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Abstract. The Central American mid-summer drought (MSD) is a defining precipitation pattern within the regional hydrologic 

system linked to water and food security. Past changes and future projections in the MSD show a strong sensitivity to how the 

MSD is defined. The question then arises as to whether multiple definitions should be considered to capture the uncertainty in 10 

projected impacts as climate warming continues and a need to understand the impacts on regional hydrology persists. This 

study uses an ensemble of climate models downscaled over Nicaragua using two methods, global warming levels up to +3 °C, 

and different definitions of the MSD to characterize the contributions to total uncertainty of each component. Results indicate 

that the MSD definition contributes the least to total uncertainty, explaining 5-89% of the total. At the same time, evidence 

suggests a shift of the MSD to later in the year.  As warming progresses, total uncertainty is increasingly dominated by 15 

variability among climate models. While not a dominant source of uncertainty, downscaling method adds approximately 10-

158-18% to total uncertainty. Future studies of this phenomenon should include an ensemble of climate models and can take, 

taking advantage of archives of downscaled data to adequately capture uncertainty in hydrologic impacts. ThisThese findings 

provide critical guidance for future research aiming to inform water planning and adaptation efforts in the region: by identifying 

the dominant sources of uncertainty across warming levels, this framework helps prioritize where to focus modeling and 20 

monitoring efforts. In particular, water resource managers can use this information to design adaptive strategies that are robust 

to model spread and shifts in seasonal precipitation timing, rather than to definitional ambiguity. The projection uncertainty 

partitioning approach could serve as a template to quantify the relative importance of uncertainty for projections of other 

precipitation-driven phenomena in different geographic contexts. 

 25 

1 Introduction 

Central America is consistently identified as a global hotspot for anthropogenic climate change, being prone to exacerbated 

impacts of already considerable natural climate variability and change (e.g., Giorgi, 2006; Hidalgo et al., 2017; Stewart et al., 

2021). Any effort to develop strategies for mitigating impacts of future climate disruption or adapting to probable hydrologic 
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impacts is based on climate model projections (IPCC, 2023; Lemos and Rood, 2010; Zhao et al., 2021). A quantitative 30 

assessment of how variability in precipitation is partitioned into other hydrologic processes, especially the evaluation of 

changes in extremes such as droughts and floods, can help anticipate variability in impacts (Yin and Roderick, 2020). 

 

CharacterizingThis study focuses on future precipitation-driven hydrologic changes, the focus of this study, introduceswhich 

introduce a cascade of uncertainties into impact projections (Aitken et al., 2023). The uncertainty associated with each step 35 

along this cascade, which can include future greenhouse gas concentrations, climate response, downscaling, and hydrologic 

response can be estimated using multi-model ensembles (discussed in more detail below), which). Assessing this uncertainty 

can becomebe a daunting task for stakeholders preparing strategies to cope with the projected changes in the timing and 

availability of water. Improved understanding of the comparative magnitudes of different sources of variability in impact 

projections can highlight opportunities to reduce them and,. Even more importantly, these comparative magnitudes can help 40 

identify which steps in the modeling chain may be simplified without adversely affecting metrics relevant to decision-making 

related to adaptation and mitigation strategies in water resources (Steinschneider et al., 2023). 

 

As characterized by early efforts to compare variability among precipitation and temperature predictions (Hawkins and Sutton, 

