Response to editor and reviewers comments on

manuscript SOIL egusphere-2025-166:

“Quantifying spatial uncertainty to improve soil predictions in data-sparse

regions”

Thanks to the editor and reviewers for the feedback. We've gone through all the comments and
made the changes to the manuscript according to your suggestions. This includes fixing specific
points that were raised as well as general improvements to the writing, grammar, and overall
readability. The revised version should now better reflect the clarity and structure expected. Below,
we address the major and the minor comments in detail.

Editor:

1.

It seems important to provide the codes and a toy data set via a platform like GitHub or
zenodoo.

Thank you for this valuable suggestion. Due to institutional restrictions, we are unfortunately
unable to make our specific code and dataset publicly available. However, we have ensured
that the methodology is reproducible by referencing the open-source laplace.torch
(https://aleximmer.com/Laplace/) package, which provides a general implementation of our
approach and is fully compatible with PyTorch-based workflows. This allows readers and
practitioners to apply the method to their own data and models.

Lines 183-184:
“The method is accessible through the open-source laplace.torch package, which facilitates
easy integration into PyTorch-based workflows.”

An important point that was not raised by readers is that this study is not directively based
on field observations but on pixel-based soil type prediction (the soil map). This point should
be clarified in the method section that the field observations won't be used for validation as
it is commonly done in a DSM workflow.

We appreciate this important clarification. We agree and have already addressed this in the
Methods section with the following statement:

Lines 123-124:

“It should be noted that this study is based entirely on pixel-based soil unit prediction using
these rasterized soil maps as training and validation labels rather than direct field
observations.”

| 64. Cross validation is an iterative process. This is not clear from your wording.

Thank you for pointing this out. To clarify the iterative nature of cross-validation, we have
revised the sentence as follows:


https://aleximmer.com/Laplace/

Lines 68-69:

“Typically, these maps then present just an overall accuracy expressed as a single statistical
measure, often derived through cross-validation techniques, an iterative process that
partitions the training data into multiple subsets to repeatedly train and validate the model
to estimate overall performance uncertainty (Wadoux et al., 2020).”

4. 1143. Please specify how you selected the pixels for the training and validation datasets. You
should have selected the pixels randomly by simple random sample approach?

Thank you for this helpful comment. We have clarified the sampling procedure in the
manuscript as follows:

Line 156:

“The training and validation dataset consisted of 142569 data points, i.e. the number of
raster cells, which was separated through random sampling to a 70%-30% split, while the test
dataset contained 378214 data points.”

5. The legends of the figures 1B, 1C and 2 A are not adapted. You need to remove the decimal.

Thank you for pointing this out. We have updated the legends of Figures 1B, 1C, and 2A to
remove the decimal values as requested.

RC1:

The use of the uncertainty quantification approach through the Last-Layer Laplace Approximation
(LLLA) is a novel and much-needed addition to Digital Soil Mapping (DSM). Artificial Neural Networks
(ANNs) are often overconfident, but this approach appears to mitigate that risk. The importance of
uncertainty quantification in DSM is increasingly recognized. Nowadays, many people use machine
learning algorithms without fully considering the risks of overfitting or overconfidence, which
highlights the need for accurate uncertainty measurement, whether in interpolation or extrapolation
purposes. Overall, | find the general concept of the paper to be quite interesting.

We thank the reviewer for the positive and supportive feedback. We're pleased that you find the
concept of using LLLA for uncertainty quantification in DSM both relevant and promising. Your
comments align well with our motivation to address overconfidence in ANN-based soil models.
Below, we briefly respond to your suggestions for improvement.

1. However, it could be improved by providing more clarity and adding further details to the
methodology section.

Thank you for the suggestion. While no major methodological changes were required, we
acknowledge the need for improved clarity. Combined with the comments of Reviewer 2 on
this issue, we have expanded and clarified key parts of the Materials and Methods section.

Lines 158-160:
“A detailed description of the model tuning protocol is provided in Rau et al. (2024), where
the method was first tested in a simplified, controlled soil classification setup.”



Lines 174-175:
“To address these limitations and quantify model uncertainty, i.e. epistemic uncertainty, we
employ the Last-Layer Laplace Approximation (LLLA) following Daxberger et al. (2021b)”

Lines 187-188:

“We already have shown that LLLA effectively identifies areas of high uncertainty in soil
classification tasks (Rau et al., 2024), making it crucial for generating uncertainty maps with
uneven training data coverage”

The results and discussion sections are well written, but the readability would be enhanced if
the authors more frequently referenced specific figures. | would recommend this paper for
publication in EGU Sphere, pending minor adjustments.

