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Abstract 13 

Accurately characterizing groundwater level dynamics in seasonal frozen soil regions is 14 

of great significance for water resource management and ecosystem protection in cold areas. 15 

Taking the Songnen Plain in China as the study area, this paper constructs a Long Short-Term 16 

Memory (LSTM) model to simulate daily groundwater levels for 138 monitoring wells. The 17 

Expected Gradients (EG) method is introduced to interpret the model results, thereby 18 

identifying the dominant factors and underlying mechanisms of different groundwater level 19 

variation types. The results show that the LSTM model performs well on the test set, with the 20 

Nash-Sutcliffe Efficiency (NSE) exceeding 0.7 at 81.88% of the monitoring sites, effectively 21 

capturing the temporal dynamics of groundwater levels. At the annual scale, three typical 22 

groundwater level variation types are identified: precipitation infiltration–evaporation type 23 

(29.0%), precipitation infiltration–runoff type (18.1%), and extraction type (52.9%). The first 24 

two types are mainly controlled by natural processes, with water level variations depending on 25 

climatic conditions, while the extraction type is significantly influenced by human activities, 26 

characterized by violent water level fluctuations. During the frozen-thaw period, groundwater 27 

level dynamics can be classified into three major types: “V”-shaped variation (decline during 28 

freezing, rise during thawing, accounting for 38.4%), continuous decline (23.2%), and 29 

continuous rise (38.4%). EG analysis indicates that the “V”-shaped dynamics are mainly 30 

governed by climatic factors such as air temperature, precipitation, and snow thickness, clearly 31 

reflecting the dominant role of the frozen-thaw process. Further analysis reveals that when the 32 

initial groundwater level depth at the start of the freezing period is shallower than the sum of 33 

the “frozen-thaw influence depth plus capillary rise height,” a hydraulic connection is 34 

established between the frozen soil layer and the aquifer, enabling frequent conversion between 35 

soil water and groundwater and resulting in the characteristic “V”-shaped fluctuation. 36 

Conversely, when the groundwater level depth exceeds this critical threshold, the frozen-thaw 37 
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process has limited influence on the aquifer. Groundwater level variations are mainly driven 38 

by the recovery process following groundwater extraction or prior precipitation replenishment, 39 

exhibiting continuous rise or continuous decline, respectively. This study establishes an 40 

integrated framework of “simulation–classification–interpretation,” which not only improves 41 

the accuracy of groundwater level dynamic simulation and prediction but also provides new 42 

methods and perspectives for revealing the underlying mechanisms. The findings offer 43 

theoretical support and technical basis for regional groundwater resource management in cold 44 

regions. 45 

Keywords: Freezing-thawing process; Groundwater level dynamics; Seasonally frozen plain; 46 

Interpretable deep learning models47 



4 

1. Introduction 48 

Groundwater level is a crucial indicator reflecting the water balance status of groundwater 49 

systems, and its dynamic changes reveal the evolving trends of regional hydrological processes. 50 

In terms of water resource management, monitoring groundwater level depth helps managers 51 

understand changes in groundwater storage, optimize water extraction schemes, and prevent 52 

resource depletion caused by overexploitation (Hao et al., 2014; Yang, 2012). Regarding 53 

ecosystem protection, fluctuations in groundwater level depth directly affect regional 54 

ecological patterns. Excessively low water levels may lead to wetland desiccation and 55 

biodiversity loss, while rapid rises can cause soil salinization and vegetation degradation (Singh 56 

et al., 2012). Relevant studies have also practically validated the significance of groundwater 57 

level prediction. For example, Liu et al. (2022) demonstrated in the lower Tarim River that 58 

machine learning–based groundwater level prediction models can quantitatively reveal current 59 

and future groundwater changes, clarifying the critical role of ‘ecological water conveyance’ 60 

in regional ecological restoration. Therefore, in-depth identification of the controlling 61 

mechanisms behind groundwater level depth variations and achieving high-precision 62 

spatiotemporal simulation are of great significance for promoting sustainable groundwater 63 

resource utilization and ecological environment protection (Yi et al., 2022). 64 

Seasonally frozen soil areas are widely distributed globally. In China, they cover more 65 

than half of the total land area, mainly in the northwest and northeast regions where water 66 

scarcity is a prominent issue (Wang et al., 2019). Unlike non-frozen soils, seasonally frozen 67 

soil is a unique water–soil system that contains ice, and changes in the ice content are 68 

accompanied by the dynamic storage of liquid water and dynamic changes in heat (Wu et al., 69 

2023). The movement and storage behavior of groundwater in these regions differ from those 70 

in warm, non-frozen areas (Ireson et al., 2013), as the freeze–thaw process results in more 71 

frequent interactions between soil water and groundwater (Daniel and Staricka, 2000; Lyu et 72 
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al., 2022; Lyu et al., 2023; Miao et al., 2017). This leads to significant differences in the causes 73 

of groundwater level dynamics between the freeze–thaw and non-freeze–thaw periods in 74 

seasonally frozen soil areas, making it more challenging to accurately simulate the regional 75 

groundwater levels. 76 

Current models used for simulating groundwater level dynamics can generally be 77 

categorized into two groups: physical models and machine learning models (Ao et al., 2021). 78 

Most physical models are based on hydrodynamic processes and water balance principles, and 79 

are capable of accurately representing the physical mechanisms of groundwater systems. 80 

Therefore, they possess irreplaceable advantages in characterizing groundwater flow and 81 

uncovering hydrological processes such as recharge, runoff, and discharge. However, in areas 82 

with complex geological structures or highly heterogeneous aquifer systems, the construction, 83 

parameter calibration, and validation of physical models typically require large amounts of 84 

high-resolution geological, hydrological, and hydraulic data. These requirements make 85 

physical modeling challenging to implement and time-consuming (Raghavendra N and Deka, 86 

2014). Hence, there are few simulation studies on regional-scale groundwater level dynamics 87 

in seasonally frozen soil areas. In comparison, machine learning models have demonstrated 88 

significant advantages in simulating groundwater levels. These models explore the nonlinear 89 

relationships between inputs (such as meteorological and topographic data) and outputs 90 

(groundwater level) without the need to consider internal physical mechanisms (Rajaee et al., 91 

2019), nor do they require predefined parameters such as hydraulic characteristics or boundary 92 

conditions (Ao et al., 2021). Despite this, machine learning models typically outperform 93 

physical models in terms of simulation accuracy, particularly in medium-to-long-term 94 

simulation studies (Demissie et al., 2009; Ebrahimi and Rajaee, 2017; Fienen et al., 2016; 95 

Rahman et al., 2020). One of the most successful deep learning architectures for modeling 96 

dynamic hydrological variables is the long short-term memory (LSTM) network (Jing et al., 97 
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2023; Wu et al., 2021). The LSTM model, which is an improved version of the recurrent neural 98 

network (RNN), can more effectively capture long-term dependencies in time-series data 99 

(Hochreiter and Schmidhuber, 1997). In the seasonally frozen soil regions of Northwest China, 100 

14 years of continuous groundwater level simulations have shown that the LSTM model can 101 

effectively handle long-term data and accurately simulate groundwater levels in seasonally 102 

frozen soil areas (Zhang et al., 2018). 103 

Although numerous studies have demonstrated the accuracy and predictive power of data-104 

driven models in hydrological fields, these models are essentially black boxes and cannot 105 

explicitly explain the underlying physical processes and mechanisms (Zhou and Zhang, 2023). 106 

To address this limitation, researchers have proposed various methods to interpret deep learning 107 

models. Two widely used methods in groundwater research are the expected gradient (EG) 108 

method (Jiang et al., 2022) and the Shapley additive explanations (SHAP) algorithm (Lundberg 109 

and Lee, 2017). The broad application of the SHAP method is mainly attributed to its ability to 110 

reveal, from a local perspective, the contribution of each input variable to the corresponding 111 

model output at each time step (Wang et al., 2022) and, from a global perspective, the overall 112 

influence of input variables on the model output over the entire simulation period (Liu et al., 113 

