

1 **Revealing the Causes of Groundwater Level Dynamics in Seasonally Frozen Soil Zones**

2 **Using Interpretable Deep Learning Models**

3 Han Li ^{a,b,c}, Hang Lyu ^{a,b,c*}, Boyuan Pang ^{a,b,c}, Xiaosi Su ^{a,b,c}, Weihong Dong ^{a,b,c}, Yuyu Wan ^{a,b,c},

4 Tiejun Song ^{a,b,c}, Xiaofang Shen ^{a,b,c}

5 ^aKey Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin
6 University, Changchun 130026, China

7 ^bJilin Provincial Key Laboratory of Water Resources and Environment, Jilin University,
8 Changchun 130026, China

9 ^cInstitute of Water Resources and Environment, Jilin University, Changchun,130021, China

10 *Corresponding author

11 Hang Lyu

12 E-mail: lvhangmail@163.com

13 **Abstract**

14 Accurately characterizing groundwater level dynamics in seasonal frozen soil regions is
15 of great significance for water resource management and ecosystem protection in cold areas.
16 Taking the Songnen Plain in China as the study area, this paper constructs a Long Short-Term
17 Memory (LSTM) model to simulate daily groundwater levels for 138 monitoring wells. The
18 Expected Gradients (EG) method is introduced to interpret the model results, thereby
19 identifying the dominant factors and underlying mechanisms of different groundwater level
20 variation types. The results show that the LSTM model performs well on the test set, with the
21 Nash-Sutcliffe Efficiency (NSE) exceeding 0.7 at 81.88% of the monitoring sites, effectively
22 capturing the temporal dynamics of groundwater levels. At the annual scale, three typical
23 groundwater level variation types are identified: precipitation infiltration–evaporation type
24 (29.0%), precipitation infiltration–runoff type (18.1%), and extraction type (52.9%). The first
25 two types are mainly controlled by natural processes, with water level variations depending on
26 climatic conditions, while the extraction type is significantly influenced by human activities,
27 characterized by violent water level fluctuations. During the frozen-thaw period, groundwater
28 level dynamics can be classified into three major types: “V”-shaped variation (decline during
29 freezing, rise during thawing, accounting for 38.4%), continuous decline (23.2%), and
30 continuous rise (38.4%). EG analysis indicates that the “V”-shaped dynamics are mainly
31 governed by climatic factors such as air temperature, precipitation, and snow thickness, clearly
32 reflecting the dominant role of the frozen-thaw process. Further analysis reveals that when the
33 initial groundwater level depth at the start of the freezing period is shallower than the sum of
34 the “frozen-thaw influence depth plus capillary rise height,” a hydraulic connection is
35 established between the frozen soil layer and the aquifer, enabling frequent conversion between
36 soil water and groundwater and resulting in the characteristic “V”-shaped fluctuation.
37 Conversely, when the groundwater level depth exceeds this critical threshold, the frozen-thaw

38 process has limited influence on the aquifer. Groundwater level variations are mainly driven
39 by the recovery process following groundwater extraction or prior precipitation replenishment,
40 exhibiting continuous rise or continuous decline, respectively. This study establishes an
41 integrated framework of “simulation–classification–interpretation,” which not only improves
42 the accuracy of groundwater level dynamic simulation and prediction but also provides new
43 methods and perspectives for revealing the underlying mechanisms. The findings offer
44 theoretical support and technical basis for regional groundwater resource management in cold
45 regions.

46 **Keywords:** Freezing-thawing process; Groundwater level dynamics; Seasonally frozen plain;
47 Interpretable deep learning models

48 **1. Introduction**

49 Groundwater level is a crucial indicator reflecting the water balance status of groundwater
50 systems, and its dynamic changes reveal the evolving trends of regional hydrological processes.
51 In terms of water resource management, monitoring groundwater level depth helps managers
52 understand changes in groundwater storage, optimize water extraction schemes, and prevent
53 resource depletion caused by overexploitation (Hao et al., 2014; Yang, 2012). Regarding
54 ecosystem protection, fluctuations in groundwater level depth directly affect regional
55 ecological patterns. Excessively low water levels may lead to wetland desiccation and
56 biodiversity loss, while rapid rises can cause soil salinization and vegetation degradation (Singh
57 et al., 2012). Relevant studies have also practically validated the significance of groundwater
58 level prediction. For example, Liu et al. (2022) demonstrated in the lower Tarim River that
59 machine learning-based groundwater level prediction models can quantitatively reveal current
60 and future groundwater changes, clarifying the critical role of ‘ecological water conveyance’
61 in regional ecological restoration. Therefore, in-depth identification of the controlling
62 mechanisms behind groundwater level depth variations and achieving high-precision
63 spatiotemporal simulation are of great significance for promoting sustainable groundwater
64 resource utilization and ecological environment protection (Yi et al., 2022).

65 Seasonally frozen soil areas are widely distributed globally. In China, they cover more
66 than half of the total land area, mainly in the northwest and northeast regions where water
67 scarcity is a prominent issue (Wang et al., 2019). Unlike non-frozen soils, seasonally frozen
68 soil is a unique water–soil system that contains ice, and changes in the ice content are
69 accompanied by the dynamic storage of liquid water and dynamic changes in heat (Wu et al.,
70 2023). The movement and storage behavior of groundwater in these regions differ from those
71 in warm, non-frozen areas (Ireson et al., 2013), as the freeze–thaw process results in more
72 frequent interactions between soil water and groundwater (Daniel and Staricka, 2000; Lyu et

73 al., 2022; Lyu et al., 2023; Miao et al., 2017). This leads to significant differences in the causes
74 of groundwater level dynamics between the freeze–thaw and non-freeze–thaw periods in
75 seasonally frozen soil areas, making it more challenging to accurately simulate the regional
76 groundwater levels.

77 Current models used for simulating groundwater level dynamics can generally be
78 categorized into two groups: physical models and machine learning models (Ao et al., 2021).
79 Most physical models are based on hydrodynamic processes and water balance principles, and
80 are capable of accurately representing the physical mechanisms of groundwater systems.
81 Therefore, they possess irreplaceable advantages in characterizing groundwater flow and
82 uncovering hydrological processes such as recharge, runoff, and discharge. However, in areas
83 with complex geological structures or highly heterogeneous aquifer systems, the construction,
84 parameter calibration, and validation of physical models typically require large amounts of
85 high-resolution geological, hydrological, and hydraulic data. These requirements make
86 physical modeling challenging to implement and time-consuming (Raghavendra N and Deka,
87 2014). Hence, there are few simulation studies on regional-scale groundwater level dynamics
88 in seasonally frozen soil areas. In comparison, machine learning models have demonstrated
89 significant advantages in simulating groundwater levels. These models explore the nonlinear
90 relationships between inputs (such as meteorological and topographic data) and outputs
91 (groundwater level) without the need to consider internal physical mechanisms (Rajaee et al.,
92 2019), nor do they require predefined parameters such as hydraulic characteristics or boundary
93 conditions (Ao et al., 2021). Despite this, machine learning models typically outperform
94 physical models in terms of simulation accuracy, particularly in medium-to-long-term
95 simulation studies (Demissie et al., 2009; Ebrahimi and Rajaee, 2017; Fienen et al., 2016;
96 Rahman et al., 2020). One of the most successful deep learning architectures for modeling
97 dynamic hydrological variables is the long short-term memory (LSTM) network (Jing et al.,

98 2023; Wu et al., 2021). The LSTM model, which is an improved version of the recurrent neural
99 network (RNN), can more effectively capture long-term dependencies in time-series data
100 (Hochreiter and Schmidhuber, 1997). In the seasonally frozen soil regions of Northwest China,
101 14 years of continuous groundwater level simulations have shown that the LSTM model can
102 effectively handle long-term data and accurately simulate groundwater levels in seasonally
103 frozen soil areas (Zhang et al., 2018).

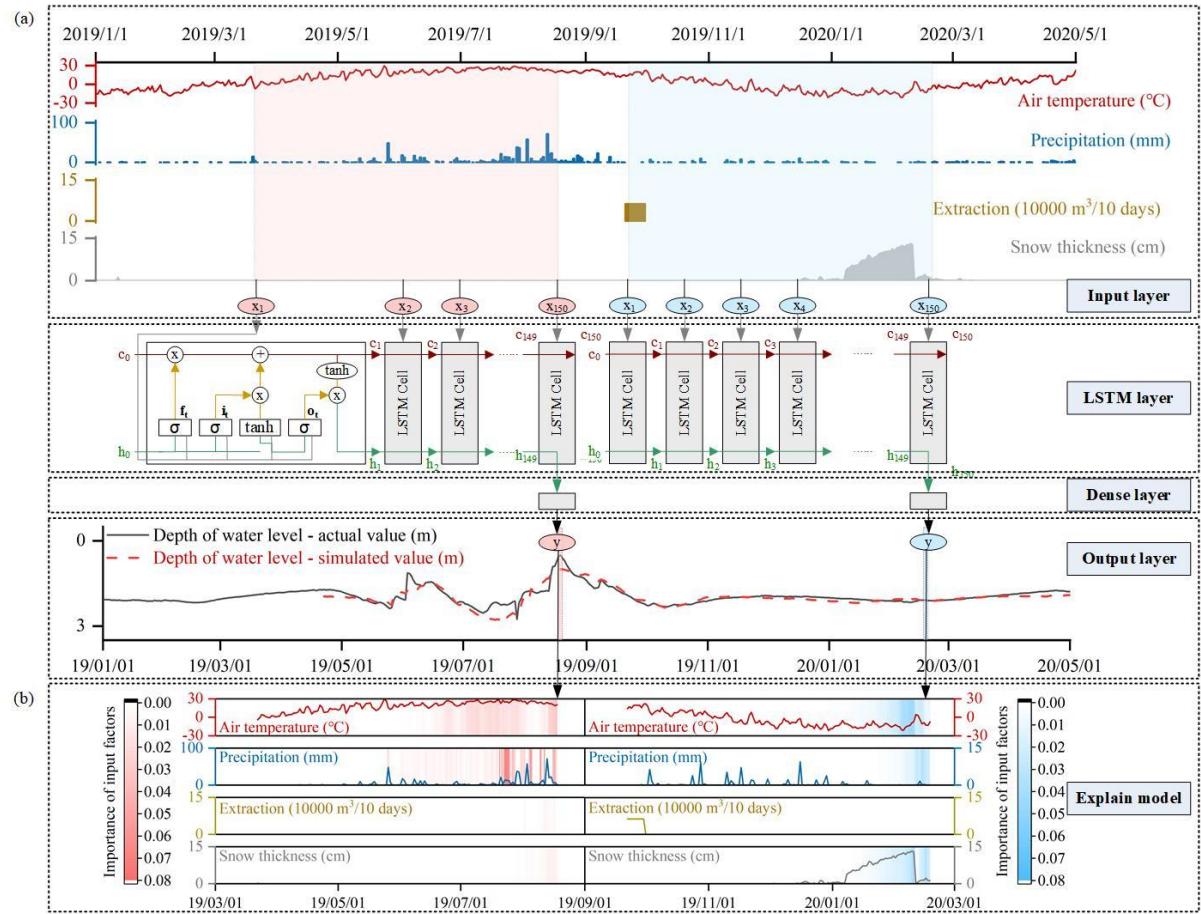
104 Although numerous studies have demonstrated the accuracy and predictive power of data-
105 driven models in hydrological fields, these models are essentially black boxes and cannot
106 explicitly explain the underlying physical processes and mechanisms (Zhou and Zhang, 2023).
107 To address this limitation, researchers have proposed various methods to interpret deep learning
108 models. Two widely used methods in groundwater research are the expected gradient (EG)
109 method (Jiang et al., 2022) and the Shapley additive explanations (SHAP) algorithm (Lundberg
110 and Lee, 2017). The broad application of the SHAP method is mainly attributed to its ability to
111 reveal, from a local perspective, the contribution of each input variable to the corresponding
112 model output at each time step (Wang et al., 2022) and, from a global perspective, the overall
113 influence of input variables on the model output over the entire simulation period (Liu et al.,
114 2022; Niu et al., 2023). However, the limitation of the SHAP method is that its interpretation
115 of input factors is static and independent, making it ineffective in capturing the complex
116 interactions between groundwater levels and long-term recharge and discharge dynamics. In
117 contrast, the EG method (Jiang et al., 2022) calculates the EG values of the input variables over
118 a specified time range, allowing for a better quantification of the impact of dynamic input
119 variables on output variables at a particular time. This capability theoretically makes the EG
120 method advantageous in groundwater level simulations with dynamic characteristics,
121 particularly in explaining the temporal effects of meteorological changes on groundwater level
122 across different periods. Nevertheless, there are currently no dedicated studies on the use of the

123 EG method to explain the causes of groundwater level dynamics, and its effectiveness in
124 understanding the relatively complex mechanisms of groundwater level dynamics in seasonally
125 frozen soil areas requires further validation.

126 In this study, the seasonally frozen soil area of the Songnen Plain in Northeastern China
127 was taken as an example. Through an in-depth analysis of three years of continuous monitoring
128 data from phreatic wells in this region, combined with meteorological, hydrological, and soil
129 texture data, the LSTM model was used to simulate the groundwater level dynamics. The
130 reverse interpretation technique, i.e., the EG method, was applied to explore the decision
131 principles of the deep learning model in simulating water levels during the non-freeze–thaw
132 and freeze–thaw periods, thus revealing the mechanisms behind groundwater level dynamics
133 across different periods in seasonally frozen soil areas. The research findings can demonstrate
134 and extend the application of interpretable deep learning models in the groundwater field,
135 providing essential support for groundwater resource assessment and ecological environment
136 protection in seasonally frozen soil areas.