2009, 2011), uncertainties arise from imperfect representation of the earth system in numerical models (scientific uncertainty), 45 

the inability to know future atmospheric concentrations of greenhouse gases (forcing or scenario uncertainty), and the 

impossibility of precisely predicting a chaotic system (internal variability). Hawkins and Sutton found that, using climate 

model projections from the third Coupled Model Intercomparison Project (CMIP3), internal variability becomes less important 

than scientific or scenario uncertainty later in the 21st century. They also observed a marked difference between precipitation 

projections, with greater internal and model variability persisting late into the 21st century, and temperature projections, which 50 

showed scenario uncertainty dominating projections in most regions late in the 21st century. This reflects the dominant physics 

of temperature being a primary response to the increased radiative forcing of accumulating greenhouse gases, and precipitation 

being driven by secondary physical processes that are more challenging to model, such as the moisture holding capacity of the 

atmosphere, the variety of phenomena that can cause precipitation, and feedbacks with the land surface, ocean, and cryosphere 

lead to significant variability on scales much smaller than those of temperature (Neelin et al., 2022; O’Gorman and Schneider, 55 

2009; Stainforth et al., 2005). Other recent studies have found similar results with more recent climate model simulations at 

continental scales (Lehner et al., 2020; Woldemeskel et al., 2016).  

 

In the most recent sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC), a new emphasis was 

placed on assessing impacts at specified levels of global warming (relative to pre-industrial conditions of 1850–1900) to 60 

facilitate comparisons with earlier reports and coordination with targets in international agreements (IPCC, 2023). Assessing 

impacts at specific global warming global warming levels also allows the use of models irrespective of their sensitivity 

(Hausfather et al., 2022). This approach essentially combines scientific and scenario uncertainties into a single ‘projection’ 
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uncertainty, reducing the variability in simulated projections, but leaving the time at which any specified level of warming 

occurs less well defined. An advantage for stakeholders is that policies can be developed to respond to locally important 65 

hydrologic impacts at different levels of warming without having to cope with forming an ensemble by culling models (based 

on correspondence of model sensitivity to likely range) or with selecting atmospheric greenhouse gas concentration scenarios 

(Merrifield et al., 2023). In fact, demonstrable skill may be lost when excluding models from an ensemble based solely on 

correspondence of model sensitivity to observational estimates (Goldenson et al., 2023; Swaminathan et al., 2024). 

 70 

Because hydrologic impacts analysis often requires projections at a finer spatial scale than what climate models produce, some 

type of downscaling is performed, which adds an additional layer of uncertainty that has been included in more recent studies 

(Lafferty and Sriver, 2023; Michalek et al., 2024; Wootten et al., 2017). The selection of downscaling method has been found 

in some locations to add a significant amount of uncertainty to projections, sometimes persisting at levels comparable to other 

sources through the 21st century, though results can vary widely in different regions (Lafferty and Sriver, 2023; Wootten et 75 

al., 2017). 

 

When expanding an analysis to include specific impacts, the total uncertainty in projections will include that uncertainty that 

is due to imperfect simulation or definition of impacts (Chegwidden et al., varying definitions of impacts will add to the total 

uncertainty. 2019; Clark et al., 2016). The importance of this level of uncertainty can vary widely, based on the specific impact 80 

assessed (Bosshard et al., 2013). For example, for future projections of potential evaporation (PE) for France, Lemaitre-Basset 

et al. (2022) found the PE formulation had a minor contribution to total projection uncertainty, except when only a single 

scenario was used. How droughts were characterized for compound hot and dry events was a dominant uncertainty source for 

low precipitation events but was a much smaller portion of uncertainty for other formulations (Jha et al., 2023).  Even when 

given identical input, different models will simulate different impacts, compounding the uncertainty in projections 85 

(Chegwidden et al., 2019; Clark et al., 2016). The importance of this level of uncertainty can vary widely, based on the specific 

impact assessed (Bosshard et al., 2013). Hydrology model parameterization did not significantly influence total uncertainty in 

a study of projections of subsurface drainage at an experimental site in France (Jeantet et al., 2023). 