2022; Niu et al., 2023). However, the limitation of the SHAP method is that its interpretation 114 

of input factors is static and independent, making it ineffective in capturing the complex 115 

interactions between groundwater levels and long-term recharge and discharge dynamics. In 116 

contrast, the EG method (Jiang et al., 2022) calculates the EG values of the input variables over 117 

a specified time range, allowing for a better quantification of the impact of dynamic input 118 

variables on output variables at a particular time. This capability theoretically makes the EG 119 

method advantageous in groundwater level simulations with dynamic characteristics, 120 

particularly in explaining the temporal effects of meteorological changes on groundwater level 121 

across different periods. Nevertheless, there are currently no dedicated studies on the use of the 122 
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EG method to explain the causes of groundwater level dynamics, and its effectiveness in 123 

understanding the relatively complex mechanisms of groundwater level dynamics in seasonally 124 

frozen soil areas requires further validation. 125 

In this study, the seasonally frozen soil area of the Songnen Plain in Northeastern China 126 

was taken as an example. Through an in-depth analysis of three years of continuous monitoring 127 

data from phreatic wells in this region, combined with meteorological, hydrological, and soil 128 

texture data, the LSTM model was used to simulate the groundwater level dynamics. The 129 

reverse interpretation technique, i.e., the EG method, was applied to explore the decision 130 

principles of the deep learning model in simulating water levels during the non-freeze–thaw 131 

and freeze–thaw periods, thus revealing the mechanisms behind groundwater level dynamics 132 

across different periods in seasonally frozen soil areas. The research findings can demonstrate 133 

and extend the application of interpretable deep learning models in the groundwater field, 134 

providing essential support for groundwater resource assessment and ecological environment 135 

protection in seasonally frozen soil areas. 136 

2. Data and methodology 137 

Figure 1 shows the workflow of this study, including three main steps. First, the LSTM 138 

model is used to establish a nonlinear relationship between meteorological factors, human 139 

activities, and groundwater level depths (Fig. 1a). The daily air temperature, precipitation, 140 

extraction volume, and snow depth were used as input variables to predict the groundwater 141 

level depths. Subsequently, the EG method (Jiang et al., 2022) was applied to the trained LSTM 142 

model to obtain the EG scores of the input factors at different time steps. The EG scores 143 

quantify the influence of the meteorological inputs (air temperature, precipitation, and snow 144 

depth) and human activities (extraction volume) on the groundwater level depths during the 145 

simulation process (Fig. 1b). Finally, the causes of groundwater level dynamics during the non-146 

freeze–thaw and freeze–thaw periods in seasonally frozen soil areas were identified. 147 
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 148 

Fig. 1. Workflow of this study: (a) Model structure of the LSTM model, (b) EG scores of input 149 

factors during the non-freeze–thaw and freeze–thaw periods. 150 

2.1. Study area 151 

The Songnen Plain is one of the three major plains in Northeast China. It is higher on the 152 

periphery and lower at the center, with a total area of 182,800 km² (Fig. 2a). The study area is 153 

surrounded by hills and mountains in the west, north, and east of the Greater and Lesser Xingan, 154 

Zhangguangcai, and Changbai Mountains, respectively, and is connected to the West Liaohe 155 

Plain by the micro-uplifted Songliao watershed in the south. The Songnen Plain primarily 156 

comprises the eastern high plain, western piedmont sloping plain, western low plain, and valley 157 

plain (Fig. 2a). The soil texture in the region mainly includes sandy loam, sandy clay loam, 158 

clay loam, and loamy clay (Fig. 2b). The climate in the area can be mainly characterized by 159 

two main types: first, it features a typical East Asian continental monsoon climate with hot, 160 
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rainy summers and cold, dry winters; second, although the distribution of the climatic factors 161 

in the Songnen Plain is significantly influenced by latitude, there is a distinct east–west 162 

difference, with arid conditions in the west and humid conditions in the east (Li et al., 2022). 163 

The long-term average temperature of the Songnen Plain is 3.8 ℃, the long-term average 164 

precipitation is 484.57 mm, and the long-term average evaporation is 1,498.1 mm. The frost-165 

free period ranges from 115 to 160 days. Freezing starts in mid-October from north to south, 166 

and thawing begins in April from south to north. The freezing depth ranges from 1.5 to 2.4 m 167 

(Zhao et al., 2009). The area is crisscrossed by rivers, with the Songhua River, Nenjiang River, 168 

and their tributaries forming a centripetal drainage system. The lower reaches of the Nenjiang 169 

River and Taoer River, as well as the Second Songhua River, flow through the central plain 170 

from the north, west, and southeast, respectively. The aquifer system in the Songnen Plain, 171 

China, consists of multiple aquifers ranging from the Cretaceous, Paleogene, and Neogene to 172 

the Quaternary. Among them, the Quaternary aquifer, whose distribution range is slightly 173 

smaller than that of the Cretaceous aquifer, is the main groundwater exploitation layer in the 174 

region and the aquifer in which the groundwater studied in this paper is located (Fig. 2c). 175 
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 176 

Fig. 2. Spatial distribution of the ground surface elevation (a), topography (b) and aquifer 177 

system (c) in the Songnen Plain, China. 178 

2.2. Dataset and selection of representative groundwater level values 179 

To simulate the dynamic changes in the groundwater level in seasonally frozen soil areas 180 

and to analyze the driving mechanisms of groundwater level dynamics during freezing and 181 

non-freezing periods, this study primarily used dynamic observational data from 2018 to 2021, 182 

including precipitation, air temperature, snow depth, groundwater extraction volume, and 183 

groundwater levels, as well as static data such as ground surface elevation and soil texture. The 184 

precipitation and air temperature data were obtained from the “ERA5 hourly data on single 185 
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levels from 1979 to present” dataset, provided by the European Centre for Medium-Range 186 

Weather Forecasts (ECMWF). ERA5 is the fifth-generation re-analysis of the global climate 187 

and weather data with a spatial resolution of 0.25° × 0.25° and an hourly temporal resolution. 188 

Daily snow depth data were sourced from the National Tibetan Plateau Data Center 189 

(http://data.tpdc.ac.cn), with a spatial resolution of 25 km. The temporal and spatial resolution 190 

of the groundwater extraction volume data was enhanced based on the spatial distribution and 191 

water demand of major crops in the Songnen Plain, along with the precipitation data. 192 

Groundwater level data from 138 phreatic wells were provided by the China Geological 193 

Environment Monitoring Institute, while surface elevation data with a spatial resolution of 30 194 

m were obtained from the Geospatial Data Cloud (https://www.gscloud.cn/search). Soil texture 195 

data were sourced from the Resource and Environment Science and Data Center, compiled 196 

from a 1:1,000,000 soil type map and soil profile data collected during the second national soil 197 

survey of China. 198 

In the Songnen Plain, approximately 70% of groundwater extraction is used for 199 

agricultural irrigation; therefore, in this study, groundwater extraction was approximated based 200 

on crop water deficits. Using spatial distribution data of the region’s major crops, ten-day 201 

period crop water requirements, and precipitation data, we estimated groundwater extraction 202 

at a fine resolution, ultimately generating ten-day period groundwater extraction data with a 203 

spatial resolution of 25 km × 25 km. Specifically, based on the water requirements of the main 204 

crops (rice, soybean, and maize), we calculated the total crop water demand for each ten-day 205 

period within each grid cell. These values were then weighted according to the crop planting 206 

area to obtain the total water demand per grid. By comparing precipitation with crop water 207 

demand, we determined whether precipitation could meet the crop water needs. When 208 

precipitation was sufficient, crops relied entirely on natural rainfall, and the effective 209 

precipitation equaled the water demand. When precipitation was insufficient, effective 210 
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precipitation was limited by actual rainfall, and the remaining crop water deficit was assumed 211 

to be supplemented by other water sources. Finally, the difference between crop water demand 212 

and effective precipitation was calculated as the crop water deficit, which was assumed to be 213 

primarily supplied by groundwater. This allowed us to approximate ten-day period 214 

groundwater extraction. To ensure consistency with the temporal resolution of other variables 215 