137 **2. Data and methodology**

138 Figure 1 shows the workflow of this study, including three main steps. First, the LSTM
139 model is used to establish a nonlinear relationship between meteorological factors, human
140 activities, and groundwater level depths (Fig. 1a). The daily air temperature, precipitation,
141 extraction volume, and snow depth were used as input variables to predict the groundwater
142 level depths. Subsequently, the EG method (Jiang et al., 2022) was applied to the trained LSTM
143 model to obtain the EG scores of the input factors at different time steps. The EG scores
144 quantify the influence of the meteorological inputs (air temperature, precipitation, and snow
145 depth) and human activities (extraction volume) on the groundwater level depths during the
146 simulation process (Fig. 1b). Finally, the causes of groundwater level dynamics during the non-
147 freeze–thaw and freeze–thaw periods in seasonally frozen soil areas were identified.



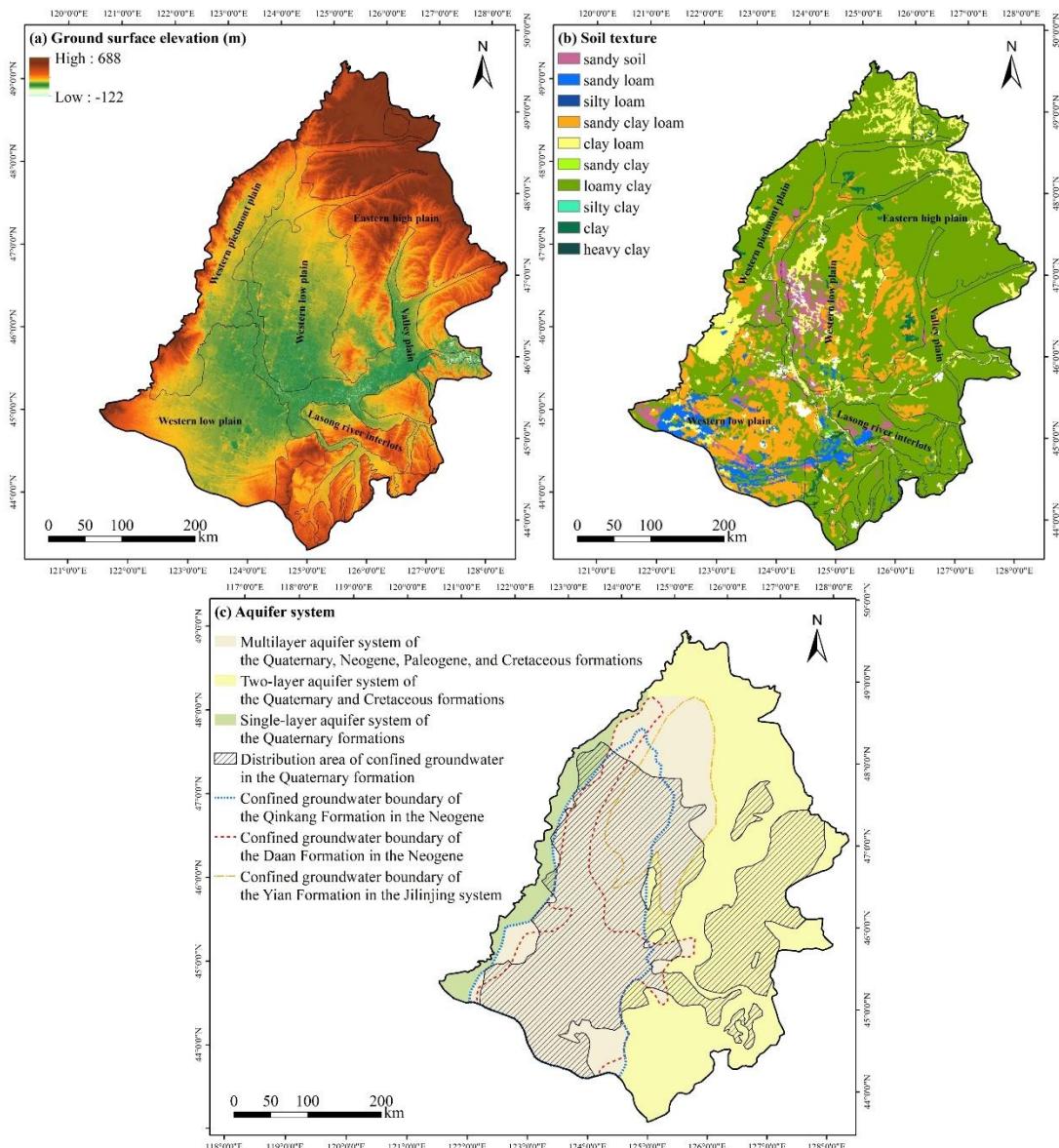
148

149 **Fig. 1.** Workflow of this study: (a) Model structure of the LSTM model, (b) EG scores of input
150 factors during the non-freeze–thaw and freeze–thaw periods.

151 **2.1. Study area**

152 The Songnen Plain is one of the three major plains in Northeast China. It is higher on the
153 periphery and lower at the center, with a total area of 182,800 km² (Fig. 2a). The study area is
154 surrounded by hills and mountains in the west, north, and east of the Greater and Lesser Xingan,
155 Zhangguangcai, and Changbai Mountains, respectively, and is connected to the West Liaohe
156 Plain by the micro-uplifted Songliao watershed in the south. The Songnen Plain primarily
157 comprises the eastern high plain, western piedmont sloping plain, western low plain, and valley
158 plain (Fig. 2a). The soil texture in the region mainly includes sandy loam, sandy clay loam,
159 clay loam, and loamy clay (Fig. 2b). The climate in the area can be mainly characterized by
160 two main types: first, it features a typical East Asian continental monsoon climate with hot,

161 rainy summers and cold, dry winters; second, although the distribution of the climatic factors
162 in the Songnen Plain is significantly influenced by latitude, there is a distinct east–west
163 difference, with arid conditions in the west and humid conditions in the east (Li et al., 2022).
164 The long-term average temperature of the Songnen Plain is 3.8 °C, the long-term average
165 precipitation is 484.57 mm, and the long-term average evaporation is 1,498.1 mm. The frost-
166 free period ranges from 115 to 160 days. Freezing starts in mid-October from north to south,
167 and thawing begins in April from south to north. The freezing depth ranges from 1.5 to 2.4 m
168 (Zhao et al., 2009). The area is crisscrossed by rivers, with the Songhua River, Nenjiang River,
169 and their tributaries forming a centripetal drainage system. The lower reaches of the Nenjiang
170 River and Taoer River, as well as the Second Songhua River, flow through the central plain
171 from the north, west, and southeast, respectively. The aquifer system in the Songnen Plain,
172 China, consists of multiple aquifers ranging from the Cretaceous, Paleogene, and Neogene to
173 the Quaternary. Among them, the Quaternary aquifer, whose distribution range is slightly
174 smaller than that of the Cretaceous aquifer, is the main groundwater exploitation layer in the
175 region and the aquifer in which the groundwater studied in this paper is located (Fig. 2c).



176

177 **Fig. 2.** Spatial distribution of the ground surface elevation (a), topography (b) and aquifer
 178 system (c) in the Songnen Plain, China.

179 **2.2. Dataset and selection of representative groundwater level values**

180 To simulate the dynamic changes in the groundwater level in seasonally frozen soil areas
 181 and to analyze the driving mechanisms of groundwater level dynamics during freezing and
 182 non-freezing periods, this study primarily used dynamic observational data from 2018 to 2021,
 183 including precipitation, air temperature, snow depth, groundwater extraction volume, and
 184 groundwater levels, as well as static data such as ground surface elevation and soil texture. The
 185 precipitation and air temperature data were obtained from the “ERA5 hourly data on single

186 levels from 1979 to present" dataset, provided by the European Centre for Medium-Range
187 Weather Forecasts (ECMWF). ERA5 is the fifth-generation re-analysis of the global climate
188 and weather data with a spatial resolution of $0.25^\circ \times 0.25^\circ$ and an hourly temporal resolution.
189 Daily snow depth data were sourced from the National Tibetan Plateau Data Center
190 (<http://data.tpdc.ac.cn>), with a spatial resolution of 25 km. The temporal and spatial resolution
191 of the groundwater extraction volume data was enhanced based on the spatial distribution and
192 water demand of major crops in the Songnen Plain, along with the precipitation data.
193 Groundwater level data from 138 phreatic wells were provided by the China Geological
194 Environment Monitoring Institute, while surface elevation data with a spatial resolution of 30
195 m were obtained from the Geospatial Data Cloud (<https://www.gscloud.cn/search>). Soil texture
196 data were sourced from the Resource and Environment Science and Data Center, compiled
197 from a 1:1,000,000 soil type map and soil profile data collected during the second national soil
198 survey of China.

199 In the Songnen Plain, approximately 70% of groundwater extraction is used for
200 agricultural irrigation; therefore, in this study, groundwater extraction was approximated based
201 on crop water deficits. Using spatial distribution data of the region's major crops, ten-day
202 period crop water requirements, and precipitation data, we estimated groundwater extraction
203 at a fine resolution, ultimately generating ten-day period groundwater extraction data with a
204 spatial resolution of $25 \text{ km} \times 25 \text{ km}$. Specifically, based on the water requirements of the main
205 crops (rice, soybean, and maize), we calculated the total crop water demand for each ten-day
206 period within each grid cell. These values were then weighted according to the crop planting
207 area to obtain the total water demand per grid. By comparing precipitation with crop water
208 demand, we determined whether precipitation could meet the crop water needs. When
209 precipitation was sufficient, crops relied entirely on natural rainfall, and the effective
210 precipitation equaled the water demand. When precipitation was insufficient, effective

211 precipitation was limited by actual rainfall, and the remaining crop water deficit was assumed
212 to be supplemented by other water sources. Finally, the difference between crop water demand
213 and effective precipitation was calculated as the crop water deficit, which was assumed to be
214 primarily supplied by groundwater. This allowed us to approximate ten-day period
215 groundwater extraction. To ensure consistency with the temporal resolution of other variables
216 used for model training, the ten-day period data were converted to daily averages by dividing
217 by the number of days in each period.

218 To identify the causes of groundwater level dynamics during freezing and non-freezing
219 periods, representative groundwater levels were selected for analysis using the EG method at
220 different time periods. Based on the annual pattern of the groundwater level dynamics,
221 groundwater levels during the non-freezing period are influenced by human activities, flood-
222 season precipitation, and other factors, leading to greater fluctuations compared with that
223 observed in the freezing period. Therefore, selecting extreme values (either maximum or
224 minimum) as representative groundwater levels can effectively capture the peak or trough of
225 the groundwater level, reflecting the most significant state of groundwater recharge or
226 discharge during this period. Based on this, the trends in the groundwater level were analyzed
227 to identify the different dynamic characteristics during the non-freezing period. If the
228 groundwater level shows an overall uptrend, the maximum value represents the peak of the
229 recharge process; if it shows a downtrend, the minimum value reflects the maximum extent of
230 discharge.

231 However, during the freezing period, groundwater level fluctuations are relatively small,
232 and extreme values do not respond significantly to external factors. During this period,
233 groundwater levels may be influenced by soil freezing and thawing processes. Therefore, the
234 groundwater levels at critical moments of soil freezing and thawing were chosen as
235 representative values to more accurately reflect the response of groundwater level to

236 environmental changes. During the freezing period, after the “Beginning of Winter” solar term
237 (November 7–8), the average temperature continuously dropped to below 0 °C, and a thin ice
238 layer gradually formed on the surface; after the “Rain Water” solar term (February 18–20),
239 temperatures increased, and the frozen soil began to thaw in both directions; finally, the frozen
240 soil fully thawed around the “Grain Rain” solar term (April 19–21) in spring (Lyu et al., 2023).

241 Based on this climatic pattern, we uniformly defined the freezing and thawing periods for all
242 monitoring wells in the study area. Specifically, the freezing period is defined as the interval
243 from “Beginning of Winter” to “Rain Water,” and the thawing period as from “Rain Water” to
244 “Grain Rain.” Therefore, the groundwater level at the “Rain Water” solar term was chosen as
245 the representative groundwater level during the freezing period to capture the rapid response
246 of the groundwater level to rising temperatures and thawing of the frozen soil.

247 **2.3. Research methods**

248 **2.3.1. LSTM model**

249 The LSTM neural network (Hochreiter and Schmidhuber, 1997) is an advanced RNN
250 widely applied in deep learning. It can store and associate previous information, effectively
251 addressing the issues of vanishing and exploding gradients that occur during the training of
252 long sequence data. The deep learning model used in this study comprises a single LSTM layer
253 and a dense layer. The LSTM layer is composed of recurrent cells arranged in a chain-like
254 structure, allowing information to be passed from the current time step to the next. The model
255 uses daily precipitation, air temperature, groundwater extraction volume, and snow depth from
256 the previous 150 days as input sequences to predict groundwater level depths. Each cell in the
257 LSTM layer includes four components: the input gate (i_t), the forget gate (f_t), the output gate
258 (o_t), and the cell state (c_t) (as shown in the LSTM layer in Fig. 1a). The input gate determines
259 how much input information is transferred to the cell state. The forget gate primarily controls
260 how much information from the previous cell state is discarded and how much is carried

261 forward to the current moment. The output gate calculates the output based on the updated cell
 262 state from the forget and input gates. The cell state is used to record the current input, the
 263 previous cell state, and the information from the gate structures. In this study, we adopted the
 264 LSTM equations proposed by Graves et al. (2013), which are represented by the following key
 265 equations:

$$266 \quad i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_t) \quad (1)$$

$$267 \quad f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f) \quad (2)$$

$$268 \quad c_t = f_t \odot c_{t-1} + i_t \odot \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c) \quad (3)$$

$$269 \quad o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o) \quad (4)$$

$$270 \quad h_t = o_t \odot \tanh(c_t) \quad (5)$$

271 where the input and output vectors of the implicit layer of the LSTM at time step t are x_t and
 272 h_t , respectively, the memory cell is c_t , and the values of the input, forget, and output gates are
 273 i_t , f_t , and o_t , respectively. W and b represent the learnable weight and bias terms to be
 274 estimated during the training period, respectively, $\sigma(\cdot)$ denotes the logistic sigmoid function,
 275 $\tanh(\cdot)$ is the hyperbolic tangent function, and \odot represents elementwise multiplication.

