fig. 12c),
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respectively. The soil was predominantly silty clay, with a maximum capillary rise height of up
to 5 m (Rui, 2004). Therefore, the initial groundwater level depth at these points was generally
less than the sum of the soil freezing depth and the maximum capillary rise height (Fig. 12a).
This means that during the freezing period, the low-temperature suction caused by soil freezing
and the pre-existing capillary forces in the soil form a complete hydraulic connection between
the frozen layer and the groundwater, causing the groundwater to continuously migrate toward
the freezing front during the freezing period.

Groundwater monitoring points exhibiting the precipitation infiltration-runoff type were
mainly distributed in the eastern high plain and the Lasong Block between rivers. In these areas,
the groundwater level is deeper, typically ranging from 5 to 12 m (Fig. 11b), and runoff is the
primary mode of groundwater discharge. The deeper groundwater level prolongs the infiltration
time of precipitation, resulting in a delayed response of the groundwater level dynamics to
precipitation recharge. Groundwater level peaks typically occur between August and October
(Fig. 11d), lagging behind the precipitation peak by approximately one month (Fig. 11f). Due
to the low recharge rate, groundwater level fluctuations are relatively moderate, with annual
variations generally within 4 m (Fig. 11c). During the freeze-thaw period, groundwater
monitoring points with continuously declining trends have greater initial groundwater level
depths, ranging from 4.52 to 11.51 m at the beginning of the freezing period (Fig. 12d). This
feature is primarily caused by the groundwater level rebound following the cessation of
extraction after the irrigation period. With the cessation of agricultural water withdrawal, the
depression cone formed by intensive extraction in the earlier stage begins to be replenished,
and the groundwater level subsequently rises slowly. Due to the previously high extraction
intensity and the relatively deep groundwater table, the recovery process does not occur
instantaneously; instead, it is jointly constrained by the delayed response of the groundwater

system and the regional recharge conditions. As a result, the groundwater level exhibits a steady
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and sustained upward trend. In addition, the soil freezing depth in this dynamic type was
shallower (between 1.6 and 1.8 m), and the soil was still primarily silty clay (Fig. 12b and c).
The greater groundwater level depth and shallower soil freezing depth prevented a complete
hydraulic connection between the frozen soil and groundwater (Fig. 12a), resulting in the
groundwater level being unaffected by the soil freeze—thaw process. Therefore, under
conditions where no groundwater extraction occurs during the freeze—thaw period and the
groundwater level is not influenced by freeze—thaw processes, the groundwater system
continues the post-irrigation recovery process, presenting a “sustained rising” groundwater
level pattern.

In the agricultural irrigation areas of the southern part of the western low plain and the
western piedmont sloping plain, the groundwater level depth corresponding to the extraction
types typically ranged from 5 to 20 m (Fig. 11b). During the agricultural irrigation period,
significant groundwater extraction led to a marked decline in the groundwater level (Fig. 11c¢).
The low groundwater level period coincided with the peak extraction period, typically between
June and August (Fig. lle and g). In areas with substantial groundwater extraction, a
groundwater depression cone had already formed, with annual groundwater level fluctuations
reaching up to 15 m (Fig. 11¢). During the freeze—thaw period, the groundwater level dynamics
exhibited a continuous rising trend. In the southern part of the western low plain and the
western piedmont sloping plain, the initial groundwater level depth at the beginning of the
freezing period and the soil freezing depth were in the ranges of 5-20 m (Fig. 12d) and 1.6—
1.8 m (Fig. 12c), respectively, with the soil primarily comprising silty clay and sandy clay loam
(with a maximum capillary rise height of 3 m) (Fig. 12b). In this region, the initial groundwater
level depth was generally greater than the sum of the soil freezing depth and the maximum
capillary rise height, causing the hydraulic connection between the vadose and saturated zones

to be severed (Fig. 12a), and the groundwater level was unaffected by the soil freeze—thaw
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Fig. 11. (a) Spatial distribution of the ground surface elevation and three dynamic types of

annual groundwater level (precipitation infiltration-evaporation type, precipitation infiltration-

runoff type, and extraction type) in Songnen Plain, China. The correlation between the three

dynamic types of annual groundwater level and (b) annual mean groundwater level depths, (c)

annual water level fluctuations, (d) months of peak water level and (e) months of water level

trough. (f) and (g) Monthly distribution of the precipitation and extraction volume in Songnen