used for model training, the ten-day period data were converted to daily averages by dividing 216 

by the number of days in each period. 217 

To identify the causes of groundwater level dynamics during freezing and non-freezing 218 

periods, representative groundwater levels were selected for analysis using the EG method at 219 

different time periods. Based on the annual pattern of the groundwater level dynamics, 220 

groundwater levels during the non-freezing period are influenced by human activities, flood-221 

season precipitation, and other factors, leading to greater fluctuations compared with that 222 

observed in the freezing period. Therefore, selecting extreme values (either maximum or 223 

minimum) as representative groundwater levels can effectively capture the peak or trough of 224 

the groundwater level, reflecting the most significant state of groundwater recharge or 225 

discharge during this period. Based on this, the trends in the groundwater level were analyzed 226 

to identify the different dynamic characteristics during the non-freezing period. If the 227 

groundwater level shows an overall uptrend, the maximum value represents the peak of the 228 

recharge process; if it shows a downtrend, the minimum value reflects the maximum extent of 229 

discharge. 230 

However, during the freezing period, groundwater level fluctuations are relatively small, 231 

and extreme values do not respond significantly to external factors. During this period, 232 

groundwater levels may be influenced by soil freezing and thawing processes. Therefore, the 233 

groundwater levels at critical moments of soil freezing and thawing were chosen as 234 

representative values to more accurately reflect the response of groundwater level to 235 
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environmental changes. During the freezing period, after the “Beginning of Winter” solar term 236 

(November 7–8), the average temperature continuously dropped to below 0 ℃, and a thin ice 237 

layer gradually formed on the surface; after the “Rain Water” solar term (February 18–20), 238 

temperatures increased, and the frozen soil began to thaw in both directions; finally, the frozen 239 

soil fully thawed around the “Grain Rain” solar term (April 19–21) in spring (Lyu et al., 2023). 240 

Based on this climatic pattern, we uniformly defined the freezing and thawing periods for all 241 

monitoring wells in the study area. Specifically, the freezing period is defined as the interval 242 

from “Beginning of Winter” to “Rain Water,” and the thawing period as from “Rain Water” to 243 

“Grain Rain.” Therefore, the groundwater level at the “Rain Water” solar term was chosen as 244 

the representative groundwater level during the freezing period to capture the rapid response 245 

of the groundwater level to rising temperatures and thawing of the frozen soil. 246 

2.3. Research methods 247 

2.3.1. LSTM model 248 

The LSTM neural network (Hochreiter and Schmidhuber, 1997) is an advanced RNN 249 

widely applied in deep learning. It can store and associate previous information, effectively 250 

addressing the issues of vanishing and exploding gradients that occur during the training of 251 

long sequence data. The deep learning model used in this study comprises a single LSTM layer 252 

and a dense layer. The LSTM layer is composed of recurrent cells arranged in a chain-like 253 

structure, allowing information to be passed from the current time step to the next. The model 254 

uses daily precipitation, air temperature, groundwater extraction volume, and snow depth from 255 

the previous 150 days as input sequences to predict groundwater level depths. Each cell in the 256 

LSTM layer includes four components: the input gate (𝑖𝑡), the forget gate (𝑓𝑡), the output gate 257 

(𝑜𝑡), and the cell state (𝑐𝑡) (as shown in the LSTM layer in Fig. 1a). The input gate determines 258 

how much input information is transferred to the cell state. The forget gate primarily controls 259 

how much information from the previous cell state is discarded and how much is carried 260 
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forward to the current moment. The output gate calculates the output based on the updated cell 261 

state from the forget and input gates. The cell state is used to record the current input, the 262 

previous cell state, and the information from the gate structures. In this study, we adopted the 263 

LSTM equations proposed by Graves et al. (2013), which are represented by the following key 264 

equations: 265 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑡) (1) 266 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (2) 267 

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (3) 268 

 𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (4) 269 

 ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (5) 270 

where the input and output vectors of the implicit layer of the LSTM at time step t are 𝑥𝑡 and 271 

ℎ𝑡, respectively, the memory cell is 𝑐𝑡, and the values of the input, forget, and output gates are 272 

𝑖𝑡 , 𝑓𝑡 , and 𝑜𝑡 , respectively. W and b represent the learnable weight and bias terms to be 273 

estimated during the training period, respectively, σ(⋅) denotes the logistic sigmoid function, 274 

tanh(⋅) is the hyperbolic tangent function, and ⊙ represents elementwise multiplication. 275 

Before training the model, the air temperature, precipitation, groundwater extraction 276 

volume, and snow depth were normalized by mapping their values to a range between 0 and 1. 277 

The adaptive moment estimation (Adam) algorithm (Kingma and Ba, 2014) was employed 278 

during training, with an initial learning rate set to 0.03. The maximum training epoch number 279 

was configured to 100, and an early stopping strategy was applied to prevent overfitting. For 280 

each individual groundwater monitoring well, 70% of the input–output data pairs were 281 

randomly sampled for training the LSTM model, and they were split into training and 282 

validation samples at a ratio of 7:3. The training samples were repeatedly used to update the 283 

model parameters until the loss function for the validation samples ceased to decrease. The 284 

remaining 30% of the data were used for an independent evaluation of the model performance. 285 
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Random sampling allows for capturing the overall hydrometeorological variations observed 286 

across different time periods. 287 

2.3.2. Model interpretations 288 

In 2017, Sundararajan et al. developed the integrated gradients (IG) method (Sundararajan 289 

et al., 2017), which uses the gradient of the model’s output to the input factors to infer the 290 

specific contribution of the input variables to the output variable. The IG score for an input 291 

factor x (e.g., the precipitation at the i-th time step), representing the degree of contribution of 292 

the input variable to the output variable, is expressed as follows: 293 

 ∅𝑖
𝐼𝐺(𝑓, 𝑥, 𝑥′) = (𝑥𝑖 − 𝑥𝑖

′) ∫
𝜕𝑓(𝑥′+𝛼(𝑥−𝑥′))

𝜕𝑥𝑖
𝑑𝛼

1

𝛼=0
 (6) 294 

where 
𝜕𝑓(𝑥′+𝛼(𝑥−𝑥′))

𝜕𝑥𝑖
 denotes the local gradient of the network f at the interpolation point from 295 

the baseline input (𝑥′, when α = 0) to the target input (x, when α = 1). 296 

However, the baseline input 𝑥′ in the above formula is a hyperparameter that must be 297 

chosen carefully. In groundwater level studies, if the target input (e.g., a particular groundwater 298 

level observation) is close to the chosen baseline input (e.g., long-term average groundwater 299 

level), i.e., 𝑥𝑖 ≈ 𝑥𝑖
′, the IG method may fail to capture the importance of current input factors, 300 

such as precipitation or evaporation, on groundwater level changes (Sturmfels et al., 2020). To 301 

address this issue, Jiang et al. (2022) developed the EG method, which is based on the IG 302 

method but assumes that the baseline inputs follow the basic distribution D sampled from a 303 

background dataset (such as the training dataset), thus avoiding the need to specify a fixed 304 

baseline input. Given the baseline distribution D, the EG score ∅𝑖
𝐸𝐺  for the i-th input factor 305 

can be calculated by integrating the gradients over all possible baseline inputs x′∈D, weighted 306 

by the probability density function 𝑝𝐷. The EG score represents the influence of input factors 307 

on the model output, with a higher absolute EG score indicating a greater impact of the 308 

corresponding input factor on the model output, while an EG score close to zero suggests that 309 
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the input factor has little effect on the output. The EG score can be expressed as follows: 310 

 ∅𝑖
𝐸𝐺(𝑓, 𝑥) = ∫ (∅𝑖

𝐼𝐺(𝑓, 𝑥, 𝑥′) × 𝑝𝐷(𝑥′)𝑑𝑥′)
 

𝑥′  (7) 311 

The above expression involves two integrals, which, according to Erion et al. (2021), can 312 

both be considered expectations. Thus, the equation can be reformulated as: 313 

 ∅𝑖
𝐸𝐺(𝑓, 𝑥) = 𝐸𝑥′~𝐷,𝛼~𝑈(0,1) [(𝑥𝑖 − 𝑥𝑖

′) ∫
𝜕𝑓(𝑥′+𝛼(𝑥−𝑥′))