276 Before training the model, the air temperature, precipitation, groundwater extraction
 277 volume, and snow depth were normalized by mapping their values to a range between 0 and 1.
 278 The adaptive moment estimation (Adam) algorithm (Kingma and Ba, 2014) was employed
 279 during training, with an initial learning rate set to 0.03. The maximum training epoch number
 280 was configured to 100, and an early stopping strategy was applied to prevent overfitting. For
 281 each individual groundwater monitoring well, 70% of the input–output data pairs were
 282 randomly sampled for training the LSTM model, and they were split into training and
 283 validation samples at a ratio of 7:3. The training samples were repeatedly used to update the
 284 model parameters until the loss function for the validation samples ceased to decrease. The
 285 remaining 30% of the data were used for an independent evaluation of the model performance.

286 Random sampling allows for capturing the overall hydrometeorological variations observed
287 across different time periods.

288 **2.3.2. Model interpretations**

289 In 2017, Sundararajan et al. developed the integrated gradients (IG) method (Sundararajan
290 et al., 2017), which uses the gradient of the model's output to the input factors to infer the
291 specific contribution of the input variables to the output variable. The IG score for an input
292 factor x (e.g., the precipitation at the i -th time step), representing the degree of contribution of
293 the input variable to the output variable, is expressed as follows:

294
$$\phi_i^{IG}(f, x, x') = (x_i - x'_i) \int_{\alpha=0}^1 \frac{\partial f(x' + \alpha(x - x'))}{\partial x_i} d\alpha \quad (6)$$

295 where $\frac{\partial f(x' + \alpha(x - x'))}{\partial x_i}$ denotes the local gradient of the network f at the interpolation point from
296 the baseline input (x' , when $\alpha = 0$) to the target input (x , when $\alpha = 1$).

297 However, the baseline input x' in the above formula is a hyperparameter that must be
298 chosen carefully. In groundwater level studies, if the target input (e.g., a particular groundwater
299 level observation) is close to the chosen baseline input (e.g., long-term average groundwater
300 level), i.e., $x_i \approx x'_i$, the IG method may fail to capture the importance of current input factors,
301 such as precipitation or evaporation, on groundwater level changes (Sturmels et al., 2020). To
302 address this issue, Jiang et al. (2022) developed the EG method, which is based on the IG
303 method but assumes that the baseline inputs follow the basic distribution D sampled from a
304 background dataset (such as the training dataset), thus avoiding the need to specify a fixed
305 baseline input. Given the baseline distribution D , the EG score ϕ_i^{EG} for the i -th input factor
306 can be calculated by integrating the gradients over all possible baseline inputs $x' \in D$, weighted
307 by the probability density function p_D . The EG score represents the influence of input factors
308 on the model output, with a higher absolute EG score indicating a greater impact of the
309 corresponding input factor on the model output, while an EG score close to zero suggests that

310 the input factor has little effect on the output. The EG score can be expressed as follows:

311
$$\phi_i^{EG}(f, x) = \int_{x'} (\phi_i^{IG}(f, x, x') \times p_D(x') dx') \quad (7)$$

312 The above expression involves two integrals, which, according to Erion et al. (2021), can
313 both be considered expectations. Thus, the equation can be reformulated as:

314
$$\phi_i^{EG}(f, x) = E_{x' \sim D, \alpha \sim U(0,1)} \left[(x_i - x'_i) \int_{\alpha=0}^1 \frac{\partial f(x' + \alpha(x-x'))}{\partial x'_i} \right] \quad (8)$$

315 **2.3.3. Evaluation metrics**

316 The evaluation metrics used in this study include the Nash–Sutcliffe efficiency (NSE)
317 coefficient and the root-mean-square error (RMSE). The NSE is used to assess the degree of
318 fit of the regression model. The RMSE quantifies how well the predicted values match the
319 observed values. If the NSE is close to 1 and the RMSE is close to 0, the model is more reliable.

320
$$NSE = 1 - \frac{\sum_{i=1}^n (x_i - y_i)^2}{\sum_{i=1}^n (x_i - \bar{x}_i)^2} \quad (9)$$

321
$$RMSE = \sqrt{\frac{\sum_{i=1}^n (x_i - y_i)^2}{n}} \quad (10)$$

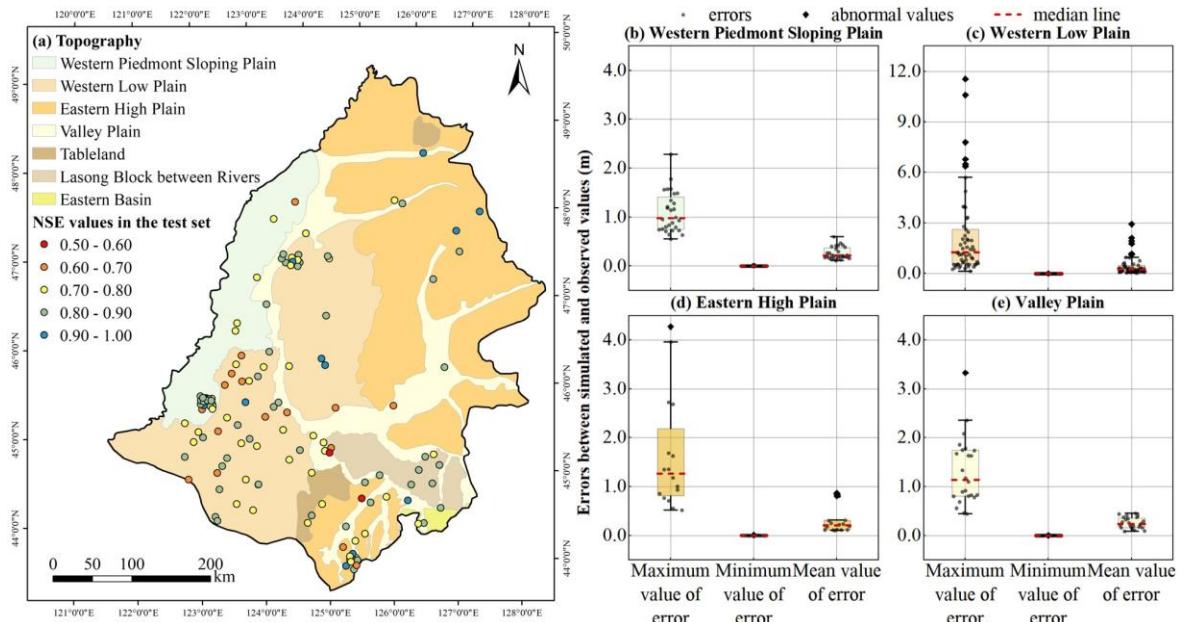
322 where x_i is the depth of the observed groundwater level, and \bar{x}_i is the average value of x_i ;
323 y_i is the groundwater level depth simulated by the LSTM model; and i denotes the specific
324 sample ordinal number, from 1 to n .

325 **3. Results**

326 **3.1. Simulation Accuracy of Deep Learning Model for Groundwater Level**

327 A data-driven model (LSTM model) was used to simulate the daily groundwater level
328 depth of 138 aquifer monitoring wells in the Songnen Plain, China, from 2019 to 2021. Overall,
329 the simulation accuracy of the groundwater level depth was relatively high across the western
330 piedmont sloping plain, the eastern high plain, and the valley plain regions. In these areas, the
331 NSE values at the monitoring points in the test set ranged from 0.53 to 0.96 (Fig. 3a), with
332 87.14% of the monitoring points showing NSE values greater than 0.7. Over the entire

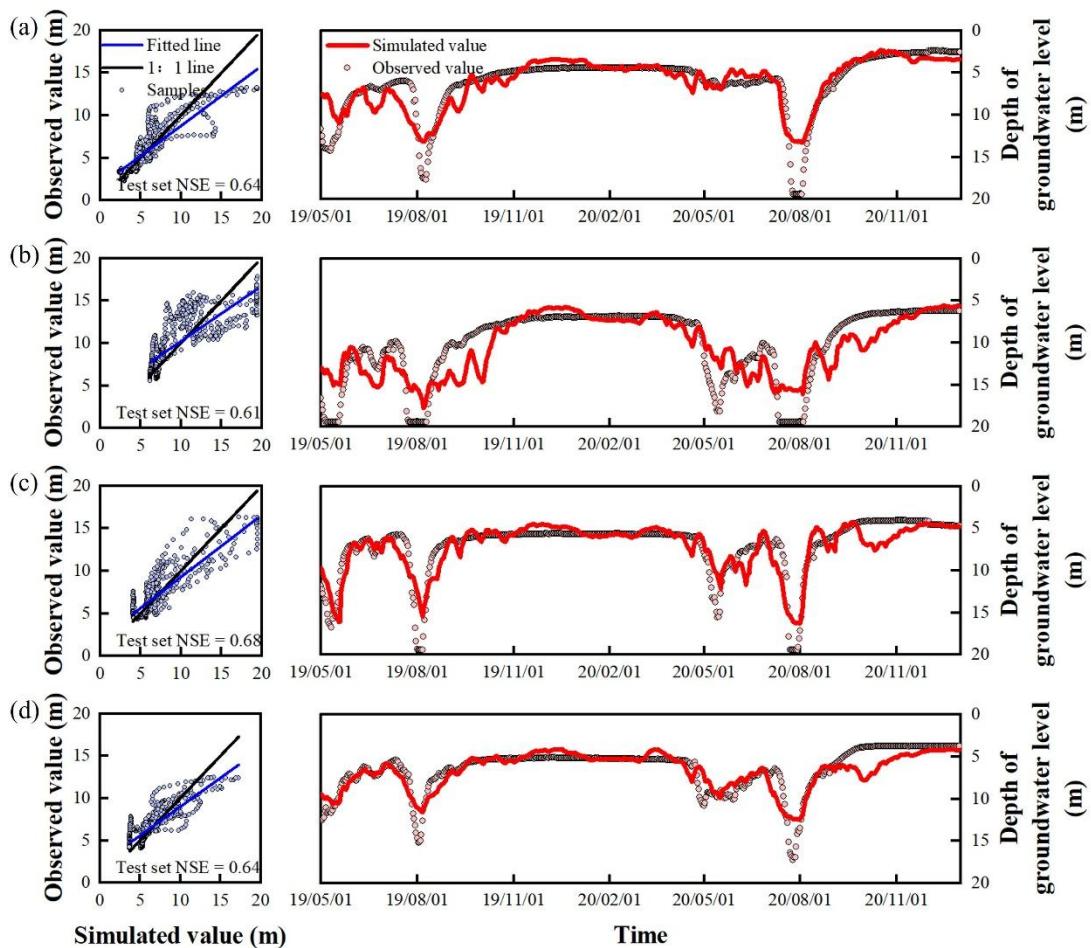
333 simulation period (including the training and test sets), the maximum error between the
 334 simulated and observed values at each monitoring point mainly ranged from 0.5 to 2.5 m (Fig.
 335 3b, d, and e), with 94.29% of the monitoring points having an average error of less than 0.5 m.
 336 The annual groundwater level fluctuation at the monitoring points in this region was relatively
 337 small, ranging from 0.41 to 6.54 m.



338 **Fig. 3.** (a) Spatial distribution of the NSE values on the test set for 138 groundwater level
 339 monitoring points in the Songnen Plain, China. (b)–(e) Maximum, minimum, and mean errors
 340 between simulated and observed groundwater levels at monitoring points in the western
 341 piedmont sloping plain, western low plain, eastern high plain, and valley plain during the
 342 simulation period.

344 Only 18.11% of the monitoring wells in the study area had a Nash-Sutcliffe Efficiency
 345 (NSE) below 0.7 on the test dataset, and these wells were primarily located in the southern part
 346 of the western low plain (Fig. 3a). In this region, the average absolute error between simulated
 347 and observed daily groundwater level depth ranged from 0.04 to 2.93 meters, although the
 348 maximum error reached as high as 11.56 meters (Fig. 3c), indicating that the model exhibited
 349 certain instability in localized areas. Figure 4 compares the simulated and observed

350 groundwater level depth series at several poorly performing wells in this region. As shown in
351 the figure, significant discrepancies occurred during certain periods, and the fitting
352 performance was unsatisfactory. The primary reason for this discrepancy is the large annual
353 fluctuation in groundwater level depth at many wells in this region: 21.43% of the monitoring
354 wells had a fluctuation range exceeding 10 meters. These extreme fluctuations posed
355 challenges for the LSTM model's simulation accuracy. In the training data used for the LSTM
356 model, samples with extreme values of groundwater level depth were relatively scarce, while
357 samples with moderate values were more abundant. Consequently, the model tended to fit the
358 data in the moderate range more accurately, resulting in limited predictive ability for the
359 extreme ends of the groundwater level series. Despite the reduced accuracy at certain wells,
360 the LSTM model is capable of accurately capturing the variation trend of groundwater levels,
361 and no significant lag is observed between the simulated and observed values (Fig. 4). The
362 Pearson correlation coefficients between the simulated water levels and the measured water
363 levels at the four representative monitoring points shown in the figure are 0.86, 0.81, 0.87, and
364 0.85, respectively. Moreover, the correlation coefficients reach their maximum values without
365 applying any time lag, indicating that the simulated values can effectively and promptly reflect
366 the actual variation trend of groundwater levels.



367

368 **Fig. 4.** Comparison of the simulated and observed groundwater level depths at typical points
 369 in the western low plain (NSE values on the test set < 0.7).

370 Overall, most of the groundwater monitoring points in the Songnen Plain, China, showed
 371 NSE values greater than 0.7 on the test set, indicating a relatively high simulation accuracy of
 372 the groundwater level depth based on the LSTM model. This suggests that the network
 373 structure of the LSTM model could accurately capture the dynamic relationships between the
 374 air temperature, precipitation, extraction volume, snow depth, and groundwater level.

