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Abstract. Artificial Neural Networks (ANNs) are valuable tools for predicting soil properties using large datasets. However, a

common challenge in soil sciences is the uneven distribution of soil samples, which often results from past sampling projects

that heavily sample certain areas while leaving similar yet geographically distant regions under-sampled. One potential solution

to this problem is to transfer an already trained model to other similar regions. Robust spatial uncertainty quantification is

crucial for this purpose, yet often overlooked in current research. We address this issue by using a Bayesian deep learning5

technique, Laplace Approximations, to quantify spatial uncertainty. This produces a probability measure encoding where the

model’s prediction is deemed reliable, and where a lack of data should lead to a high uncertainty. We train such an ANN on

a soil landscape dataset from a specific region in southern Germany and then transfer the trained model to another unseen

but to some extend similar region, without any further model training. The model effectively generalized alluvial patterns,

demonstrating its ability to recognize repetitive features of river systems. However, the model showed a tendency to favor10

overrepresented soil units, underscoring the importance of balancing training datasets to reduce overconfidence in dominant

classes. Quantifying uncertainty in this way allows stakeholders to better identify regions and settings in need of further data

collection, enhancing decision-making and prioritizing efforts in data collection. Our approach is computationally lightweight

and can be added post-hoc to existing deep learning solutions for soil prediction, thus offering a practical tool to improve soil

property predictions in under-sampled areas, as well as optimizing future sampling strategies, ensuring resources are allocated15

efficiently for maximum data coverage and accuracy.

1 Introduction

Machine learning (ML) has become an indispensable tool in scientific research, leading to significant advances in many fields,

including soil science (Zhang et al., 2022b). Since the early 2000s, ML methods have been steadily integrated into soil mapping
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(McBratney et al., 2003; Scull et al., 2003; Behrens et al., 2005). Over the past two decades, the use of ML in soil science has20

grown substantially, reflecting its increasing importance and effectiveness (Minasny and McBratney, 2016; Rentschler et al.,

2022; Zhang et al., 2022a; Kebonye et al., 2023; Taghizadeh-Mehrjardi et al., 2024). However, new research challenges have

emerged as ML methods become more widely used. One key challenge is improving model interpretability in order to promote

scientific knowledge (Padarian et al., 2020b). Chen et al. (2022) further added that future research should focus on making

the most of legacy datasets, using smarter sampling strategies, improving model accuracy and interpretability, and developing25

advanced mapping methods to create detailed and high-quality soil maps. In line with this, Bohn and Miller (2024) showed that

locally enhanced, bottom-up oriented DSM approach has been shown to deliver higher accuracy compared to both conventional

soil maps and global DSM products in many cases.

Using legacy datasets effectively means applying data from already sampled areas to predict conditions in similar but unsam-

pled regions. This extrapolation process has been discussed for many years. For example, Lagacherie et al. (1995) pointed out30

the need to develop self-learning systems that dynamically adapt predictions. Bui and Moran (2003) demonstrated that existing

soil maps can be combined with environmental and geological data to extend their usefulness beyond their original boundaries.

Additionally, Scull et al. (2005) showed with classification trees that this technique allows soil experts to focus field mapping

on unique areas and efficiently extrapolate soil-landscape relationships, making it a valuable tool for soil surveys. Extrapo-

lation approaches also address the challenges of traditional soil mapping, which relies on cartographers manually surveying35

landscapes, a process that is both costly and time-consuming. These methods offer a particularly cost-effective solution for

predicting soil classes in regions with limited data, helping to fill the gaps in soil maps and improving the efficiency of digital

soil mapping (DSM) (Taghizadeh-Mehrjardi et al., 2022). For example, decision trees demonstrated a 46.00% overall accuracy

for extrapolating soil subgroups using digital mapping methods, making them a cost-effective option for areas with limited data

or challenging sampling conditions (Neyestani et al., 2021). Similarly, multinomial logistic regression and classification trees40

have been used successfully to extrapolate soil classes (Abbaszadeh Afshar et al., 2018; Lemercier et al., 2012; Grinand et al.,

2008). To summarize, the increasing adoption of machine learning is driven not only by its relevance to soil science but also

by its ability to significantly reduce the effort required for mapping, especially in large or hard-to-access areas (Hewitt, 1993;

Grunwald et al., 2011; Stumpf et al., 2017).

More advanced methods, in particular Artificial Neural Networks (ANNs), have proven effective for extrapolation in soil45

mapping. For instance, the study by de Arruda et al. (2016) demonstrated the potential of ANNs to produce digital soil maps,

providing initial classifications for unexplored areas. Building on this, Coelho et al. (2021) introduced an innovative method-

ology that combined georeferenced soil profile point data and ANN models for extrapolation tasks. Responding to the growing

demand for high-resolution soil maps in, for instance, precision agriculture, environmental management, and land-use plan-

ning, ANNs are becoming more and more popular due to their ability to process large amounts of data and provide predictions50

comparably fast (Haykin, 1998; Schmidhuber, 2015; Silveira et al., 2013). Brungard et al. (2015) demonstrated the superior

accuracy of complex models containing neural networks in predicting soil taxonomy classes compared to simpler models.

