
Response to editor and reviewers comments on 

manuscript SOIL egusphere-2025-166: 

“Quantifying spatial uncertainty to improve soil predictions in data-sparse 
regions” 

 

Thanks to the editor and reviewers for the feedback. We've gone through all the comments and 
made the changes to the manuscript according to your suggestions. This includes fixing specific 
points that were raised as well as general improvements to the writing, grammar, and overall 
readability. The revised version should now better reflect the clarity and structure expected. Below, 
we address the major and the minor comments in detail. 

 

Editor: 

1. It seems important to provide the codes and a toy data set via a platform like GitHub or 
zenodoo. 
 
Thank you for this valuable suggestion. Due to institutional restrictions, we are unfortunately 
unable to make our specific code and dataset publicly available. However, we have ensured 
that the methodology is reproducible by referencing the open-source laplace.torch 
(https://aleximmer.com/Laplace/) package, which provides a general implementation of our 
approach and is fully compatible with PyTorch-based workflows. This allows readers and 
practitioners to apply the method to their own data and models. 
 
Lines 183-184: 
“The method is accessible through the open-source laplace.torch package, which facilitates 
easy integration into PyTorch-based workflows.” 
 

2. An important point that was not raised by readers is that this study is not directively based 
on field observations but on pixel-based soil type prediction (the soil map). This point should 
be clarified in the method section that the field observations won't be used for validation as 
it is commonly done in a DSM workflow. 
 
We appreciate this important clarification. We agree and have already addressed this in the 
Methods section with the following statement: 
 
Lines 123-124: 
“It should be noted that this study is based entirely on pixel-based soil unit prediction using 
these rasterized soil maps as training and validation labels rather than direct field 
observations.” 
 

3. l 64. Cross validation is an iterative process. This is not clear from your wording. 
 
Thank you for pointing this out. To clarify the iterative nature of cross-validation, we have 
revised the sentence as follows: 
 

https://aleximmer.com/Laplace/


 
Lines 68-69: 
“Typically, these maps then present just an overall accuracy expressed as a single statistical 
measure, often derived through cross-validation techniques, an iterative process that 
partitions the training data into multiple subsets to repeatedly train and validate the model 
to estimate overall performance uncertainty (Wadoux et al., 2020).” 
 

4. l 143. Please specify how you selected the pixels for the training and validation datasets. You 
should have selected the pixels randomly by simple random sample approach? 
 
Thank you for this helpful comment. We have clarified the sampling procedure in the 
manuscript as follows: 
 
Line 156:  
“The training and validation dataset consisted of 142569 data points, i.e. the number of 
raster cells, which was separated through random sampling to a 70%-30% split, while the test 
dataset contained 378214 data points.” 
 

5. The legends of the figures 1B, 1C and 2 A are not adapted. You need to remove the decimal. 
 
Thank you for pointing this out. We have updated the legends of Figures 1B, 1C, and 2A to 
remove the decimal values as requested. 
 

RC1: 

The use of the uncertainty quantification approach through the Last-Layer Laplace Approximation 
(LLLA) is a novel and much-needed addition to Digital Soil Mapping (DSM). Artificial Neural Networks 
(ANNs) are often overconfident, but this approach appears to mitigate that risk. The importance of 
uncertainty quantification in DSM is increasingly recognized. Nowadays, many people use machine 
learning algorithms without fully considering the risks of overfitting or overconfidence, which 
highlights the need for accurate uncertainty measurement, whether in interpolation or extrapolation 
purposes. Overall, I find the general concept of the paper to be quite interesting.  

We thank the reviewer for the positive and supportive feedback. We're pleased that you find the 
concept of using LLLA for uncertainty quantification in DSM both relevant and promising. Your 
comments align well with our motivation to address overconfidence in ANN-based soil models. 
Below, we briefly respond to your suggestions for improvement. 

1. However, it could be improved by providing more clarity and adding further details to the 
methodology section.  
 
Thank you for the suggestion. While no major methodological changes were required, we 
acknowledge the need for improved clarity. Combined with the comments of Reviewer 2 on 
this issue, we have expanded and clarified key parts of the Materials and Methods section. 
 
Lines 158-160:  
“A detailed description of the model tuning protocol is provided in Rau et al. (2024), where 
the method was first tested in a simplified, controlled soil classification setup.” 
 