 

Across Central America, the midsummer drought (MSD) is a phenomenon where boreal summer seasonal rainfall is 90 

characteristically divided into two distinct rainy periods by a relative lull in precipitation, and it is a critical component of the 

regional hydrologic system (Anderson et al., 2019). Changes in the MSD can lead to lower soil moisture, reduced groundwater 

recharge, and increased evaporation rates, which can have important impacts on the agricultural calendar, and local food and 

water security (Stewart et al., 2021). Thus, understanding the causes and impacts of the disruption of midsummer droughts is 

crucial for managing water resources, predicting agricultural outcomes, and mitigating the effects of such dry periods. A recent 95 

study     of the Central American MSD explored the variability in historical trends based on how the MSD is defined (Maurer 

et al., 2022). In addition, many studies have examined projected future changes in the MSD (Corrales-Suastegui et al., 2020; 



4 
 

Maurer et al., 2017; Rauscher et al., 2008), though whether the uncertainty added by the MSD definition is important relative 

to other projection uncertainties remains to be determined and is the focus of this study. 

 100 

     The Central American Dry Corridor (CADC) is a highly climate sensitive region that occupies much of the Pacific side of 

Central America. The CADC is generally dry and has highly seasonal and variable climatic conditions, one expression of 

which is the MSD. The MSD persists across much of the region, strongly influencing smallholder farmers who depend on 

rainfed agriculture (Stewart et al., 2021). In Nicaragua, distinctly precarious socio-economic and climatic vulnerabilities 

intersect with a scarcity of observational (station) data, (Girardin, 2024), rendering advances in the understanding of the 105 

regional hydrologic system particularly pertinent. (Stewart et al., 2021).  

 

In this study, we present a demonstration of uncertainty partitioning for the MSD in Nicaragua to determine whether the choice 

of MSD definition is important to include as an additional source of uncertainty when estimating projected future impacts. We 

also recast the typical uncertainty analysis using specific warming levels rather than defined time windows so the results will 110 

be less sensitive to changes in the models selected or future emissions scenarios in projecting impacts, in this case to MSD 

characteristics. 

2 Methods 

The uncertainties in the projections of the MSDThe main sources of uncertainty in projections of the mid-summer drought 

(MSD) evaluated in this study include internal variability, differences among climate models, the choice of downscaling 115 

method, and the definition of the MSD itself. They are determined based on climate projections of daily precipitation and the 

simulated MSD characteristics (the impacts of concern for this study). These are) and described as follows. 

2.1 Climate model projections 

Downscaled daily precipitation data are obtained from two sources: the climate impacts lab (CIL) data set (Gergel et al., 2023), 

and the CMIP6 version of the NASA-NEX archive (Thrasher et al., 2022). While both data sets use statistical downscaling, 120 

their methods are distinct. CIL uses a quantile delta mapping method for bias adjustment (Cannon et al., 2015) with a 

downscaling method that preserves climate model trends at quantiles. The NASA-NEX data set uses a similar bias correction, 

but a very different spatial disaggregation method based on perturbing the historical observations with bias corrected 

anomalies, without preserving climate model precipitation trends of the climate models. Additionally, the two methods use 

different observational baselines for bias correction, which has been shown to influence results (Rastogi et al., 2022; Wootten 125 

et al., 2021). Both the NASA-NEX and CIL downscaled data have a resolution of 0.25 degrees (approximately 27.5 km in 

Nicaragua). It should be noted that restricting the analysis to model runs common to both CIL and NASA-NEX, with a single 
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run per model, may limit the characterization of internal variability by relying on single realizations per model, and equal 

model weighting may understate the effect of model dependence or  skill. 

 130 

This study uses a set of 8eight climate model runs that are shared between both data sets for both historic and future projections, 

using shared socioeconomic pathway (SSP) 5-858.5 (Meinshausen et al., 2020). These are listed in Table 1, which also includes 

the original spatial resolution before downscaling. SSP5-858.5 is the scenario with the highest anthropogenic emissions and 

resulting radiative forcing, which means all the models used in this study produce in excess of +3 °C of warming during the 

21st century, allowing all to be used in analyses at global warming levels of +1.5, +2.0, and +3.0 °C. 135 

 

 
Table 1: Climate model runs used by downscaling methods in this study. Nominal resolution is the approximate horizontal resolution 
of the archived data for the model land component. 