Similarly, Zhu (2000) highlighted the capability of ANNs in generating high-resolution soil maps.
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Despite their advantages, one notable challenge is the lack of inherent interpretability (Heung et al., 2016). As “black box”

models, ANNs make predictions through complex internal processes that are difficult to understand and interpret. Recent stud-55

ies have addressed this limitation by introducing model-agnostic interpretation techniques and game theory-based Shapley

additive explanations (SHAP), which provide valuable insights into the relationships between environmental covariates and

model predictions (Padarian et al., 2020a; Wadoux and Molnar, 2022). In addition, ANNs typically lack built-in uncertainty

quantification, which complicates the evaluation of their predictive reliability and may lead to misinterpretations or suboptimal

decision-making (Guo et al., 2017). They often produce overly confident predictions, sometimes reaching 100.00% certainty,60

even when the input data is flawed or noisy (Breiman, 2001; Nguyen et al., 2015; Hein et al., 2019). In the context of DSM, this

issue is compounded by the broader challenge of quantifying spatial uncertainty in soil maps (Hengl et al., 2017; Wadoux et al.,

2020; Rau et al., 2024). Between 2017 and 2022, only 35.00% of studies that addressed significant DSM tasks incorporated un-

certainty in their analysis (Belkadi and Drias, 2023). Similarly, while DSM research is expanding in countries such as India and

Iran, the integration of uncertainty mapping remains limited. In India, only 34.00% of DSM studies include uncertainty maps,65

while in Iran, fewer than 20.00% address uncertainty (Zeraatpisheh et al., 2020; Dash et al., 2022). Typically, these maps then

present just an overall accuracy expressed as a single statistical measure, often derived through cross-validation techniques,

an iterative process that partitions the training data into multiple subsets to repeatedly train and validate the model to estimate

overall performance uncertainty (Wadoux et al., 2020). Although this approach offers some insight, it falls short, especially

for applications involving unbalanced datasets. This gap has led to calls for more detailed uncertainty analysis (Meyer and70

Pebesma, 2022), particularly for tasks involving extrapolation to new areas because of poor uncertainty performance in such

contexts (Grinand et al., 2008). Some recent studies have made strides in incorporating uncertainty quantification. For instance,

Carvalho Monteiro et al. (2023) and van der Westhuizen et al. (2023) have demonstrated progress in quantifying uncertainties

for Random Forests, while Saygın et al. (2023) have explored the use of ANNs. However, many of these methods rely on

variance estimates, which fail to adequately address critical issues such as model overconfidence. This problem has emerged75

in the study by Schmidinger and Heuvelink (2023) that ANNs produce overly optimistic probabilistic predictions, resulting in

low-reliability scores. Additionally, these approaches frequently neglect spatial uncertainty, an essential aspect of practical soil

mapping (Bao et al., 2024). The most commonly used methods for uncertainty quantification in DL algorithms, particularly

in ANNs, include Monte Carlo (MC) Dropout, ensemble methods, and full Bayesian approaches. These methods, while effec-

tive, often require significant computational resources and memory (Abdar et al., 2021). These techniques have begun to gain80

traction in soil science applications, particularly for estimating uncertainty in soil moisture retrieval or soil spectral models (Li

et al., 2023). For example, Padarian et al. (2022) and Huang et al. (2025) utilized these approaches to assess uncertainty in their

models, demonstrating their relevance and utility despite the computational demands. These findings underscore the urgent

need for methodological advancements that go beyond variance estimation to also tackle overconfidence together with spatial

uncertainty while remaining computationally efficient and easy to integrate into existing workflows. Such improvements are85

crucial to ensure that machine learning models for DSM provide both accurate and reliable predictions. Our previous work

Rau et al. (2024) introduced for DSM the Last-Layer Laplace Approximation (LLLA), a computationally efficient technique

that addresses these challenges. Building on this methodological foundation, the current study applies an ANN model to an
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extrapolation task, predicting soil units non-adjacent target area outside the training area. To identify and correct the overcon-

fidence of the ANN and perform a spatial analysis of the model’s predictions and associated uncertainties, we use the LLLA,90

providing corrected uncertainty estimates for every pixel in the target area. Through this, we assess the transferability of the

ANN by improving its interpretability and reliability for soil mapping tasks. Ultimately, our work aims to promote more robust,

accurate, and insightful applications of DSM.

2 Material and Methods

2.1 Study area95

This study investigates two regions in central Baden-Württemberg, Germany, near the city of Tübingen. The reference area is

located northwest of the city, and the target area lies to the southwest, as shown in Figure 1 (A). These regions were chosen

because they share similar geology, climate, and cultural development, making them suitable for comparative analysis. The

reference area, named after the Goldersbach stream, covers 8.86 km2 with an average elevation of 445.51m above sea level,

ranging from 325.31m to 552.48m. It represents the lower section of the upstream part of the Goldersbach River and its100

catchment. The main land use since the 19th century in this area is forestry and since 1972 it has been part of a nature park.

