
This manuscript applies a machine learning (ML) approach to predict

time-varying groundwater levels in seasonally freezing regions of China. The topic is

timely and of high importance for groundwater resource management and

environmental protection. However, the study overlooks several critical factors that

could significantly influence the results and interpretations. By incorporating

additional hydrogeological and environmental variables, the model's accuracy could

be greatly improved, leading to a more comprehensive understanding of groundwater

dynamics.

Response: Thank you for your valuable comments on our study. We have

carefully reviewed your suggestions and made corresponding revisions, and we hope

these modifications meet your expectations. We agree that key factors such as

hydrogeological conditions and environmental variables may significantly influence

the model outputs and their interpretation. However, the core focus of this study is on

building LSTM models for each monitoring site individually, aiming to simulate the

temporal variation of groundwater level at the point scale. Within this framework,

spatially fixed attributes such as aquifer properties and topography remain relatively

stable over the short term and are unlikely to exert dynamic influence on the time

series at a single site. Additionally, factors such as vertical leakage and surface water

interactions are difficult to quantify due to limited data availability. In future work, if

data conditions permit, we will consider incorporating these variables to enhance the

physical interpretability and predictive accuracy of the model.

Specific comments:

Line 25: Please define NSE upon first mention to ensure clarity for readers

unfamiliar with the metric.

Response: Thank you for pointing out this issue. We have added the full term

“Nash-Sutcliffe Efficiency” when “NSE” first appears in the abstract.

Line 39: Provide more detailed justification of why monitoring groundwater

levels is crucial, not only for managing water resources but also for protecting



ecological systems. Additionally, consider using the ML-predicted results to present a

case study with quantitative analysis to better illustrate the implications.

Response: Thank you for the valuable comments from the reviewer. Following

the suggestions, we have comprehensively revised the relevant parts of the manuscript

to further elaborate on the importance of groundwater level depth, especially

emphasizing its role in water resource management and ecosystem protection.

Additionally, we supplemented the citations with the study by Liu et al. (2022), which

used machine learning to predict groundwater level depth in the lower Tarim River,

providing a quantitative case validation of the practical significance of groundwater

level prediction. The revised content is as follows:

“Groundwater level is a crucial indicator reflecting the water balance status of

groundwater systems, and its dynamic changes reveal the evolving trends of regional

hydrological processes. In terms of water resource management, monitoring

groundwater level depth helps managers understand changes in groundwater storage,

optimize water extraction schemes, and prevent resource depletion caused by

overexploitation (Hao et al., 2014; Yang, 2012). Regarding ecosystem protection,

fluctuations in groundwater level depth directly affect regional ecological patterns.

Excessively low water levels may lead to wetland desiccation and biodiversity loss,

while rapid rises can cause soil salinization and vegetation degradation (Singh et al.,

2012). Relevant studies have also practically validated the significance of

groundwater level prediction. For example, Liu et al. (2022) demonstrated in the

lower Tarim River that machine learning–based groundwater level prediction models

can quantitatively reveal current and future groundwater changes, clarifying the

critical role of ‘ecological water conveyance’ in regional ecological restoration.

Therefore, in-depth identification of the controlling mechanisms behind groundwater

level depth variations and achieving high-precision spatiotemporal simulation are of

great significance for promoting sustainable groundwater resource utilization and

ecological environment protection.”



Lines 62–67: The key disadvantage of physical models, compared to ML models,

lies in their time-consuming setup, calibration, and validation processes. However,

physical models have the advantage of offering more mechanistic insight into

underlying hydrological processes, which MLmodels often lack.

Response: We thank the reviewer for highlighting the insufficient discussion on

the comparison between physical models and machine learning models in the current

manuscript. In response to your suggestion, we have revised and supplemented the

relevant content accordingly. In the updated version, we have clearly stated the

advantages of physical models in revealing the physical mechanisms of hydrological

processes, while also acknowledging their limitations in regions with complex

geological conditions due to high modeling complexity and substantial data

requirements. The revised content is as follows:

“Current models used for simulating groundwater level dynamics can generally

be categorized into two groups: physical models and machine learning models (Ao et

al., 2021). Most physical models are based on hydrodynamic processes and water

balance principles, and are capable of accurately representing the physical

mechanisms of groundwater systems. Therefore, they possess irreplaceable

advantages in characterizing groundwater flow and uncovering hydrological processes

such as recharge, runoff, and discharge. However, in areas with complex geological

structures or highly heterogeneous aquifer systems, the construction, parameter

calibration, and validation of physical models typically require large amounts of

high-resolution geological, hydrological, and hydraulic data. These requirements

make physical modeling challenging to implement and time-consuming (Raghavendra

N and Deka, 2014).”