Model Variant Institution 

Nominal 
Resolution 
(km) 

BCC-CSM2-MR r1i1p1f1 Beijing Climate Center 100 

CMCC-ESM2 r1i1p1f1 Euro-Mediterranean Center 100 

EC-Earth3-Veg-LR r1i1p1f1 EC-EARTH consortium, The Netherlands/Ireland 250 

GFDL-ESM4 r1i1p1f1 NOAA Geophysical Fluid Dynamics Laboratory 100 

INM-CM5-0 r1i1p1f1 Institute for Numerical Mathematics (INM), Russia 100 

MIROC6 r1i1p1f1 National Institute for Environmental Studies, Japan 250 

MPI-ESM1-2-HR r1i1p1f1 Max Planck Institute for Meteorology (MPI), Germany 100 

NorESM2-MM r1i1p1f1 Norwegian Climate Center, Norway 100 
 140 

By only including those downscaled runs that use identical climate model simulations for both CIL and NASA-NEX as input, 

the variability due to model selection is separated from that due to internal variability represented by different model initial 

conditions or parameterizations. All model projections are considered equally plausible, and are thus equally weighted as in 

Michalek et al. (2023). 

2.2 Warming levels 145 

The years at which each model projection reaches +1.0, +1.5, +2.0, and +3.0 °C of global mean warming (relative to pre-

industrial conditions) were determined by Hauser et al. (2022) for CMIP6 climate models using the mid-year of a 20-year 

moving window. In this experiment, a 30-year window was used around the defined mid-year for each model run and the mean 

of each impact in that 30-year period was determined at different levels of warming. The years at which the model projections 

simulate the different levels of warming are shown in Figure 1. The +1.0 °C warming level is not used in this study as it has 150 

already been exceeded. 
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Figure 1: The years at which each warming level is reached for the climate model ensemble in Table 1. 

2.3 MSD characteristics 155 

The MSD as a hydrologic phenomenon is defined using local stakeholder descriptions and the methods described in Maurer 

et al. (2022). The methods are implemented in the R package msdrought (Uyeda et al., 2024). The MSD characteristics are 

entirely derived from the timing and magnitude of smoothed daily precipitation, and the occurrence of two maxima and a 

relative minimum within two defined windows, as depicted in Figure 2. For a year to be considered an MSD year, the MSD 

must have a minimum duration of 15 days and a minimum intensity of at least 3 mm d-1. Years that do not display an MSD 160 

by these criteriaYears that do not display a timing of peaks and the intervening minimum occurring within the defined windows 

are designated as NULL. The default definition for the Central American region requires that the MSD maxima must occur 

between May 1st1 and October 31st,31 and the minimum within the June 1st -1 to August 31st31 window (Figure 2).), though 

these are adjusted for this experiment as noted below. 
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 165 

The twoWhether an MSD characteristics evaluated in this study are the occurs in any year is often defined using some measures 

of duration (the number of days between the peaks) and the , intensity (the averageor strength), and timing (e.g., Alfaro, 2014; 

Anderson et al., 2019, Karnauskas et al., 2013; Perdigon-Morales, et al., 2018). Maurer et al. (2022) determined that, 

considering several aspects of the two peaksMSD definition, the two with greatest impact on results were the minimum 

intensity and the MSD timing, which are therefore used in this study. For this experiment, we use the same definitions of 170 

intensity and duration as Maurer et al. (2022): MSD intensity was calculated as the mean precipitation of these maxima minus 

the minimum precipitation), producing one value for each impact per year. For this experiment,  occurring between them; 

MSD duration was defined as the number of days between the two seasonal precipitation maxima. To explore the variability 

associated with MSD definitions, the dates are shifted 14 days earlier and then 14 days later from those in Figure 2 to estimate 

the effect of this definition on MSD variability. We also vary the minimum intensity from 2 to 4 mm d-1. 175 