The target area, named after the Bühlertalbach stream, is larger, covering 18.5 km2 with an average elevation of 498.26m

above sea level, ranging from 388.86m to 583.04m. It includes the entire Bühlertalbach stream valley, from its upstream to

downstream sections. Similar to the reference area, forestry is the main land use, and this area is extensively used for forest-

related activities. Both areas have the same underlying geology, belonging to the Middle and Upper Keuper series, which105

consist of layers of sandstone, claystone, and marlstone, creating typical soil patterns of the Keuperbergland. The climate in

both regions is cool temperate moist, with an average annual temperature between 8.3 ◦C and 8.7 ◦C and annual precipitation

ranging from 740mm to 770mm. The target area was deliberately chosen to be larger, encompassing the entire catchment of

the Bühlertalbach River. This strategic decision allows for the investigation of how predictions and findings extend beyond the

upstream areas on which the reference area is based. By including the full catchment, this approach provides a broader and110

more comprehensive understanding of processes in similar but not equal landscapes.

2.2 Data

Figure 1 illustrates the distribution of soil units across the reference area (blue, subfigure (B)) and target area (red, subfig-

ure (C)), with each number corresponding to a specific soil unit and its associated characterization. The classification of the

soil types in these units follows the LGRB soil classification system, a local variant of the German soil classification KA5,115

which is structured around soil formation processes and properties (Ad Hoc-AG Boden, 2005). Within the reference area,

there are eight distinct soil units, alongside an urban zone represented as unit 0. In contrast, the target area exhibits greater

diversity, comprising 14 unique soil units. A comprehensive description of all these units is provided in Table 1, including their

correspondence with the World Reference Base (WRB) soil classification system (WRB, 2022).
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Figure 1. (A) Digital elevation model of the study area with the location of the study area in Germany, reference area in blue, target area

in red, (B) and (C) Soil unit maps over the reference and target areas, created by the State Authority for Geology, Mineral Resources and

Mining (LGRB) Baden-Württemberg.

For international understanding, we use the WRB classification system. The soil unit maps, initially sourced from the State120

Authority for Geology, Mineral Resources and Mining (LGRB), were provided in vector format. To facilitate our analysis, these

polygons were converted into raster files using a rasterization process based on digital elevation grids. The original map scale

of 1:50,000 was rasterized to produce a 10m× 10m resolution. It should be noted that this study is based entirely on pixel-

based soil unit prediction using these rasterized soil maps as training and validation labels rather than direct field observations.

To enhance the performance of the neural network and ensure detailed analysis, spatially dense covariate data were required125

for the entire region. For this purpose, digital elevation models (Figure 1 (A)) were used for both areas. These models offer

a 10m resolution and serve as the basis for calculating topographic indices, also at 10m resolution. The variable selection

was informed by local expert geographical knowledge, guided by commonly used proxies representing the SCORPAN model

introduced by McBratney et al. (2003), which draws upon Jenny (1941). In addition, we included spectral indices based on

satellite data from the Copernicus Sentinel-2 program. Since 2017, Sentinel-2 provides data in 13 spectral bands with a 5-day130

revisit time. For this study, we focused on the visible (R, G, B) and near-infrared bands, which have a 10m resolution. Using
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these bands, we calculated indices such as the Normalized Difference Vegetation Index (NDVI) to measure vegetation cover.

To ensure robust data representation and reduce the impact of outliers, we computed the median values of these indices for the

time series of cloud-free images from March to May 2019. We also included geological maps, scaled at 1:50,000, provided by

the LGRB. These maps were rasterized in the same way as the soil unit maps. Table 2 summarizes the indices and variables135

used for the ANN as covariates and their respective references. To compare the covariates in the reference and target areas,

we applied the cosine similarity index, as outlined by Manning (2008). This method, which measures similarity on a scale

from −1 (completely opposite) to 1 (identical), resulted in a mean value of 0.85. Using this score confirmed a strong similarity

between the areas. In addition, we collaborated with experts from the LGRB, whose extensive regional knowledge ensured the

appropriate selection of study areas. Both the similarity assessment and the expert consultation were carried out in recognition140

of the fact that, even at the local scale, it is crucial to apply models only where they are valid, a principle already established in

global-scale research (Ludwig et al., 2023).

2.3 Model design

Artificial Neural Networks (ANNs) originated in the field of image recognition, particularly for classification tasks (Goodfellow

et al., 2016). These models are highly effective at identifying patterns and relationships in data, even without prior domain145

knowledge, and excel in handling large datasets. ANNs are composed of layers of neurons leveraging activation functions

to learn complex patterns. The structure of an ANN can vary widely in terms of its architecture, the number and type of

layers, their dimensions, and the activation functions used. Since our research prioritizes understanding uncertainty in machine

learning models applied to soil data rather than optimizing model performance, we opted for a straightforward design: a fully

connected multilayer perceptron, as described in Table 3. For the hidden layers, we employed the rectified linear unit (ReLU)150

activation function, which is defined as:

ReLU(x) = max(0,x)

where x is the input to a neuron (Fukushima, 1969; Glorot et al., 2011; Nair and Hinton, 2010). For training and validation,

we used data from the reference area, which includes 33 covariates (listed in Table 2) and soil unit labels. The reference area

comprises eight distinct soil units, which the model aims to predict. To evaluate the model’s performance, we tested it on the155

ground truth map of soil units from the target area (Figure 1 (C)). The training and validation dataset consisted of 142,569

data points, i.e. the number of raster cells, which was separated through random sampling to a 70%-30% split, while the

test dataset contained 378,214 data points. We used the architecture mentioned above. A detailed description of the model

tuning protocol is provided in Rau et al. (2024), where the method was first tested in a simplified, controlled soil classification

setup. The optimized hyperparameters derived from this process were successfully transferred and applied to the reference160

area, yielding excellent results. To enhance the model’s robustness and prevent overfitting, we implemented an early stopping

criterion. The training process was halted when the model’s training accuracy, defined as the percentage of correctly predicted

pixels, exceeded 95.00%, and no significant improvement in test dataset accuracy was observed.
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Class

no.