Line 118: The model would benefit from incorporating a wider range of

influencing factors, such as aquifer properties, topography, hydraulic conditions (e.g.,

lateral flow, vertical leakage, groundwater storage, surface water interactions), and

anthropogenic variables like population density. Spatial heterogeneity in



evapotranspiration and precipitation should also be considered to improve model

realism.

Response: We sincerely thank the reviewer for the professional and insightful

comments. We fully agree that a variety of natural and anthropogenic factors—such as

aquifer properties, topography, groundwater dynamics, population density, and

evapotranspiration—can exert significant influence on regional groundwater level

changes.

However, considering the design rationale and actual data availability in this

study, we have carefully reflected on and responded to this point from the following

two perspectives:

First, the core framework of our study is to independently construct an LSTM

model for each monitoring well to simulate the temporal variation of groundwater

level at that specific location. The model uses historical meteorological variables and

anthropogenic dynamic factors (including air temperature, precipitation, snow depth,

and groundwater extraction) as inputs, aiming to capture the nonlinear response

relationship between these temporally dynamic factors and groundwater level changes.

Under this modeling strategy, spatially static attributes such as aquifer properties and

topography remain constant over short periods at a given site and thus cannot provide

dynamic explanatory power for the temporal evolution of groundwater levels at that

point. Additionally, the spatial heterogeneity of factors such as evapotranspiration and

precipitation primarily influences regional-scale patterns or spatial distributions. Since

our study focuses on site-specific time series modeling and identification of dominant

influencing factors, it is relatively less dependent on spatially heterogeneous variables.

We have clarified this limitation in Section 3.5 “Model Limitations” of the revised

manuscript.

Second, regarding the absence of variables related to groundwater dynamics (e.g.,

lateral flow, vertical leakage, and surface–groundwater interactions), we fully

acknowledge their critical roles in groundwater system evolution. Although in theory,



groundwater flow fields could be constructed through spatial interpolation of

observed water levels, in our study the groundwater level is the target output variable

of the model. Thus, prior to obtaining the model predictions, it cannot serve as an

input driver. Moreover, in practice, there is a lack of independent observational data

(such as hydraulic gradients or recharge–discharge rates) that directly reflect

groundwater dynamics, making it currently unfeasible to incorporate these factors into

the model. In future work, if data availability improves, we intend to include such

variables as key supplementary inputs to enhance the model’s physical

interpretability.

Figure 2: Consider including a geological map that shows the distribution of

geological formations or aquifer types. This would help contextualize the results

spatially.

Response: We thank the reviewer for the suggestion. In response, we have added

a new subfigure to Figure 2 showing the distribution of the aquifer system. The

revised figure is as follows:



Spatial distribution of the ground surface elevation (a), topography (b) and aquifer

system (c) in the Songnen Plain, China.

Figure 4: The observed and simulated groundwater levels do not align well; the

simulated series appears overly variable. Please explain the possible causes of this

discrepancy, such as overfitting, lack of key input variables, or limitations in the

model's temporal resolution.

Response: We thank the reviewer for the valuable comments. Although the

original manuscript included an explanation for the poor model performance at certain

monitoring wells, the reasoning lacked clarity and failed to accurately convey the

sources of model error. In response, we have revised and reorganized the relevant



paragraph to enhance its logical structure and coherence. The modified version is as

follows:

“Only 18.11% of the monitoring wells in the study area had a Nash-Sutcliffe

Efficiency (NSE) below 0.7 on the test dataset, and these wells were primarily located

in the southern part of the western low plain (Figure 3a). In this region, the average

absolute error between simulated and observed daily groundwater level depth ranged

from 0.04 to 2.93 meters, although the maximum error reached as high as 11.56

meters (Figure 3c), indicating that the model exhibited certain instability in localized

areas. Figure 4 compares the simulated and observed groundwater level depth series

at several poorly performing wells in this region. As shown in the figure, significant

discrepancies occurred during certain periods, and the fitting performance was

unsatisfactory. The primary reason for this discrepancy is the large annual fluctuation

in groundwater level depth at many wells in this region: 21.43% of the monitoring

wells had a fluctuation range exceeding 10 meters. These extreme fluctuations posed

challenges for the LSTM model’s simulation accuracy. In the training data used for

the LSTM model, samples with extreme values of groundwater level depth were

relatively scarce, while samples with moderate values were more abundant.