Lines 174-175:  
“To address these limitations and quantify model uncertainty, i.e. epistemic uncertainty, we 
employ the Last-Layer Laplace Approximation (LLLA) following Daxberger et al. (2021b)” 
 
Lines 187-188: 
 “We already have shown that LLLA effectively identifies areas of high uncertainty in soil 
classification tasks (Rau et al., 2024), making it crucial for generating uncertainty maps with 
uneven training data coverage” 
 

2. The results and discussion sections are well written, but the readability would be enhanced if 
the authors more frequently referenced specific figures. I would recommend this paper for 
publication in EGU Sphere, pending minor adjustments. 
 
We have reviewed the Results and Discussion sections and improved figure referencing 
throughout. We now explicitly link specific parts of the narrative to the corresponding figures 
(particularly Figures 2 to 5) to enhance readability. 
 
Lines 196-197: 
“The study was therefore based on two different areas: a well-sampled reference area and a 
completely unsampled target area (Figure 1).” 
 
Lines 262-264: 
“When examining the relationship between confidence and prediction accuracy, it can be 
seen that in areas where the ANN performs poorly (Figure 2 (B)), the confidence values 
paradoxically remain high (Figure 4 (A)).” 
 
Lines 294-295: 
“A first insight is provided by the violin plot (Figure 5), where the orange-colored part shows 
the confidence after LLLA.” 
 
Lines 316-318:  
“After applying LLLA (Figure 4 (B)), the confidence decreased significantly in the central areas, 
where it was wrongly predicted over soil units 5, 9, and 12, indicating that the model 
recognized uncertainty in those regions.” 

 

 

 

 

 

 

 

 

 

 



RC2:  

The manuscript by Rau and co-authors addresses an important issue for the use of machine learning 
(ML) models for digital soil mapping, namely the problem of spatial uncertainty. They propose an 
approach based on a previously published approach combining neural networks (ANN), Bayesian 
learning and Laplace approximation. The advantage is that this approach informs on spatial 
uncertainty. The proposed approach is applied to soil classification in central Baden Württemberg in 
Germany. The manuscript is well organized, and the presentation of the methods and results are 
clear. Yet, many aspects (listed below) remain unclear and even unjustified. They should be clarified 
and further elaborated before publication. Therefore, I recommend major corrections by 
incorporating, if possible, the following recommendations.  

We thank the reviewer for the constructive and detailed feedback on our manuscript. We appreciate 
the recognition of the importance of addressing spatial uncertainty in digital soil mapping and the 
clear acknowledgment that the manuscript is well organized and clearly presented. We agree that 
several aspects required further elaboration and clarification, and we have revised the manuscript 
accordingly. Below, we respond point-by-point to each of the major and minor comments. For each 
comment, we detail how we have addressed it in the revised version of the manuscript. Where 
changes were made, we indicate the relevant sections and figures. 

Main comments  

1. Position of the study: In several places in the main text, the authors refer to their previous 
work published in 2024. It is difficult to see the differences because in that work the authors 
also address the problem of uncertainty with ANN by combining it with techniques similar to 
those described in this new study. Could the authors elaborate more on the differences with 
this study and on the originality of this new work?  
 
Thank you for highlighting the need to clarify the relationship between this manuscript and 
our previous work published in 2024 (Rau et al., 2024). That earlier study introduced the use 
of the Last-Layer Laplace Approximation (LLLA) in the context of digital soil mapping and 
focused on demonstrating its theoretical potential to improve uncertainty quantification in 
ANN-based soil models. Additionally, it aimed to systematically explore how ANNs behave, 
when applied to areas outside their training distribution. The 2024 work was intended as a 
foundational methodological contribution, relying on simplified and controlled setup to 
examine the core properties of LLLA and the limitations of standard ANN confidence 
estimates. 
Building on that foundation, the current manuscript moves beyond method development to 
focus on a practical, spatially explicit application. Specifically, we test how well the ANN with 
the LLLA approach performs in a real-world soil classification extrapolation task, using a 
geographically distinct but environmentally similar target region. The two regions were 
selected based on expert domain knowledge adopted from the German soil survey and a 
computed similarity index (cosine similarity), providing a meaningful test case for examining 
spatial generalization, model overconfidence, and the added value of uncertainty 
quantification. 
 
To clarify these distinctions, we have rewritten all relevant parts of the manuscript where we 
refer to our previous work (Rau et al., 2024): 
 
 
 



Lines 85-93:  
“Such improvements are crucial to ensure that machine learning models for digital soil 
mapping provide both accurate and reliable predictions. Our previous work Rau et al. (2024) 
introduced for digital soil mapping the Last-Layer Laplace Approximation (LLLA), a 
computationally efficient technique that addresses these challenges. Building on this 
methodological foundation, the current study applies an artificial neural network (ANN) 
model to an extrapolation task, predicting soil units non-adjacent target area outside the 
training area. To identify and correct the overconfidence of the ANN and perform a spatial 
analysis of the model’s predictions and associated uncertainties, we use the Last-Layer 
Laplace Approximation (LLLA), providing corrected uncertainty estimates for every pixel in the 
target area. Through this, we assess the transferability of the ANN by improving its 
interpretability and reliability for soil mapping tasks.” 
 