Label German Soil Classification WRB-Classification Detailed information

0 None None None Ablation, order, settlement

1 A1 Brauner Auenboden, Auenbraunerde Fluvisol, Cambisol partly with gleying in the near subsoil, of al-

luvial sand and alluvial loam

2 A3 Auengley, Auenpseudogley-Auengley, Brauner

Auenboden-Auengley

Fluvisol from alluvial sand and alluvial clay

3 A7 Auenbraunerde, Auenparabraunerde Cambisol from older alluvial sediment

4 B2 Braunerde, Pelosol-Braunerde, Pseudogley-

Braunerde

Cambisol from solifluction soils, partly alluvial and

flood loam

5 B4 Braunerde, Podsol-Braunerde Arenosol mostly podzolic, from sandstone, debris-rich

fluvial soils and slope debris

6 D1 Pelosol, Braunerde-Pelosol, Pseudogley-

Pelosol

Luvisol-Vertisol from solifluction soils, subordinate from al-

luvial debris

7 K1 Kolluvium Anthrosol partly over Braunerde and Parabraunerde,

from alluvial deposits over solifluction soils

8 K2 Pseudogley-Kolluvium, Gley-Kolluvium Gleyic Anthrosol from alluvial deposits

9 L2 Parabraunerde, Braunerde-Parabraunerde,

Pseudogley-Parabraunerde

Luvisol of loess loam and loess-loam-rich solifluc-

tion soils

10 L3 Parabraunerde, Pelosol-Parabraunerde,

Terra fusca-Parabraunerde, Pseudogley-

Parabraunerde

Luvisol from solifluction soils and slope debris

11 N1 Ranker und Braunerde-Ranker Leptosol-Cambisol from sandstone

12 S1 Pseudogley, Braunerde-Pseudogley, Pelosol-

Pseudogley

Planosol-Cambisol from solifluction soils, partly Pleistocene al-

luvial debris

13 S2 Pseudogley, Parabraunerde-Pseudogley Planosol-Luvisol of loess loam and loess-loam-rich solifluc-

tion soils

14 Z1 Pararendzina, Pelosol-Pararendzina,

Braunerde-Pararendzina

Leptosol-Vertisol from solifluction soils and slope debris,

partly from landslide masses

15 R3 Rendzina und Terra fusca-Rendzina Leptosol from river gravels

Table 1. Detailed description of the soil units
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Environmental

input data

Definition after

Topographic Eastness, Elevation, Northness, Slope Bauer et al. (1985)

indices Diffuse radiation, Direct radiation, Slope discontinuities, Terrain classification index for lowlands Bock et al. (2007)

Relative height above the depth line, Soil moisture Böhner and Köthe (2003)

Catchment area Freeman (1991)

Plan curvature, Profile curvature Heerdegen and Beran (1982)

Convergence divergence index, Crest index for lowlands, Crest index for mountain areas, Culmina-

tion line for lowlands, Culmination line for mountain areas, Elevation below the culmination line

for lowlands, Elevation below the culmination line for mountain areas, Horizontal distance to the

depth line, Relative hill slope position for lowlands, Relative hill slope position for mountain areas,

Relative altitude, Relief

Köthe and Bock (2006)

Depth of closed surface depressions Wang and Liu (2006)

Spectral

indices

Brightness index, Colouration index, Hue index, Normalized difference vegetation index, Redness

index, Saturation index

Hounkpatin et al. (2018)

Geological

variable

Geological map Department 9: State Author-

ity for Geology, Mineral Re-

sources and Mining (LGRB)

Table 2. Overview of the covariates for the neural network

Layer Number

of neurons

Activation

function

Input layer 33 ReLU

Layer 1 395 ReLU

Layer 2 510 ReLU

Layer 3 489 ReLU

Output Layer 9 Softmax

Table 3. Architecture of the Artificial Neural Network

2.4 Uncertainty measurement of ANNs with Last-Layer Laplace Approximation

For ANNs commonly the Softmax function in the output layer is used to convert raw scores into a probability distribution over165

the predicted classes. The Softmax function transforms the output of the previous layer into a vector of probabilities, essentially

forming a distribution across input classes. The Softmax function is defined as follows:

Softmax(xi) =
exp(xi)∑
j exp(xi)

(1)
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where x is the vector of raw score for all classes (Bridle, 1990; Goodfellow et al., 2016). These probability values can be

interpreted as uncertainty about the classification output. A higher probability indicates greater certainty, while a lower value170

signifies uncertainty. In other words, the ANN has predicted a class with low uncertainty and is therefore very confident about

the prediction. Nevertheless, relying solely on Softmax-derived uncertainty measures has limitations, particularly in regions

where the ANN encounters data points far from its training distribution, as they do not account for the uncertainty in the model’s

parameters or structure (Hein et al., 2019; Guo et al., 2017). To address these limitations and quantify model uncertainty, i.e.