𝜕𝑥𝑖
′

1

𝛼=0
] (8) 314 

2.3.3. Evaluation metrics 315 

The evaluation metrics used in this study include the Nash–Sutcliffe efficiency (NSE) 316 

coefficient and the root-mean-square error (RMSE). The NSE is used to assess the degree of 317 

fit of the regression model. The RMSE quantifies how well the predicted values match the 318 

observed values. If the NSE is close to 1 and the RMSE is close to 0, the model is more reliable. 319 

 𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−𝑥𝑖̅)2𝑛
𝑖=1

 (9) 320 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
 (10) 321 

where 𝑥𝑖 is the depth of the observed groundwater level, and 𝑥𝑖̅ is the average value of 𝑥𝑖; 322 

𝑦𝑖 is the groundwater level depth simulated by the LSTM model; and i denotes the specific 323 

sample ordinal number, from 1 to n. 324 

3. Results 325 

3.1. Simulation Accuracy of Deep Learning Model for Groundwater Level 326 

A data-driven model (LSTM model) was used to simulate the daily groundwater level 327 

depth of 138 aquifer monitoring wells in the Songnen Plain, China, from 2019 to 2021. Overall, 328 

the simulation accuracy of the groundwater level depth was relatively high across the western 329 

piedmont sloping plain, the eastern high plain, and the valley plain regions. In these areas, the 330 

NSE values at the monitoring points in the test set ranged from 0.53 to 0.96 (Fig. 3a), with 331 

87.14% of the monitoring points showing NSE values greater than 0.7. Over the entire 332 
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simulation period (including the training and test sets), the maximum error between the 333 

simulated and observed values at each monitoring point mainly ranged from 0.5 to 2.5 m (Fig. 334 

3b, d, and e), with 94.29% of the monitoring points having an average error of less than 0.5 m. 335 

The annual groundwater level fluctuation at the monitoring points in this region was relatively 336 

small, ranging from 0.41 to 6.54 m. 337 

 338 

Fig. 3. (a) Spatial distribution of the NSE values on the test set for 138 groundwater level 339 

monitoring points in the Songnen Plain, China. (b)–(e) Maximum, minimum, and mean errors 340 

between simulated and observed groundwater levels at monitoring points in the western 341 

piedmont sloping plain, western low plain, eastern high plain, and valley plain during the 342 

simulation period. 343 

Only 18.11% of the monitoring wells in the study area had a Nash-Sutcliffe Efficiency 344 

(NSE) below 0.7 on the test dataset, and these wells were primarily located in the southern part 345 

of the western low plain (Fig. 3a). In this region, the average absolute error between simulated 346 

and observed daily groundwater level depth ranged from 0.04 to 2.93 meters, although the 347 

maximum error reached as high as 11.56 meters (Fig. 3c), indicating that the model exhibited 348 

certain instability in localized areas. Figure 4 compares the simulated and observed 349 
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groundwater level depth series at several poorly performing wells in this region. As shown in 350 

the figure, significant discrepancies occurred during certain periods, and the fitting 351 

performance was unsatisfactory. The primary reason for this discrepancy is the large annual 352 

fluctuation in groundwater level depth at many wells in this region: 21.43% of the monitoring 353 

wells had a fluctuation range exceeding 10 meters. These extreme fluctuations posed 354 

challenges for the LSTM model’s simulation accuracy. In the training data used for the LSTM 355 

model, samples with extreme values of groundwater level depth were relatively scarce, while 356 

samples with moderate values were more abundant. Consequently, the model tended to fit the 357 

data in the moderate range more accurately, resulting in limited predictive ability for the 358 

extreme ends of the groundwater level series. Despite the reduced accuracy at certain wells, 359 

the LSTM model is capable of accurately capturing the variation trend of groundwater levels, 360 

and no significant lag is observed between the simulated and observed values (Fig. 4). The 361 

Pearson correlation coefficients between the simulated water levels and the measured water 362 

levels at the four representative monitoring points shown in the figure are 0.86, 0.81, 0.87, and 363 

0.85, respectively. Moreover, the correlation coefficients reach their maximum values without 364 

applying any time lag, indicating that the simulated values can effectively and promptly reflect 365 

the actual variation trend of groundwater levels. 366 
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 367 

Fig. 4. Comparison of the simulated and observed groundwater level depths at typical points 368 

in the western low plain (NSE values on the test set < 0.7). 369 

Overall, most of the groundwater monitoring points in the Songnen Plain, China, showed 370 

NSE values greater than 0.7 on the test set, indicating a relatively high simulation accuracy of 371 

the groundwater level depth based on the LSTM model. This suggests that the network 372 

structure of the LSTM model could accurately capture the dynamic relationships between the 373 

air temperature, precipitation, extraction volume, snow depth, and groundwater level. 374 

3.2. Dynamic Characteristics of Regional Groundwater Level and their Distribution Laws 375 

3.2.1. Annual Dynamics Variations and Spatial Distribution 376 

Based on the characteristics of the annual groundwater level dynamic curves in the 377 

Songnen Plain, China, the annual groundwater level dynamics can be categorized into three 378 

types (Fig. 5). 379 
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The monitoring wells located in areas with a shallow groundwater level (less than 7 m) in 380 

the northern part of the western low plain and valley plain (Fig. 5a) exhibited annual 381 

groundwater level fluctuations of less than 4 m. Typically, the dynamic change in the 382 

groundwater level is as follows: during the dry season from January to April, precipitation is 383 

almost zero, and the groundwater level depth is significantly greater compared with those in 384 

the other months; with the onset of the rainy season (May to August), precipitation increases, 385 

causing the groundwater level to rise; after the rainy season ends (September to December), 386 

the groundwater level depth gradually increases with decreasing precipitation (Fig. 5b). This 387 

dynamic type of the groundwater level is the first annual dynamic type in the Songnen Plain, 388 

with its corresponding monitoring wells accounting for 29.0% of all wells in the study area. 389 

The monitoring wells located on Tableland, the Lasong Block between rivers, and the 390 

eastern high plain (Fig. 5a) have relatively greater groundwater level depths, ranging from 391 

approximately 5 to 11 m. From January to May each year, groundwater levels show a 392 

continuous decline; with the increase in precipitation, the groundwater level begins to gradually 393 

rise, reaching their annual peak in early October (Fig. 5c). The timing of the groundwater peak 394 

is delayed by 1 to 2 months compared with the first dynamic type, indicating that the response 395 

of the groundwater level to precipitation is slower (Fig. 5b and c). The annual groundwater 396 

level fluctuation is within 5 m. This dynamic type is the second annual dynamic type in the 397 

Songnen Plain, with its corresponding monitoring wells accounting for only 18.1% of all wells 398 

in the study area. 399 

In agricultural irrigation areas, such as the southern part of the western low plain and the 400 

western piedmont sloping plain (Fig. 5a), the groundwater level depth typically ranges from 5 401 

to 20 m. The dynamic curves of the groundwater level in the aquifer monitoring wells in these 402 

areas exhibit distinct periodicity, showing a funnel-like and sawtooth pattern. The lowest 403 

groundwater levels typically occur in May or August, while the highest level typically occurs 404 
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in November or later (Fig. 5d). During the irrigation season, groundwater levels drop 405 

significantly, with annual fluctuations being generally within 15 m. This dynamic groundwater 406 

type is widely distributed in the study area, with its corresponding monitoring wells accounting 407 

for 52.9% of all wells, representing the third annual dynamic type in the Songnen Plain. 408 

 409 

Fig. 5. (a) Spatial distribution of different annual groundwater level dynamic types in the 410 

Songnen Plain, China; (b–d) Dynamic curves of different annual groundwater types and their 411 

corresponding precipitation variations. (b) The first annual dynamic type is represented by an 412 

unconfined aquifer monitoring well, numbered 230204210070, located in the western low plain; 413 

