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Abstract. Nitro-aromatic compounds (NACs) are important atmospheric pollutants that impact air quality, atmospheric
chemistry, and human health. Understanding the relationship between NACs formation and key environmental driving factors
are crucial for mitigating their environmental and health impacts. In this work, we combined an ensemble machine learning
(EML) model with the SHapley Additive exPlanation (SHAP) and positive matrix factorization (PMF) model to identify the
key driving factors for ambient particulate NACs covering primary emissions, secondary formation, and meteorological
conditions based on field observations at urban, rural, and mountain sites in eastern China. The EML model effectively
reproduced ambient NACs and recognized that anthropogenic emissions (i.e., coal combustion, traffic emission, and biomass
burning) were the most important driving factors, with the total contribution of 49.3%, while significant influences from
meteorology (27.4%), and secondary formation (23.3%) were also confirmed. Seasonal variations analysis showed that direct
emissions presented positive responses to NACs concentrations in spring, summer, and autumn, while lower temperature had
the largest positive impact in winter. By evaluating NACs formation and loss under various locations in winter, we found that
anthropogenic sources played a dominant role in increasing NACs levels in urban and rural sites, while reduced ambient
temperature along with secondary formation from gas-phase oxidation was the main reason for relatively high particulate
NACs levels at the mountain site. This work provides a reliable modelling method for understanding the dominant sources and
influencing factors for atmospheric NACs and highlights the necessity of strengthening emission sources controls to mitigate

organic aerosol pollution.
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Abbreviations
NACs Nitro-aromatic compounds BrC Brown carbon
NPs Nitrophenol and its derivatives VOCs Volatile organic compounds
NCs Nitrocatechol and its derivatives T Temperature
NSAs Nitrosalicylic acids RH Relative humidity
DNPs Dinitrophenol and its derivatives SSR Surface net solar radiation
4NP 4-nitrophenol PMF Positive matrix factorization
3M4NP 3-methyl-4-nitrophenol PCA Principal component analysi
2M4NP 2-methyl-4-nitrophenol ML Machine learning
2,6DM4NP 2.6-dimethyl-4-nitrophenol SHAP SHapley Additive exPlanation
4ANC 4-nitrocatechol EML Ensemble machine learning
4AMSNC 4-methyl-5-nitrocatechol BLH Boundary layer height
3M6NC 3-methyl-6-nitrocatechol WS H Horizontal wind speed
3M5NC 3-methyl-5-nitrocatechol WS V Vertical wind speed
SNSA S-nitrosalicylic acid Sa Aerosol surface area
3NSA 3-nitrosalicylic acid EDTA ethylenediaminetetraacetic acid
2,4ADNP 2,4-dinitrophenol BB Biomass burning
4M2,6DNP 4-methyl-2,6-dinitrophenol RF Random forest
CcC Coal combustion XGBoost Extreme gradient boosting
TE Traffic emission LightGBM Light gradient boosting machine
GR Gas-phase reaction MLP Multilayer perceptron
PE Primary emission R? Coefficient of determination
SF Secondary formation MAE Mean absolute error

RMSE Root mean squared error

1. Introduction

Nitro-aromatic compounds (NACs) exist as one of the key components of atmospheric organic aerosols that consist of both
one or more nitro (-NO) and hydroxyl functional groups (-OH) attaching to a benzene ring. They can be classified into four
categories based on the chemical structures and quantities of functional groups, including nitrophenol and its derivatives (NPs),
nitrocatechol and its derivatives (NCs), nitrosalicylic acids (NSAs), and dinitrophenol and its derivatives (DNPs). As semi-
volatile compounds, NACs are widely distributed in the air, cloud, surface water, fog, rain, and snow in earth environment
(Leuenberger et al., 1988; Litke et al., 1999; Lutke et al., 1997; Vanni et al., 2001).They are recognized as the major
constituents of brown carbon (BrC) that affect radiative forcing and regional climate through strong absorption of visible and
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near-ultraviolet lights (Xie et al., 2017; Mobhr et al., 2013). In addition, the photolysis of NACs can release OH radicals and
produce HONO, increasing the atmospheric oxidative capacity and altering the nitrogen cycle (Bejan et al., 2006; Bejan et al.,
2007; Cheng et al., 2009; Yang et al., 2024). Recent toxicology studies have also shown that NACs can react with haemoglobin
and further affect cell metabolism, which pose risks to human health (Fernandez et al., 1992; Purohit and Basu, 2000).
Therefore, elucidating the sources and sinks of NACs is of particular importance for comprehensively assessing their
environmental, climate, and health effects.

The abundances of NACs in ambient air largely depend on primary emissions of anthropogenic activities including coal
combustion (Lu et al., 2019a), biomass burning (Chow et al., 2016), traffic emissions (Delhomme et al., 2010), and industrial
productions (Lu et al., 2021), with emission rates influenced by fuel types, combustion processes, and burning conditions.
They can be also produced through nitration of anthropogenic aromatic volatile organic compounds (VOCs) initiated by OH
and NOs radicals in either the gas or aqueous phases (Harrison et al., 2005; Atkinson et al., 1989; Atkinson et al., 1992; Xie et
al., 2017; Xia et al., 2023). In addition to phase partitioning, heterogeneous reaction of gas-phase NACs has been recently
proposed as a formation pathway for the condensed-phase NACs (Wang et al., 2019). The secondary formation, phase
partitioning, diffusion and transport, and wet and dry deposition of NACs strongly rely on meteorological conditions.
Particularly, previous studies established a temperature (T)-dependent equilibrium for NACs between the gas and particle
phases (Cai et al., 2022; Yuan et al., 2016). Higher relative humidity (RH) significantly facilitated the uptake of gas-phase
NAC:s into aerosols (Vidovi¢ et al., 2018; Frka et al., 2016), while surface net solar radiation (SSR) exerted a dual effect by
enhancing both the photochemical production and photolytic degradation of NACs (Peng et al., 2023b). The complex and
synergetic effects of primary emissions, secondary formation, and meteorological conditions on the abundances of NACs make

the quantification of the individual contribution of each factor a challenge.