375 **3.2. Dynamic Characteristics of Regional Groundwater Level and their Distribution Laws**

376 **3.2.1. Annual Dynamics Variations and Spatial Distribution**

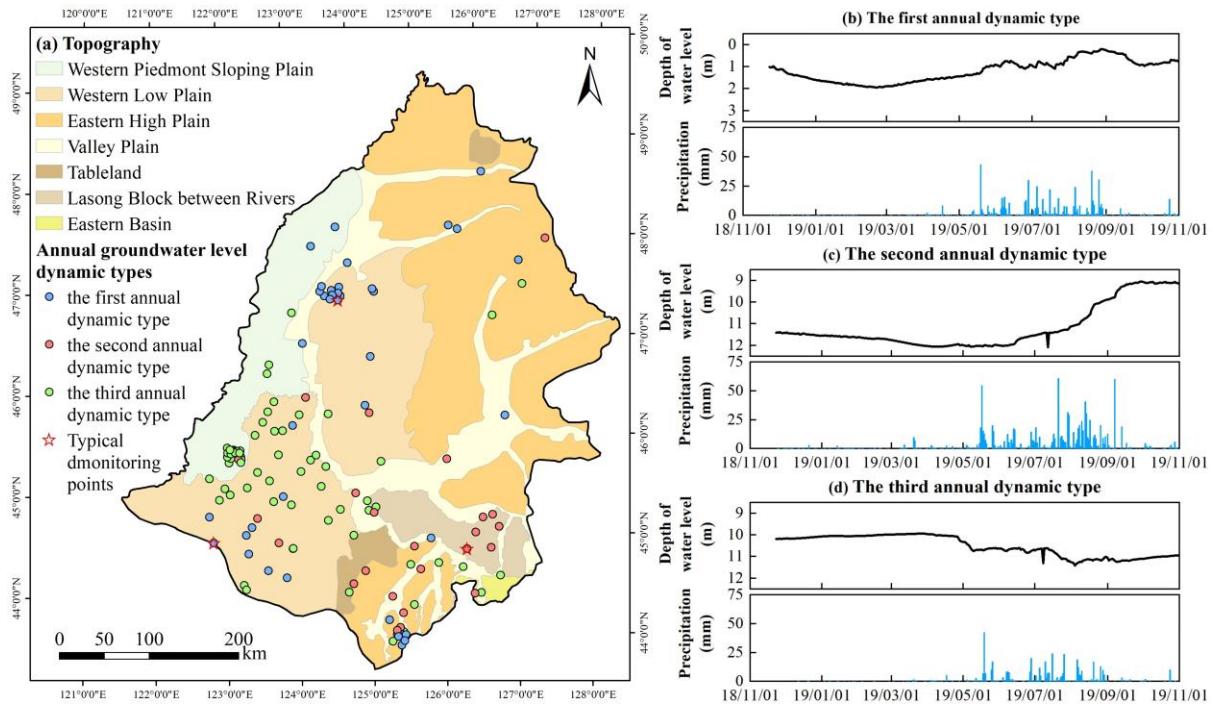
377 Based on the characteristics of the annual groundwater level dynamic curves in the
 378 Songnen Plain, China, the annual groundwater level dynamics can be categorized into three
 379 types (Fig. 5).

380 The monitoring wells located in areas with a shallow groundwater level (less than 7 m) in
381 the northern part of the western low plain and valley plain (Fig. 5a) exhibited annual
382 groundwater level fluctuations of less than 4 m. Typically, the dynamic change in the
383 groundwater level is as follows: during the dry season from January to April, precipitation is
384 almost zero, and the groundwater level depth is significantly greater compared with those in
385 the other months; with the onset of the rainy season (May to August), precipitation increases,
386 causing the groundwater level to rise; after the rainy season ends (September to December),
387 the groundwater level depth gradually increases with decreasing precipitation (Fig. 5b). This
388 dynamic type of the groundwater level is the first annual dynamic type in the Songnen Plain,
389 with its corresponding monitoring wells accounting for 29.0% of all wells in the study area.

390 The monitoring wells located on Tableland, the Lasong Block between rivers, and the
391 eastern high plain (Fig. 5a) have relatively greater groundwater level depths, ranging from
392 approximately 5 to 11 m. From January to May each year, groundwater levels show a
393 continuous decline; with the increase in precipitation, the groundwater level begins to gradually
394 rise, reaching their annual peak in early October (Fig. 5c). The timing of the groundwater peak
395 is delayed by 1 to 2 months compared with the first dynamic type, indicating that the response
396 of the groundwater level to precipitation is slower (Fig. 5b and c). The annual groundwater
397 level fluctuation is within 5 m. This dynamic type is the second annual dynamic type in the
398 Songnen Plain, with its corresponding monitoring wells accounting for only 18.1% of all wells
399 in the study area.

400 In agricultural irrigation areas, such as the southern part of the western low plain and the
401 western piedmont sloping plain (Fig. 5a), the groundwater level depth typically ranges from 5
402 to 20 m. The dynamic curves of the groundwater level in the aquifer monitoring wells in these
403 areas exhibit distinct periodicity, showing a funnel-like and sawtooth pattern. The lowest
404 groundwater levels typically occur in May or August, while the highest level typically occurs

405 in November or later (Fig. 5d). During the irrigation season, groundwater levels drop
 406 significantly, with annual fluctuations being generally within 15 m. This dynamic groundwater
 407 type is widely distributed in the study area, with its corresponding monitoring wells accounting
 408 for 52.9% of all wells, representing the third annual dynamic type in the Songnen Plain.



409
 410 **Fig. 5.** (a) Spatial distribution of different annual groundwater level dynamic types in the
 411 Songnen Plain, China; (b-d) Dynamic curves of different annual groundwater types and their
 412 corresponding precipitation variations. (b) The first annual dynamic type is represented by an
 413 unconfined aquifer monitoring well, numbered 230204210070, located in the western low plain;
 414 (c) The second annual dynamic type is represented by an unconfined aquifer monitoring well,
 415 numbered 220182210411, located in the Lasong Block between rivers; (d) The third annual
 416 dynamic type is represented by an unconfined aquifer monitoring well, numbered
 417 220802210145, located in the western piedmont sloping plain.

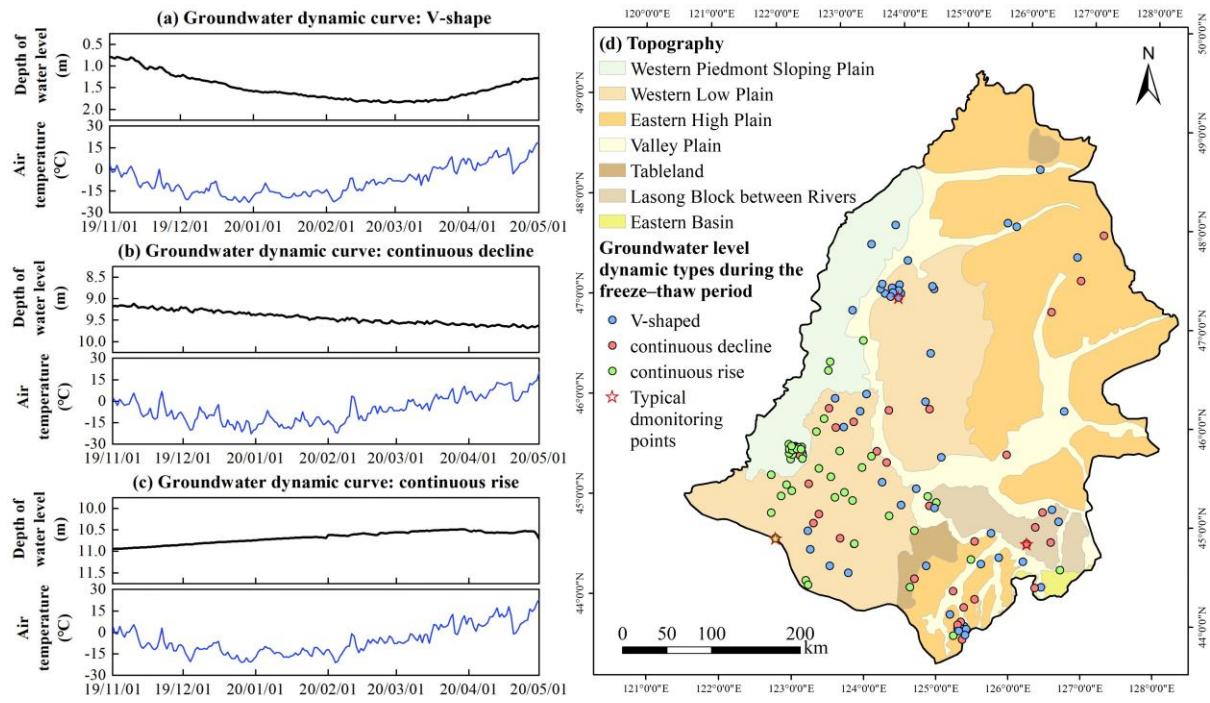
418 **3.2.2. Freeze–Thaw Period Dynamics Variations and Spatial Distribution**

419 Freeze–thaw processes increase the frequency of interactions between soil water and
 420 groundwater (Daniel and Staricka, 2000; Lyu et al., 2022; Miao et al., 2017). As a typical

421 seasonally frozen soil region, the Songnen Plain, China, exhibits three main forms of the
422 dynamic curves of the groundwater level during the freeze–thaw period: “decline during
423 freezing, rise during thawing,” “continuous decline,” and “continuous rise” (Fig. 6). The
424 monitoring points of the different dynamic types during the freeze–thaw period accounted for
425 38.4% (V-shaped), 23.2% (continuous decline type) and 38.4% (continuous rise type),
426 respectively.

427 At monitoring points with a “V-shaped” groundwater level dynamic curve, characterized
428 by “decline during freezing, rise during thawing” (Fig. 6a), the groundwater level fluctuated
429 by approximately 0.2–0.9 m during the freeze–thaw period. The time when the groundwater
430 level reached its maximum depth roughly coincided with the time when the soil reached its
431 maximum frozen thickness. These monitoring wells are primarily distributed in areas with a
432 shallow groundwater level in the northern part of the western low plain and the valley plain,
433 with a few located in the southern part of the western low plain. At the beginning of the freezing
434 period, groundwater level depths at these wells were typically within 5 m (Fig. 6d).

435 For the continuous decline and continuous rise types, the dynamic curves of the
436 groundwater level during the freeze–thaw period exhibited either a “continuous decline” or
437 “continuous rise” (Fig. 6b and c), with the rate of change remaining consistent throughout both
438 the freezing and thawing periods. Monitoring points with the continuous decline in the
439 groundwater level were mainly distributed in areas, such as the eastern high plain and the
440 Lasong Block between rivers, where the groundwater level depth ranged from 4.52 to 11.51 m
441 at the start of the freezing period (Fig. 6d). In contrast, monitoring wells with a continuous rise
442 in the groundwater level during the freeze–thaw period were mainly found in agricultural
443 irrigation areas such as the southern part of the western low plain and the western piedmont
444 sloping plain, where the groundwater level depth at the beginning of the freezing period ranged
445 from 4.71 to 19.91 m (Fig. 6d).

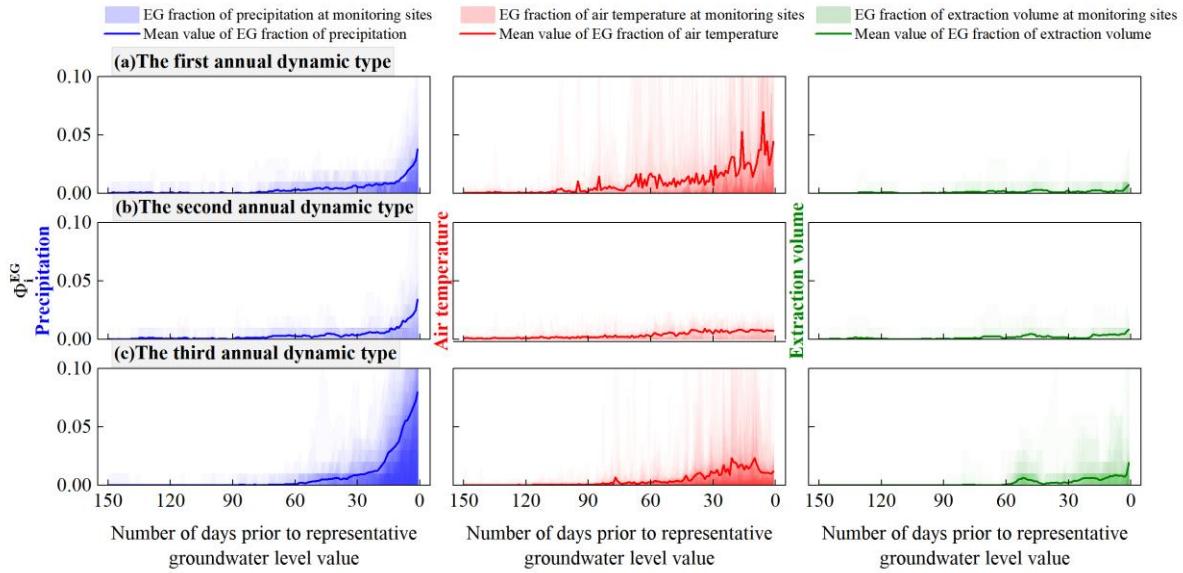


446

447 **Fig. 6.** (a–c) Dynamic curves of different groundwater types during the freeze–thaw period and
 448 corresponding changes in air temperature; (d) Spatial distribution of different groundwater
 449 level dynamic types during the freeze–thaw period in the Songnen Plain, China. The dynamic
 450 curves of the groundwater level exhibiting patterns of (a) V-shaped, (b) continuous decline, and
 451 (c) continuous rise correspond to the unconfined aquifer monitoring wells numbered
 452 230204210070, 220182210411, and 220802210145, respectively.