 
 

While not a defining characteristic, the frequency of MSD occurrence is often used to characterize the robustness and 

importance of the MSD (Corrales-Suastegui, et al., 2020; Zhao et al., 2023). Where we present results, we focus on regions 

that exhibit MSDs in ≥ 50% of years. 180 
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Figure 2: A schematic of a typical MSD year, highlighting the definition (dates) and the impacts (intensity and duration) of interest 
in this study. Red points mark maxima and the blue point marks the minimum used. Duration is the number of days between the 
peaks; intensity is the average of the two peaks minus the minimum between them. All metrics are calculated from the smoothed 185 
daily precipitation time series. To estimate the effect of the definition on MSD variability, dates are shifted 14 days earlier and later 
from the definition dates shown here, and differing values for a minimum intensity are applied. 

2.4 Variance partitioning 

The partitioning of variance among the different sources generally follows Michalek et al. (2023). Variance partitioning was 

done for each MSD characteristic/impact (duration and intensity), for each grid cell in the domain bounded by longitudes --83° 190 

and --88° and latitudes 10° and 15°.  

 

First, for each climate model, downscaling method, and definition (the experiments varying the MSD dates and minimum 

intensity) an 11-year smoothing window was applied to the values for each year and the anomalies relative to a 1970-1999 

base period were calculated. Internal variability was then estimated by fitting a LOESS curve to the anomalies of each impact 195 

and calculating the variance of the LOESS residuals for each defined warming level and impact of interest ((+1.5, +2.0 and 

+3.0 °C) using a 30-year window centered on the midyear of warming for each climate model. Some prior studies have used 

other methods to estimate internal variability, such as fitting a polynomial rather than a LOESS curve (Hawkins and Sutton, 

2009). The choice of method for estimating internal variability has been shown to add substantial uncertainty when a single 

climate model is used (with many runs); using multiple climate models lessens this impact (Lehner et al., 2020). 200 

 

Model variability is estimated by calculating the variance of the LOESS predicted values for each defined warming level and 

impact of interest. 

Model Variance = 1
𝑁𝑁1
∑ var[𝑥𝑥�(𝑡𝑡,𝑑𝑑, 𝑒𝑒,𝑚𝑚)]𝑑𝑑,𝑒𝑒         (1) 

Here x̂ is the set of LOESS predicted values for the set of years, t, associated with the warming level specified for each climate 205 

model, m. N1 is the number of unique subsets of x̂ with valid (non-NULL) MSD impact data for each combination of 
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downscaling method, d, and MSD definition experiment, e. Similarly, uncertainty due to the downscaling method is calculated 

by 

Downscaling Variance = 1
𝑁𝑁2
∑ var[𝑥𝑥�(𝑡𝑡,𝑑𝑑, 𝑒𝑒,𝑚𝑚)]𝑚𝑚,𝑒𝑒         (2) 

where N2 is the number of unique subsets of x̂ with valid (non-NULL) MSD impact data for each combination of climate 210 

model, m, and MSD definition experiment, e. Finally, the uncertainty due to MSD definition is calculated by 

MSD Definition Variance = 1
𝑁𝑁3
∑ var[𝑥𝑥�(𝑡𝑡,𝑑𝑑, 𝑒𝑒,𝑚𝑚)]𝑚𝑚,𝑑𝑑        (3) 

N3 is the number of unique subsets of x̂ with valid (non-NULL) MSD impact data for each combination of downscaling method, 

d, and climate model, m. 