We have reviewed the Results and Discussion sections and improved figure referencing
throughout. We now explicitly link specific parts of the narrative to the corresponding figures
(particularly Figures 2 to 5) to enhance readability.

Lines 196-197:
“The study was therefore based on two different areas: a well-sampled reference area and a
completely unsampled target area (Figure 1).”

Lines 262-264:

“When examining the relationship between confidence and prediction accuracy, it can be
seen that in areas where the ANN performs poorly (Figure 2 (B)), the confidence values
paradoxically remain high (Figure 4 (A)).”

Lines 294-295:
“A first insight is provided by the violin plot (Figure 5), where the orange-colored part shows
the confidence after LLLA.”

Lines 316-318:

“After applying LLLA (Figure 4 (B)), the confidence decreased significantly in the central areas,
where it was wrongly predicted over soil units 5, 9, and 12, indicating that the model
recognized uncertainty in those regions.”



RC2:

The manuscript by Rau and co-authors addresses an important issue for the use of machine learning
(ML) models for digital soil mapping, namely the problem of spatial uncertainty. They propose an
approach based on a previously published approach combining neural networks (ANN), Bayesian
learning and Laplace approximation. The advantage is that this approach informs on spatial
uncertainty. The proposed approach is applied to soil classification in central Baden Wiirttemberg in
Germany. The manuscript is well organized, and the presentation of the methods and results are
clear. Yet, many aspects (listed below) remain unclear and even unjustified. They should be clarified
and further elaborated before publication. Therefore, | recommend major corrections by
incorporating, if possible, the following recommendations.

We thank the reviewer for the constructive and detailed feedback on our manuscript. We appreciate
the recognition of the importance of addressing spatial uncertainty in digital soil mapping and the
clear acknowledgment that the manuscript is well organized and clearly presented. We agree that
several aspects required further elaboration and clarification, and we have revised the manuscript
accordingly. Below, we respond point-by-point to each of the major and minor comments. For each
comment, we detail how we have addressed it in the revised version of the manuscript. Where
changes were made, we indicate the relevant sections and figures.

Main comments

1. Position of the study: In several places in the main text, the authors refer to their previous
work published in 2024. It is difficult to see the differences because in that work the authors
also address the problem of uncertainty with ANN by combining it with techniques similar to
those described in this new study. Could the authors elaborate more on the differences with
this study and on the originality of this new work?

Thank you for highlighting the need to clarify the relationship between this manuscript and
our previous work published in 2024 (Rau et al., 2024). That earlier study introduced the use
of the Last-Layer Laplace Approximation (LLLA) in the context of digital soil mapping and
focused on demonstrating its theoretical potential to improve uncertainty quantification in
ANN-based soil models. Additionally, it aimed to systematically explore how ANNs behave,
when applied to areas outside their training distribution. The 2024 work was intended as a
foundational methodological contribution, relying on simplified and controlled setup to
examine the core properties of LLLA and the limitations of standard ANN confidence
estimates.

Building on that foundation, the current manuscript moves beyond method development to
focus on a practical, spatially explicit application. Specifically, we test how well the ANN with
the LLLA approach performs in a real-world soil classification extrapolation task, using a
geographically distinct but environmentally similar target region. The two regions were
selected based on expert domain knowledge adopted from the German soil survey and a
computed similarity index (cosine similarity), providing a meaningful test case for examining
spatial generalization, model overconfidence, and the added value of uncertainty
guantification.

To clarify these distinctions, we have rewritten all relevant parts of the manuscript where we
refer to our previous work (Rau et al., 2024):



Lines 85-93:

“Such improvements are crucial to ensure that machine learning models for digital soil
mapping provide both accurate and reliable predictions. Our previous work Rau et al. (2024)
introduced for digital soil mapping the Last-Layer Laplace Approximation (LLLA), a
computationally efficient technique that addresses these challenges. Building on this
methodological foundation, the current study applies an artificial neural network (ANN)
model to an extrapolation task, predicting soil units non-adjacent target area outside the
training area. To identify and correct the overconfidence of the ANN and perform a spatial
analysis of the model’s predictions and associated uncertainties, we use the Last-Layer
Laplace Approximation (LLLA), providing corrected uncertainty estimates for every pixel in the
target area. Through this, we assess the transferability of the ANN by improving its
interpretability and reliability for soil mapping tasks.”