(c) The second annual dynamic type is represented by an unconfined aquifer monitoring well, 414 

numbered 220182210411, located in the Lasong Block between rivers; (d) The third annual 415 

dynamic type is represented by an unconfined aquifer monitoring well, numbered 416 

220802210145, located in the western piedmont sloping plain. 417 

3.2.2. Freeze–Thaw Period Dynamics Variations and Spatial Distribution 418 

Freeze–thaw processes increase the frequency of interactions between soil water and 419 

groundwater (Daniel and Staricka, 2000; Lyu et al., 2022; Miao et al., 2017). As a typical 420 
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seasonally frozen soil region, the Songnen Plain, China, exhibits three main forms of the 421 

dynamic curves of the groundwater level during the freeze–thaw period: “decline during 422 

freezing, rise during thawing,” “continuous decline,” and “continuous rise” (Fig. 6). The 423 

monitoring points of the different dynamic types during the freeze–thaw period accounted for 424 

38.4% (V-shaped), 23.2% (continuous decline type) and 38.4% (continuous rise type), 425 

respectively.  426 

At monitoring points with a “V-shaped” groundwater level dynamic curve, characterized 427 

by “decline during freezing, rise during thawing” (Fig. 6a), the groundwater level fluctuated 428 

by approximately 0.2–0.9 m during the freeze–thaw period. The time when the groundwater 429 

level reached its maximum depth roughly coincided with the time when the soil reached its 430 

maximum frozen thickness. These monitoring wells are primarily distributed in areas with a 431 

shallow groundwater level in the northern part of the western low plain and the valley plain, 432 

with a few located in the southern part of the western low plain. At the beginning of the freezing 433 

period, groundwater level depths at these wells were typically within 5 m (Fig. 6d). 434 

For the continuous decline and continuous rise types, the dynamic curves of the 435 

groundwater level during the freeze–thaw period exhibited either a “continuous decline” or 436 

“continuous rise” (Fig. 6b and c), with the rate of change remaining consistent throughout both 437 

the freezing and thawing periods. Monitoring points with the continuous decline in the 438 

groundwater level were mainly distributed in areas, such as the eastern high plain and the 439 

Lasong Block between rivers, where the groundwater level depth ranged from 4.52 to 11.51 m 440 

at the start of the freezing period (Fig. 6d). In contrast, monitoring wells with a continuous rise 441 

in the groundwater level during the freeze–thaw period were mainly found in agricultural 442 

irrigation areas such as the southern part of the western low plain and the western piedmont 443 

sloping plain, where the groundwater level depth at the beginning of the freezing period ranged 444 

from 4.71 to 19.91 m (Fig. 6d). 445 
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 446 

Fig. 6. (a–c) Dynamic curves of different groundwater types during the freeze–thaw period and 447 

corresponding changes in air temperature; (d) Spatial distribution of different groundwater 448 

level dynamic types during the freeze–thaw period in the Songnen Plain, China. The dynamic 449 

curves of the groundwater level exhibiting patterns of (a) V-shaped, (b) continuous decline, and 450 

(c) continuous rise correspond to the unconfined aquifer monitoring wells numbered 451 

230204210070, 220182210411, and 220802210145, respectively. 452 

3.3. Main Controlling Factors and Identification of Causes for Various Groundwater Level 453 

Dynamic Types 454 

After the application of the EG method to the trained models for the 138 groundwater 455 

level simulations, the EG scores ( 𝜙𝑖
𝐸𝐺  ) were obtained for precipitation, air temperature, 456 

extraction volume, and snow depth within 150 days prior to the representative groundwater 457 

level values for each annual and freeze–thaw period groundwater level dynamic type (Figs. 7 458 

and 8). 459 
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 460 

Fig. 7. EG scores (𝜙𝑖
𝐸𝐺  ) of the precipitation, air temperature, and extraction volume for 461 

different annual groundwater level dynamic types in the study area at different time steps. 462 

 463 

Fig. 8. EG scores (𝜙𝑖
𝐸𝐺) of the precipitation, air temperature, and snow depth for different 464 

groundwater level dynamic types during the freeze–thaw period in the study area at different 465 

time steps. 466 

3.3.1. Annual Dynamics: Influencing Factors and Dynamics Mechanisms 467 

Within 90 days before the representative groundwater level values, the average EG scores 468 

for the precipitation and air temperature in the first annual dynamic type ranged from 0 to 0.04 469 
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and from 0 to 0.07, respectively, while the average EG score for the extraction volume did not 470 

exceed 0.01 (Fig. 7a). This indicates that the groundwater level depth in this dynamic type was 471 

significantly influenced by precipitation and air temperature, while the effect of extraction was 472 

negligible. Thus, the changes in the groundwater level depth may be related to the precipitation 473 

infiltration–evaporation process. When a pronounced precipitation peak occurred (Fig. 9b), the 474 

EG score increased significantly (exceeding 0.15), corresponding to a rise in groundwater level 475 

(Fig. 9e), indicating that precipitation infiltration made a substantial contribution to the 476 

groundwater level increase. Within the 90 days when precipitation influenced the 477 

representative groundwater level value, a total precipitation of 408.09 mm led to an overall rise 478 

in the groundwater level by 1.12 m (Fig. 9b and e). During periods without precipitation, the 479 

air temperature continued to rise (Fig. 9a), reflecting higher soil evaporation. At this time, the 480 

EG score for the air temperature was also relatively high (ranging from 0.10 to 0.20), and the 481 

groundwater level showed a slight decline (Fig. 9e). This suggests that evaporation was the 482 

primary discharge mechanism for groundwater in this dynamic type. Therefore, based on the 483 

groundwater recharge and discharge mechanisms, the first annual groundwater dynamic type 484 

is summarized as the precipitation infiltration–evaporation type.  485 

In contrast, in the second annual dynamic type, only the precipitation had a significant 486 

impact on the groundwater level depth within 90 days before the representative groundwater 487 

level value (with the EG scores ranging from 0 to 0.03), while the average EG scores for the 488 

air temperature and extraction volume remained between 0 and 0.01 (Fig. 7b). Precipitation 489 

almost consistently recharged the groundwater during the 90 days before the representative 490 

groundwater level values (with an average EG score of approximately 0.012), causing a gradual 491 

rise in the groundwater level (Fig. 9j). However, the rate of groundwater rise was relatively 492 

slow, with an average value of approximately 0.02 m/d. The air temperature fluctuated 493 

significantly over the 90-day period (Fig. 9f), ranging from 4.41 to 28.57 ℃, but had no 494 
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significant impact on the groundwater level (Fig. 9j). The EG score during periods of high 495 

temperatures was also below 0.01, indicating that evaporation had little effect on the 496 

groundwater level. There was some groundwater extraction in local areas around July and 497 

October (Fig. 9h); however, it had a minimal impact on the groundwater level, with the EG 498 

scores remaining below 0.01. The relatively deep groundwater level (nearly 13 m) suggests 499 

that this groundwater type was primarily discharged through runoff. Therefore, the second 500 

annual groundwater dynamic type was classified as the precipitation infiltration–runoff type. 501 

In the third annual dynamic type, the precipitation, air temperature, and extraction volume 502 

had a significant impact on groundwater level within a shorter period before the representative 503 

groundwater level values (within 60 days), with the average EG scores in the ranges of 0–0.08, 504 

0–0.02, and 0–0.02, respectively (Fig. 7c). This dynamic type is mainly distributed in 505 

agricultural irrigation areas, such as the southern part of the western low plain and the western 506 

piedmont sloping plain (Fig. 5a). The main crops in these areas are rice, soybeans, and corn 507 

(You et al., 2021), and their water demand is concentrated in the summer, particularly between 508 