3 Results and Discussion 215 

To frame the impacts of a warming climate on the MSD in Nicaragua, Figure 3 shows the median changes in intensity and 

duration projected by the complete ensemble used for this study. Figure 3 also shows the boundary of the Central American 

Dry Corridor (CADC) as objectively determined by Stewart et al. (2021). The CADC is a relatively arid region with highly 

seasonal precipitation in Central America that exhibits a high sensitivity to climatic changes and is especially susceptible to 

drought impacts. It is therefore a focus for some of the analysis in this study. 220 
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Figure 3: Historical values as simulated by the model ensemble of MSD intensity (a) and duration (c) for 1970-1999, and the projected 
changes (b and d) with +3 °C of global warming, using the dates in Figure 2 in the MSD definition. Grid cells marked with an "X" 
indicate the change is significant at a 5% level based on a Wilcox (Mann-Whitney) test. The magenta line is the boundary of the 225 
Central America Dry Corridor (CADC), the black line denotes the coastline. Grid cells with less than 50% of years having an MSD, 
in both historical and future periods, are white. In addition, if less than half of the models in the ensemble show an MSD, the grid 
cell is white. 

Figure 3 shows the highest intensity and longest duration MSDs for 1970-1999 are experienced in the CADC on the Pacific 

side of Nicaragua. Changes in MSD intensity anticipated with +3 °C of global warming are focused on the East, in the area 230 

that has historically experienced the lowest intensity (least pronounced) events of the shortest duration. Duration changes are 

more widespread, indicating a longer lull in the rainy season as climate disruption progresses. 

 

Figures 4 and 5 show the effect of shifting the default dates in the MSD definition (Figure 2) on projected changes to MSD 

intensity and duration. Figure 4 shows that shifting the dates 14 days earlier dramatically reduces the area that would be 235 

classified as having an MSD, compared to Figure 3. Conversely, Figure 5 shows that shifting the time windows 14 days later 

expands the area with an MSD. These results are consistent with prior work that found the MSD tending to shift later and to 

have a longer duration with climate change impacts (Maurer et al., 2022). 
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Figure 4: As in Figure 3 but showing only mean changes in MSD intensity and duration when changing the MSD definition to use 240 
dates 14 days earlier than shown in Figure 2. 

 
Figure 5: Similar to Figure 4, but with the MSD definition using dates shifted 14 days later than in Figure 2. 

 

Focusing on the CADC in the Nicaragua domain considered in this study, Figure 6 shows the variability of the changes in 245 

MSD duration and intensity, averaged over the CADC, among the 16 different projections (8eight climate models and two 

downscaling methods) when shifting the MSD definition dates 14 days earlier and 14 days later. 

 



12 
 

 

 250 
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Figure 6: Mean individual projections (points) for the CADC (Nicaragua) and probability contours (based on a Gaussian kernel 
density estimator) at +3 °C global warming with the MSD definition shifted 14 days earlier or 14 days later than in Figure 2. 

Figure 6 shows that for the CADC (the portion in Nicaragua) the definition of the dates has a strong impact on the projected 

changes, especially in MSD duration, with the shift in projected duration change being comparable to the variability among 

individual projections. This raises the question of whether the choice of MSD definition adds enough uncertainty to the MSD 255 

impacts, relative to the other sources of uncertainty, where stakeholders should include multiple definitions in impacts analysis. 

This is explored below. 

 

Figure 7 shows the contributions to total variance of MSD intensity due to the different sources considered in this study at 

different global warming levels. As has been found in other analyses of precipitation uncertainties (Lehner et al., 2020; Wu et 260 

al., 2022), this precipitation-derived MSD impact also shows internal variability dominating for the historical period. Internal 

variability contributes a substantial amount of uncertainty as warming progresses, though even at the lowest +1.5 °C level the 

model projection uncertainty constitutes the majoritymost of the uncertainty to the projection of MSD impact. While not 

shown, the MSD duration shows similar patterns. 

 265 
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Figure 7: For MSD intensity, the percent of total variance contributing to each source included in this analysis, for the base period 
of 1970-1999 (top row) and for different levels of global warming. Only grid cells exhibiting 50% or greater frequency of MSD years 270 
are colored. 

