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Text S1. Site description and online instruments

Field observations were performed at eleven sites in eastern China, including four urban sites in Jinan, Guangzhou, Nanjing,
and Beijing, five rural sites in Dongying, Wangdu, Yucheng, and Qingdao (including two sampling sites: Qingdao Campus
of Shandong University and Entrepreneurship Center of Blue Silicon Valley), and two mountain sites at Mount Tai and

Mount Lao (seen in Figure 1). Detailed sampling site information and online measurements are available below.

The Jinan site is situated at the Urban Atmospheric Environment Observation Station (~22 m above ground level) of
Shandong University in Jinan, Shandong Province. Jinan, a major industrialized city in North China, has a sampling site
characterized by intensive traffic, commercial and residential activities nearby, and extensive industrial facilities. Trace gases,
including SO,, NO., and O3, were monitored with online gas analyzers (Thermo Electronic Corporation, TEC, Model 43C,
42C, and 49C, respectively) and meteorological data were recorded by an automatic meteorological station (CAWS600,

Huayun, China). Details about this site were given by Wang et al. (2017b).

The southernmost Guangzhou site is located at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences in
Guangzhou, Guangdong Province. This site is surrounded by education and residential districts, with two heavily trafficked
expressways nearby. Related site information was provided by Bi et al. (2016).

The Nanjing site is situated at the Station for Observing Regional Processes of the Earth System (SORPES) in the Xianlin
Campus of Nanjing University in Nanjing, Jiangsu Province. Nanjing is a megacity city that dominated by tertiary industries
such as finance and software. This site is less influenced by industrial emissions in the vicinity but it is adjacent to the G25
Freeway (~300 m) and G312 National Road (~1.8 km), which may potentially affect the air pollution levels at the sampling

location. A more detailed description of this station can be found in a previous study by Ding et al. (2013).

The Beijing site is located at the Chinese Research Academy of Environmental Sciences (CRAES), an urban site with
education and residential districts and heavy traffic. As described by Ren et al. (2021), this area was significantly affected by
anthropogenic activities and direct emissions. Meteorological parameters, as well as gaseous tracers, were determined
simultaneously by employing automated instruments (Chinese Research Academy of Environmental Sciences Supersite for

Urban Air Comprehensive Observation and Research).

The Dongying site, where PM_s samples were collected, is situated at the Yellow River Delta Ecology Research Station of
Coastal Wetland, Chinese Academy of Sciences. It is a typical rural site that located at the mouth of the Yellow River,
characterized by minimal local anthropogenic emissions. Related tracer gases of SO2, NO,, and O3 were measured by Model
43C (TEC), Model T500U (Teledyne Advanced Pollution Instrumentation, API), and Model 49C (TEC) analyzers,
respectively. Meteorological data were also measured online (JZYG, PC-4, China). Detailed information on this site was
given by Zhang et al. (2019).
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The Wangdu site is located in a rural area of Baoding, Hebei province. The immediate vicinity (within 5 km) of the sampling
site consists predominantly of agricultural land. However, this site is affected by anthropogenic emissions from nearby urban
cities, such as Beijing, Tianjin, and Shijiazhuang. Trace gases of NO, and Os; were monitored online using a Model 42i
analyzer and a Model 49i analyzer (TEC), respectively, while SO, was determined by a pulsed UV fluorescence analyzer.
Moreover, meteorological parameters were measured using a weather station. More information on the site can be found in
Tham et al. (2016).

The measurements conducted at the Yucheng site, situated at the Chinese Academy of Sciences Comprehensive Station,
Dezhou, Shandong province. The sampling site is surrounded by agricultural land, but there is the G308 highway located 1.5
km south of the site. Trace gases, including NO,, Os, and SO, were detected online with Model 42C, 49C, 43C analyzer
(TEC), respectively. Data on meteorological parameters were provided by an automatic meteorological station (Model
MILOS520, Vaisala, Finland). And details about the site were described by Yao et al. (2016).

The two sampling sites situated in coastal areas in Qingdao are Qingdao Campus of Shandong University and
Entrepreneurship Center of Blue Silicon Valley. The two sites are in close proximity to each other, with a linear distance of
only 2.2 km (shown in Fig. 1b). They are surrounded by educational and residential districts, villages, and farmlands. As
typical rural coastal areas, the two sites are influenced by both anthropogenic and natural sources. Specially, the
concentrations of SOz, NO2, and O3 were measured in real time by gas analyzers (Model 43i, 42i, and 49i, respectively).