Traditionally, receptor models such as positive matrix factorization (PMF) and principal component analysis (PCA) are applied
to apportion the major sources of NACs and their contributions. For example, Ren et al. (2022) and Yuan et al. (2021) have
applied PMF model to reveal that the particulate NACs in China are closely associated with anthropogenic activities,
particularly with the direct emissions from combustion sources. Li et al. (2016) combined PMF and PCA models and
recognized that NACs from biomass burning are mainly responsible for urban haze events. Furthermore, statistical methods
based on linear or multilinear regressions were also used to quantify the contributions of sources, meteorological conditions,
and other factors on the variations of particulate NACs (Cai et al., 2022; Wang et al., 2019; Chow et al., 2016). However, these
methods are typically based on linear algorithms that may overlook the multivariate nature and nonlinear relationships between
NACs and the potential sources as well as the complex influences from meteorological conditions, potentially resulting in
biased interpretations of NACs under complex atmospheric conditions. Therefore, a complementary data analysis approach is
warranted to more efficiently uncover the hidden complicated relationships. Currently, machine learning (ML) methods, which
are capable of simulating intricate and concealed nonlinear relationships and interactions among complex variables, have been

widely used in predictions and evaluations of air pollutants (Chen et al., 2024; Wang et al., 2022a). Lundberg and Lee (2017)
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proposed a SHapley Additive exPlanation (SHAP) algorithm based on game theory to improve the model’s interpretability,
thereby providing a tool to explain and quantify the impacts of input variable values on model predictions. The interpretable
ML methods in combination with interpretable SHAP algorithm have been recently applied to investigate the formation
mechanism and influencing factors of atmospheric pollutants. For example, Qin et al. (2022) quantified the drivers of gaseous
elemental mercury by using an ML model in combination with SHAP. Peng et al. (2023a) utilized an ML model coupled with
SHAP to evaluate the effects of PM. s sources and RH on atmospheric visibility. Given the complex nonlinear links between
primary emissions, secondary formation, and meteorological conditions and the ambient particulate NACs, a clear
understanding of the separate role of each factor is challenging. Therefore, it is necessary to establish an effective and reliable
evaluation method to comprehensively understand and assess the importance and contribution of each factor on the abundances

of NACs under complicated atmospheric conditions.

In this study, particulate NACs at various sampling sites in eastern China in different seasons were compared and characterized.
By integrating observational datasets of NACs, meteorological data, particle loading (i.e., aerosol surface area data), and source
apportionment results derived from PMF model, an ensemble machine learning (EML) model combined with the SHAP
approach was applied to reveal the key variables regulating the ambient NACs and the complex interrelationships. This study
makes a methodological contribution by employing a novel approach to quantify the seasonal shifts in drivers and spatial

variations across urban, rural, and mountain regions in a huanced manner.

The purpose of this study is to (1) interpret the concentrations, compositions, and sources of particulate NACs at different
sampling sites and seasons; (2) provide methods to identify the key driving factors for ambient NACs and quantify their relative
contributions at various NACs concentration levels; and (3) elucidate the response of NACs to key driving factors under
different pollution environments based on various sampling locations. This is the first attempt by combining PMF model results
with the explainable EML method to build nonlinear relationships and identify the key driving factors of NACs. The findings
highlight the critical roles of emission sources as well as the large impacts of temperature and secondary formation on ambient

NACs and provide scientific basis for atmospheric pollution mitigation measures.

2. Materials and methods
2.1 Field observations

The field sampling and measurements were conducted at eleven sites in eastern China from 2014 to 2021 (Figure 1), including
four urban sites in Jinan (36.67°N, 117.05°E), Guangzhou (23.14°N, 113.36 °E), Nanjing (32.20°N, 119.62 °E), and Beijing
(40.03°N, 116.42°E), five rural sites in Dongying (37.75°N, 118.97°E), Wangdu (38.70°N, 116.57°E), Yucheng (36.87<
N, 116.57 °E), and Qingdao (including two sampling sites: Qingdao Campus of Shandong University (36.36°N, 120.69°E)
and Entrepreneurship Center of Blue Silicon Valley (36.35°N, 120.67 °E); see Fig. 1b), and two mountain sites: Mount Tai
(36.27°N, 117.10°E, 1,534 m a.s.l.), a typical high-elevation background site; and Mount Lao (36.15°N, 120.68°E, 166 m
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a.s.l.), a lower-elevation site situated in a coastal mountainous region. More detailed descriptions about the sampling site were
provided in Text S1 in the Supporting Information (SI). It should be noted that the basic data in Jinan (except for autumn),
Wangdu, Yucheng, Qingdao, and Mount Tai (winter in 2019 and summer) have been reported in our previous studies (Li et
al., 2020a; Wang et al., 2018; Jiang et al., 2024; Li et al., 2024), which mainly demonstrate the pollution characteristics of
particulate NACs and determine the major origins with traditional PMF model. In contrast, the NAC data collected during the
campaigns in spring at Mount Tai and Mount Lao, the campaigns in summer in Guangzhou and Dongying, the campaigns in
autumn in Jinan and Nanjing, and the campaigns in winter in Bejing, Dongying and Mount Tai (2017) are newly reported in
this study. More importantly, the novelty of this work lies in the integration of multi-season, multi-site dataset with an ensemble
machine learning algorithm to comprehensively assess the key driving factors of particulate NACs across different sampling

locations and seasons.
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Figure 1: (a) Map showing the sampling locations and (b) the different sampling sites located in Qingdao. The NOx emission data in
2019 were downloaded from multi-resolution Emission Inventory for China (MEIC) website (available at: http://meicmodel.org.cn)
(Lietal, 2017; Zheng et al., 2018).