Lines 158-160:
“A detailed description of the model tuning protocol is provided in Rau et al. (2024), where
the method was first tested in a simplified, controlled soil classification setup.”

Lines 187-188:

“We already have shown that LLLA effectively identifies areas of high uncertainty in soil
classification tasks Rau et al. (2024), making it crucial for generating uncertainty maps with
uneven training data coverage.”

Definition of uncertainty: My second comment may be related to my first one. | am really

confused about the type of uncertainty that the authors aim to tackle:

e The authors underline that the proposed method addresses the problem of spatial
uncertainty,

e Atline 155, the authors speak about model parameters and structural uncertainty
similarly as the problem of tuning of machine learning models (e.g. Probst et al., 2019). —

e The title suggests more a problem of data scarcity.

e The application case with two separate regions seems more related to a problem of
transferability (e.g. Ludwig et al., 2023).

References:

Ludwig, Marvin, et al. "Assessing and improving the transferability of current global spatial
prediction models." Global Ecology and Biogeography 32.3 (2023): 356-368.

Probst, P., Boulesteix, A. L., & Bischl, B. (2019). Tunability: Importance of hyperparameters of
machine learning algorithms. Journal of Machine Learning Research, 20(53), 1-32.

Thank you for this detailed and important question. We acknowledge that the different
terms used in the manuscript may have caused confusion. We clarify the types of uncertainty
we address and how each aspect connects to specific sections of the manuscript including
the references you mentioned.

In general, from the perspective of probability theory, there is no strict separation between
data scarcity, structural uncertainty, and transferability: all are manifestations of epistemic
uncertainty. That is, they reflect the fact that limited data leaves many plausible explanations
or parameter configurations open. Mathematically, this corresponds to the geometry of the
ANN loss landscape, which can be interpreted as the log posterior in a Bayesian setting. The
Laplace approximation provides a local quadratic summary of this geometry and hence



captures all forms of epistemic uncertainty. For example, data scarcity in certain regions or
classes can lead to flat curvature (i.e., high uncertainty) in the associated parameters, which
in turn affects predictive uncertainty in similar but unseen regions, what might appear as a
transferability issue. We have revised the manuscript accordingly:

Lines 180-183:

“Epistemic uncertainty is captured by the LLLA through the local curvature (Hessian) of the
loss: flat directions in this geometry indicate parameters that are weakly constrained by the
data and thus remain uncertain. Such flatness arises in regions of limited data, structural
uncertainty, or poor transferability, all of which reflect ambiguity in the posterior distribution
over model parameters.”

e Spatial uncertainty: Yes, the core focus of our study is spatial uncertainty. As described in
the Methods section (Lines 191-192) the Last-Layer Laplace Approximation (LLLA) enables
pixel-wise probabilistic outputs from the neural network, allowing us to assess how confident
the model is for each location in the map.

¢ Model parameters and structural uncertainty (Line 155, Probst et al., 2019)

We acknowledge the mention of model-related uncertainty may have implied a broader
scope than intended. However, as stated in the manuscript (Lines 191-195), we intentionally
use a simple, general-purpose ANN architecture rather than optimizing for maximum
predictive performance. This decision reflects real-world scenarios where fast deployment of
pre-trained models is preferred, and where assessing transferability and uncertainty is more
critical than achieving the best possible accuracy. Thus, our primary focus is not on structural
uncertainty or tunability, but rather on understanding the model’s behaviour in unfamiliar
regions through spatial uncertainty.

Lines 193-195:

“Our goal was to assess and enhance the neural network's ability to extrapolate, and not to
achieve the highest possible overall accuracy outperforming other state-of-the-art ANNs, an
objective that could be pursued through deliberate and targeted hyperparameter
optimization (Probst et al, 2019).”

e Data scarcity (Title)

We appreciate this observation. While our method does not directly model data scarcity, it is
indeed a motivating context for our study. We clarified this point in the manuscript, i.e. Lines
196-199 and Lines 359-364. Specifically, we assume that data-scarce regions are those
lacking training data, and our goal is to use spatial uncertainty estimates to identify such
regions and inform future data collection strategies.

e Transferability (Ludwig et al., 2023)

You are correct that our design relates to model transferability, but we emphasize that our
scope is local rather than global. Unlike Ludwig et al. (2023), who address global spatial
prediction models across continents, our study focuses on transferring a model between two
environmentally similar regions within the same geographic area. These regions were not
arbitrarily chosen they were selected in collaboration with local experts and evaluated using
a cosine similarity index, ensuring geoscientific comparability (Lines 136-140).