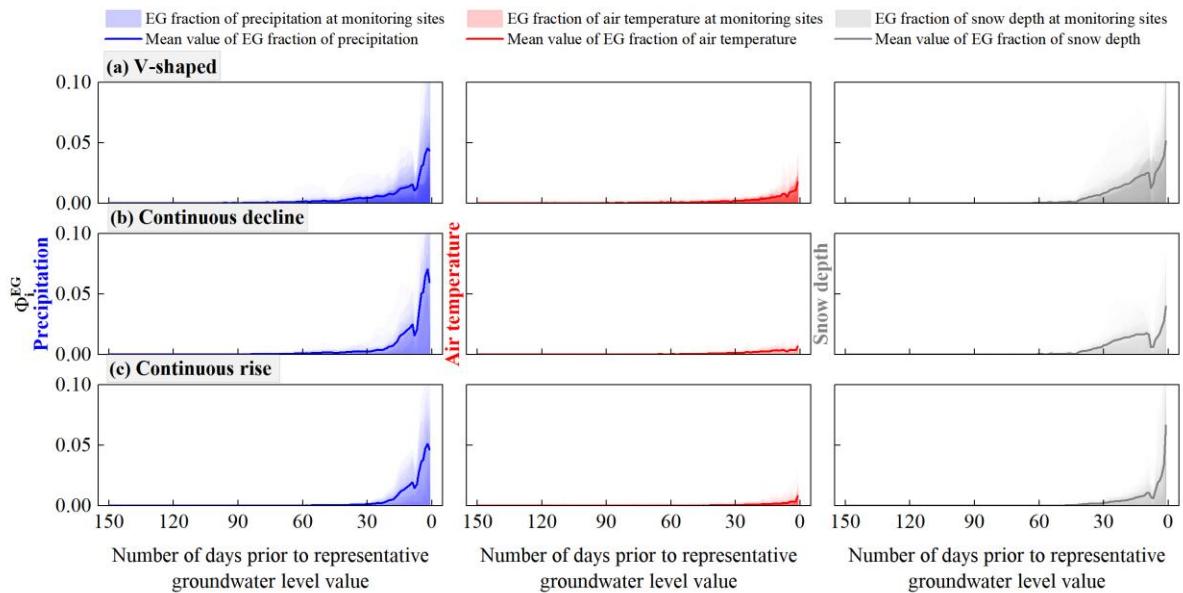
453 **3.3. Main Controlling Factors and Identification of Causes for Various Groundwater Level
 454 Dynamic Types**

455 After the application of the EG method to the trained models for the 138 groundwater
 456 level simulations, the EG scores (ϕ_i^{EG}) were obtained for precipitation, air temperature,
 457 extraction volume, and snow depth within 150 days prior to the representative groundwater
 458 level values for each annual and freeze–thaw period groundwater level dynamic type (Figs. 7
 459 and 8).



460

461 **Fig. 7.** EG scores (ϕ_i^{EG}) of the precipitation, air temperature, and extraction volume for
 462 different annual groundwater level dynamic types in the study area at different time steps.



463

464 **Fig. 8.** EG scores (ϕ_i^{EG}) of the precipitation, air temperature, and snow depth for different
 465 groundwater level dynamic types during the freeze–thaw period in the study area at different
 466 time steps.

467 **3.3.1. Annual Dynamics: Influencing Factors and Dynamics Mechanisms**

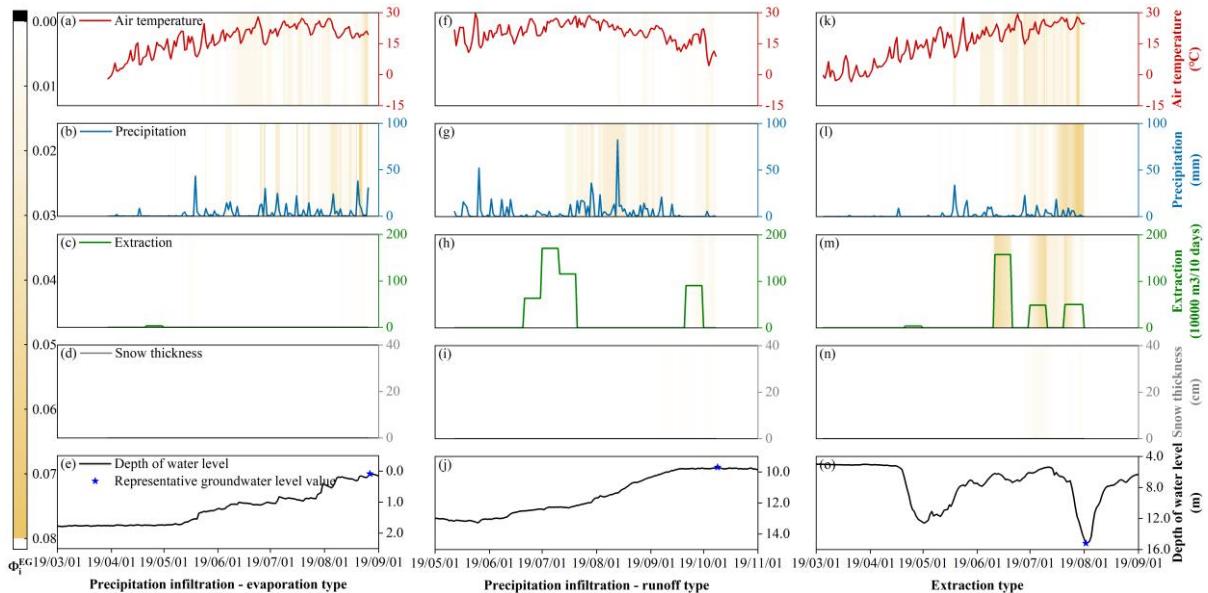
468 Within 90 days before the representative groundwater level values, the average EG scores
 469 for the precipitation and air temperature in the first annual dynamic type ranged from 0 to 0.04

470 and from 0 to 0.07, respectively, while the average EG score for the extraction volume did not
471 exceed 0.01 (Fig. 7a). This indicates that the groundwater level depth in this dynamic type was
472 significantly influenced by precipitation and air temperature, while the effect of extraction was
473 negligible. Thus, the changes in the groundwater level depth may be related to the precipitation
474 infiltration–evaporation process. When a pronounced precipitation peak occurred (Fig. 9b), the
475 EG score increased significantly (exceeding 0.15), corresponding to a rise in groundwater level
476 (Fig. 9e), indicating that precipitation infiltration made a substantial contribution to the
477 groundwater level increase. Within the 90 days when precipitation influenced the
478 representative groundwater level value, a total precipitation of 408.09 mm led to an overall rise
479 in the groundwater level by 1.12 m (Fig. 9b and e). During periods without precipitation, the
480 air temperature continued to rise (Fig. 9a), reflecting higher soil evaporation. At this time, the
481 EG score for the air temperature was also relatively high (ranging from 0.10 to 0.20), and the
482 groundwater level showed a slight decline (Fig. 9e). This suggests that evaporation was the
483 primary discharge mechanism for groundwater in this dynamic type. Therefore, based on the
484 groundwater recharge and discharge mechanisms, the first annual groundwater dynamic type
485 is summarized as the precipitation infiltration–evaporation type.

486 In contrast, in the second annual dynamic type, only the precipitation had a significant
487 impact on the groundwater level depth within 90 days before the representative groundwater
488 level value (with the EG scores ranging from 0 to 0.03), while the average EG scores for the
489 air temperature and extraction volume remained between 0 and 0.01 (Fig. 7b). Precipitation
490 almost consistently recharged the groundwater during the 90 days before the representative
491 groundwater level values (with an average EG score of approximately 0.012), causing a gradual
492 rise in the groundwater level (Fig. 9j). However, the rate of groundwater rise was relatively
493 slow, with an average value of approximately 0.02 m/d. The air temperature fluctuated
494 significantly over the 90-day period (Fig. 9f), ranging from 4.41 to 28.57 °C, but had no

495 significant impact on the groundwater level (Fig. 9j). The EG score during periods of high
496 temperatures was also below 0.01, indicating that evaporation had little effect on the
497 groundwater level. There was some groundwater extraction in local areas around July and
498 October (Fig. 9h); however, it had a minimal impact on the groundwater level, with the EG
499 scores remaining below 0.01. The relatively deep groundwater level (nearly 13 m) suggests
500 that this groundwater type was primarily discharged through runoff. Therefore, the second
501 annual groundwater dynamic type was classified as the precipitation infiltration–runoff type.

502 In the third annual dynamic type, the precipitation, air temperature, and extraction volume
503 had a significant impact on groundwater level within a shorter period before the representative
504 groundwater level values (within 60 days), with the average EG scores in the ranges of 0–0.08,
505 0–0.02, and 0–0.02, respectively (Fig. 7c). This dynamic type is mainly distributed in
506 agricultural irrigation areas, such as the southern part of the western low plain and the western
507 piedmont sloping plain (Fig. 5a). The main crops in these areas are rice, soybeans, and corn
508 (You et al., 2021), and their water demand is concentrated in the summer, particularly between
509 June and August (Xing et al., 2022). During this period, the air temperature shows a fluctuating
510 uptrend (Fig. 9k), with the EG scores reaching a maximum of 0.02, indicating that high
511 temperatures increase soil evaporation and crop transpiration. This leads to a higher water
512 demand from the crops; however, the low rainfall was insufficient to meet this demand during
513 these periods (Fig. 9l, with a daily maximum precipitation of only 33.80 mm), necessitating
514 additional groundwater extraction for irrigation to maintain crop growth (Fig. 9m). As a result,
515 the EG score for the extraction volume reached approximately 0.20 during this period, and
516 groundwater level decreased accordingly (Fig. 9o). This dynamic type indicates that
517 groundwater recharge comes from precipitation infiltration, and groundwater extraction is the
518 main discharge mechanism. Thus, the third annual groundwater dynamic type was classified
519 as the extraction type.



520

521 **Fig. 9.** Observed values and EG scores (ϕ_i^{EG}) of the precipitation, air temperature, extraction
 522 volume, and snow depth within 150 days before the representative groundwater level values
 523 for various annual groundwater level dynamic types, as well as the corresponding annual
 524 groundwater level depth dynamic curves. The precipitation infiltration–evaporation type,
 525 precipitation infiltration–runoff type, and extraction type are represented by monitoring wells
 526 230204210072, 220183210399, and 220821210024, with representative groundwater level
 527 values corresponding to August 27, 2019, October 9, 2019, and August 2, 2019, respectively.

528 **3.3.2. Freeze–Thaw Dynamics: Influencing Factors and Dynamics Mechanisms**

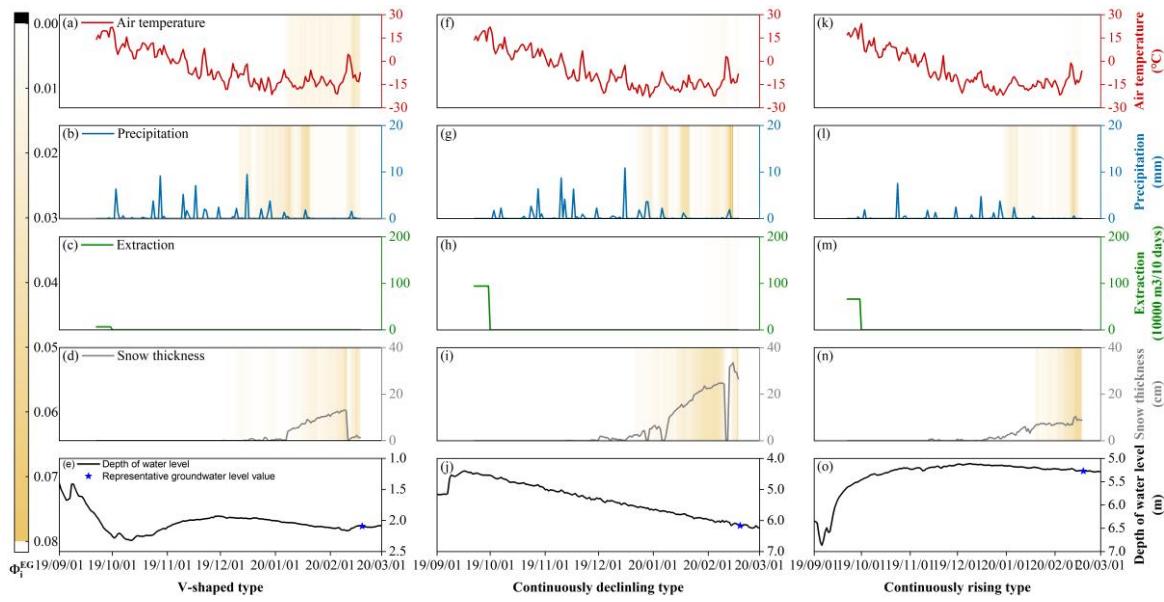
529 A further analysis focused on the groundwater dynamic types during the freeze–thaw
 530 period. In the V-shaped dynamic type, the average EG scores for precipitation and snow depth
 531 within 60 days before the representative groundwater level values ranged from 0 to 0.05, while
 532 the average EG score for the air temperature within 30 days before the representative
 533 groundwater level values ranged from 0 to 0.02 (Fig. 8a). This suggests that the air temperature,
 534 precipitation, and snow depth had a combined effect on the groundwater level depth of the V-
 535 shaped dynamic type during the freeze–thaw period. Within 30 days before the representative
 536 groundwater level values, the air temperature ranged from -21.10°C to 4.40°C , with the
 537 overall temperature being below 0°C (Fig. 10b). As the air and soil temperatures dropped

538 below 0 °C, the effective soil porosity decreased significantly due to water freezing, and the
539 low-temperature suction related to the soil water potential between ice and water in the frozen
540 soil increased gradually (Lyu et al., 2022). Under the combined effect of the capillary force and
541 low-temperature suction, groundwater migrated upward continuously, thereby increasing the
542 groundwater level depth (Fig. 10e). During this period, the snow depth increased with the
543 decrease in temperature, reaching a maximum value of 13.22 cm on February 9, 2020 (Fig.
544 10d). The maximum EG score for the snow depth reached 0.03, indicating that snow had an
545 impact on the groundwater level depth during the freeze–thaw period. When the air temperature
546 exceeded 0 °C, the snow thawed rapidly (Fig. 10d), and the snow and frozen soil thaw water
547 infiltrated to recharge the groundwater, causing the groundwater level to rise for the first time
548 (Fig. 10e).