epistemic uncertainty, we employ the Last-Layer Laplace Approximation (LLLA) following Daxberger et al. (2021b). This175

method is based on Bayesian principles and provides a computationally efficient approach to estimate posterior uncertainties

for neural network parameters. The LLLA approximates the posterior distribution of the weights as

p(Θ |D)≈N (Θ;ΘMAP,Σ) with Σ := (∇2
ΘL(D;Θ) |ΘMAP)

−1. (2)

Here, ΘMAP represents the maximum a posteriori estimate of the last-layer parameters, obtained by minimizing the negative

log posterior L(D;Θ), typically the cross-entropy loss with an isotropic Gaussian prior. Epistemic uncertainty is captured by180

the LLLA through the local curvature (Hessian) of the loss: flat directions in this geometry indicate parameters that are weakly

constrained by the data and thus remain uncertain. Such flatness arises in regions of limited data, structural uncertainty, or poor

transferability, all of which reflect ambiguity in the posterior distribution over model parameters. The method is accessible

through the open-source laplace.torch package, which facilitates easy integration into PyTorch-based workflows. The

LLLA method offers key advantages: it is computationally efficient by focusing on the last layer (Kristiadi et al., 2020) and185

has the benefit that the point estimate (ΘMAP ) is unaffected by the uncertainty estimation, which simplifies development and

tuning. We already have shown that LLLA effectively identifies areas of high uncertainty in soil classification tasks (Rau et al.,

2024), making it crucial for generating uncertainty maps with uneven training data coverage.

3 Results & Discussion

3.1 Loss and accuracy of the ANN190

In our study, we used a simple neural network architecture rather than a highly specialized one tailored to the soil classification

extrapolation task. This decision reflects common scenarios where pre-built models are preferred due to their ease of use

and quick deployment. Our goal was to assess and enhance the neural network’s ability to extrapolate, and not to achieve

the highest possible overall accuracy outperforming other state-of-the-art ANNs, an objective that could be pursued through

deliberate and targeted hyperparameter optimization (Probst et al., 2019). For this reason, we focus on the spatial uncertainty195

at pixel level rather than the total uncertainty of the soil map, which is used in DSM (Wadoux et al., 2020). The study was

therefore based on two different areas: a well-sampled reference area and a completely unsampled target area (Figure 1). This

setup simulated a realistic challenge, where models are often required to make predictions in areas with limited or no prior

information (Heuvelink and Webster, 2001). The results indicated that the model learned the training data effectively, achieving

a low loss value of 0.01, a high training accuracy of 98.57%, and a validation accuracy of 96.73%. However, when applied to200

9
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the target area, the test accuracy dropped significantly to 47.38%. This decrease was expected since there was no area-specific

tuning for the neural network and our target area is substantially larger than the reference area including the entire course of the

river. The reference area can thus not fully represent the target area (Warrick, 2001). Compared with other studies in DSM that

use neural networks for soil classification (e.g., Zhu (2000); Behrens et al. (2005); Boruvka and Penizek (2006); Bodaghabad

et al. (2015); Neyestani et al. (2021)), our model performed at an average level, consistent with our expectations due to similar205

parent material and climate as well as cultural development of the areas over the last centuries. These initial findings emphasize

the trade-offs between simplicity and predictive performance when using simple neural networks in soil mapping applications.

While these are convenient and easy to deploy, their performance is often limited in data-sparse regions. This highlights the

importance of complementing neural network predictions with uncertainty quantification to effectively identify data gaps.

3.2 Prediction of the ANN210

The prediction of soil units across the target area reveals several notable patterns and challenges when we compare the ANN-

predicted map in Figure 2 (A) with our ground truth derived from the LGRB in Figure 1 (C). Not all soil units were predicted,

which is expected as certain soil units (in that case soil units 1, 3, 7, 8, 10, 14, and 15) were absent from the reference area.

The ANN could not predict these soil units due to its lack of training data. This phenomenon is not uncommon in practice, as

soil units in complex areas often remain untested in reality (Heuvelink and Webster, 2001). For example, units 1 and 3 belong215

to floodplain soils, more precisely to Fluvisols after WRB, and are not included in the reference area. Similarly, soil unit 14,

representing soils over the Gipskeuper formation, is also missing. The absence of certain soil units in the training dataset

reveals how the neural network handles such cases and provides insight into the associated uncertainty. A detailed breakdown

of the soil units is provided in Table 1.

An overall evaluation of the predictions reveals that certain regions, particularly the northern and southwestern parts of the220

target area, were predicted wrong (Figure 2 (B)). Interestingly, these areas correspond to the upstream and downstream sections

of the river, which were areas not well represented in the reference area. We can see that predictions were more accurate in the

middle stream of the river, which closely aligns with the reference area, compared to the downstream and upstream regions.

This is likely due to the increasing distance from the training data. A brief and selected breakdown of the prediction of the

specific soil units is now given and can be followed with the comparison of the ground truth map in Figure 1 (C) with the225

prediction of the ANN in Figure 2 (A) and with the confusion matrix in Figure 3.