Lines 158-160: 
“A detailed description of the model tuning protocol is provided in Rau et al. (2024), where 
the method was first tested in a simplified, controlled soil classification setup.” 
 
Lines 187-188:  
“We already have shown that LLLA effectively identifies areas of high uncertainty in soil 
classification tasks Rau et al. (2024), making it crucial for generating uncertainty maps with 
uneven training data coverage.” 

 

2. Definition of uncertainty: My second comment may be related to my first one. I am really 
confused about the type of uncertainty that the authors aim to tackle:  
• The authors underline that the proposed method addresses the problem of spatial 

uncertainty,  
• At line 155, the authors speak about model parameters and structural uncertainty 

similarly as the problem of tuning of machine learning models (e.g. Probst et al., 2019). –  
• The title suggests more a problem of data scarcity.  
• The application case with two separate regions seems more related to a problem of 

transferability (e.g. Ludwig et al., 2023).  

References:  
Ludwig, Marvin, et al. "Assessing and improving the transferability of current global spatial 
prediction models." Global Ecology and Biogeography 32.3 (2023): 356-368.  
Probst, P., Boulesteix, A. L., & Bischl, B. (2019). Tunability: Importance of hyperparameters of 
machine learning algorithms. Journal of Machine Learning Research, 20(53), 1-32.  

Thank you for this detailed and important question. We acknowledge that the different 
terms used in the manuscript may have caused confusion. We clarify the types of uncertainty 
we address and how each aspect connects to specific sections of the manuscript including 
the references you mentioned.  
 
In general, from the perspective of probability theory, there is no strict separation between 
data scarcity, structural uncertainty, and transferability: all are manifestations of epistemic 
uncertainty. That is, they reflect the fact that limited data leaves many plausible explanations 
or parameter configurations open. Mathematically, this corresponds to the geometry of the 
ANN loss landscape, which can be interpreted as the log posterior in a Bayesian setting. The 
Laplace approximation provides a local quadratic summary of this geometry and hence 



captures all forms of epistemic uncertainty. For example, data scarcity in certain regions or 
classes can lead to flat curvature (i.e., high uncertainty) in the associated parameters, which 
in turn affects predictive uncertainty in similar but unseen regions, what might appear as a 
transferability issue. We have revised the manuscript accordingly: 

 Lines 180-183:  

“Epistemic uncertainty is captured by the LLLA through the local curvature (Hessian) of the 
loss: flat directions in this geometry indicate parameters that are weakly constrained by the 
data and thus remain uncertain. Such flatness arises in regions of limited data, structural 
uncertainty, or poor transferability, all of which reflect ambiguity in the posterior distribution 
over model parameters.” 

• Spatial uncertainty: Yes, the core focus of our study is spatial uncertainty. As described in 
the Methods section (Lines 191–192) the Last-Layer Laplace Approximation (LLLA) enables 
pixel-wise probabilistic outputs from the neural network, allowing us to assess how confident 
the model is for each location in the map.  

• Model parameters and structural uncertainty (Line 155, Probst et al., 2019) 

We acknowledge the mention of model-related uncertainty may have implied a broader 
scope than intended. However, as stated in the manuscript (Lines 191–195), we intentionally 
use a simple, general-purpose ANN architecture rather than optimizing for maximum 
predictive performance. This decision reflects real-world scenarios where fast deployment of 
pre-trained models is preferred, and where assessing transferability and uncertainty is more 
critical than achieving the best possible accuracy. Thus, our primary focus is not on structural 
uncertainty or tunability, but rather on understanding the model’s behaviour in unfamiliar 
regions through spatial uncertainty.  

Lines 193-195: 

“Our goal was to assess and enhance the neural network's ability to extrapolate, and not to 
achieve the highest possible overall accuracy outperforming other state-of-the-art ANNs, an 
objective that could be pursued through deliberate and targeted hyperparameter 
optimization (Probst et al, 2019).” 

• Data scarcity (Title) 

We appreciate this observation. While our method does not directly model data scarcity, it is 
indeed a motivating context for our study. We clarified this point in the manuscript, i.e. Lines 
196-199 and Lines 359–364. Specifically, we assume that data-scarce regions are those 
lacking training data, and our goal is to use spatial uncertainty estimates to identify such 
regions and inform future data collection strategies.  