Plain, China in 2019, respectively. Each point in (b)—(e) represents a groundwater level

monitoring point.
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Fig. 12. (a) Spatial distribution of whether the groundwater level is affected by the soil freeze—
thaw process and the three groundwater level dynamic types during the freeze—thaw period (V-
shaped, continuously declining, and continuously rising) in the Songnen Plain, China.
Correlations between the groundwater level dynamic types in the three freeze—thaw period and
(b) maximum capillary rise height of the soil, (c) the soil freezing depth, (d) the initial
groundwater level depth at the start of the freezing period, and (e) maximum snow thickness.
Each point in (b)—(e) represents a groundwater monitoring well.
4. Discussion
4.1. Implications of Groundwater Level Dynamics Classification for Water Resources
Management

This study identified three main types of annual groundwater level dynamics in the
Songnen Plain: the precipitation infiltration—evaporation type (29.0%), the precipitation
infiltration—runoff type (18.1%), and the extraction type (52.9%). This classification helps to
reveal in greater depth the spatiotemporal distribution characteristics and response patterns of
regional groundwater dynamics. Xu et al. (2024) demonstrated, based on random forest model

analysis, that precipitation is the primary source of recharge for shallow groundwater in the
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Songnen Plain. This finding is consistent with the identification of the precipitation infiltration—
type groundwater dynamics in this study, supporting the regulatory role of natural processes in
groundwater levels. Meanwhile, Wu et al. (2025) reported that the significant groundwater
decline in Jilin Province is mainly due to over-extraction for agricultural irrigation, particularly
the large water demand associated with extensive rice cultivation. This observation echoes the
finding that the extraction type accounts for the largest proportion of groundwater dynamics in
this study, highlighting the substantial impact of human pumping activities on groundwater
resources. On this basis, differentiated management strategies should be implemented for
different groundwater dynamics types: in areas dominated by natural processes, ecological
water requirements should be safeguarded and precipitation resources should be utilized
comprehensively; in areas with significant human extraction, pumping schemes should be
optimized to prevent ecological and social risks associated with excessive groundwater level
decline.

During the freezing—thawing period, groundwater level dynamics are mainly divided into
V-shaped type (38.4%), continuously declining type (23.2%), and continuously rising type
(38.4%), reflecting different response patterns of the groundwater system under the complex
hydrological processes in seasonally frozen soil areas. Previous studies have indicated that soil
freezing and thawing during the freezing—thawing period have significant impacts on
groundwater recharge and discharge processes (e.g., Wang et al., 2023; Xie et al., 2021). The
classification method adopted in this study, by identifying the overall dynamic characteristics
during the freezing—thawing period, provides a more comprehensive description of
groundwater response patterns. This classification not only facilitates accurate delineation of
potential recharge and deficit zones in spring but also provides a theoretical basis for
formulating differentiated water resources management strategies tailored to the freezing—

thawing cycle, thereby enhancing the capacity to regulate groundwater dynamics in seasonally
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frozen soil areas.
4.2 A New Perspective on ldentifying Groundwater Level Dynamics Mechanisms

Previous studies on the causes of groundwater level dynamics have generally relied on
two main approaches. The first involves statistical methods such as trend analysis, correlation
regression, or principal component analysis combined with the temporal variations of driving
factors like precipitation, temperature, and water usage to infer potential dominant controls
(Sarkhel et al., 2024). The second approach constructs numerical groundwater models or
hydrogeological process-based models that quantify the influence of different drivers through
parameter inversion, based on known aquifer structures, boundary conditions, and recharge-
discharge processes (Petio et al., 2024). However, these methods face significant limitations
when applied at the regional scale: statistical methods struggle to fully characterize complex
nonlinear responses with multiple time lags and scales, while process-based models depend
heavily on high-precision hydrogeological parameters that are often unavailable in most
regions, and their results are susceptible to biases introduced by prior assumptions.

Differing from previous groundwater level dynamics research, this study explores the
dominant factors and their mechanisms controlling various groundwater level changes in the
Songnen Plain from the perspective of extracting information embedded within the LSTM
model, thereby achieving a data-driven, bottom-up mechanism identification. This approach
relies solely on multi-source observational data (precipitation, temperature, snow thickness,
groundwater extraction, etc.) and can reveal the spatial (across monitoring wells) and temporal
(intra-annual and seasonally frozen soil periods) patterns of dominant factor effects without
requiring inaccessible hydrogeological data such as aquifer parameters and recharge-discharge
relationships. Compared to traditional process-based models, this method not only enhances
the feasibility and applicability of causative analysis but also reduces biases stemming from

prior assumptions, providing a more realistic reflection of the groundwater system’s response
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mechanisms (Jiang et al., 2022).
4.3. Limitations of existing models