In urban and rural sites, PM; s samples were collected with a medium-volume sampler (TH-150A, Wuhan Tianhong, China)
at a flow rate of 100 L min, with daytime samples (08:00-19:30, LT) and nighttime samples (20:00-07:30) obtained daily.
Two high-volume air samplers (TE-6070, Tisch, U.S.A.; TE-5170, Tisch, U.S.A.) at flow rates of 994 L min and 1000 L min-
! were used to collect PM,s samples at Mount Tai (only in 2019) and Mount Lao, separately, with temporal resolutions of 3
hours during the daytime (07:00-22:00) and 9 hours during the nighttime (22:00-07:00 the next day). Fine particulate matters

were collected on prior pre-baked quartz fiber filters (Pallflex, U.S.A.) and 613 aerosol samples were obtained totally. Blank
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samples were acquired before and after the field campaigns without sucking air, and the filter samples were immediately placed
in clean plastic boxes or wrapped with pre-baked aluminium foil and stored at —20<C in darkness for subsequent chemical

analysis.

Several major tracer gases (SO2, NO, NO,, and Os) were simultaneously monitored by online analyzers at most sampling sites.
For the Nanjing and Guangzhou sites, where on-site gas measurements were not available, the corresponding data were
downloaded from the China National Environmental Monitoring Centre (available at: http://106.37.208.233:20035/). NO
concentrations were unavailable at these two sites due to data limitations, and were therefore excluded from this study.
Meteorological parameters, such as temperature and relatively humidity, were recorded by automated meteorological stations
or obtained from Weather Underground (available at: https://www.wunderground.com). Detailed information on the trace gas
analyzers and meteorological stations was provided in the Text S1. Other hourly meteorological data for all sampling sites,
including SSR, boundary layer height (BLH), and horizontal wind speed (WS_H) and vertical wind speed (WS_V) at a height
of 10 m (a.g.l.) were taken from the European Centre for Medium-Range Weather Forecasts (ECMWF, ERAS data). Particle
number size distributions at Mount Tai in 2019 were measured by a scanning mobility particle sizer (SMPS, Grimm, Germany),
which were used to derive the aerosol surface area (Sa) data. Additionally, Sa data for the remaining sites were estimated by
using predictive capability machine learning algorithms based on the input variables of PM;s and meteorological parameters.
Detailed descriptions on the estimation method of Sa can refers to Text S2 and Fig. S1, and the predicted Sa results were shown
in Fig. S2.

2.2 Chemical analysis

The analytical protocol of particulate NACs in PM,s samples used in this study was adapted from those developed by
Kitanovski et al. (2012) and Wang et al. (2018). Briefly, the filter samples were extracted ultrasonically or with a thermostatic
orbital shaker with methanol (containing 30 L saturated ethylenediaminetetraacetic acid, EDTA) for 30 min and repeated
three times. The extracts were filtered through 0.20 pm polytetrafluoroethylene syringe filters (PTFE, Millex-FG, Millipore)
to remove insoluble matters. They were then evaporated and concentrated using ultra-high purity nitrogen to dryness and the
concentrates were re-dissolved in 300 L methanol containing the internal standard. All the sample solutions were analyzed
by ultra-performance liquid chromatography coupled with a mass spectrometer detector (UHPLC-MS, Thermo Scientific,
U.S.A.) operating in negative mode under selected ion monitoring (SIM) mode. Finally, the following twelve target compounds
were identified based on retention time and spectra of the standards, including NPs (4-nitrophenol (4NP), 3-methyl-
4nitrophenol  (3M4NP), 2-methyl-4-nitrophenol (2M4NP), and 2.6-dimethyl-4-nitrophenol (2,6DM4NP)), NCs (4-
nitrocatechol (4NC), 4-methyl-5-nitrocatechol (4M5NC), 3-methyl-6-nitrocatechol (3M6NC), and 3-methyl-5-nitrocatechol
(B3M5NC)), NSAs (5-nitrosalicylic acid (5NSA) and 3-nitrosalicylic acid (3NSA)), and DNPs (2,4-dinitrophenol (2,4DNP)
and 4-methyl-2,6-dinitrophenol (4M2,6DNP)). Standard curves, derived from the gradient concentrations of the authentic

standard mixtures, were utilized to quantify the contents of the above twelve NACs. More detailed analytical methods are
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provided in Text S3 of the Supporting Information. It also should be noted that due to methodological differences, the species
of measured NACs varied across various locations and seasons, as specified in Table S1. Additionally, the average recovery
rates for the filter samples were determined to be within the range of 81.5% to 106.5%, and the field blank signals of most
species accounted for less than 3% of NACs in the ambient NACs, while NSAs and DNPs in the blanks contributed
approximately 10% to the determined NACs, which were considered in the subsequent calculations. Moreover, the
instrumental precision was determined by repeated analysis of standard solutions (n = 5) under the same operating conditions,
yielding relative standard deviations of +3.8% for the target NACs, which indicates high analytical reproducibility. Taking
into account errors from extraction recovery rates, instrumental precision, and blank subtraction, the total measurement

uncertainty for NACs was estimated to be approximately #19.1%.

2.3 Positive matrix factorization model

The PMF model (EPA 5.0) is a useful tool for qualitatively identifying the NACs sources and quantitatively assigning their
contributions to the total NACs and is employed in our study. The fundamental principles of the PMF model can be described

as follows Eq. (1) (Paatero and Tapper, 1994):

Xy = Gip Fipoy + Eisg 1)

where X;,; represents the observed data matrix, with i samples and j chemical species. G;., and F,,; are the source

*p

contribution matrix and source profile matrix, respectively. p is the number of sources contributing to the NACs. E;,; represents

xj
the residual error matrix capturing the difference between the measured and simulated data, which were calculated by

minimizing the function Q based on Eq. (2):

2
Eix'
Q=33 [ @
where u;,; is the uncertainty, which were determined through the comparison with detection limit. Detailed information can

be seen in previous study by Zhang et al. (2018).