June and August (Xing et al., 2022). During this period, the air temperature shows a fluctuating 509 

uptrend (Fig. 9k), with the EG scores reaching a maximum of 0.02, indicating that high 510 

temperatures increase soil evaporation and crop transpiration. This leads to a higher water 511 

demand from the crops; however, the low rainfall was insufficient to meet this demand during 512 

these periods (Fig. 9l, with a daily maximum precipitation of only 33.80 mm), necessitating 513 

additional groundwater extraction for irrigation to maintain crop growth (Fig. 9m). As a result, 514 

the EG score for the extraction volume reached approximately 0.20 during this period, and 515 

groundwater level decreased accordingly (Fig. 9o). This dynamic type indicates that 516 

groundwater recharge comes from precipitation infiltration, and groundwater extraction is the 517 

main discharge mechanism. Thus, the third annual groundwater dynamic type was classified 518 

as the extraction type.  519 
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 520 

Fig. 9. Observed values and EG scores (𝜙𝑖
𝐸𝐺) of the precipitation, air temperature, extraction 521 

volume, and snow depth within 150 days before the representative groundwater level values 522 

for various annual groundwater level dynamic types, as well as the corresponding annual 523 

groundwater level depth dynamic curves. The precipitation infiltration–evaporation type, 524 

precipitation infiltration–runoff type, and extraction type are represented by monitoring wells 525 

230204210072, 220183210399, and 220821210024, with representative groundwater level 526 

values corresponding to August 27, 2019, October 9, 2019, and August 2, 2019, respectively. 527 

3.3.2. Freeze–Thaw Dynamics: Influencing Factors and Dynamics Mechanisms 528 

A further analysis focused on the groundwater dynamic types during the freeze–thaw 529 

period. In the V-shaped dynamic type, the average EG scores for precipitation and snow depth 530 

within 60 days before the representative groundwater level values ranged from 0 to 0.05, while 531 

the average EG score for the air temperature within 30 days before the representative 532 

groundwater level values ranged from 0 to 0.02 (Fig. 8a). This suggests that the air temperature, 533 

precipitation, and snow depth had a combined effect on the groundwater level depth of the V-534 

shaped dynamic type during the freeze–thaw period. Within 30 days before the representative 535 

groundwater level values, the air temperature ranged from −21.10 ℃ to 4.40 ℃, with the 536 

overall temperature being below 0 ℃ (Fig. 10b). As the air and soil temperatures dropped 537 
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below 0 ℃, the effective soil porosity decreased significantly due to water freezing, and the 538 

low-temperature suction related to the soil water potential between ice and water in the frozen 539 

soil increased gradually (Lyu et al., 2022). Under the combined effect of the capillary force and 540 

low-temperature suction, groundwater migrated upward continuously, thereby increasing the 541 

groundwater level depth (Fig. 10e). During this period, the snow depth increased with the 542 

decrease in temperature, reaching a maximum value of 13.22 cm on February 9, 2020 (Fig. 543 

10d). The maximum EG score for the snow depth reached 0.03, indicating that snow had an 544 

impact on the groundwater level depth during the freeze–thaw period. When the air temperature 545 

exceeded 0 ℃, the snow thawed rapidly (Fig. 10d), and the snow and frozen soil thaw water 546 

infiltrated to recharge the groundwater, causing the groundwater level to rise for the first time 547 

(Fig. 10e). 548 

For the continuously declining and continuously rising dynamic types, only precipitation 549 

and snow depth affected the groundwater level depth during the freeze–thaw period. In the 550 

continuously declining groundwater dynamic type, the precipitation and snow depth influenced 551 

the groundwater level depth over a longer period before the representative groundwater level 552 

values (within 60 days), with the average EG scores below 0.07 and 0.04, respectively (Fig. 553 

8b). In the continuously rising groundwater dynamic type, the average EG scores for the 554 

precipitation and snow depth within 30 days before the representative groundwater level values 555 

ranged from 0 to 0.05 and from 0 to 0.07, respectively, indicating that precipitation and snow 556 

depth affected the groundwater level depth in this dynamic type during the freeze–thaw period 557 

(Fig. 8c). Compared with precipitation and snow depth, the impact of the air temperature on 558 

the groundwater level in both dynamic types was negligible (Fig. 8b and c), with the average 559 

EG scores ranging from 0 to 0.01. 560 

In both the freeze–thaw dynamic types, the air temperature fluctuated significantly over 561 

the past 150 days (Fig. 10f and k), whereas the EG scores remained below 0.01, indicating that 562 
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the freeze–thaw effects had no significant impact on groundwater levels. Snow depth continued 563 

to increase during the winter when the air temperature was below 0 ℃ (Fig. 10i and n). When 564 

the air temperature rose above 0 ℃, the snow gradually thawed, and the meltwater had some 565 

recharging effect on groundwater levels (with maximum EG scores reaching 0.04). However, 566 

due to the limited amount of snow and the high groundwater levels, the impact of snowmelt on 567 

the groundwater level was gradual and limited, failing to significantly alter the original trends 568 

in the continuously declining or continuously rising groundwater levels (Fig. 10j and o). 569 

Therefore, the causes of the continuously declining and continuously rising groundwater level 570 

dynamic types were related to the recovery process of the annual groundwater levels. 571 

 572 

Fig. 10. Observed values and EG scores (𝜙𝑖
𝐸𝐺) of the precipitation, air temperature, extraction 573 

volume, and snow depth within 150 days before the representative groundwater level values 574 

for various groundwater level dynamic types during the freeze–thaw period, as well as the 575 

corresponding annual groundwater level depth dynamic curves. The V-shaped, continuous 576 

decline, and continuous rise types are represented by monitoring wells 220106210371, 577 

220182210410, and 220821210024, respectively. The representative groundwater level 578 

corresponds to February 19, 2020. 579 

3.4. Regional Distribution Characteristics of the Dynamic Causes of Groundwater Level in 580 
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the Songnen Plain, China 581 

Based on the dynamic variations and spatial distribution characteristics of the groundwater 582 

levels in the study area, groundwater monitoring points where the groundwater levels dropped 583 

in the freezing period and rose in the thawing period, driven by soil freeze–thaw processes, 584 

typically showed a precipitation infiltration-evaporation dynamic in terms of the groundwater 585 

level dynamics during the year (Figs. 5b and 6a). These points were mainly distributed in areas 586 

with shallow groundwater level depths, such as the northern part of the western low plain and 587 

valley plain (Figs. 11a and 12a). Groundwater level dynamics unaffected by soil freeze–thaw 588 

processes generally showed two trends: continuous decline or continuous rise (Fig. 6b and c). 589 

Monitoring points with a continuous decline trend were mainly located in areas with a 590 

significant groundwater level depth, such as the eastern high plain and the Lasong Block 591 

between the rivers, where the annual groundwater level dynamics showed typical dynamic 592 

characteristics of precipitation infiltration–runoff type (Fig. 5c). The monitoring points in 593 

agricultural irrigation areas in the southern part of the western low plain and the western 594 

piedmont sloping plain showed a continuous rise in the groundwater level during the freeze–595 

thaw period (Fig. 12a), and the dynamic type of the groundwater level in the year was mainly 596 

the extraction type (Fig. 5d). Therefore, the “continuous decline” groundwater dynamic during 597 

the freeze–thaw period was the recession phase of the groundwater level after the flood season 598 

peak in the precipitation infiltration–runoff-type groundwater, while the “continuous rise” 599 

groundwater dynamic was the recovery phase of the groundwater level after the extraction in 600 

the extraction-type groundwater. 601 

However, under the classification based on the freeze–thaw period, the proportions of the 602 

V-shaped, continuous decline, and continuous rise types accounted for 38.4%, 23.2%, and 38.4% 603 

of all monitoring points, respectively. These proportions did not completely align with the 604 

annual classification of the precipitation infiltration–evaporation (29.0%), precipitation 605 
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infiltration–runoff (18.1%), and extraction (52.9%) types. This discrepancy can be partly 606 

attributed to differences in the groundwater level depth. In some extraction monitoring points, 607 

although the annual groundwater level dynamics showed typical extraction characteristics, 608 

because the groundwater level at these monitoring points was shallow, the soil freezing and 609 

thawing processes still had a significant impact on it, resulting in a V-shape water level change 610 

at these points during the freeze–thaw period. The presence of such monitoring points increased 611 

the proportion of the V-shape type during the freeze–thaw period, while reducing the proportion 612 

of the continuous-rise type. Thus, the proportions of the freeze–thaw and annual classifications 613 

were not entirely consistent, particularly in areas with a shallow groundwater level depth, 614 

where soil freezing and thawing caused groundwater levels at some points of the extraction 615 

type to exhibit V-shaped variations during the freeze–thaw period. 616 

In the northern part of the western low plain, where groundwater level was shallow (less 617 

than 5 m), the predominant annual groundwater dynamic was the precipitation infiltration-618 

evaporation type (Fig. 11a). Due to the proximity of the groundwater level to the surface, the 619 

groundwater levels in these areas are more sensitive to meteorological factors. The dynamic 620 

curves of the groundwater level show a characteristic in that the high water level period 621 

corresponds to the rainy season. Specifically, in the Songnen Plain, peak precipitation and 622 

groundwater level in this dynamic type occur simultaneously, typically between July and 623 