Lines 140-142:

“Both the similarity assessment and the expert consultation were carried out in recognition of
the fact that, even at the local scale, it is crucial to apply models only where they are valid, a
principle already established in global-scale research (Ludwig et al. (2023)).”

Aside from these clarifications, no additional structural changes were made, as the
manuscript already reflects these distinctions implicitly. However, we now ensure that
readers can more easily distinguish what kind of uncertainty is being addressed, and why.

Could the authors clarify the notion of uncertainty that they intend to address? The
introduction should be expanded on this aspect, and a discussion of the wide range of
uncertainties is also welcome.

To make these points clearer in the manuscript, we now define model uncertainty
additionally as epistemic uncertainty in the Methods section (Section 2.4).

Lines 174-175:
“To address these limitations and quantify model uncertainty, i.e. epistemic uncertainty, we
employ the Last-Layer Laplace Approximation (LLLA) following Daxberger et al. (2021).”

Lines 180-183:

“Epistemic uncertainty is captured by the LLLA through the local curvature (Hessian) of the
loss: flat directions in this geometry indicate parameters that are weakly constrained by the
data and thus remain uncertain. Such flatness arises in regions of limited data, structural
uncertainty, or poor transferability, all of which reflect ambiguity in the posterior distribution
over model parameters.”

In the Discussion, we explicitly state that LLLA does not capture aleatoric uncertainty, as this
is related to inherent data noise rather than model knowledge.

Lines 283-285:
“It is important to note that LLLA captures only epistemic uncertainty. Aleatoric uncertainty
remains, as predictions are inherently constrained by the data on which they are based”

Protocol to address spatial uncertainty: If the main objective is to address the problem of
spatial uncertainty, | would encourage the authors to carry out more experiments by varying
the key factors of the problem: number of training samples, level of similarity between
training and test regions, etc. Could the authors propose and carry out a more extensive
series of experiments in order to demonstrate the robustness and effectiveness of their
approach in a larger number of situations?

We thank the reviewer for this constructive suggestion. We agree that a broader
experimental protocol could further strengthen the analysis and we are happy to follow this
suggestion in our future work. Our goal in this study was to evaluate how well an ANN with
LLLA performs under a realistic local extrapolation scenario. The reference and target regions
were selected with expert input and validated using a cosine similarity index to reflect
practical DSM applications under data scarcity.



While broader tests (e.g., varying training size or region similarity) are valuable, our access to
high-quality, expert-validated data from the State Authority for Geology (LGRB) was limited
by logistical and time constraints. We therefore focused on a carefully selected case.

We now include these limitations in the discussion and suggest directions for future work.

Lines 371-378:

,Future work should focus on improving the balance and representativeness of training
datasets to enhance the accuracy of uncertainty estimates. Integrating spatial uncertainty
maps into sampling strategies can further optimize data collection by directing limited
resources to regions of high model uncertainty. Additionally, research should examine how
the Last-Layer Laplace Approximation (LLLA) responds to established strategies for improving
model transferability through the targeted addition of samples, as shown for example by
Broeg et al. (2023). In particular, evaluating how LLLA-based uncertainty estimates evolve
with such sample augmentation under transfer learning conditions is essential. To further
assess the generalizability of LLLA, systematic benchmarking on diverse datasets is necessary.
A valuable foundation for this purpose offers for example, the LimeSoDa dataset collection,
with its broad range of environmental conditions and standardized DSM features
(Schmidinger and Heuvelink, 2023). “

Comparison to existing methods: From what | understand of the method proposed by the
authors, the ANN is equipped with a final layer for predicting the probability of classification.
This is a feature shared by many other techniques, i.e. logistic regression, decision trees,
random forest, xgboost, neural networks with Monte Carlo dropout, neural networks
combined with a deep set, generative models, and so on. Could the authors elaborate more
on the state of the art and discuss the benefits of their method compared to alternative
methods?