In this study, the PMF input matrix consisted of 613 daily aerosol samples and ten components (including 4NP, 3M4NP,
2M4NP, 4NC, 4M5NC, 3M6NC, 5NSA, 3NSA, NO, and Os). For the input data, the treatment and calculation of the
concentrations and associated uncertainties for each species followed the methodology described in our previous study (Li et
al., 2020a). Here, by comparing the Q value results with two to six factor numbers, the optimal number of source factors was
determined to be four. Specific details of the PMF model configuration and evaluation can be found in Text S4 and Fig. S3.
Based on the outputs from the PMF model, four major sources of NACs, including coal combustion (CC), traffic emission
(TE), secondary formation associated with gas-phase reaction (GR), and biomass burning (BB), were identified from samples

collected at the 11 sampling sites (Text S4) and the corresponding source profiles are presented in Fig. S4.
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2.4 Ensemble machine learning model

Four widely employed ML algorithms, including random forest (RF), extreme gradient boosting (XGBoost), light gradient
boosting machine (LightGBM), and multilayer perceptron (MLP), were selected in this study for model development. RF is
an ensemble learning method that constructs multiple decision trees, with the strength in its interpretability (Wang etal., 2022b;
Petkovic et al., 2017). XGBoost, a gradient boosting learner that optimizes performance and efficiency, has a strength in
stability and precision (Si and Du, 2020; Gui et al., 2020). LightGBM is a gradient boosting framework designed for high
efficiency and scalability (Ju et al., 2019; Ma et al., 2022). MLP, as a class of feedforward artificial neural network, has
advantages in flexibility and the ability to handle non-linear relationships (Reifman and Feldman, 2002). Detailed information

about these four ML algorithms is provided in Text S5.1.

The dataset (613 rows) used for the four ML algorithms consisted of eleven parameters as inputs, including PMF-derived
source contributions, meteorological conditions (T, BLH, RH, SSR, WS_H, and WS_V), and heterogeneous reaction
represented by the aerosol surface area (Sa), all of which influence the sources and sinks of NACs. To avoid circular reasoning,
the ML model was constructed to predict the total concentration of NACs as target variable. The four PMF-derived source
contribution factors, which serve as independent explanatory variables capturing source-type influences, were used as input
features instead of individual NAC species. This approach ensures a clear separation between PMF inputs and the ML target,
effectively preventing data leakage or double counting. The whole dataset was randomly divided, with 80% allocated to the
training set and the remaining 20% to the testing set. Then, GridSearch and 10-fold cross-validation were employed to prevent
overfitting and tune the optimal hyperparameters. The performances of model outcomes were evaluated using the coefficient
of determination (R?), mean absolute error (MAE), and root mean squared error (RMSE), and the optimal hyperparameters
were listed in Table S2. As shown in Fig. S5, XGBoost and LightGBM models exhibited better performances, with the lower
MAE (6.82 and 7.38 ng m™, respectively) and RMSE values (11.05 and 12.07 ng m3, respectively) than the other two ML
models. Meanwhile, the modelled NACs by the XGBoost and LightGBM algorithms were highly consistent with the observed
data, with R? values of 0.88 and 0.86, respectively. The RF model also performed well with an R? value of 0.85, while the

MLP model demonstrated inadequate forecasting performance (R? = 0.60).

Due to the unique strengths and limitations of different ML algorithms, the integrated EML model enhanced the predictive
performance by leveraging the strengths of each ML algorithm while mitigating their weaknesses (Opitz and Maclin, 1999).
Therefore, the base learners (RF, XGBoost, and LightGBM) were selected and integrated into the EML model framework
based on a ridge regression model (Carneiro et al., 2022), and 10-fold cross-validation was applied to prevent overfitting. The
evaluation results showed that EML model exhibited higher accuracy and precision, with the R? of 0.91, and with MAE, and
RMSE of 6.11, and 9.94 ng m*®, respectively (Fig. S6), making it the preferred option for the subsequent analysis. To further
evaluate the generalizability of the EML model, a leave-one-site-out cross-validation approach was implemented. The data
from each site were iteratively excluded from model training and used exclusively for testing, ensuring complete independence

between training and testing sets. The results show that this model exhibits robustness and transferability rather than limited

8
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to specific scenarios (see Fig. S7). Additionally, multi-target predictions were conducted by using the EML model with
different functional groups compounds, including NPs, NCs, and NSAs, simultaneously set as target variables. Different types
of NACs also exhibited very good predictive performances with R? of 0.90, 0.85, and 0.93 for NPs, NCs, and NSAs,
respectively, confirming the computational accuracy and the strong ability to solve non-linear relationships (shown in Table
S3). Furthermore, to quantify the contributions of input features to the target variable, the SHAP algorithm was employed in
this study, which evaluated the specific impacts of different driving factors based on the marginal contribution of individuals
within the framework of cooperative game theory. This approach enables a robust and interpretable explanation of the
relationship between each predictor and the average model prediction. Detailed information about the EML assessment method

and SHAP algorithm was introduced in Text S5.2 and S5.3 in the SI, respectively.

The latest scikit-learn packages (https://scikit-learn.org/stable/) are used for running the ensemble machine learning model and
the SHAP algorithm (https://shap.readthedocs.io/en/latest/) is applied for quantifying each feature’s contribution to NACs

concentrations, which are performed in a Python (v 3.11) environment.