August (Fig. 11d and f). The annual variation in the groundwater level was small, generally 624 

less than 4 m (Fig. 11c). During the freeze–thaw period, the groundwater level dynamics in this 625 

type exhibited a V-shaped pattern, with the groundwater level declining during the freezing 626 

period and rising during the thawing period, with a fluctuation range of 0.2–0.9 m. However, 627 

this V-shaped variation in the groundwater level is not accidental. At monitoring points with V-628 

shaped dynamics, the initial groundwater level depth and soil freezing depth at the beginning 629 

of the freezing period were in the ranges of 0–5 m (Fig. 12d) and 1.6–2.1 m (Fig. 12c), 630 
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respectively. The soil was predominantly silty clay, with a maximum capillary rise height of up 631 

to 5 m (Rui, 2004). Therefore, the initial groundwater level depth at these points was generally 632 

less than the sum of the soil freezing depth and the maximum capillary rise height (Fig. 12a). 633 

This means that during the freezing period, the low-temperature suction caused by soil freezing 634 

and the pre-existing capillary forces in the soil form a complete hydraulic connection between 635 

the frozen layer and the groundwater, causing the groundwater to continuously migrate toward 636 

the freezing front during the freezing period. 637 

Groundwater monitoring points exhibiting the precipitation infiltration-runoff type were 638 

mainly distributed in the eastern high plain and the Lasong Block between rivers. In these areas, 639 

the groundwater level is deeper, typically ranging from 5 to 12 m (Fig. 11b), and runoff is the 640 

primary mode of groundwater discharge. The deeper groundwater level prolongs the infiltration 641 

time of precipitation, resulting in a delayed response of the groundwater level dynamics to 642 

precipitation recharge. Groundwater level peaks typically occur between August and October 643 

(Fig. 11d), lagging behind the precipitation peak by approximately one month (Fig. 11f). Due 644 

to the low recharge rate, groundwater level fluctuations are relatively moderate, with annual 645 

variations generally within 4 m (Fig. 11c). During the freeze–thaw period, groundwater 646 

monitoring points with continuously declining trends have greater initial groundwater level 647 

depths, ranging from 4.52 to 11.51 m at the beginning of the freezing period (Fig. 12d). This 648 

feature is primarily caused by the groundwater level rebound following the cessation of 649 

extraction after the irrigation period. With the cessation of agricultural water withdrawal, the 650 

depression cone formed by intensive extraction in the earlier stage begins to be replenished, 651 

and the groundwater level subsequently rises slowly. Due to the previously high extraction 652 

intensity and the relatively deep groundwater table, the recovery process does not occur 653 

instantaneously; instead, it is jointly constrained by the delayed response of the groundwater 654 

system and the regional recharge conditions. As a result, the groundwater level exhibits a steady 655 
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and sustained upward trend. In addition, the soil freezing depth in this dynamic type was 656 

shallower (between 1.6 and 1.8 m), and the soil was still primarily silty clay (Fig. 12b and c). 657 

The greater groundwater level depth and shallower soil freezing depth prevented a complete 658 

hydraulic connection between the frozen soil and groundwater (Fig. 12a), resulting in the 659 

groundwater level being unaffected by the soil freeze–thaw process. Therefore, under 660 

conditions where no groundwater extraction occurs during the freeze–thaw period and the 661 

groundwater level is not influenced by freeze–thaw processes, the groundwater system 662 

continues the post-irrigation recovery process, presenting a “sustained rising” groundwater 663 

level pattern. 664 

In the agricultural irrigation areas of the southern part of the western low plain and the 665 

western piedmont sloping plain, the groundwater level depth corresponding to the extraction 666 

types typically ranged from 5 to 20 m (Fig. 11b). During the agricultural irrigation period, 667 

significant groundwater extraction led to a marked decline in the groundwater level (Fig. 11c). 668 

The low groundwater level period coincided with the peak extraction period, typically between 669 

June and August (Fig. 11e and g). In areas with substantial groundwater extraction, a 670 

groundwater depression cone had already formed, with annual groundwater level fluctuations 671 

reaching up to 15 m (Fig. 11c). During the freeze–thaw period, the groundwater level dynamics 672 

exhibited a continuous rising trend. In the southern part of the western low plain and the 673 

western piedmont sloping plain, the initial groundwater level depth at the beginning of the 674 

freezing period and the soil freezing depth were in the ranges of 5–20 m (Fig. 12d) and 1.6–675 

1.8 m (Fig. 12c), respectively, with the soil primarily comprising silty clay and sandy clay loam 676 

(with a maximum capillary rise height of 3 m) (Fig. 12b). In this region, the initial groundwater 677 

level depth was generally greater than the sum of the soil freezing depth and the maximum 678 

capillary rise height, causing the hydraulic connection between the vadose and saturated zones 679 

to be severed (Fig. 12a), and the groundwater level was unaffected by the soil freeze–thaw 680 



34 

process. 681 

 682 

Fig. 11. (a) Spatial distribution of the ground surface elevation and three dynamic types of 683 

annual groundwater level (precipitation infiltration-evaporation type, precipitation infiltration-684 

runoff type, and extraction type) in Songnen Plain, China. The correlation between the three 685 

dynamic types of annual groundwater level and (b) annual mean groundwater level depths, (c) 686 

annual water level fluctuations, (d) months of peak water level and (e) months of water level 687 

trough. (f) and (g) Monthly distribution of the precipitation and extraction volume in Songnen 688 

Plain, China in 2019, respectively. Each point in (b)–(e) represents a groundwater level 689 

monitoring point. 690 
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 691 

Fig. 12. (a) Spatial distribution of whether the groundwater level is affected by the soil freeze–692 

thaw process and the three groundwater level dynamic types during the freeze–thaw period (V-693 

shaped, continuously declining, and continuously rising) in the Songnen Plain, China. 694 

Correlations between the groundwater level dynamic types in the three freeze–thaw period and 695 

(b) maximum capillary rise height of the soil, (c) the soil freezing depth, (d) the initial 696 

groundwater level depth at the start of the freezing period, and (e) maximum snow thickness. 697 

Each point in (b)–(e) represents a groundwater monitoring well. 698 

4. Discussion 699 

4.1. Implications of Groundwater Level Dynamics Classification for Water Resources 700 

Management 701 

This study identified three main types of annual groundwater level dynamics in the 702 

Songnen Plain: the precipitation infiltration–evaporation type (29.0%), the precipitation 703 

infiltration–runoff type (18.1%), and the extraction type (52.9%). This classification helps to 704 

reveal in greater depth the spatiotemporal distribution characteristics and response patterns of 705 

regional groundwater dynamics. Xu et al. (2024) demonstrated, based on random forest model 706 

analysis, that precipitation is the primary source of recharge for shallow groundwater in the 707 
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Songnen Plain. This finding is consistent with the identification of the precipitation infiltration–708 

type groundwater dynamics in this study, supporting the regulatory role of natural processes in 709 

groundwater levels. Meanwhile, Wu et al. (2025) reported that the significant groundwater 710 

decline in Jilin Province is mainly due to over-extraction for agricultural irrigation, particularly 711 

the large water demand associated with extensive rice cultivation. This observation echoes the 712 

finding that the extraction type accounts for the largest proportion of groundwater dynamics in 713 

this study, highlighting the substantial impact of human pumping activities on groundwater 714 

resources. On this basis, differentiated management strategies should be implemented for 715 

different groundwater dynamics types: in areas dominated by natural processes, ecological 716 

water requirements should be safeguarded and precipitation resources should be utilized 717 

comprehensively; in areas with significant human extraction, pumping schemes should be 718 

optimized to prevent ecological and social risks associated with excessive groundwater level 719 

decline. 720 

During the freezing–thawing period, groundwater level dynamics are mainly divided into 721 