Thank you for the comment. Our study focuses specifically on methods suitable for ANN
models, as the goal is not to compare different machine learning algorithms but to raise
awareness of overconfidence and black-box behavior in ANNs. We agree it’s important to
acknowledge other neural-network-based UQ approaches. In the discussion, we now briefly
compare our method to MC dropout, deep ensembles, and Bayesian neural networks,
highlighting their trade-offs. We emphasize that LLLA is post-hoc, computationally efficient,
and provides pixel-wise uncertainty, making it a practical choice for DSM. We also added a
sentence in the Introduction to clarify the broader landscape of UQ in soil science and
machine learning.

Line 78-84:

“The most commonly used methods for uncertainty quantification in DL algorithms,
particularly in ANNSs, include Monte Carlo (MC) Dropout, ensemble methods, and full
Bayesian approaches. These methods, while effective, often require significant computational
resources and memory (Abdar et al., 2021). These techniques have begun to gain traction in
soil science applications, particularly for estimating uncertainty in soil moisture retrieval or
soil spectral models (Li et al., 2023). For example, Padarian et al. (2022) and Huang et al.
(2025) utilized these approaches to assess uncertainty in their models, demonstrating their
relevance and utility despite the computational demands. These findings underscore the
urgent need for methodological advancements that go beyond variance estimation to also
tackle overconfidence together with spatial uncertainty while remaining computationally
efficient and easy to integrate into existing workflows.”



Line 345-355:

“In addition to established uncertainty quantification methods for ANNs, such as MC Dropout,
ensembles and full Bayesian neural networks, the application of LLLA presents a practical and
computationally efficient alternative. As a post hoc method, LLLA enables uncertainty
estimation to be incorporated after model training without requiring any modifications to the
architecture or learning process. This simplicity made it especially attractive for our soil
prediction task, where retraining the model or restructuring the network would have been
costly and unnecessary. LLLA operates by approximating the posterior distribution of the final
layer weights, capturing model uncertainty with a single forward pass at inference time.
Though the computation of the Hessian or its approximation introduces a one-time cost, it
does not impact the efficiency of prediction, unlike MIC Dropout which multiplies inference
costs with repeated forward passes (Daxberger et al., 2021a; Kristiadi et al., 2020). In our
case, LLLA was highly effective at mitigating overconfidence and highlighting spatial
uncertainty in the extrapolation domain, especially in under-sampled areas, confirming its
value as a robust, scalable, and lightweight uncertainty quantification tool for DSM
applications.”

Minor comments:

6.

Line 55: the authors underline that the ANNs make predictions through complex internal
processes that are difficult to understand and interpret. Here references to recent studies
improving the interpretability of such methods for digital soil mapping should be added.
Suggested references

Padarian, J., McBratney, A. B., and Minasny, B.: Game theory interpretation of digital soil
mapping convolutional neural networks, Soil, 6,389-397, 2020.

Wadoux, A. M. J.-C. and Molnar, C.: Beyond prediction: methods for interpreting complex
models of soil variation, Geoderma, 422, 115 953, 2022.

Thank you for the suggestion. We have added the recommended references.

Line 55-60:

“Recent studies have addressed this limitation by introducing model-agnostic interpretation
techniques and game theory-based Shapley additive explanations (SHAP), which provide
valuable insights into the relationships between environmental covariates and

model predictions (Padarian et al., 2020a; Wadoux and Molnar, 2022). In addition, ANNs
typically lack built-in uncertainty quantification, which complicates the evaluation of their
predictive reliability and may lead to misinterpretations or suboptimal

decision-making (Guo et al., 2017).”

The results in Fig. 5 are very convincing. Despite the efficiency of LLMA, a long tail in the
probability distribution still remains. | wonder whether this could be further alleviated with
an extra calibration of the probability. See for instance Niculescu-Mizil & Caruana (2005).
Suggested reference Niculescu-Mizil, A., & Caruana, R. (2005). Predicting good probabilities
with supervised learning. In Proceedings of the 22nd international conference on Machine
learning (pp. 625-632).



Thank you for this thoughtful suggestion. We agree that further calibration techniques, such
as those proposed by Niculescu-Mizil & Caruana (2005), could help refine the output
probabilities. However, in this study, we chose to evaluate the effect of LLLA without

additional calibration in order to isolate its native performance. Therefore, we have not
made changes in this regard.