Unit 0, which represents the settlements, was completely misclassified and often predicted as unit 2 or more often as units 4

and 6. Because unit 0 is found in the river valley and extends towards the receiving stream, these predictions are not surprising. It

is interesting to see what happens to soil units 1 and 3, both alluvial soil units, neither of which occur in the reference area. Soil

unit 1, a Fluvisol from alluvial sand and loam, was predicted as soil unit 2, which is the only Fluvisol in the reference area, also230

from alluvial sand and clay. Meanwhile, unit 3, classified as Cambisol, is often predicted as soil unit 4, representing Cambisol

formed from alluvial deposits, which aligns with unit 3’s characteristics as a floodplain Cambisol from older sediments. In

conclusion, the model’s predictions for units 1 and 3 demonstrate its ability to recognize and generalize alluvial patterns, even

when specific soil units are missing from the reference data. These results suggest that floodplain soils maintain recognizable
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Figure 2. (A) Prediction map of the soil unit in our target area by the ANN, (B) Comparison of the prediction with the ground truth: green

means a correct prediction of the soil unit

characteristics across regions, and the model effectively learns the repetitive patterns of river systems, such as floodplains and235

channel deposits, during training. Unit 4 is dominant in both the reference and target areas, as confirmed by the ground truth

map. Its proportion increased from 51.09% in the ground truth from the target area to 64.21% in the prediction by the ANN.

However, this soil unit was overestimated in the central region and underestimated in the south, demonstrating the importance

of spatial analysis. This is also the case for soil unit 5. This soil unit was underestimated in the central region but correctly

identified in the southwest and north. Overestimations occurred in the south, and misclassifications primarily involved unit240

4. This can be explained by the fact that both represent the most common soil units in Germany and the domination of 4 in

the training data (Amelung et al., 2018; Wiechmann, 2000). As a result, the neural network tends to predict them more often

in the output (Johnson and Khoshgoftaar, 2019). Soil unit 6 was also underestimated overall but maintained its proportional

representation due to false predictions along the southern margins. The colluvial soil units 7 and 8, were not part of the training

set, so they were misclassified as 4 and 6, soil unit 7 specifically as unit 6 in the southwest and unit 4 in the north. Unit 9 was245

extremely accurately detected in four areas in the south, east, and west but was underrepresented overall. In the southwest,

areas belonging to unit 9 were often predicted as unit 13, which is also a Luvisol from loess loam.
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Figure 3. The confusion matrix of the ANN displays true vs. predicted classifications, with diagonal values indicating correct predictions

and off-diagonal values showing misclassifications.

The model effectively recognizes familiar soil units, indicating that it successfully learns and applies process-based rules

of soil formation, as demonstrated by the predictions for soil units 1 and 3. However, it shows a tendency to generalize

soil units based on shared properties, as seen in the misclassification of soil unit 13 as unit 9 due to their similar origin as250

Luvisols from loess. This suggests the model is adept at identifying broad patterns but lacks sensitivity to regional nuances and

finer distinctions between similar units. The substantial regional variability in the predictions highlights the need for spatial

uncertainty analyses to improve accuracy and address the model’s limitations in handling less common or unfamiliar soil units.

3.3 Confidence of the ANN

Based on the previous results, especially the large distribution of correctly and incorrectly predicted classes in a unit and a non-255

spatial accuracy of 47.38%, we now analyze the uncertainty of the ANN prediction of every single soil unit before applying

the LLLA. In the case of an ANN, besides cross-validation methods and other techniques, a common step is to evaluate the

12



probability of the predicted class (Wadoux et al., 2020). This probability can be interpreted as the confidence of the model in

its predictions, thus the degree of uncertainty of the model regarding the predictions per pixel (see Figure 4 (A)).

Figure 4. (A) probability of the soil unit in our target area predicted by the ANN calculated with the Softmax function, interpreted as the

confidence of the ANN (B) probability after applying the LLLA, interpreted as the uncertainty of the ANN

Notably, the highest confidence values, often reaching 100%, are observed at the borders in the south, west, and north, as260

well as in the central region near the river. In contrast, the intermediate regions display a more diverse confidence distribution,

though the values remain generally high. This trend is reflected in the mean confidence value, which stands at 96.22%. When

examining the relationship between confidence and prediction accuracy, it can be seen that in areas where the ANN performs

poorly (Figure 2 (B)), the confidence values paradoxically remain high (Figure 4 (A)). This indicates overconfidence in regions,

which happens with ANNs when the training data does not represent the target area. For example, pixels where soil units are265

correctly predicted exhibit a mean confidence of 97.17%, while incorrectly predicted pixels also demonstrate a high mean

confidence of 95.36%. This pattern underscores the ANN’s tendency to assign high confidence to both correct and incorrect

predictions, exacerbating the issue of overconfidence. Such behavior aligns with findings from previous studies, which have

highlighted the tendency of ANNs to exhibit overconfidence in data-scarce regions (Kasiviswanathan et al., 2018; Hein et al.,

2019; Rau et al., 2024).270

Further analysis of the confidence distribution for each soil unit is presented using a violin plot in Figure 5. The blue curves

represent the distribution of confidence values for each unit, focusing only on soil units present in the reference area, as these
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are the only ones the ANN can predict. The width of the plot indicates where confidence values are more frequent, and the

shape shows the range of these values. For most soil units, there are sharp peaks around 100%, which means that the ANN is

overly confident in all units. However, soil units 11 and 12 stand out, as the ANN also shows high confidence here, but the shape275

is in a wider range. This analysis highlights the issue of overconfidence of ANNs: here the ANN is too confident, even in areas

where it performs poorly. This overconfidence is especially apparent in regions far from the training data or underrepresented

areas. To improve the ANN’s reliability, its ability to estimate its uncertainty needs to be enhanced. Further detailed analysis

by soil units will be provided when comparing the ANN’s predictions with those after applying the LLLA method as described

in Section 2.4.280

Figure 5. Distributions of the probability of predictions across the soil units (Blue: before LLLA; orange: after LLLA).