Consequently, the model tended to fit the data in the moderate range more accurately,

resulting in limited predictive ability for the extreme ends of the groundwater level

series. Despite the reduced accuracy at certain wells, the LSTM model is capable of

accurately capturing the variation trend of groundwater levels, and no significant lag

is observed between the simulated and observed values (Figure 4). The Pearson

correlation coefficients at the four representative monitoring wells shown in the figure

are 0.86, 0.81, 0.87, and 0.85, respectively. Moreover, the correlation coefficients

reach their maximum values without applying any time lag, indicating that the

simulated values can effectively and promptly reflect the actual variation trend of

groundwater levels.”

Lines 373–376 and 557–558: These sections are overly descriptive. Instead of



simply stating observations, clarify what the results reveal about the status or trends of

water resources. Quantitative insights or implications for water management should

be emphasized.

第 373–376行与第 557–558行：这两部分的描述偏于叙述性，应进一步挖掘

这些结果对水资源状况或趋势的揭示意义。建议突出定量分析的结论或对水资源

管理的启示。

Response: We sincerely thank the reviewer for the valuable comments. We have

carefully revised the relevant sections of the manuscript.The main adjustments are

summarized as follows:

1. Lines 373–376 (Analysis of frozen-thawed period dynamics):

While retaining the proportions and temporal characteristics of the three types of

groundwater level dynamics during the frozen-thawed period, we further elaborated

on the practical significance of their spatial differences for regional water resource

management. We highlighted the indicative role of each dynamic type in reflecting

groundwater recharge or depletion conditions and proposed a framework for

differentiated zoning and adaptive regulation strategies based on these types to

enhance the scientific basis and precision of groundwater management. The revised

paragraph is as follows:

“ Freeze-thaw processes intensify the transformation between soil water and

groundwater (Daniel and Staricka, 2000; Miao et al., 2017; Lyu et al., 2022). As a

typical seasonally frozen soil region, the Songnen Plain in China exhibits three main

types of groundwater level fluctuations during the frozen-thawed period: 'decline

during freezing and rise during thawing,' 'continuous decline,' and 'continuous rise'

(Figure 6). The proportions of monitoring wells corresponding to these three types are

38.4% (V-shaped), 23.2% (continuously declining), and 38.4% (continuously rising),

respectively. The distribution of these types reflects the diverse responses of regional

groundwater systems to seasonal freeze-thaw processes, providing a foundation for

refined water resource management. On one hand, this classification can help identify



potential recharge and depletion zones during spring, serving as a basis for

groundwater storage adjustment, agricultural irrigation, and water resource allocation.

On the other hand, it supports the development of dynamic management strategies

tailored to freeze-thaw processes, enhancing responsiveness to groundwater level

fluctuations in cold regions.”

2. Lines 557–558 (Analysis of annual-scale dynamics):

We briefly summarized the differences in the controlling mechanisms of the

three types of annual-scale groundwater dynamics. While precipitation is the

dominant recharge source across the study area, the discharge pathways differ

significantly. From the perspectives of both “naturally dominated” and “human

activity dominated” processes, we proposed localized management strategies—such

as enhancing ecological water use security and strengthening groundwater extraction

control—emphasizing the value of classification results in improving the adaptability

of groundwater resource regulation. The revised paragraph is as follows:

“The classification of annual-scale groundwater level dynamics identified three

types: precipitation infiltration–evaporation type(29.0%), precipitation

infiltration–runoff type(18.1%), and extraction type (52.9%). These results indicate

that the regional groundwater system is generally controlled by precipitation recharge;

however, the different types reflect distinct water level response mechanisms. The

evaporation and runoff types are dominated by natural processes and exhibit

groundwater fluctuations that are more sensitive to climatic conditions. In contrast,

the extraction-driven type is associated with intensive groundwater use and is more

responsive to changes in anthropogenic activities. These classification results provide

a basis for tailored management. In areas dominated by natural processes, efforts

should focus on securing ecological water demand and integrating rainwater resources

to maintain groundwater system stability. In regions where extraction dominates,

optimizing groundwater abstraction and improving water use structure are essential to

mitigating continuous water level decline and enhancing resource sustainability.”