More information on this sampling site can be seen in our previous study (Liu et al., 2022).

The measurement site located on Mount Tai in Tai'an city, Shandong Province, is the highest point in the Northern China
Plain, making it an ideal place for studying the transport, sources, and formation processes of air pollutants in northern China.
This mountaintop lacks significant local anthropogenic emissions but is influenced by air masses transport processes in the
region. Trace gases were recorded using online gas analyzers (Model 43C, Model T200/T500U, and Model T400U for SO,
NO., and Os, respectively), and meteorological data were obtained from Taishan National Reference Climatological Station.
Detailed descriptions of this site were given by Wang et al. (2017c¢).

The sampling site on Mount Lao is situated in the southeastern part of the Shandong Peninsula in Shandong Province, with a
straight-line distance of about 1 km from the coastline. This site is adjacent to a dedicated tourist road and surrounded by
several villages, restaurants, and guesthouses. Therefore, Mount Lao is an ideal location for studying the impact of land-sea
exchanges on atmospheric pollution characteristics in coastal regions at different scales. In addition, online gas analyzers
(Thermo Scientific, U.S.A,) were used to determine the concentrations of trace gases, and meteorological parameters were
measured by an ultrasonic automatic weather station (RS-FSXCS-NO1-1, China).



80 Text S2. Analytical method of NACs

PM_ s filter samples were extracted either ultrasonically or using a thermostatic orbital shaker, with methanol containing 30
L saturated EDTA solution three times for 30 min under a constant temperature condition of 18 <C and settled for more than
12 h. Then, the extracts were filtered through a 0.20 pm PTFE membrane syringe filter to remove insoluble impurity. The
resulting clear filtrate was evaporated and concentrated with a gentle stream of nitrogen. Finally, the residue was
85 reconstituted to a final volume of 300 LL with methanol containing the internal standard (100 ng mL! 4-nitrophenol-2,3,5,6-
ds used for mountain sites and rural Qingdao, 200 ng mL? 2,4,6-trinitrophenol used for the remaining sites) for further

qualitative and quantitative analysis.

NAC:s in the extracts were then analyzed by using UHPLC-MS equipped with ESI source. The separation of different NACs
(only for mountain sites and rural Qingdao) was performed with an Acquity UPLC HSS T3 column (2.1 mm ><100 mm, 1.8
90 pm particle size, 100A, Waters, U.S.A.) with a VanGuard column (HSS T3, 1.8 pm) at a flow rate of 0.19 mL min™. The
mobile phase contained eluent A (ultrapure water with 0.1% acetic acid) and eluent B (methanol with 0.1% acetic acid). The
gradient program was set as follows: eluent A was initially 99% and kept at 99% for 2.7 min, then gradually decreased to 46%
with 12.5 min and kept at 46% for 1 min, and then decreased to 10% with 7.5 min and held for 0.2 min. After that, eluent A
increased to 99% in 1.8 min and kept at 99% for the last 17.3 min before the next sample solution. For the remaining
95 sampling sites, the NACs were separated using an Atlantis T3 C18 column (2.1 mm =150 mm, 3.0 pm particle size, 1004,
Waters, U.S.A.) coupled with a VanGuard column (Atlantis T3, 3.0 um) at a flow rate of 0.2 mL min-1. The mobile phase
consisted of 11% acetonitrile and 0.1% formic acid in ultrapure water (eluent A) and 11% acetonitrile in methanol (eluent B).
The proportion of eluent A started with 66%, and then decreased to 44% within 19 min and was kept at 44% for 4min.

Finally, it returned to 66% for the last 8 min. The blank samples were extracted and analyzed in the same procedure.

100 The ESI source was operated in negative mode and eight mass-to-charge ratios including 138, 152, 154, 166, 168, 182, 183,
and 197 amu were monitored in real time. Then target NACs were then identified by comparing individual retention times
and mass spectra with standard mixtures: NPs (4-nitrophenol (4NP), 3-methyl-4nitrophenol (3M4NP), 2-methyl-4-
nitrophenol (2M4NP), and 2.6-dimethyl-4-nitrophenol (2,6DM4NP)), NCs (4-nitrocatechol (4NC), 4-methyl-5-nitrocatechol
(4M5NC), 3-methyl-6-nitrocatechol (3M6NC), and 3-methyl-5-nitrocatechol (3M5NC)), NSAs (5-nitrosalicylic acid (5NSA)

105 and 3-nitrosalicylic acid (3NSA)), and DNPs (2,4-dinitrophenol (2,4DNP) and 4-methyl-2,6-dinitrophenol (4M2,6DNP)).
Finally, the twelve NACs were quantified using multi-point standard curves (R? > 0.99) based on gradient standard mixtures.