3.4 Uncertainty of the ANN from Last-Layer Laplace Approximation

As discussed in Section 2.4, the application of the LLLA method enabled us to generate uncertainty estimates for the model

predictions, addressing the overconfidence issue typically associated with ANNs (Kristiadi et al., 2020). It is important to note

that LLLA captures only epistemic uncertainty. Aleatoric uncertainty remains, as predictions are inherently constrained by the

data on which they are based. After applying LLLA, the model’s adjusted confidence values are shown in Figure 4 (B), where285

lighter colors indicate higher uncertainty. Some areas, like the western edge and the river region, showed almost no change,

but overall, the average confidence dropped from 96.22% to 88.66%. This decrease shows that the LLLA method helped

adjust the ANN’s confidence to be more realistic. When looking at areas where the ANN made correct predictions, the mean

confidence decreased by 5.97%, so just minor adjustments are needed. A larger reduction can be observed in areas where
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the predictions are wrong. The mean confidence decreased more, by 9.00%. This shows that LLLA was effective in reducing290

the model’s overconfidence, especially where it previously made incorrect predictions. Considering spatial differences inside

correctly predicted areas, confidence reductions mainly occur along the edges. The opposite is true for wrongly predicted

areas, where larger reductions occur more in the center, which is particularly apparent in the northern and southern regions.

That indicates, that it is important to look at the spatial variability of the single soil units. A first insight is provided by the violin

plot (Figure 5), where the orange-colored part shows the confidence after LLLA. It shows that the spread of confidence values295

has increased for some soil units, like units 0, 5, 6, 11, and 12. This suggests that LLLA made the model uncertainty more

precise for these units. For other units, like 2, 4, 9, and 13, the confidence distribution stayed mostly the same. The highest

points of confidence, called peaks, shifted for some units. For example, units 0, 5, and 6 still had high peaks, but units 11 and

12 showed much lower peaks after LLLA. For most other units, the peaks remained high, meaning the ANN stayed confident

in its predictions for those units.300

Examining the behavior of individual soil units gives further insights. For soil unit 0, which was completely misclassified,

the confidence in the areas, where it was predicted, dropped significantly, and the same happened for areas where this soil unit

was wrongly predicted. In contrast, soil unit 1, which was mostly misclassified as soil unit 2, maintained high confidence in the

correct areas, except for one point in the north, where it was misclassified as soil unit 4. This pattern indicates that when the

model predicted soil unit 2, a familiar and similar soil unit, it remained confident, whereas the misclassification to soil unit 4,305

a less related unit, triggered a higher uncertainty adjustment. This finding indicates that the model is capable of differentiating

between plausible misclassifications and more significant errors. A similar pattern is observed with soil unit 3, which was often

misclassified as soil unit 4, a closely related soil unit, where the confidence remained high after LLLA. The most extreme

example of a plausible misclassification is soil unit 9, which was misclassified as unit 13 for a large area in the west. Notably,

there was no reduction in confidence despite the large spatial error, suggesting that the LLLA method failed to detect the310

misclassification, likely because soil units 9 and 13 are very similar. This highlights a limitation of the LLLA adjustment when

soil units have closely overlapping characteristics, making it difficult for the model to recognize the need for uncertainty in

such cases. Soil unit 2, which was well-predicted overall, maintained high confidence in both the correct areas and the false

positive areas, where it was misclassified as soil unit 1. In the correct areas, it retained the highest confidence levels of all soil

units, indicating that the ANN remained highly confident after the LLLA in its accurate predictions. The behavior of the LLLA315

for soil unit 4 is more complex. Recall that it was overestimated in the center and north and underestimated in the south. After

applying LLLA (Figure 4 (B)), the confidence decreased significantly in the central areas, where it was wrongly predicted

over soil units 5, 9, and 12, indicating that the model recognized uncertainty in those regions. However, in most of the other

misclassified areas, with a small exception in the north, the model’s confidence remained high, suggesting that it did not adjust

sufficiently for those errors. This lack of uncertainty adjustment could be explained by the large proportion of soil unit 4 in320

the training data, leading the model to overtrust its predictions for this unit. The model seems to favor overrepresented units,

even when faced with evidence of misclassification, which highlights the importance of balancing the training dataset to avoid

overconfidence in dominant soil units (Kotzé and van Tol, 2023). The soil units 7 and 8, both absent from the training data,

were misclassified as units 4 and 6. However, these misclassifications were detected extremely well by the LLLA adjustment.
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Initially, the model assigned high confidence to these areas, but after LLLA, the regions corresponding to soil unit 8 showed325

some of the lowest confidence values. This indicates that LLLA effectively identified areas of high uncertainty, particularly