3. Results and discussion
3.1 Seasonal and spatial variations of NACs

The particulate NACs measured in this study exhibited relatively high levels, with an average total concentration of 28.5 +
32.7 ng m across four seasons at eleven sampling sites. As shown in Figure 2, the concentrations of fine particulate NACs
exhibited distinct seasonal variations, with the highest total concentrations appearing in winter (42.0 +38.3 ng m, mean =+
standard deviation), followed by autumn (18.3 £22.8 ng m), spring (13.5 +=11.2 ng m™®), and summer (10.6 9.2 ng m).
The above seasonal variation trend is consistent with other whole-year observations in urban Xi’an, Beijing, and Hong Kong,
China (Yuanetal., 2021; Chow et al., 2016; Wang et al., 2021; Yang et al., 2020), rural Flanders, Belgium (Kahnt et al., 2013),
and Mount Wuyi, China (Ren et al., 2023). Such a large seasonal difference in NAC abundances can be attributed to discrepant
emission intensities, formation rates, and meteorological conditions. As seen in Table 1, NO2, which acts as an important
nitration agent in NAC formation and a major tracer of traffic emissions, also showed higher concentrations in winter, autumn,
and spring when compared to summer. Meanwhile, SO, and CO, which share common anthropogenic sources such as coal
combustion and biomass burning, also exhibited higher levels in cold seasons than the hot season at the same site. In addition,
the lower temperature in winter was favourable for gas-to-particle partitioning of NACs and their precursors. Additionally, the
accumulation of NACs during cold season was exacerbated by relatively weak radiation and the presence of lower mixed
boundary layer. Conversely, during summer, strong light intensity, favourable diffusion conditions, and the abundant oxidants
facilitate the photolysis and dilution of NACs. Furthermore, the abundance of NACs also varied greatly with locations. In
general, elevated NACs concentrations were observed at urban and rural sites when compared with mountain environments.

It is because that there were higher emissions and/or formation rates at urban and rural sites especially under the conditions of
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high NOy and intensive anthropogenic VOCs, while mountain sites were affected by anthropogenic emissions rarely and to a
small extent. Moreover, data from 2014 to 2021 revealed no significant trends in NAC concentrations across the same seasonal
and site-type conditions, therefore temporal variation was not considered as a primary focus of this study.

Table 1: Sampling information and average concentrations (+ standard deviation) of NACs (unit: ng m3), trace gases, and
meteorological parameters.

Sampling site Season XNACs SO; (ppbv) NO; (ppbv) O3 (ppbv) CO (ppbv) T (°C) RH (%)

Spring 34.0+24.0 13.7+7.7 43.7+23.2 79.3+19.9 920.2 +307.1 20.1+£2.5 37.2+13.5

Summer 10.4+4.5 14.7+14.7 26.7+13.7 42.6 £26.3 1049.2 £ 573.5 24.0+4.3 66.9+16.4
Jinan

Autumn  26.3+27.9 44+1.8 352+15.8 21.7+14.5 812.1 £354.5 11.7+£3.0 448 £12.2

Winter  60.7+31.9 21.4+9.6 263 +12.1 30.2+17.6 1053.0+403.3 8.6+3.8 36.3+£11.7

Guangzhou Summer 19.8 £10.5 3.0£05 20.0+3.8 13.0+13.2 566.2+82.0 27.1£3.0 79.3+11.2

Nanjing Autumn 8.2 +3.3 34+0.8 30.2+11.0 23.5+15.8 5294 +126.2 14.1£3.3 69.6 £15.2

Beijing Winter  42.1+27.1 3.7+£3.0 21.1+13.2 21.2+9.9 691.0 £489.6 -33+44 36.4+£13.5

Yucheng Summer 5.8+2.7 32+3.0 209+12.5 459+189 665.8 +146.8 245+£35 69.3+15.3

Wangdu Summer 59+3.7 7.0+5.6 142+7.6 56.9+233 521.2+£203.9 27.0+4.4 55.4+18.1
Summer 20.9 +£12.5 3.6+£1.5 5.1+£22 77.0+28.5 4782 +173.0 27.7+3.6 60.2+11.9
Dongying
Winter  41.7 £27.6 4.6+3.6 11.6 £5.2 21.8+7.1 1494.8 + 553.9 26+1.9 76.9 +13.7
Qingdao Winter ~ 53.6 +53.2 3.7+2.1 16.8+9.3 22.2+11.1 757.2+382.5 4.0+5.5 64.3+18.0

Spring 10.8 £4.9 2.1+x14 21+1.3 72.7+8.9 4451+ 121.3 8.5+4.0 67.4+£18.5
Mount Tai Summer 25+1.6 2.6+2.0 2.7+£0.8 70.3 £18.6 331.6+148.9 19.7+2.6 86.9+£8.9
Winter  30.3 +13.6 20+1.3 42+27 409+7.6 308.2 +168.3 -3.8+3.3 51.8 £20.5

Mount Lao Spring 12.3+8.3 1.0+ 0.8 7.7+3.7 50.3+£12.2 273.0+99.2 16.7+3.6 56.0 £22.6

Figure 3 compared the abundances of particulate NACs across different sites in the same season by similar analytical methods.
During springtime, the average NACs concentration in Jinan in this work was comparable to that reported in urban Rome,
Italy (Cecinato et al., 2005) and significantly higher than those in other urban, rural, and mountain sites over the world (Fig.
3a). Summertime NACs measured in urban Jinan and Guangzhou also showed elevated concentrations when compared with
those observed in other locations (Ren et al., 2022; Ikemori et al., 2019), which is mainly attributed to the large anthropogenic
emissions in these two cities (Fig. 3b). Moreover, particulate NACs concentrations also showed higher levels in rural Dongying,
where it was significantly affected by biomass burning activities in early summer, as confirmed by Zhang et al. (2021). Lower
summertime particulate NACs concentrations were detected in rural sites (i.e., Wangdu and Yucheng), similar to the results in
previous studies conducted in rural Xianghe, China (Teich et al., 2017) and urban Los Angeles, U.S.A. (Zhang et al., 2013) in

summer. In addition, the average NACs level in Jinan in northern China in autumn (Fig. 3c) was generally comparable to that
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measured in urban Beijing and Xi’an (Li et al., 2020b; Yuan et al., 2021), but higher than those observed in urban Hong Kong
(Chow et al., 2016) and Nanjing (this study) in southern China, where was relatively rarely affected by coal combustion and
biomass burning and experienced frequent rainfall. Moreover, the wintertime observations in northern China in this study were
as high as those in most previous studies, further indicating the high emissions and concentrations of NACs caused by

intensified combustion activities for heating (Fig. 3d).
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Figure 2: Box plots of NACs concentrations and pie charts of their compositions at urban, rural, and mountain sites in different
seasons.