Furthermore, in this study, all reported data in the sample filters were blank-corrected.
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Text S3. Positive Matrix Factorization (PMF) analysis

To obtain the potential factor profiles and contributions on NACs, in this study, two to six factors were tested for calculation
and evaluation. The difference between O, provided by the model and calculated O . . which calculated by the following

Eq. (S1), is used to determine the optimal number of factors for the calculation (Hong et al., 2022; Wu et al., 2020):
O opus =M *n—p(mxn) (S1)

where m is the input sample numbers, n refers to the number of input species, and p refers to the number of factors. The

changes in the Q ratio values for PMF solutions with 2~6 factors are shown in the Figure Sla. The O

true/Qrobust true/Qrobust

value decreased slowly after four factors, so a four-factor solution was chosen as best choice. Besides, the R? value between
observed NACs and predicted NACs by PMF model was obtained as 0.96 (Fig. S1b), indicating that the PMF analysis is a
well-fitting model in this study.

As shown in Figure S7, the major contributions of factor 1 were 4NP (84.9%), 3M4NP (73.7%), and 2M4NP (85.2%). As
reported by Lu et al. (2019a), remarkable amounts of NPs were detected in particles from residential coal combustion plumes,
with emission factors ranging from 0.01 to 0.94 mg kg*. Therefore, this factor was defined as coal combustion (CC)

activities and the its contribution to NACs was 41.0%.

Factor 2 is featured with the highest loading and contribution (87.3%) of NO; and is determined as traffic emissions (TE).
Previous studies have indicated that NACs can be directly emitted from traffic activities, with emission factors to be 0.68-
89.61 g km™ (Tremp et al., 1993; Schauer et al., 2002; Lu et al., 2019b), due to the hydrocarbons, polycyclic aromatic
hydrocarbons and nitro-polycyclic aromatic hydrocarbons fuel combusting in the engine (Zhang et al., 2014; Cao et al.,

2017). The contribution of traffic emission to the concentration of NACs was 29.7%.

Factor 3 is characterized by high contributions of 4NC (56.6%), 4M5NC (84.7%), and 3M6NC (83.9%), which are
significant tracers for biomass burning smoke (linuma et al., 2010; Claeys et al., 2012), and thus this factor is confirmed as
biomass burning (BB). This factor has been considered to be an important source of NACs in recent years that mainly
produced by the pyrolysis of lignin (Simoneit et al., 2007). The emission factors of fine NACs from biomass burning were
estimated to be 0.75-11.1 mg kg (Wang et al., 2017a). The contribution of biomass burning to the NACs concentration was
7.8%.

Factor 4 is distinguished by high levels of Oz (91.4%) along with 5NSA (80.0%) and 3NSA (86.9%), and is recognized as
secondary formation associated with gas-phase reaction (GR). Atmospheric Os is the major source of OH radicals, which
dominate the secondary formation of NACs from precursors (Harrison et al., 2005). Additionally, field observations and
experimental studies have confirmed that NSAs primarily originate from secondary oxidations in the gas phase (Wang et al.,

2018; Yuan et al., 2021). The contribution of secondary formation to the NACs concentration was 21.5%.
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Text S4. Ensemble machine learning model
Text S4.1. Base models

Random forest (RF) is an ensemble learning technique that constructs multiple decision trees based on bagging theory
(Breiman, 2001). RF improves predictive accuracy and controls overfitting by averaging the results of multiple trees, each
built from a random subset of the data. This method enhances model robustness, reduces variance, and makes it well-suited
for handling large datasets with complex interactions (Requia et al., 2020). Its inherent feature importance evaluation also
provides insights into the significance of various predictors (Petkovic et al., 2017).

Extreme gradient boosting (XGBoost), a gradient boosting algorithm, optimizes model performance by sequentially building
and combining decision trees. XGBoost incorporates regularization techniques to prevent overfitting and utilizes parallel
processing for efficiency, effectively handling large datasets and complex relationships. The XGBoost model has the

advantage of superior predictive capabilities and computational efficiency (Fatahi et al., 2022; Gui et al., 2020).