• Transferability (Ludwig et al., 2023) 

You are correct that our design relates to model transferability, but we emphasize that our 
scope is local rather than global. Unlike Ludwig et al. (2023), who address global spatial 
prediction models across continents, our study focuses on transferring a model between two 
environmentally similar regions within the same geographic area. These regions were not 
arbitrarily chosen they were selected in collaboration with local experts and evaluated using 
a cosine similarity index, ensuring geoscientific comparability (Lines 136-140).  

 



Lines 140-142:  

“Both the similarity assessment and the expert consultation were carried out in recognition of 
the fact that, even at the local scale, it is crucial to apply models only where they are valid, a 
principle already established in global-scale research (Ludwig et al. (2023)).” 

Aside from these clarifications, no additional structural changes were made, as the 
manuscript already reflects these distinctions implicitly. However, we now ensure that 
readers can more easily distinguish what kind of uncertainty is being addressed, and why. 

 

3. Could the authors clarify the notion of uncertainty that they intend to address? The 
introduction should be expanded on this aspect, and a discussion of the wide range of 
uncertainties is also welcome.  
 
To make these points clearer in the manuscript, we now define model uncertainty 
additionally as epistemic uncertainty in the Methods section (Section 2.4). 
 
Lines 174-175:  
“To address these limitations and quantify model uncertainty, i.e. epistemic uncertainty, we 
employ the Last-Layer Laplace Approximation (LLLA) following Daxberger et al. (2021).” 
 
Lines 180-183: 
“Epistemic uncertainty is captured by the LLLA through the local curvature (Hessian) of the 
loss: flat directions in this geometry indicate parameters that are weakly constrained by the 
data and thus remain uncertain. Such flatness arises in regions of limited data, structural 
uncertainty, or poor transferability, all of which reflect ambiguity in the posterior distribution 
over model parameters.” 
 
In the Discussion, we explicitly state that LLLA does not capture aleatoric uncertainty, as this 
is related to inherent data noise rather than model knowledge. 
 
Lines 283-285:  
“It is important to note that LLLA captures only epistemic uncertainty. Aleatoric uncertainty 
remains, as predictions are inherently constrained by the data on which they are based” 

 

4. Protocol to address spatial uncertainty: If the main objective is to address the problem of 
spatial uncertainty, I would encourage the authors to carry out more experiments by varying 
the key factors of the problem: number of training samples, level of similarity between 
training and test regions, etc. Could the authors propose and carry out a more extensive 
series of experiments in order to demonstrate the robustness and effectiveness of their 
approach in a larger number of situations?  
 
We thank the reviewer for this constructive suggestion. We agree that a broader 
experimental protocol could further strengthen the analysis and we are happy to follow this 
suggestion in our future work. Our goal in this study was to evaluate how well an ANN with 
LLLA performs under a realistic local extrapolation scenario. The reference and target regions 
were selected with expert input and validated using a cosine similarity index to reflect 
practical DSM applications under data scarcity. 



While broader tests (e.g., varying training size or region similarity) are valuable, our access to 
high-quality, expert-validated data from the State Authority for Geology (LGRB) was limited 
by logistical and time constraints. We therefore focused on a carefully selected case. 
We now include these limitations in the discussion and suggest directions for future work. 
 
Lines 371-378: 
„Future work should focus on improving the balance and representativeness of training 
datasets to enhance the accuracy of uncertainty estimates. Integrating spatial uncertainty 
maps into sampling strategies can further optimize data collection by directing limited 
resources to regions of high model uncertainty. Additionally, research should examine how 
the Last-Layer Laplace Approximation (LLLA) responds to established strategies for improving 
model transferability through the targeted addition of samples, as shown for example by 
Broeg et al. (2023). In particular, evaluating how LLLA-based uncertainty estimates evolve 
with such sample augmentation under transfer learning conditions is essential. To further 
assess the generalizability of LLLA, systematic benchmarking on diverse datasets is necessary. 
A valuable foundation for this purpose offers for example, the LimeSoDa dataset collection, 
with its broad range of environmental conditions and standardized DSM features 
(Schmidinger and Heuvelink, 2023). “ 
 
 

5. Comparison to existing methods: From what I understand of the method proposed by the 
authors, the ANN is equipped with a final layer for predicting the probability of classification. 
This is a feature shared by many other techniques, i.e. logistic regression, decision trees, 
random forest, xgboost, neural networks with Monte Carlo dropout, neural networks 
combined with a deep set, generative models, and so on. Could the authors elaborate more 
on the state of the art and discuss the benefits of their method compared to alternative 
methods?  