V-shaped type (38.4%), continuously declining type (23.2%), and continuously rising type 722 

(38.4%), reflecting different response patterns of the groundwater system under the complex 723 

hydrological processes in seasonally frozen soil areas. Previous studies have indicated that soil 724 

freezing and thawing during the freezing–thawing period have significant impacts on 725 

groundwater recharge and discharge processes (e.g., Wang et al., 2023; Xie et al., 2021). The 726 

classification method adopted in this study, by identifying the overall dynamic characteristics 727 

during the freezing–thawing period, provides a more comprehensive description of 728 

groundwater response patterns. This classification not only facilitates accurate delineation of 729 

potential recharge and deficit zones in spring but also provides a theoretical basis for 730 

formulating differentiated water resources management strategies tailored to the freezing–731 

thawing cycle, thereby enhancing the capacity to regulate groundwater dynamics in seasonally 732 
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frozen soil areas. 733 

4.2 A New Perspective on Identifying Groundwater Level Dynamics Mechanisms 734 

Previous studies on the causes of groundwater level dynamics have generally relied on 735 

two main approaches. The first involves statistical methods such as trend analysis, correlation 736 

regression, or principal component analysis combined with the temporal variations of driving 737 

factors like precipitation, temperature, and water usage to infer potential dominant controls 738 

(Sarkhel et al., 2024). The second approach constructs numerical groundwater models or 739 

hydrogeological process-based models that quantify the influence of different drivers through 740 

parameter inversion, based on known aquifer structures, boundary conditions, and recharge-741 

discharge processes (Petio et al., 2024). However, these methods face significant limitations 742 

when applied at the regional scale: statistical methods struggle to fully characterize complex 743 

nonlinear responses with multiple time lags and scales, while process-based models depend 744 

heavily on high-precision hydrogeological parameters that are often unavailable in most 745 

regions, and their results are susceptible to biases introduced by prior assumptions. 746 

Differing from previous groundwater level dynamics research, this study explores the 747 

dominant factors and their mechanisms controlling various groundwater level changes in the 748 

Songnen Plain from the perspective of extracting information embedded within the LSTM 749 

model, thereby achieving a data-driven, bottom-up mechanism identification. This approach 750 

relies solely on multi-source observational data (precipitation, temperature, snow thickness, 751 

groundwater extraction, etc.) and can reveal the spatial (across monitoring wells) and temporal 752 

(intra-annual and seasonally frozen soil periods) patterns of dominant factor effects without 753 

requiring inaccessible hydrogeological data such as aquifer parameters and recharge-discharge 754 

relationships. Compared to traditional process-based models, this method not only enhances 755 

the feasibility and applicability of causative analysis but also reduces biases stemming from 756 

prior assumptions, providing a more realistic reflection of the groundwater system’s response 757 
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mechanisms (Jiang et al., 2022). 758 

4.3. Limitations of existing models 759 

A deep learning model was successfully developed in this study to simulate the 760 

groundwater level in the seasonally frozen ground regions of Northeast China, with 81.88% of 761 

the monitoring wells in the study area achieving an NSE > 0.7 on the test set. A common issue 762 

with deep learning models is that they are often considered black-box models, making it 763 

difficult to interpret their internal decision-making processes, which limits their credibility and 764 

interpretability in practical applications (Gunning et al., 2019). In groundwater level simulation 765 

studies, this research is the first to apply the EG method to quantify the importance of input 766 

factors in simulating groundwater level during non-freezing and freezing periods, revealing the 767 

driving forces behind groundwater level dynamics in different seasons. The introduction of this 768 

method offers a novel approach to understanding the groundwater level dynamics in seasonally 769 

frozen regions. 770 

We opted for a local modeling approach (i.e., training a separate model for each 771 

groundwater monitoring well) rather than a regional approach (training a single model with 772 

data from multiple monitoring wells). This decision was based on our goal to identify the 773 

contribution patterns of the input factors (precipitation, air temperature, extraction volume, and 774 

snow depth) to groundwater level at the regional scale, including the duration of their influence 775 

and the significance of their impact. From a prediction standpoint, a regional model might be 776 

more suitable for areas where data are scarce or incomplete (Frame et al., 2022; Nearing et al., 777 

2021), as it can learn more general relationships between input and output factors from 778 

historical data (Kratzert et al., 2019). However, regional models are associated with the issue 779 

of multicollinearity between static factors, and this issue must be addressed. Collinear input 780 

factors may share a substantial amount of information, making it difficult for the model to 781 

accurately distinguish the independent influence of each input factor on the output, leading to 782 
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challenges in interpreting the impact of inputs on the output. Therefore, using regional models 783 

to explain the causes of groundwater level dynamics in seasonally frozen regions could be more 784 

challenging than using local models. Nevertheless, we acknowledge the advantages of regional 785 

models. Future research could further explore how to address the multicollinearity issues 786 

associated with static factors in regional models. In conclusion, we successfully combined deep 787 

learning models with the EG method to reveal the causes of groundwater level dynamics in 788 

seasonally frozen regions. 789 

5. Conclusions 790 

Groundwater dynamics in seasonally frozen regions are complex, influenced by both 791 

climate variability and human activities. Deep learning models require more sophisticated 792 

architectures and broader input variables to improve simulation accuracy, but this increases the 793 

difficulty of interpreting their internal mechanisms. Therefore, this study applies an 794 

interpretable deep learning approach to reveal the driving mechanisms behind groundwater 795 

level dynamics in seasonally frozen soil regions. High-precision simulations of groundwater 796 

levels at 138 monitoring points were conducted using an LSTM model, and combined with the 797 

EG method, the main controlling factors and underlying mechanisms of different types of water 798 

level changes were identified. The main findings are as follows: 799 

First, the LSTM model demonstrated high accuracy in simulating groundwater level 800 

variations in seasonally frozen areas, with NSE values on the test set ranging from 0.53 to 0.96, 801 

indicating its effectiveness in capturing complex groundwater dynamics. 802 

Second, by applying the EG method, three dominant intra-annual groundwater dynamic 803 

types in the Songnen Plain of China were identified: precipitation infiltration–evaporation type 804 

(29.0%), precipitation infiltration–runoff type (18.1%), and extraction type (52.9%). 805 

Correspondingly, during the freeze–thaw period, these types are reflected as V-shaped, 806 

continuously declining, and continuously rising patterns, accounting for 38.4%, 23.2%, and 807 
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38.4% of the monitoring wells, respectively. 808 

Third, while all three intra-annual types are primarily recharged by precipitation 809 

infiltration, their discharge pathways differ: evaporation, runoff, and groundwater extraction, 810 

respectively. During the freeze–thaw period, changes in the soil water potential gradient due to 811 

freezing and thawing lead to interactions between soil water and groundwater, resulting in the 812 

V-shaped variation. In contrast, the continuously rising and types declining reflect gradual 813 

water level changes primarily driven by groundwater extraction and precipitation recharge, 814 

without strong influence from freeze–thaw processes. These dynamic types represent 815 

groundwater fluctuations jointly driven by multiple factors across different temporal scales. 816 

The results demonstrate the great potential of the EG method to bridge model accuracy 817 

and interpretability, offering a new perspective for analyzing complex hydrological processes. 818 

Future research may incorporate more advanced interpretability techniques to further enhance 819 

understanding of deep learning models. The significance of deep learning lies not only in high-820 

accuracy simulations, but also in advancing the discovery of hydrological mechanisms. This 821 

study provides new methodological support and theoretical insights for groundwater resource 822 

management in seasonally frozen soil regions. 823 
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