The composition of particulate NACs also varied according to the sampling locations and seasons. As shown in the pie chart
in Fig. 2, NPs and NCs were the most abundant species among the four categories of NACs at most urban and rural sites due
to their higher emission factors, abundant precursors, and longer atmospheric lifetimes than other NACs. The dominance of
NPs and NCs in this study coincides with the findings from previous studies in other locations (Cai et al., 2022; Li et al., 2020c;
Wang et al., 2019). However, the fractional composition of NACs in spring and winter at mountain sites, being dominated by
NPs and DNPs, differed from that at other types of sites. Previous studies have suggested that DNPs could be formed from

further oxidation of NPs by acquiring a nitro group (Yuan et al., 2016), thus the elevated DNPs fractions at mountain sites are
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mainly attributable to the secondary formation processes. Additionally, it should be noted that the increased proportions of
NSAs were observed in rural and mountain sites in summer (Fig. 2b), which is in good agreement with recent study in urban
Nanjing (Cao et al., 2023) and rural Indo-Gangetic Plain (IGP) (Rana and Sarkar, 2024). The dominance of NPs and NSAs at

280 these remote sites may arise from aged plumes or intensive photochemical oxidation of aromatic precursors in the presence of
NOy (Jang and Kamens, 2001). The above results suggest that the difference in particulate NACs compositions across various
locations and seasons was probably associated with anthropogenic emissions and secondary formation processes.
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Figure 3: Comparison of particulate NACs measured in this study (marked with filled black lines) with previous studies conducted
285 in China and other countries in (a) spring, (b) summer, (c) autumn, and (d) winter.
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3.2 Key driving factors of NACs variation identified by the SHAP approach

With the data of source apportionment, meteorological parameters (i.e., T, RH, wind speed, surface solar radiation, and
boundary layer height), and particle loading (i.e., Sa), we further quantified the impacts of different primary emissions (PE),
meteorological factors, and secondary formation (SF, including gas-phase reaction (GR) and heterogeneous reaction
represented by aerosol surface area (Sa)) on the variations of total NACs via the SHAP algorithm. The mean absolute SHAP
values can be used to rank the major driving factors in the production (including emission and formation) and loss of fine
particulate NACs across all samples, with a larger absolute SHAP value representing a higher influence on NAC levels. As
shown in Fig. 4a, coal combustion ranked as the most important factor affecting NAC concentrations, exhibiting an average
contribution of 8.0 +4.9 ng m™, followed by traffic emission, temperature, biomass burning, aerosol surface area, gas-phase
reaction, boundary layer height, and surface solar radiation, with the SHAP values of 7.4 +6.6, 6.9 £3.0, 6.3 £6.3, 5.6 £7.1,
4.6 +£4.3,1.9 +£1.8, and 1.0 0.8 ng m*®, respectively. The mean SHAP values of the remaining factors were less than 1.0 ng
m-3, which had minor impacts on ambient NACs in this work. Overall, the major primary emissions including coal combustion,
traffic emission, and biomass burning together contributed 49.3% to the variation of NACs during the sampling periods, while
meteorological conditions and secondary formation explained 27.4% and 23.3%, respectively (Fig. 4b). This enhancement in
anthropogenic emissions is consistent with the findings reported in previous NAC studies (Wang et al., 2018; Yuan et al.,
2021). However, the integration of the explainable EML framework constitutes a methodological advancement by enabling
quantitative evaluation of source contributions, thereby providing a more nuanced and context-specific understanding of the

driving factor across diverse atmospheric conditions.
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Figure 4: (a) The ranking of the importance for all input variables (“CC”: coal combustion; “TE”: traffic emission; “T”:
temperature; “BB”: biomass burning; “Sa”: aerosol surface area; “GR”: gas-phase reaction; “BLH”: boundary layer height; “SSR”:
surface net solar radiation; “RH?”: relative humidity; “WS_H”: horizontal wind speed; “WS_V”: vertical wind speed) calculated via
SHAP algorithm (average absolute contribution), (b) the impacts of driving factors on variations of NACs from SHAP analysis
during the whole sampling periods (“PE” and “SF” represent primary emissions and secondary formation, respectively), (c) SHAP
summary plots for all samples with the shift in colour of the scatter plot from blue to red indicating an increase in driving factor
values, and the relationships between the SHAP values and parameter values for (d) temperature (T), (e) aerosol surface area (Sa),
(f) boundary layer height (BLH), and (g) surface net solar radiation (SSR) with the right y axis corresponding to the frequency
distribution of the measured variables.

Figure 4c-g show the SHAP values for each feature and each sample and display the relationships between the SHAP value
and the feature value to investigate its influence on the variation of NACs. A positive SHAP value indicates that the variable
increases the predicted NAC concentration relative to the baseline, whereas a negative SHAP value suggests that higher values
of the variable are associated with a decrease in NAC concentrations. As shown in Fig. 4c, among the different primary sources,
coal combustion, traffic emission, and biomass burning all exhibited a strong positive correlation with predicted NACs, in
alignment with previous studies which suggest the important roles of anthropogenic emissions in driving high NACs
concentrations. For example, our previous study determined that the emission factors of particulate NACs for residential coal
combustion were 0.2-10.1 mg kg*, with the total emission of 178 Mg in China in 2016 (Lu et al., 2019a). Particulate NACs
were also detected from direct traffic emissions, with the emission factor reaching up to 89.6 g km™ (Nojima et al., 1983; Lu
et al., 2019b). Furthermore, the emission factor of NACs from biomass burning can exceed 10 mg kg, which make them
regarded as key tracers of biomass-burning organic aerosols (Wang et al., 2017; linuma et al., 2010). Gas-phase reaction also
demonstrated a positive association with NACs formation, mainly attributed to the fact that oxidation and nitration of
precursors acted as important formation pathways for atmospheric NACs. Additionally, temperature as the leading
meteorological contributor, showed a negative response to NACs formation (see Fig. 4d). This result confirms the recent
finding that the concentrations of particulate NACs largely depended on the temperature-dependent partitioning between the
gas and particle phase and were prone to produce at low ambient temperatures via enhanced transfer from the gas phase (Al-
Naiema and Stone, 2017; Yuan et al., 2016). With the increase in aerosol surface area, its SHAP values increased accordingly
(Fig 4e), which is similar to the previous study in Beijing where high Sa would facilitate gas/particle partitioning of NACs and
their precursors and subsequent heterogeneous reactions (Wang et al., 2019). Notably, at low temperature (approximately <
10<C), the contribution on NACs exhibited an explosive enhancement, accompanied by a pronounced synergistic effect with
higher Sa (Fig. S8), indicating enhanced gas-to-particle partitioning and heterogeneous formation. Conversely, at higher
temperature, high Sa appears to suppress NAC formation, possibly as a result of intensified photochemical reactions facilitating
gas-phase products, high temperature promoting to the partitioning to particle phase, or dilution effects caused by increased
mixing heights in hot seasons. The relationship between boundary layer height and their SHAP values showed a nonlinear
response (Fig. 4f), with a decreasing trend in low-BLH regimes (0-600 m), accompanied by a relatively constant SHAP value
in high-BLH regimes (> 600 m). In low-BLH conditions, increasing BLH levels reduced the concentrations of NACs due to
the enhanced diffusion and dilution (Krautstrunk et al., 2000). When BLH was above 600 m, the BLH ceased to affect the