549 For the continuously declining and continuously rising dynamic types, only precipitation
550 and snow depth affected the groundwater level depth during the freeze–thaw period. In the
551 continuously declining groundwater dynamic type, the precipitation and snow depth influenced
552 the groundwater level depth over a longer period before the representative groundwater level
553 values (within 60 days), with the average EG scores below 0.07 and 0.04, respectively (Fig.
554 8b). In the continuously rising groundwater dynamic type, the average EG scores for the
555 precipitation and snow depth within 30 days before the representative groundwater level values
556 ranged from 0 to 0.05 and from 0 to 0.07, respectively, indicating that precipitation and snow
557 depth affected the groundwater level depth in this dynamic type during the freeze–thaw period
558 (Fig. 8c). Compared with precipitation and snow depth, the impact of the air temperature on
559 the groundwater level in both dynamic types was negligible (Fig. 8b and c), with the average
560 EG scores ranging from 0 to 0.01.

561 In both the freeze–thaw dynamic types, the air temperature fluctuated significantly over
562 the past 150 days (Fig. 10f and k), whereas the EG scores remained below 0.01, indicating that

563 the freeze–thaw effects had no significant impact on groundwater levels. Snow depth continued
 564 to increase during the winter when the air temperature was below 0 °C (Fig. 10i and n). When
 565 the air temperature rose above 0 °C, the snow gradually thawed, and the meltwater had some
 566 recharging effect on groundwater levels (with maximum EG scores reaching 0.04). However,
 567 due to the limited amount of snow and the high groundwater levels, the impact of snowmelt on
 568 the groundwater level was gradual and limited, failing to significantly alter the original trends
 569 in the continuously declining or continuously rising groundwater levels (Fig. 10j and o).
 570 Therefore, the causes of the continuously declining and continuously rising groundwater level
 571 dynamic types were related to the recovery process of the annual groundwater levels.



572 **Fig. 10.** Observed values and EG scores (ϕ_i^{EG}) of the precipitation, air temperature, extraction
 573 volume, and snow depth within 150 days before the representative groundwater level values
 574 for various groundwater level dynamic types during the freeze–thaw period, as well as the
 575 corresponding annual groundwater level depth dynamic curves. The V-shaped, continuous
 576 decline, and continuous rise types are represented by monitoring wells 220106210371,
 577 220182210410, and 220821210024, respectively. The representative groundwater level
 578 corresponds to February 19, 2020.

580 **3.4. Regional Distribution Characteristics of the Dynamic Causes of Groundwater Level in**

581 *the Songnen Plain, China*

582 Based on the dynamic variations and spatial distribution characteristics of the groundwater
583 levels in the study area, groundwater monitoring points where the groundwater levels dropped
584 in the freezing period and rose in the thawing period, driven by soil freeze–thaw processes,
585 typically showed a precipitation infiltration–evaporation dynamic in terms of the groundwater
586 level dynamics during the year (Figs. 5b and 6a). These points were mainly distributed in areas
587 with shallow groundwater level depths, such as the northern part of the western low plain and
588 valley plain (Figs. 11a and 12a). Groundwater level dynamics unaffected by soil freeze–thaw
589 processes generally showed two trends: continuous decline or continuous rise (Fig. 6b and c).
590 Monitoring points with a continuous decline trend were mainly located in areas with a
591 significant groundwater level depth, such as the eastern high plain and the Lasong Block
592 between the rivers, where the annual groundwater level dynamics showed typical dynamic
593 characteristics of precipitation infiltration–runoff type (Fig. 5c). The monitoring points in
594 agricultural irrigation areas in the southern part of the western low plain and the western
595 piedmont sloping plain showed a continuous rise in the groundwater level during the freeze–
596 thaw period (Fig. 12a), and the dynamic type of the groundwater level in the year was mainly
597 the extraction type (Fig. 5d). Therefore, the “continuous decline” groundwater dynamic during
598 the freeze–thaw period was the recession phase of the groundwater level after the flood season
599 peak in the precipitation infiltration–runoff-type groundwater, while the “continuous rise”
600 groundwater dynamic was the recovery phase of the groundwater level after the extraction in
601 the extraction-type groundwater.

602 However, under the classification based on the freeze–thaw period, the proportions of the
603 V-shaped, continuous decline, and continuous rise types accounted for 38.4%, 23.2%, and 38.4%
604 of all monitoring points, respectively. These proportions did not completely align with the
605 annual classification of the precipitation infiltration–evaporation (29.0%), precipitation

606 infiltration–runoff (18.1%), and extraction (52.9%) types. This discrepancy can be partly
607 attributed to differences in the groundwater level depth. In some extraction monitoring points,
608 although the annual groundwater level dynamics showed typical extraction characteristics,
609 because the groundwater level at these monitoring points was shallow, the soil freezing and
610 thawing processes still had a significant impact on it, resulting in a V-shape water level change
611 at these points during the freeze–thaw period. The presence of such monitoring points increased
612 the proportion of the V-shape type during the freeze–thaw period, while reducing the proportion
613 of the continuous-rise type. Thus, the proportions of the freeze–thaw and annual classifications
614 were not entirely consistent, particularly in areas with a shallow groundwater level depth,
615 where soil freezing and thawing caused groundwater levels at some points of the extraction
616 type to exhibit V-shaped variations during the freeze–thaw period.

617 In the northern part of the western low plain, where groundwater level was shallow (less
618 than 5 m), the predominant annual groundwater dynamic was the precipitation infiltration–
619 evaporation type (Fig. 11a). Due to the proximity of the groundwater level to the surface, the
620 groundwater levels in these areas are more sensitive to meteorological factors. The dynamic
621 curves of the groundwater level show a characteristic in that the high water level period
622 corresponds to the rainy season. Specifically, in the Songnen Plain, peak precipitation and
623 groundwater level in this dynamic type occur simultaneously, typically between July and
624 August (Fig. 11d and f). The annual variation in the groundwater level was small, generally
625 less than 4 m (Fig. 11c). During the freeze–thaw period, the groundwater level dynamics in this
626 type exhibited a V-shaped pattern, with the groundwater level declining during the freezing
627 period and rising during the thawing period, with a fluctuation range of 0.2–0.9 m. However,
628 this V-shaped variation in the groundwater level is not accidental. At monitoring points with V-
629 shaped dynamics, the initial groundwater level depth and soil freezing depth at the beginning
630 of the freezing period were in the ranges of 0–5 m (Fig. 12d) and 1.6–2.1 m (Fig. 12c),

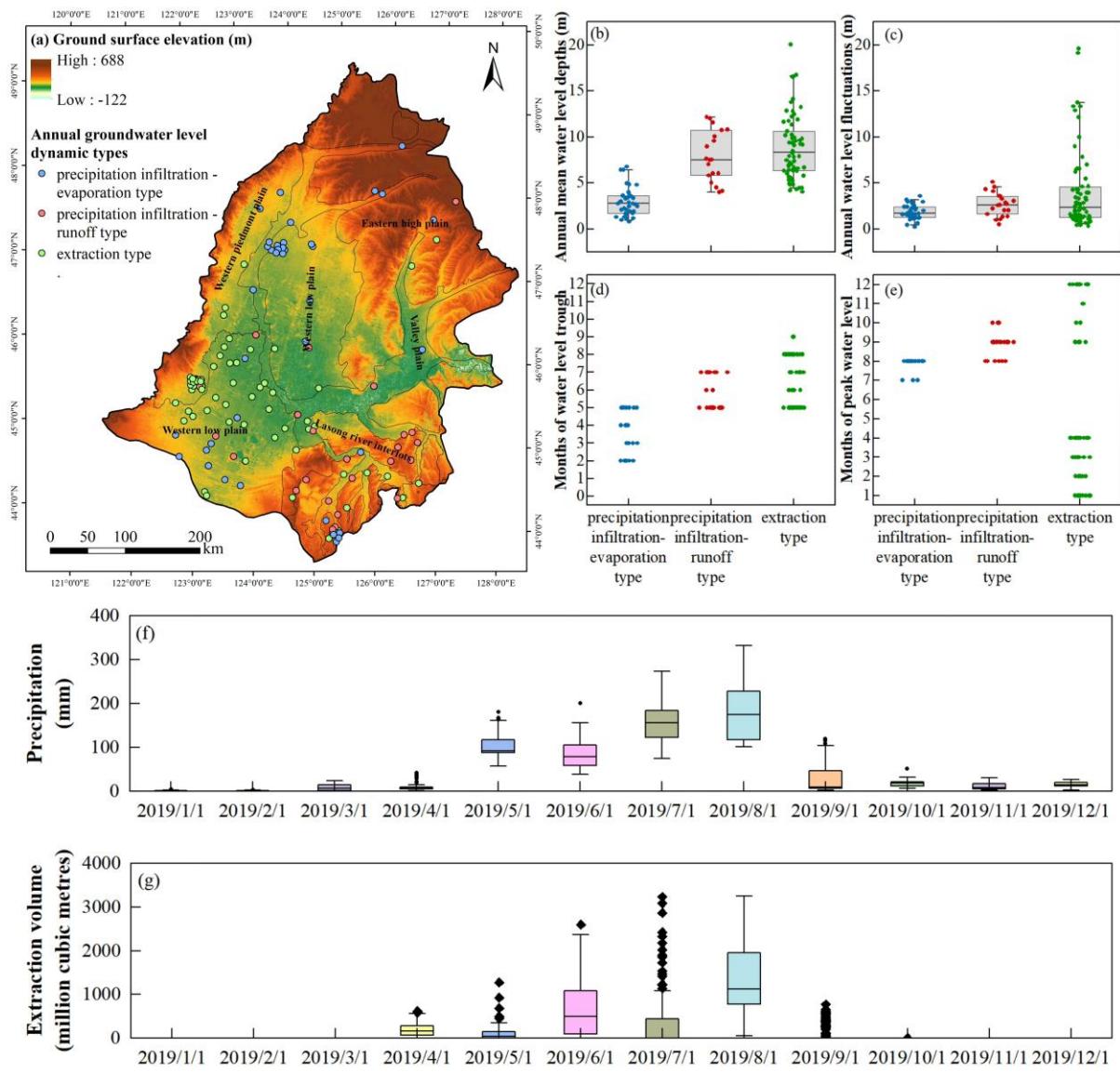
631 respectively. The soil was predominantly silty clay, with a maximum capillary rise height of up
632 to 5 m (Rui, 2004). Therefore, the initial groundwater level depth at these points was generally
633 less than the sum of the soil freezing depth and the maximum capillary rise height (Fig. 12a).
634 This means that during the freezing period, the low-temperature suction caused by soil freezing
635 and the pre-existing capillary forces in the soil form a complete hydraulic connection between
636 the frozen layer and the groundwater, causing the groundwater to continuously migrate toward
637 the freezing front during the freezing period.

638 Groundwater monitoring points exhibiting the precipitation infiltration-runoff type were
639 mainly distributed in the eastern high plain and the Lasong Block between rivers. In these areas,
640 the groundwater level is deeper, typically ranging from 5 to 12 m (Fig. 11b), and runoff is the
641 primary mode of groundwater discharge. The deeper groundwater level prolongs the infiltration
642 time of precipitation, resulting in a delayed response of the groundwater level dynamics to
643 precipitation recharge. Groundwater level peaks typically occur between August and October
644 (Fig. 11d), lagging behind the precipitation peak by approximately one month (Fig. 11f). Due
645 to the low recharge rate, groundwater level fluctuations are relatively moderate, with annual
646 variations generally within 4 m (Fig. 11c). During the freeze-thaw period, groundwater
647 monitoring points with continuously declining trends have greater initial groundwater level
648 depths, ranging from 4.52 to 11.51 m at the beginning of the freezing period (Fig. 12d). This
649 feature is primarily caused by the groundwater level rebound following the cessation of
650 extraction after the irrigation period. With the cessation of agricultural water withdrawal, the
651 depression cone formed by intensive extraction in the earlier stage begins to be replenished,
652 and the groundwater level subsequently rises slowly. Due to the previously high extraction
653 intensity and the relatively deep groundwater table, the recovery process does not occur
654 instantaneously; instead, it is jointly constrained by the delayed response of the groundwater
655 system and the regional recharge conditions. As a result, the groundwater level exhibits a steady

656 and sustained upward trend. In addition, the soil freezing depth in this dynamic type was
657 shallower (between 1.6 and 1.8 m), and the soil was still primarily silty clay (Fig. 12b and c).
658 The greater groundwater level depth and shallower soil freezing depth prevented a complete
659 hydraulic connection between the frozen soil and groundwater (Fig. 12a), resulting in the
660 groundwater level being unaffected by the soil freeze–thaw process. Therefore, under
661 conditions where no groundwater extraction occurs during the freeze–thaw period and the
662 groundwater level is not influenced by freeze–thaw processes, the groundwater system
663 continues the post-irrigation recovery process, presenting a “sustained rising” groundwater
664 level pattern.