Despite very different spatial characteristics of changes in MSD frequency (indicated by the white grid cells in intensity 

(Figures 3-5) and MSD intensity,frequency (Figure 8), Figure 7 shows relatively consistent fractional uncertainty for all 

sources across the domain. This reflects the larger contributions to MSD intensity uncertainty of climate model and internal 

variability, both inherited from the larger spatial scales of the climate models (as shown in Table 1). The bias correction and 275 

spatial downscaling included with the downscaling methods aligns the climate model output to finer gridded observations but 

adds a relatively small portion to the overall uncertainty in MSD impacts. As shown in Figure 7, uncertainty due to downscaling 

is relatively small over Central America because the dominant sources of uncertainty come from large-scale climate model 

differences and internal variability. Downscaling methods primarily refine model output to match finer observational data but 
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do not significantly increase the total uncertainty. Thus, in the context of MSD analysis, the role of downscaling in uncertainty 280 

is modest compared to inherited uncertainties from the climate models themselves. The MSD definition has the smallest 

contribution to total uncertainty at all warming levels with smaller contributions toward the Pacific coast where MSD frequency 

is greatest (Figure 8) and intensity is strongest (Figure 3). 

 

 285 
Figure 8: The frequency of MSD occurrence as a % of years for the different global warming levels depicted in Figure 7, for regions 
exhibiting an MSD in at least 50% of years. 

While MSD impacts in this study are based on (smoothed) daily precipitation, there might be more spatial heterogeneity in 

impacts derived from extreme precipitation events, since mean daily precipitation is generally more skillfullyskilfully 

simulated by climate models than extremes, (Volosciuk et al., 2017), and would therefore be adjusted more dramatically during 290 

the downscaling process. Exploring the uncertainty contribution of downscaling to impacts driven by more extreme events 

may benefit from more varied, regionally-focused downscaling efforts (e.g., Tamayo et al., 2022). 
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The progression of uncertainty through different levels of warming for both MSD intensity and duration, averaged across the 

CADC in Nicaragua, is shown in Figure 89. At levels of warming above +2.0 °C model projection uncertainty is the largest 295 

component to uncertainty in both MSD impacts. Even at At +3.0 °C of warming, internal variability contributes 15 – 3019 – 

29% of the total uncertainty in MSD intensity and duration over the CADC. Downscaling variability for the CADC region 

contributes a relatively constant 10 – 15consistent 8-18% of the total uncertainty at all future warming levels, and a larger 

percentage for MSD intensity than duration. The uncertainty dueThis is consistent with different downscaling methods, which 

are often developed to the MSD definition is the smallest portion at all warming levels, but generally larger for duration 300 

thanadjust for biases in mean values (Cannon et al., 2015), diverging more for extreme precipitation, and MSD intensity being 

a function of peak precipitation values in any year. 
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 305 
Figure 89: Mean fraction of variance for a) MSD intensity and b) MSD duration, averaged over the CADC in Nicaragua (see Figures 
4 and 5). The Warming level labeled 0 is for 1970-1999. 

The uncertainty due to the MSD definition is the smallest portion at all warming levels, at 5-9% of the total uncertainty over 

the CADC and is slightly larger for duration than for intensity as warming progresses. The uncertainty due to MSD duration 
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becomes higher than that for intensity because for the CADC the intensities are already high, and even with projected slight 310 

declines in intensity (Figure 3), they remain well above the minimum thresholds explored in this experiment. By contrast, the 

timing established for the MSD windows has a dramatic effect on the determination of an MSD year and produces changes in 

duration that are large relative to its baseline (1970-1999) values (Figures 4 and 5). While these differences do emerge in our 

results, it should be emphasized that their contribution to total uncertainty remains small. 