A deep learning model was successfully developed in this study to simulate the
groundwater level in the seasonally frozen ground regions of Northeast China, with 81.88% of
the monitoring wells in the study area achieving an NSE > 0.7 on the test set. A common issue
with deep learning models is that they are often considered black-box models, making it
difficult to interpret their internal decision-making processes, which limits their credibility and
interpretability in practical applications (Gunning et al., 2019). In groundwater level simulation
studies, this research is the first to apply the EG method to quantify the importance of input
factors in simulating groundwater level during non-freezing and freezing periods, revealing the
driving forces behind groundwater level dynamics in different seasons. The introduction of this
method offers a novel approach to understanding the groundwater level dynamics in seasonally
frozen regions.

We opted for a local modeling approach (i.e., training a separate model for each
groundwater monitoring well) rather than a regional approach (training a single model with
data from multiple monitoring wells). This decision was based on our goal to identify the
contribution patterns of the input factors (precipitation, air temperature, extraction volume, and
snow depth) to groundwater level at the regional scale, including the duration of their influence
and the significance of their impact. From a prediction standpoint, a regional model might be
more suitable for areas where data are scarce or incomplete (Frame et al., 2022; Nearing et al.,
2021), as it can learn more general relationships between input and output factors from
historical data (Kratzert et al., 2019). However, regional models are associated with the issue
of multicollinearity between static factors, and this issue must be addressed. Collinear input
factors may share a substantial amount of information, making it difficult for the model to

accurately distinguish the independent influence of each input factor on the output, leading to
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challenges in interpreting the impact of inputs on the output. Therefore, using regional models
to explain the causes of groundwater level dynamics in seasonally frozen regions could be more
challenging than using local models. Nevertheless, we acknowledge the advantages of regional
models. Future research could further explore how to address the multicollinearity issues
associated with static factors in regional models. In conclusion, we successfully combined deep
learning models with the EG method to reveal the causes of groundwater level dynamics in
seasonally frozen regions.

5. Conclusions

Groundwater dynamics in seasonally frozen regions are complex, influenced by both
climate variability and human activities. Deep learning models require more sophisticated
architectures and broader input variables to improve simulation accuracy, but this increases the
difficulty of interpreting their internal mechanisms. Therefore, this study applies an
interpretable deep learning approach to reveal the driving mechanisms behind groundwater
level dynamics in seasonally frozen soil regions. High-precision simulations of groundwater
levels at 138 monitoring points were conducted using an LSTM model, and combined with the
EG method, the main controlling factors and underlying mechanisms of different types of water
level changes were identified. The main findings are as follows:

First, the LSTM model demonstrated high accuracy in simulating groundwater level
variations in seasonally frozen areas, with NSE values on the test set ranging from 0.53 to 0.96,
indicating its effectiveness in capturing complex groundwater dynamics.

Second, by applying the EG method, three dominant intra-annual groundwater dynamic
types in the Songnen Plain of China were identified: precipitation infiltration—evaporation type
(29.0%), precipitation infiltration—runoff type (18.1%), and extraction type (52.9%).
Correspondingly, during the freeze—thaw period, these types are reflected as V-shaped,

continuously declining, and continuously rising patterns, accounting for 38.4%, 23.2%, and
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38.4% of the monitoring wells, respectively.

Third, while all three intra-annual types are primarily recharged by precipitation
infiltration, their discharge pathways differ: evaporation, runoff, and groundwater extraction,
respectively. During the freeze—thaw period, changes in the soil water potential gradient due to
freezing and thawing lead to interactions between soil water and groundwater, resulting in the
V-shaped variation. In contrast, the continuously rising and types declining reflect gradual
water level changes primarily driven by groundwater extraction and precipitation recharge,
without strong influence from freeze—thaw processes. These dynamic types represent
groundwater fluctuations jointly driven by multiple factors across different temporal scales.

The results demonstrate the great potential of the EG method to bridge model accuracy
and interpretability, offering a new perspective for analyzing complex hydrological processes.
Future research may incorporate more advanced interpretability techniques to further enhance
understanding of deep learning models. The significance of deep learning lies not only in high-
accuracy simulations, but also in advancing the discovery of hydrological mechanisms. This
study provides new methodological support and theoretical insights for groundwater resource
management in seasonally frozen soil regions.
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