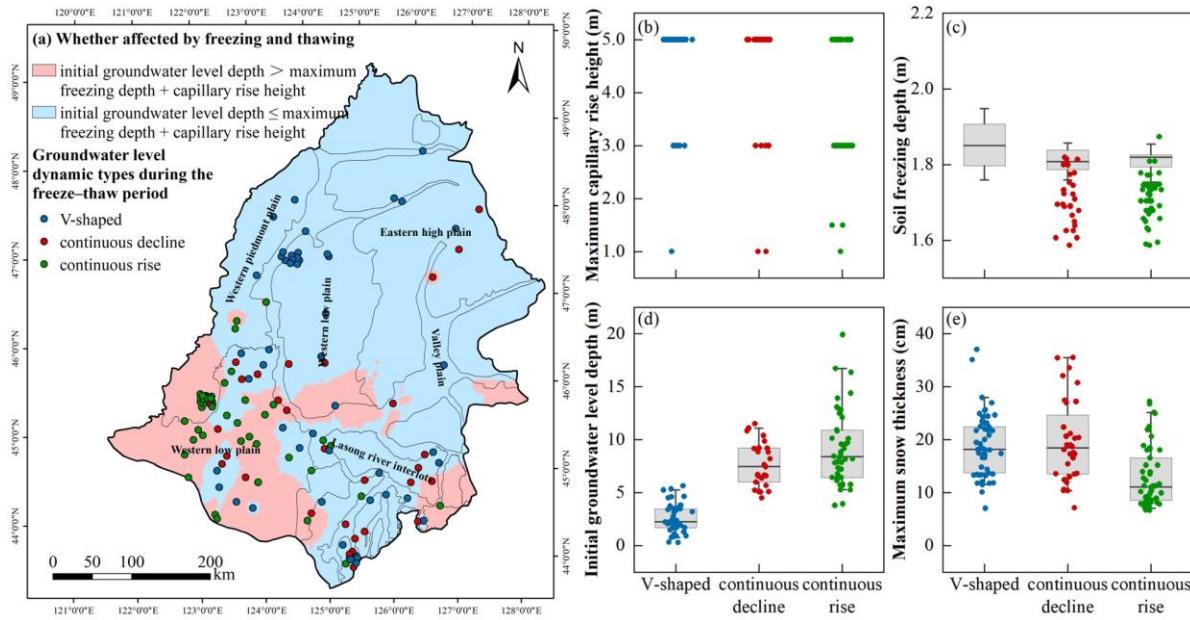
665 In the agricultural irrigation areas of the southern part of the western low plain and the
666 western piedmont sloping plain, the groundwater level depth corresponding to the extraction
667 types typically ranged from 5 to 20 m (Fig. 11b). During the agricultural irrigation period,
668 significant groundwater extraction led to a marked decline in the groundwater level (Fig. 11c).
669 The low groundwater level period coincided with the peak extraction period, typically between
670 June and August (Fig. 11e and g). In areas with substantial groundwater extraction, a
671 groundwater depression cone had already formed, with annual groundwater level fluctuations
672 reaching up to 15 m (Fig. 11c). During the freeze–thaw period, the groundwater level dynamics
673 exhibited a continuous rising trend. In the southern part of the western low plain and the
674 western piedmont sloping plain, the initial groundwater level depth at the beginning of the
675 freezing period and the soil freezing depth were in the ranges of 5–20 m (Fig. 12d) and 1.6–
676 1.8 m (Fig. 12c), respectively, with the soil primarily comprising silty clay and sandy clay loam
677 (with a maximum capillary rise height of 3 m) (Fig. 12b). In this region, the initial groundwater
678 level depth was generally greater than the sum of the soil freezing depth and the maximum
679 capillary rise height, causing the hydraulic connection between the vadose and saturated zones
680 to be severed (Fig. 12a), and the groundwater level was unaffected by the soil freeze–thaw

681 process.



682

683 **Fig. 11.** (a) Spatial distribution of the ground surface elevation and three dynamic types of
 684 annual groundwater level (precipitation infiltration-evaporation type, precipitation infiltration-
 685 runoff type, and extraction type) in Songnen Plain, China. The correlation between the three
 686 dynamic types of annual groundwater level and (b) annual mean groundwater level depths, (c)
 687 annual water level fluctuations, (d) months of peak water level and (e) months of water level
 688 trough. (f) and (g) Monthly distribution of the precipitation and extraction volume in Songnen
 689 Plain, China in 2019, respectively. Each point in (b)–(e) represents a groundwater level
 690 monitoring point.



691

692 **Fig. 12.** (a) Spatial distribution of whether the groundwater level is affected by the soil freeze–
693 thaw process and the three groundwater level dynamic types during the freeze–thaw period (V–
694 shaped, continuously declining, and continuously rising) in the Songnen Plain, China.
695 Correlations between the groundwater level dynamic types in the three freeze–thaw period and
696 (b) maximum capillary rise height of the soil, (c) the soil freezing depth, (d) the initial
697 groundwater level depth at the start of the freezing period, and (e) maximum snow thickness.
698 Each point in (b)–(e) represents a groundwater monitoring well.

699

4. Discussion

700

4.1. Implications of Groundwater Level Dynamics Classification for Water Resources

701

Management

702

This study identified three main types of annual groundwater level dynamics in the Songnen Plain: the precipitation infiltration–evaporation type (29.0%), the precipitation infiltration–runoff type (18.1%), and the extraction type (52.9%). This classification helps to reveal in greater depth the spatiotemporal distribution characteristics and response patterns of regional groundwater dynamics. Xu et al. (2024) demonstrated, based on random forest model analysis, that precipitation is the primary source of recharge for shallow groundwater in the

708 Songnen Plain. This finding is consistent with the identification of the precipitation infiltration–
709 type groundwater dynamics in this study, supporting the regulatory role of natural processes in
710 groundwater levels. Meanwhile, Wu et al. (2025) reported that the significant groundwater
711 decline in Jilin Province is mainly due to over-extraction for agricultural irrigation, particularly
712 the large water demand associated with extensive rice cultivation. This observation echoes the
713 finding that the extraction type accounts for the largest proportion of groundwater dynamics in
714 this study, highlighting the substantial impact of human pumping activities on groundwater
715 resources. On this basis, differentiated management strategies should be implemented for
716 different groundwater dynamics types: in areas dominated by natural processes, ecological
717 water requirements should be safeguarded and precipitation resources should be utilized
718 comprehensively; in areas with significant human extraction, pumping schemes should be
719 optimized to prevent ecological and social risks associated with excessive groundwater level
720 decline.

721 During the freezing–thawing period, groundwater level dynamics are mainly divided into
722 V-shaped type (38.4%), continuously declining type (23.2%), and continuously rising type
723 (38.4%), reflecting different response patterns of the groundwater system under the complex
724 hydrological processes in seasonally frozen soil areas. Previous studies have indicated that soil
725 freezing and thawing during the freezing–thawing period have significant impacts on
726 groundwater recharge and discharge processes (e.g., Wang et al., 2023; Xie et al., 2021). The
727 classification method adopted in this study, by identifying the overall dynamic characteristics
728 during the freezing–thawing period, provides a more comprehensive description of
729 groundwater response patterns. This classification not only facilitates accurate delineation of
730 potential recharge and deficit zones in spring but also provides a theoretical basis for
731 formulating differentiated water resources management strategies tailored to the freezing–
732 thawing cycle, thereby enhancing the capacity to regulate groundwater dynamics in seasonally

733 frozen soil areas.

734 **4.2 A New Perspective on Identifying Groundwater Level Dynamics Mechanisms**

735 Previous studies on the causes of groundwater level dynamics have generally relied on
736 two main approaches. The first involves statistical methods such as trend analysis, correlation
737 regression, or principal component analysis combined with the temporal variations of driving
738 factors like precipitation, temperature, and water usage to infer potential dominant controls
739 (Sarkhel et al., 2024). The second approach constructs numerical groundwater models or
740 hydrogeological process-based models that quantify the influence of different drivers through
741 parameter inversion, based on known aquifer structures, boundary conditions, and recharge-
742 discharge processes (Petio et al., 2024). However, these methods face significant limitations
743 when applied at the regional scale: statistical methods struggle to fully characterize complex
744 nonlinear responses with multiple time lags and scales, while process-based models depend
745 heavily on high-precision hydrogeological parameters that are often unavailable in most
746 regions, and their results are susceptible to biases introduced by prior assumptions.

747 Differing from previous groundwater level dynamics research, this study explores the
748 dominant factors and their mechanisms controlling various groundwater level changes in the
749 Songnen Plain from the perspective of extracting information embedded within the LSTM
750 model, thereby achieving a data-driven, bottom-up mechanism identification. This approach
751 relies solely on multi-source observational data (precipitation, temperature, snow thickness,
752 groundwater extraction, etc.) and can reveal the spatial (across monitoring wells) and temporal
753 (intra-annual and seasonally frozen soil periods) patterns of dominant factor effects without
754 requiring inaccessible hydrogeological data such as aquifer parameters and recharge-discharge
755 relationships. Compared to traditional process-based models, this method not only enhances
756 the feasibility and applicability of causative analysis but also reduces biases stemming from
757 prior assumptions, providing a more realistic reflection of the groundwater system's response

758 mechanisms (Jiang et al., 2022).

759 ***4.3. Limitations of existing models***

760 A deep learning model was successfully developed in this study to simulate the
761 groundwater level in the seasonally frozen ground regions of Northeast China, with 81.88% of
762 the monitoring wells in the study area achieving an $NSE > 0.7$ on the test set. A common issue
763 with deep learning models is that they are often considered black-box models, making it
764 difficult to interpret their internal decision-making processes, which limits their credibility and
765 interpretability in practical applications (Gunning et al., 2019). In groundwater level simulation
766 studies, this research is the first to apply the EG method to quantify the importance of input
767 factors in simulating groundwater level during non-freezing and freezing periods, revealing the
768 driving forces behind groundwater level dynamics in different seasons. The introduction of this
769 method offers a novel approach to understanding the groundwater level dynamics in seasonally
770 frozen regions.

771 We opted for a local modeling approach (i.e., training a separate model for each
772 groundwater monitoring well) rather than a regional approach (training a single model with
773 data from multiple monitoring wells). This decision was based on our goal to identify the
774 contribution patterns of the input factors (precipitation, air temperature, extraction volume, and
775 snow depth) to groundwater level at the regional scale, including the duration of their influence
776 and the significance of their impact. From a prediction standpoint, a regional model might be
777 more suitable for areas where data are scarce or incomplete (Frame et al., 2022; Nearing et al.,
778 2021), as it can learn more general relationships between input and output factors from
779 historical data (Kratzert et al., 2019). However, regional models are associated with the issue
780 of multicollinearity between static factors, and this issue must be addressed. Collinear input
781 factors may share a substantial amount of information, making it difficult for the model to
782 accurately distinguish the independent influence of each input factor on the output, leading to

783 challenges in interpreting the impact of inputs on the output. Therefore, using regional models
784 to explain the causes of groundwater level dynamics in seasonally frozen regions could be more
785 challenging than using local models. Nevertheless, we acknowledge the advantages of regional
786 models. Future research could further explore how to address the multicollinearity issues
787 associated with static factors in regional models. In conclusion, we successfully combined deep
788 learning models with the EG method to reveal the causes of groundwater level dynamics in
789 seasonally frozen regions.

790 **5. Conclusions**

791 Groundwater dynamics in seasonally frozen regions are complex, influenced by both
792 climate variability and human activities. Deep learning models require more sophisticated
793 architectures and broader input variables to improve simulation accuracy, but this increases the
794 difficulty of interpreting their internal mechanisms. Therefore, this study applies an
795 interpretable deep learning approach to reveal the driving mechanisms behind groundwater
796 level dynamics in seasonally frozen soil regions. High-precision simulations of groundwater
797 levels at 138 monitoring points were conducted using an LSTM model, and combined with the
798 EG method, the main controlling factors and underlying mechanisms of different types of water
799 level changes were identified. The main findings are as follows:

800 First, the LSTM model demonstrated high accuracy in simulating groundwater level
801 variations in seasonally frozen areas, with NSE values on the test set ranging from 0.53 to 0.96,
802 indicating its effectiveness in capturing complex groundwater dynamics.

803 Second, by applying the EG method, three dominant intra-annual groundwater dynamic
804 types in the Songnen Plain of China were identified: precipitation infiltration–evaporation type
805 (29.0%), precipitation infiltration–runoff type (18.1%), and extraction type (52.9%).
806 Correspondingly, during the freeze–thaw period, these types are reflected as V-shaped,
807 continuously declining, and continuously rising patterns, accounting for 38.4%, 23.2%, and

808 38.4% of the monitoring wells, respectively.

809 Third, while all three intra-annual types are primarily recharged by precipitation
810 infiltration, their discharge pathways differ: evaporation, runoff, and groundwater extraction,
811 respectively. During the freeze–thaw period, changes in the soil water potential gradient due to
812 freezing and thawing lead to interactions between soil water and groundwater, resulting in the
813 V-shaped variation. In contrast, the continuously rising and types declining reflect gradual
814 water level changes primarily driven by groundwater extraction and precipitation recharge,
815 without strong influence from freeze–thaw processes. These dynamic types represent
816 groundwater fluctuations jointly driven by multiple factors across different temporal scales.

817 The results demonstrate the great potential of the EG method to bridge model accuracy
818 and interpretability, offering a new perspective for analyzing complex hydrological processes.
819 Future research may incorporate more advanced interpretability techniques to further enhance
820 understanding of deep learning models. The significance of deep learning lies not only in high-
821 accuracy simulations, but also in advancing the discovery of hydrological mechanisms. This
822 study provides new methodological support and theoretical insights for groundwater resource
823 management in seasonally frozen soil regions.

824 Credit authorship contribution statement

825 Han Li: Conceptualization, Investigation, Formal analysis, Data curation, Visualization,
826 Writing–original draft. Hang Lyu: Conceptualization, Validation, Formal analysis, Resources,
827 Investigation, Data curation, Visualization, Supervision. Boyuan Pang: Investigation,
828 Visualization. Xiaosi Su: Investigation, Supervision. Weihong Dong: Resources, Data curation.
829 Yuyu Wan: Resources, Data curation. Tiejun Song: Data curation. Xiaofang Shen: Data
830 curation.

831 Declaration of interests

832 The authors declare that they have no known competing financial interests or personal

833 relationships that could have appeared to influence the work reported in this paper.

834 **Acknowledgments**

835 This research was supported by the Jilin Provincial Science and Technology Development
836 Plan Project (No.20230508036RC) and National Natural Science Foundation of China
837 (42172267, 42230204, U19A20107). Thanks to Groundwater Monitoring Project of China
838 Institute of Geo-Environment Monitoring for providing data support.

839 **References**

840 Ao, C., Zeng, W., Wu, L., Qian, L., Srivastava, A. K., and Gaiser, T.: Time-delayed machine
841 learning models for estimating groundwater depth in the Hetao Irrigation District, China,
842 *Agr. Water Manage.*, 255, 107032, <https://doi.org/10.1016/j.agwat.2021.107032>, 2021.

843 Daniel, J. A., and Staricka, J. A.: Frozen soil impact on ground water–surface water interaction,
844 *J. Am. Water Resour. Assoc.*, 36, 151–160, [https://doi.org/10.1111/j.1752-
845 1688.2000.tb04256.x](https://doi.org/10.1111/j.1752-1688.2000.tb04256.x), 2000.