Similar to the XGBoost model, the light gradient boosting machine (LightGBM) is also a gradient boosting technique that
leverages tree-based learning algorithms. It utilizes a histogram-based approach for efficient training, significantly reducing
computation time and memory usage (Ke et al., 2017). LightGBM handles large datasets and complex features with high
accuracy by employing techniques such as gradient-based one-side sampling and exclusive feature bundling. Its advantages
include faster training speed, lower memory consumption, and effective handling of categorical features, which collectively
enhance predictive performance and scalability (Kang et al., 2021; Ju et al., 2019; Pham et al., 2021).

Multilayer perceptron (MLP) algorithm is a feedforward neural network consisting of an input layer, one or more hidden
layers, and an output layer. Each layer is fully connected to the subsequent layer, and MLP uses backpropagation to adjust
weights and biases during training. This model can achieve flexibility in modelling intricate data structures, adaptability to
various types of tasks, and effectiveness in both regression and classification problems (Reifman and Feldman, 2002; Wang
etal., 2023).

The performance of ML approaches is significantly dependent on the hyperparameters, and the optimal values of tuning
hyperparameters for the four base learners (RF, XGBoost, LightGBM, and MLP) are listed in Table S2.

Text S4.2. Evaluation index

The coefficient of determination (R?) evaluates the performance of regression model and quantifies how well the
independent variables explain the variability of the dependent variable. R? can be calculated according to the Eq. (S2) to (S4)

(Spiess and Neumeyer, 2010):

SSres
SSio1

e (2)



170

175

180

185

SSres = Z;’:I(yl— _.)//:)2 (83)

N2
SStol = Z;’:] yi - yl) (84)

Root Mean Squared Error (RMSE) measures the square root of the average of the squared differences between the observed
actual outcomes and the predictions. Mean Absolute Error (MAE) calculates the average of the absolute differences between
the observed actual outcomes and the predictions. Moreover, lower RMSE and MAE values indicate better model

performance, and the formulas are as follows (Chai and Draxler, 2014):

~\2
MAE=-37 |y, — 5| (S6)
where SS,., is the residual sum of squares, SS,,; is total sum of squares, y; and ¥, are the observed and predicted values,

respectively, ¥y, is the mean of observed values, and n is the number of samples.

Text S4.3. SHAP interpretability

Shapley Additive Explanations (SHAP), originating from cooperative game theory (Shapley, 1997), explains the importance
of individual features in ML models by evaluating their marginal contributions with SHAP values (Ancona et al., 2019). For
each predicted sample, SHAP fairly distributes the contribution values among all features, providing a comprehensive
understanding of the relationship between the features and predictions (Hou et al., 2022), as shown in Eq. (S7):

f) =0o()+ X0 (S7)

where f(x) denotes the predicted value for each sample, ¢, (f) is the expected concentration of the model prediction (f) on
all samples, M is the number input features, and ¢; is interpreted as Shapley value of i-th factor, which represents the

contribution of feature i and can be expressed as Eq. (8):

SIt(M—|S|-1)!

@i = Lscprz..mniy— ;U S UL — ()] (S8)

where S is a subset of features excluding feature i, £(S U {i}) is the model prediction when features in subset S and feature i

are included, and £ (S) is the model prediction when only features in subset S are included.



190 Table S1. Hyperparameter settings for four base learners.

Model Hyperparameters Value
Number of trees 300
Maximum tree depth 10

Random forest

(RF) Minimum number of samples required to 4
split an internal node
Minimum number of samples required to be >
at a leaf node

Number of trees 300

Maximum tree depth 3

Extreme Gradient
Boosting Learning rate 0.1
(XGBoost)

Subsample 0.8
Colsample bytree 1.0
Number of trees 400

Maximum tree depth 5

Light Gradient Boosting Learning rate 0.1

Machine

(LightGBM) Subsample 0.6
Colsample bytree 0.6

Number of leaves 20

Hidden layer and the number of neurons I hidden 1?1 yer with 100
neurons in each layer
Multilayer Perceptron Activation function relu
(MLP)

L2 regularization 10
Tolerance for the optimization 10




Table S2. Evaluation index results of NPs, NCs, and NSAs for the EML model.

Compounds RMSE MAE CV-R?
Nitrophenols (NPs) 5.49 3.13 0.90
Nitrocatechols (NCs) 4.96 2.97 0.85
Nitrosalicylic acids (NSAs) 0.63 0.44 0.93
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