4 Conclusions 315 

The advances in understanding the hydrologic system in this study focus on refining the methods for projecting future 

precipitation changes and their impacts on the Central American Midsummer Drought (MSD). In considering projections of 

future precipitation on the Central American MSD, this study indicates the dominant sources of uncertainty are internal 

variability (especially for near term, or lower levels of global warming) and variability among climate models (increasingly so 

as warming level increases). While precipitation downscaling has the potential to introduce large uncertainties in some 320 

hydrologic impacts, for the MSD impacts included in this study downscaling generally contributes less to total uncertainty 

compared to other sources. Despite having a strong impact on the magnitude and spatial extent of the MSD, the exact definition 

of the MSD has a minor effect on the uncertainty of MSD projections at all warming levels. , similar to prior studies that found 

variable or limited impact of definition uncertainty (Jeantet et al., 2023; Jha et al., 2023; Lemaitre-Basset et al., 2022). Thus, 

while model spread and internal variability dominate, the role of the MSD definition was found in this study to be 325 

comparatively small; future studies should continue testing how event or season definitions influence uncertainty. 

 

The main implication of these findings for future work on climate disruption and the future of the Central American MSD is 

that selecting an ensemble of climate models is essential for characterizing the uncertainty in precipitation and its impact on 

the MSD. By analyzinganalysing impacts at specific levels of warming, rather than future spans of years, the selection of 330 

models may be done without excluding models based on sensitivity, which simplifies the process as other climate model skill 

metrics may be used. Using a single precipitation downscaling method for all climate models would still capture the majority 

of MSD impact uncertainty, though with multiple archives of downscaled data freely available, multiple methods can be readily 

included. The definition of the MSD can be chosen to capture impacts of interest, but the specific definition of the time 

windows for the MSD does not add substantially to the uncertainty in impactsand minimum intensity required for an MSD 335 

does not add substantially to the uncertainty in impacts. These findings show that future work can better support more efficient 

decision-making by selecting climate model ensembles based on performance metrics rather than sensitivity, framing 

projections by warming levels instead of time periods, and using a single downscaling method without major loss of uncertainty 

characterization. Additionally, they demonstrate that flexibility in defining the MSD allows tailoring analyses to stakeholder-

relevant impacts without significantly increasing uncertainty. Furthermore, the dominance of internal variability at near-term 340 

timescales, and the growing role of model uncertainty under higher warming, has important implications for stakeholders. 
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Policymakers, water managers, and agricultural planners must recognize that near-term variability may mask or amplify 

underlying trends, complicating adaptation strategies. In the longer term, the prominence of model uncertainty highlights the 

need for improved climate modeling and ensemble strategies to better constrain future risk assessments. Explicitly accounting 

for which source of uncertainty dominates at a given time horizon allows stakeholders to tailor their decisions accordingly. 345 

 

While two precipitation downscaling methods were used to characterize the uncertainty in downscaling on the MSD impacts, 

including additional methods could improve this, especially if dynamic downscaling were represented. Expanding the domain 

would allow a greater exploration of the spatial variability in the different components of uncertainty on the regional MSD. 

Future research will further explore these improvements to this study. The approach presented in this study could serve as a 350 

template to quantify the relative importance on uncertainty for the projection of other precipitation-driven impacts in different 

geographic contexts and regional hydrologic systems, such as monsoon patterns or the timing and duration of the rainy season 

in other highly seasonal climates. 

 

This study directly responds to the needs of stakeholders, such as water managers and agricultural planners, who require 355 

actionable and skilful projections to inform adaptation strategies under climate change. By identifying where simplifications 

in modeling (e.g., MSD definition or downscaling method) do not substantially impact uncertainty, and by adopting a warming-

level framing that aligns with international policy targets, this work supports more efficient and targeted planning in the face 

of future hydrologic change that can be developed for other geographic regions. 

Code availability 360 

An R package is available at https://cran.r-project.org/package=msdrought for determining the characteristics of the mid-

summer drought using daily precipitation data. Processing code is archived at https://github.com/EdM44/msd_variance. 
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