846 Demissie, Y. K., Valocchi, A. J., Minsker, B. S., and Bailey, B. A.: Integrating a calibrated
847 groundwater flow model with error-correcting data-driven models to improve predictions,
848 *J. Hydrol.*, 364, 257–271, <https://doi.org/10.1016/j.jhydrol.2008.11.007>, 2009.

849 Ebrahimi, H., and Rajaee, T.: Simulation of groundwater level variations using wavelet
850 combined with neural network, linear regression and support vector machine, *Glob. Planet.
851 Change*, 148, 181–191, <https://doi.org/10.1016/j.gloplacha.2016.11.014>, 2017.

852 Erion, G., Janizek, J. D., Sturmfels, P., Lundberg, S. M., and Lee, S.-I.: Improving performance
853 of deep learning models with axiomatic attribution priors and expected gradients, *Nat.
854 Mach. Intell.*, 3, 620–631, <https://doi.org/10.1038/s42256-021-00343-w>, 2021.

855 Fienen, M. N., Nolan, B. T., and Feinstein, D. T.: Evaluating the sources of water to wells:
856 Three techniques for metamodeling of a groundwater flow model, *Environ. Model. Softw.*,
857 77, 95–107, <https://doi.org/10.1016/j.envsoft.2015.11.023>, 2016.

858 Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shelev, G., Gilon, O., Qualls, L. M., Gupta,
859 H. V., and Nearing, G. S.: Deep learning rainfall–runoff predictions of extreme events,
860 *Hydrol. Earth Syst. Sci.*, 26, 3377–3392, <https://doi.org/10.5194/hess-26-3377-2022>,
861 2022.

862 Graves, A., Jaitly, N., and Mohamed, A.R.: Hybrid speech recognition with deep bidirectional
863 LSTM, in: Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition
864 and Understanding (ASRU), IEEE Workshop on Automatic Speech Recognition and
865 Understanding, Olomouc, Czech Republic, 8–13 December 2013, pp. 273–278, 2013.

866 Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G.-Z.: XAI—Explainable
867 artificial intelligence, *Sci. Robot.*, 4, eaay7120,
868 <https://doi.org/10.1126/scirobotics.aay7120>, 2019.

869 Hao, Q., Shao, J., Cui, Y., and Xie, Z.: Applicability of artificial recharge of groundwater in the
870 Yongding River alluvial fan in Beijing through numerical simulation, *J. Earth Sci.*, 25,
871 575–586, <https://doi.org/10.1007/s12583-014-0442-6>, 2014.

872 Hochreiter, S., and Schmidhuber, J.: Long short-term memory, *Neural Comput.*, 9, 1735–1780,
873 <https://doi.org/10.1162/neco.1997.9.8.1735>, 1997.

874 Ireson, A. M., van der Kamp, G., Ferguson, G., Nachshon, U., and Wheater, H. S.:
875 Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps
876 and challenges, *Hydrogeol. J.*, 21, 53–66, <https://doi.org/10.1007/s10040-012-0916-5>,
877 2013.

878 Jiang, S., Zheng, Y., Wang, C., and Babovic, V.: Uncovering flooding mechanisms across the
879 contiguous United States through interpretive deep learning on representative catchments,
880 *Water Resour. Res.*, 58, e2021WR030185, <https://doi.org/10.1029/2021WR030185>, 2022.

881 Jing, H., He, X., Tian, Y., Lancia, M., Cao, G., Crivellari, A., Guo, Z., and Zheng, C.:
882 Comparison and interpretation of data-driven models for simulating site-specific human-

883 impacted groundwater dynamics in the North China Plain, *J. Hydrol.*, 616, 128751,
884 <https://doi.org/10.1016/j.jhydrol.2022.128751>, 2023.

885 Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, in: 3rd International
886 Conference on Learning Representations, 7–9 May 2015, San Diego,
887 <https://doi.org/10.48550/arXiv.1412.6980>, 2015.

888 Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards
889 learning universal, regional, and local hydrological behaviors via machine learning
890 applied to large-sample datasets, *Hydrol. Earth Syst. Sci.*, 23, 5089–5110,
891 <https://doi.org/10.5194/hess-23-5089-2019>, 2019.

892 Li, L., Li, X., Zheng, X., Li, X., Jiang, T., Ju, H., and Wan, X.: The effects of declining soil
893 moisture levels on suitable maize cultivation areas in Northeast China, *J. Hydrol.*, 608,
894 127636, <https://doi.org/10.1016/j.jhydrol.2022.127636>, 2022.

895 Liu, Q., Gui, D., Zhang, L., Niu, J., Dai, H., Wei, G., and Hu, B. X.: Simulation of regional
896 groundwater levels in arid regions using interpretable machine learning models, *Sci. Total
897 Environ.*, 831, 154902, <https://doi.org/10.1016/j.scitotenv.2022.154902>, 2022.

898 Lundberg, S.M., and Lee, S.-I.: A unified approach to interpreting model predictions, in:
899 Advances in Neural Information Processing Systems, Vol. 30, 31st Annual Conference on
900 Neural Information Processing Systems (NIPS), Long Beach, CA, 4–9 December 2017,
901 2017.

902 Lyu, H., Li, H., Zhang, P., Cheng, C., Zhang, H., Wu, S., Ma, Q., and Su, X.: Response
903 mechanism of groundwater dynamics to freeze–thaw process in seasonally frozen soil
904 areas: A comprehensive analysis from site to regional scale, *J. Hydrol.*, 625, 129861,
905 <https://doi.org/10.1016/j.jhydrol.2023.129861>, 2023.

906 Lyu, H., Wu, T., Su, X., Wang, Y., Wang, C., and Yuan, Z.: Factors controlling the rise and fall
907 of groundwater level during the freezing-thawing period in seasonal frozen regions, *J.*

908 Hydrol., 606, 127442, <https://doi.org/10.1016/j.jhydrol.2022.127442>, 2022.

909 Miao, C., Chen, J., Zheng, X., Zhang, Y., Xu, Y., and Du, Q.: Soil water and phreatic
910 evaporation in shallow groundwater during a freeze–thaw period, Water, 9, 396,
911 <https://doi.org/10.3390/w9060396>, 2017.

912 Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto,
913 C., and Gupta, H. V.: What role does hydrological science play in the age of machine
914 learning?, Water Resour. Res., 57, e2020WR028091,
915 <https://doi.org/10.1029/2020WR028091>, 2021.

916 Niu, X., Lu, C., Zhang, Y., Zhang, Y., Wu, C., Saidy, E., Liu, B., and Shu, L.: Hysteresis
917 response of groundwater depth on the influencing factors using an explainable learning
918 model framework with Shapley values, Sci. Total Environ., 904, 166662,
919 <https://doi.org/10.1016/j.scitotenv.2023.166662>, 2023.

920 Petio, P., Liso, I. S., Pastore, N., Pagliarulo, P., Refice, A., Parise, M., Mastronuzzi, G., Caldara,
921 M. A., and Capolongo, D.: Application of hydrological and hydrogeological models for
922 evaluating groundwater budget in a shallow aquifer in a semi-arid region under three
923 pumping rate scenarios (Tavoliere di Puglia, Italy), Water, 16, 3253,
924 <https://doi.org/10.3390/w16223253>, 2024.

925 Raghavendra, S. N. and Deka, P. C.: Support vector machine applications in the field of
926 hydrology: A review, Appl. Soft Comput., 19, 372–386,
927 <https://doi.org/10.1016/j.asoc.2014.02.002>, 2014.

928 Rahman, A. T. M. S., Hosono, T., Quilty, J. M., Das, J., and Basak, A.: Multiscale groundwater
929 level forecasting: Coupling new machine learning approaches with wavelet transforms,
930 Adv. Water Resour., 141, 103595, <https://doi.org/10.1016/j.advwatres.2020.103595>, 2020.

931 Rajaee, T., Ebrahimi, H., and Nourani, V.: A review of the artificial intelligence methods in
932 groundwater level modeling, Journal of Hydrology, 572, 336–351,

933 <https://doi.org/10.1016/j.jhydrol.2018.12.037>, 2019.

934 Rui, X.F.: Hydrologic principle, China Water & Power Press, Beijing, China, 386 pp., ISBN:
935 7-5084-2164-7, 2004.

936 Sarkhel, H. M., Flores, Y. G., Mohammed Al-Manmi, D. A., Mikita, V., and Szűcs, P.:
937 Assessment of groundwater level fluctuation using integrated trend analysis approaches
938 in the Kapran sub-basin, North East of Iraq, *Groundw. Sustain. Dev.*, 26, 101292,
939 <https://doi.org/10.1016/j.gsd.2024.101292>, 2024.

940 Singh, A., Nath Panda, S., Flugel, W.-A., and Krause, P.: Waterlogging and farmland
941 salinisation: causes and remedial measures in an irrigated semi-arid region of India, *Irrig.*
942 *Drain.*, 61, 357–365, <https://doi.org/10.1002/ird.651>, 2012.

943 Sturmfels, P., Lundberg, S., and Lee, S.-I.: Visualizing the impact of feature attribution
944 baselines, *Distill*, 5, e22, <https://doi.org/10.23915/distill.00022>, 2020.

945 Sundararajan, M., Taly, A., and Yan, Q.Q.: Axiomatic Attribution for Deep Networks, in:
946 Proceedings of Machine Learning Research, Vol. 70, 34th International Conference on
947 Machine Learning, Sydney, Australia, 6–11 August 2017, 2017.

948 Wang, J., Ouyang, W., Liu, X., and Wang, L.: Monitoring hydrological changes with satellite
949 data: Spring thaw's effect on soil moisture and groundwater in seasonal freezing-thawing
950 zones, *J. Hydrol.*, 626, Part B, 130365, <https://doi.org/10.1016/j.jhydrol.2023.130365>,
951 2023.

952 Wang, S., Peng, H., and Liang, S.: Prediction of estuarine water quality using interpretable
953 machine learning approach, *J. Hydrol.*, 605, 127320,
954 <https://doi.org/10.1016/j.jhydrol.2021.127320>, 2022.

955 Wang, T., Li, P., Li, Z. B., Hou, J. M., Xiao, L., Ren, Z. P., Xu, G. C., Yu, K. X., and Su, Y. Y.:
956 The effects of freeze–thaw process on soil water migration in dam and slope farmland on
957 the Loess Plateau, *China, Sci. Total Environ.*, 666, 721–730,

958 <https://doi.org/10.1016/j.scitotenv.2019.02.284>, 2019.

959 Wu, C., Zhang, X., Wang, W., Lu, C., Zhang, Y., Qin, W., Tick, G. R., Liu, B., and Shu, L.:
960 Groundwater level modeling framework by combining the wavelet transform with a long
961 short-term memory data-driven model, *Sci. Total Environ.*, 783, 146948,
962 <https://doi.org/10.1016/j.scitotenv.2021.146948>, 2021.

963 Wu, H., Ye, X., Du, X., Wang, W., Li, H., and Dong, W.: Assessing groundwater level
964 variability in response to climate change: A case study of large plain areas, *J. Hydrol. Reg.
965 Stud.*, 57, 102180, <https://doi.org/10.1016/j.ejrh.2025.102180>, 2025.

966 Wu, T., Li, H., and Lyu, H.: Effect of freeze–thaw process on heat transfer and water migration
967 between soil water and groundwater, *J. Hydrol.*, 617, Part B, 128987,
968 <https://doi.org/10.1016/j.jhydrol.2022.128987>, 2023.

969 Xie, H.Y., Jiang, X.W., Tan, S.C., Wan, L., Wang, X.S., Liang, S.H., and Zeng, Y.: Interaction
970 of soil water and groundwater during the freezing–thawing cycle: field observations and
971 numerical modeling, *Hydrol. Earth Syst. Sci.*, 25, 4243–4257,
972 <https://doi.org/10.5194/hess-25-4243-2021>, 2021.

973 Xing, Z., Yu, Y., Li, F., Wang, L., Fu, Q., and Wang, H.: Change trend and key influencing
974 factors identification of main crops water demand in Jiansanjiang, *Trans. Chin. Soc. Agric.
975 Mach.*, 53, 308–315, <https://doi.org/10.6041/j.issn.1000-1298.2022.07.033>, 2022.

976 Xu, L., Cui, X., Bian, J., Wang, Y., and Wu, J.: Dynamic change and driving response of shallow
977 groundwater level based on random forest in southwest Songnen Plain, *J. Hydrol. Reg.
978 Stud.*, 53, 101800, <https://doi.org/10.1016/j.ejrh.2024.101800>, 2024.

979 Yang, X.: Application of the conceptualization groundwater data model to study the Upper
980 Arkansas River corridor, Western Kansas, *J. Earth Sci.*, 23, 77–87,
981 <https://doi.org/10.1007/s12583-012-0234-9>, 2012.

982 Yi, C., Huang, R., Xu, J., Xing, J., and Yi, D.: Dynamic response characteristics of shallow

983 groundwater level to hydro-meteorological factors and well irrigation water withdrawals
984 under different conditions of groundwater buried depth, Water, 14, 3937,
985 <https://doi.org/10.3390/w14233937>, 2022.

986 You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-
987 m crop type maps in Northeast China during 2017–2019, Sci. Data, 8, 41,
988 <https://doi.org/10.1038/s41597-021-00827-9>, 2021.

989 Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J.: Developing a Long Short-Term Memory
990 (LSTM) based model for predicting water table depth in agricultural areas, J. Hydrol., 561,
991 918–929, <https://doi.org/10.1016/j.jhydrol.2018.04.065>, 2018.

992 Zhao, H.Q. et al.: Investigation and evaluation of groundwater resources and their
993 environmental problems in the Songnen Plain, Geological Publishing House, Beijing,
994 China, 270 pp., ISBN: 978-7-116-06095-1, 2009.

995 Zhou, R. and Zhang, Y.: Predicting and explaining karst spring dissolved oxygen using
996 interpretable deep learning approach, Hydrol. Process., 37, e14948,
997 <https://doi.org/10.1002/hyp.14948>, 2023.