surface concentrations of NAC. As to surface solar radiation, its SHAP values did not present an obvious correlation with its

14



345

350

355

360

365

levels (Fig. 4g). Generally, high solar radiation can promote the secondary formation of some NACs (Vione et al., 2001), but
it also acts as a sink for NACs via photolysis during the daytime (Bejan et al., 2020).

3.3 Driving forces of NAC variation for different seasons and functional types

To make clear the dominant driving factors for the variations of fine particulate NACs in different seasons, the contribution of
each factor during four seasons was compared in Figure 5. As shown in Figure 5a-c, overall, primary emissions were still the
main drivers, accounting for 45.9%-62.5% of NACs across the four seasons, with the lowest impacts appearing in winter.
Among the four identified sources, coal combustion and traffic emission had large impacts on the variation of NACs, with a
total contribution of 67.3%—-80.8%. Particularly, enhanced contribution from primary emissions in particular traffic emissions
was noticed in autumn. As to meteorological parameters, according to the absolute SHAP values, temperature had the greatest
impacts with a contribution of 52.9%-68.3%. Additionally, the impacts of secondary formation on ambient NACs exhibit

minimal fluctuation across different seasons, except in winter, when a slightly higher contribution (27.8%) was observed.

Then, we further compare the positive or negative feature importance of various driving factors on the variations in particulate
NACs. As shown in Fig. 5d-g, the impacts in spring, summer, and autumn were significantly different from that in winter. The
most crucial driving factor in spring was coal combustion, contributing 6.9 ng m- to ambient NACs, followed by surface solar
radiation and horizontal wind speed. In summer, the main influencing factor was traffic emissions, with the SHAP value of
2.6 ng m=, followed by heterogeneous reaction (0.87 ng m=) (Fig. 5e). Particularly, traffic emission stood out and exhibited
very high positive contribution to NAC levels in autumn with the SHAP value of 12.5 ng m= (Fig. 5f). However, during
wintertime, temperature ranked first among all driving factors, with a contribution of 5.6 ng m- (Fig. 5g), followed by biomass
burning (2.9 ng m), gas-phase reaction (2.1 ng m3), and coal combustion (1.9 ng m®). This difference implied that the low
ambient temperature in winter strongly affected the emissions intensity and gas to particle partitioning, which enhanced the
production of particulate NACs. The dominance impact of temperature rather than combustion sources in winter was also
related to the relatively higher fraction of atmospheric samples from Mount Tai in this season. Moreover, the significant
enhancements of primary emissions (i.e., biomass burning and coal combustion) and secondary formation in winter when
compared with autumn and summer indicate that the air masses in winter mainly associated with substantial emissions of

anthropogenic pollutants and subsequent oxidation processes.
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Figure 5: The absolute contributions of (a) meteorological conditions, (b) all factors, and (c) primary emissions on the variations of
NAC:s in four seasons from SHAP analysis and box plots with the order of SHAP values for each driving factor in (d) spring, (¢)
370  summer, (f) autumn, and (g) winter. “PE” and “SF” refer to primary emissions and secondary formation, respectively.

In addition, we further explore the differences in dominant driving factors for NACs with different functional groups (i.e., NPs,
NCs, and NSAs) based on the model of multi-objective variables. Generally, it is evident that primary emissions played
important roles in the variations of all three types of NACs including NPs, NCs, and NSAs, with the highest contribution of
66.7% for NCs, followed by NPs (50.2%) and NSAs (23.1%) (Fig. 6a-c). Meteorological parameters also exhibited high
375 contributions to the variations of NPs with the mean value of 28.0%, followed by NCs (17.4%) and NSAs (13.5%).
Additionally, secondary formation contributed the most to particulate NSAs levels, with a proportion of 63.4%, which was
obviously higher than NPs (21.8%) and NCs (16.0%). Specifically, as shown in Fig. 6 and Fig. S9a, coal combustion had the
largest impact on NPs, followed by temperature and traffic emissions, with the average absolute SHAP values of 5.7 +3.1, 4.3
+2.1and 3.9 2.7 ng m?3, respectively. This result aligns with previous studies that highlighted the intensive emissions of
380 particulate NPs from coal combustion and traffic sources, with emission factors of 0.01-0.9 mg kg* and 1.7-26.7 g km™,
respectively (Lu et al., 2019b; Lu et al., 2019a). Besides, the semi-volatile characteristic and relatively high saturated vapor
pressures of NPs make them more susceptible to the change in temperature, as confirmed by a previously observational study