Thank you for the comment. Our study focuses specifically on methods suitable for ANN 
models, as the goal is not to compare different machine learning algorithms but to raise 
awareness of overconfidence and black-box behavior in ANNs. We agree it’s important to 
acknowledge other neural-network-based UQ approaches. In the discussion, we now briefly 
compare our method to MC dropout, deep ensembles, and Bayesian neural networks, 
highlighting their trade-offs. We emphasize that LLLA is post-hoc, computationally efficient, 
and provides pixel-wise uncertainty, making it a practical choice for DSM. We also added a 
sentence in the Introduction to clarify the broader landscape of UQ in soil science and 
machine learning. 

Line 78-84:  
“The most commonly used methods for uncertainty quantification in DL algorithms, 
particularly in ANNs, include Monte Carlo (MC) Dropout, ensemble methods, and full 
Bayesian approaches. These methods, while effective, often require significant computational 
resources and memory (Abdar et al., 2021). These techniques have begun to gain traction in 
soil science applications, particularly for estimating uncertainty in soil moisture retrieval or 
soil spectral models (Li et al., 2023). For example, Padarian et al. (2022) and Huang et al. 
(2025) utilized these approaches to assess uncertainty in their models, demonstrating their 
relevance and utility despite the computational demands. These findings underscore the 
urgent need for methodological advancements that go beyond variance estimation to also 
tackle overconfidence together with spatial uncertainty while remaining computationally 
efficient and easy to integrate into existing workflows.” 



Line 345-355: 

“In addition to established uncertainty quantification methods for ANNs, such as MC Dropout, 
ensembles and full Bayesian neural networks, the application of LLLA presents a practical and 
computationally efficient alternative. As a post hoc method, LLLA enables uncertainty 
estimation to be incorporated after model training without requiring any modifications to the 
architecture or learning process. This simplicity made it especially attractive for our soil 
prediction task, where retraining the model or restructuring the network would have been 
costly and unnecessary. LLLA operates by approximating the posterior distribution of the final 
layer weights, capturing model uncertainty with a single forward pass at inference time. 
Though the computation of the Hessian or its approximation introduces a one-time cost, it 
does not impact the efficiency of prediction, unlike MC Dropout which multiplies inference 
costs with repeated forward passes (Daxberger et al., 2021a; Kristiadi et al., 2020). In our 
case, LLLA was highly effective at mitigating overconfidence and highlighting spatial 
uncertainty in the extrapolation domain, especially in under-sampled areas, confirming its 
value as a robust, scalable, and lightweight uncertainty quantification tool for DSM 
applications.” 

 

Minor comments:  

6. Line 55: the authors underline that the ANNs make predictions through complex internal 
processes that are difficult to understand and interpret. Here references to recent studies 
improving the interpretability of such methods for digital soil mapping should be added. 
Suggested references  
Padarian, J., McBratney, A. B., and Minasny, B.: Game theory interpretation of digital soil 
mapping convolutional neural networks, Soil, 6,389–397, 2020.  
Wadoux, A. M. J.-C. and Molnar, C.: Beyond prediction: methods for interpreting complex 
models of soil variation, Geoderma, 422, 115 953, 2022.  
 
Thank you for the suggestion. We have added the recommended references. 
 
Line 55-60: 
“Recent studies have addressed this limitation by introducing model-agnostic interpretation 
techniques and game theory-based Shapley additive explanations (SHAP), which provide 
valuable insights into the relationships between environmental covariates and 
model predictions (Padarian et al., 2020a; Wadoux and Molnar, 2022). In addition, ANNs 
typically lack built-in uncertainty quantification, which complicates the evaluation of their 
predictive reliability and may lead to misinterpretations or suboptimal 
decision-making (Guo et al., 2017).” 

 

7. The results in Fig. 5 are very convincing. Despite the efficiency of LLMA, a long tail in the 
probability distribution still remains. I wonder whether this could be further alleviated with 
an extra calibration of the probability. See for instance Niculescu-Mizil & Caruana (2005). 
Suggested reference Niculescu-Mizil, A., & Caruana, R. (2005). Predicting good probabilities 
with supervised learning. In Proceedings of the 22nd international conference on Machine 
learning (pp. 625-632).  
 



Thank you for this thoughtful suggestion. We agree that further calibration techniques, such 
as those proposed by Niculescu-Mizil & Caruana (2005), could help refine the output 
probabilities. However, in this study, we chose to evaluate the effect of LLLA without 
additional calibration in order to isolate its native performance. Therefore, we have not 
made changes in this regard. 
 
 
 
 