where the model faced unknown soil units, suggesting that the method is highly effective in detecting errors related to unfamiliar

inputs. Soil unit 6 was underestimated overall, with false predictions along the southern margins. In the correct areas, where

this unit should have been identified, LLLA significantly lowered the confidence, indicating that the model recognized the

initial overconfidence. However, in the wrongly predicted areas, the confidence decrease varied spatially. In the south and east,330

the model remained highly confident, even where soil unit 6 was misclassified as unit 4, showing that LLLA had difficulties

detecting the uncertainty of soil unit 4. This is another example of overtrusted predictions of the model in regions where

dominant units like soil unit 4 were prevalent in the training set. Conversely, in the center and north, LLLA effectively detected

the misclassification, leading to a clear reduction in confidence. In conclusion, the application of LLLA effectively addressed

the overconfidence issue of the ANN by providing uncertainty estimates and adjusting confidence levels in both correct and335

incorrect predictions. The method successfully reduced confidence in misclassified areas, particularly for unknown soil units

like 7 and 8, indicating its effectiveness in detecting unfamiliar inputs. However, the results also show regional variability

in the uncertainty adjustments. For some soil units, such as unit 4, the model remained overconfident in dominant units,

especially for units that were prevalent in the training data. This highlights a limitation of LLLA in handling closely related or

overrepresented soil units, emphasizing the need for balanced training data to improve the model’s uncertainty calibration and340

overall robustness. Nevertheless, compared to broader global approaches like Homosoils, where even the study by (Nenkam

et al., 2022) acknowledged that model accuracy improved significantly when incorporating local data, LLLA provides a key

advantage by offering spatially resolved uncertainty estimates. This allows for more localized and detailed insights into the

reliability of predictions, making it a valuable tool for identifying regional variations in model performance and improving

uncertainty calibration at finer scales. In addition to established uncertainty quantification methods for ANNs, such as MC345

Dropout, ensembles and full Bayesian neural networks, the application of LLLA presents a practical and computationally

efficient alternative. As a post hoc method, LLLA enables uncertainty estimation to be incorporated after model training

without requiring any modifications to the architecture or learning process. This simplicity made it especially attractive for

our soil prediction task, where retraining the model or restructuring the network would have been costly and unnecessary.

LLLA operates by approximating the posterior distribution of the final layer weights, capturing model uncertainty with a350

single forward pass at inference time. Though the computation of the Hessian or its approximation introduces a one-time cost,

it does not impact the efficiency of prediction, unlike MC Dropout which multiplies inference costs with repeated forward

passes (Daxberger et al., 2021a; Kristiadi et al., 2020). In our case, LLLA was highly effective at mitigating overconfidence

and highlighting spatial uncertainty in the extrapolation domain, especially in under-sampled areas, confirming its value as a

robust, scalable, and lightweight uncertainty quantification tool for DSM applications.355
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4 Conclusion

This study explored the use of Artificial Neural Networks (ANNs) for extrapolation tasks in digital soil mapping (DSM) in

under-sampled regions and proposed a novel uncertainty quantification approach using Last-Layer Laplace Approximation

(LLLA). The uneven distribution of soil samples limits the reliability of models when extrapolating to new areas. Our research

addressed this issue by training an ANN on soil data from a reference area and applying it to a similar but unsampled target360

area. The results showed that while the ANN could recognize familiar soil patterns, it often produced overconfident predictions,

particularly in regions outside the training domain. By applying the LLLA method, we successfully reduced the overconfidence

of the ANN and generated spatial uncertainty estimates. This approach provided more realistic confidence values and identified

regions where the model’s predictions were less reliable. Importantly, LLLA was particularly effective in detecting areas with

unfamiliar soil units, reducing confidence in those regions and highlighting the need for further data collection. Our findings365

underline the importance of uncertainty quantification in DSM, particularly when using machine learning models in spatially

diverse landscapes. While ANNs excel in recognizing patterns and extrapolating soil units, their inherent “black-box” nature

and tendency for overconfidence pose significant risks when models are deployed in new areas. The LLLA method offers a

practical, computationally lightweight solution to address these issues, making it a valuable tool for improving the reliability

of soil predictions.370

Future work should focus on improving the balance and representativeness of training datasets to enhance the accuracy

of uncertainty estimates. Integrating spatial uncertainty maps into sampling strategies can further optimize data collection by

directing limited resources to regions of high model uncertainty. Additionally, research should examine how the LLLA responds

to established strategies for improving model transferability through the targeted addition of samples, as shown for example

by Broeg et al. (2023). In particular, evaluating how LLLA-based uncertainty estimates evolve with such sample augmentation375

under transfer learning conditions is essential. To further assess the generalizability of LLLA, systematic benchmarking on

diverse datasets is necessary. A valuable foundation for this purpose offers for example the LimeSoDa dataset collection, with

its broad range of environmental conditions and standardized DSM features (Schmidinger and Heuvelink, 2023). In conclusion,

our research demonstrates that combining ANNs with post-hoc Bayesian uncertainty quantification techniques can significantly

enhance the interpretability, reliability, and transferability of DSM models. This advancement is essential for making machine380

learning models more robust and trustworthy in practical applications, particularly in regions with sparse or uneven soil data.
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