(Li et al., 2020a). For NCs, biomass burning showed a dominant effect on their variation, with the average absolute SHAP
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value of 4.6 +5.8 ng m?, contributing approximately 1.3 and 2.1 times more than traffic emissions and coal combustion,
respectively (see Fig. 6 and Fig. S9b). The predominance of biomass burning in the source of NCs is in accordance with
previous studies. As reported by previous study of Wang et al. (2017), NCs were the most abundant compounds detected in
freshly emitted particulate NACs during biomass burning periods. Apart from direct emissions, early measurements also
identified cresol and substituted cresols from widespread wood burning activities, which were mainly produced from the
pyrolysis of lignin. The oxidation of cresol, methylated cresol and methyl-catechols emitted from biomass burning-related
sources is also expected as an important contributor to NCs (linuma et al., 2010). As to NSAs, they exhibited a strong positive
association with gas-phase reaction (Fig. S9c), with the average absolute value of 1.7 1.3 ng m=3, suggesting that these
compounds were mainly produced through the oxidation and nitration of precursors, which is consistent with other field
observations (Yuan et al., 2021). Furthermore, aerosol surface area also contributed significantly to the variation of NACs,
especially for NPs (2.6 3.9 ng m?) and NCs (2.0 2.4 ng m?) (Fig. 6f), indicating the important contribution from
heterogeneous formation. Overall, the results demonstrate that the multi-target EML model effectively captured the distinct
source contributions and formation pathways associated with different NAC subclasses. Coal combustion was identified as the
most important driver for NPs, biomass burning dominated the formation of NCs, and NSAs were primarily linked to gas-
phase formation. These findings highlight the strength of this integrated EML approach in differentiating functional group-

specific drivers and emphasize the importance of targeted mitigation strategies for various NAC species.
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Figure 6: The impacts of primary emissions (PE), meteorological conditions, and secondary formation (SF) on the variations of (a)
NPs, (b) NCs, and (c) NSAs from SHAP analysis and relative importance of (d) primary emissions (including coal combustion (CC),
traffic emission (TE), and biomass burning (BB)), (e) meteorological conditions (including temperature (T), boundary layer height
(BLH), surface net solar radiation (SSR), relative humidity (RH), horizontal wind speed (WS_H), and vertical wind speed (WS_V)),
and (f) secondary formation (including gas-phase reaction (GR) and heterogeneous reaction represented by aerosol surface area

(Sa)).
3.4 Response of NACs to driving factors in different locations

To understand the combined impacts of three categories of driving factors (i.e., primary emissions, secondary formation, and
meteorological conditions) on the variations of NACs, more than 300 samples collected in wintertime that covered multiple
sites were selected for further analysis. Based on the discrepancies in geographical locations and emission intensity of air
pollutants, these sampling sites were categorized into three scenarios, i.e., urban (Jinan and Beijing), rural (Dongying and

Qingdao), and mountain (Mount Tai) areas, respectively.

As shown in Fig. 7 and Fig. S10, there were large discrepancy in the dominant driving factors for fine particulate NACs across
different locations. In urban areas, primary emissions exhibited positive impacts on ambient NACs, with the mean SHAP value
of 17.2 ng m3. Among the 11 variables, traffic emission ranked first in urban areas, contributing 14.9 ng m= to the NAC
variation, followed by coal combustion (7.7 ng m™®). The direct emissions from traffic sources have been reported as one of
the significant contributors to the particulate NACs in urban areas (Delhomme et al., 2010; SjGyren et al., 1995). The observed
enhancement of traffic emissions in this study is mostly responsible for the heavily trafficked urban districts in Jinan and
Beijing, especially at rush hours. In rural areas, the integrated impacts of primary sources also contributed positively to
particulate NACs, with mean SHAP values of 15.2 ng m?. Coal combustion and biomass burning turned to be the most
important driving factors, with the mean SHAP value of 6.1 and 5.6 ng m, respectively, which can be attributed to emissions
from central- and residential-heating activities in cold seasons. In contrast, at mountain area, the mean contribution of primary
sources reduced to —5.7 ng m=. This negative value reflects the minimal contribution of local anthropogenic emissions in this
region, resulting in lower concentrations of NACs compared to other sites. Then gas-phase oxidation dominated secondary
formation significantly affected NAC levels with the mean contribution of 5.9 ng m=3. This is ascribed to rare anthropogenic
emission sources at the top of mountain, where multiple oxidations and nitrations reactions became remarkable. The relatively
high concentrations of particulate NACs at the mountain site were also probably associated with the air masses transport from
anthropogenic activities in urban regions (Jiang et al., 2022), with the mean SHAP value of 2.1 ng m™ for biomass burning.
These results indicate that primary sources served as the predominant contributors to particulate NACs in urban and rural areas,
suggesting the necessity of making control policy on long-term reduction of anthropogenic emissions for addressing the NAC
pollution. Additionally, temperature ranked high among all driving factors, with mean contributions of 3.3, 5.6, and 5.9 ng m"
% for urban, rural, and mountain areas, respectively, suggesting the enhanced partitioning of the gas-phase NACs into the
particle phase under low temperature during wintertime. Besides, heterogenous reaction represented by aerosol surface area
also presented positive contributions at urban and rural areas, with the mean values of 5.3 and 4.5 ng m3, respectively. Severe

polluted sites in urban and rural areas tended to have increased particle number and high aerosol surface area density, which
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facilitated the partitioning of NACs and related precursors from gas phase to particle phase and the heterogeneous reaction
processes. However, heterogenous reaction showed negative impacts on NACs formation at the mountain site, which may be
affected by various factors, such as relatively low atmospheric particulate matter levels, diffusion, and transport processes.
The above machine-learning results reveal the combined but differential contributions of primary sources, secondary formation,
440 and meteorological conditions to the variations of ambient NACs in different locations. Particularly, this study provides a
foundation for developing more precisely targeted control strategies on NACs with implications to mitigate particulate matter

pollutions.
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Figure 7: The combined contributions of sources (i.e., coal combustion (CC), traffic emission (TE), and biomass burning (BB)),

445  meteorological conditions (i.e., temperature (T), boundary layer height (BLH), surface net solar radiation (SSR), vertical wind speed
(WS_V), horizontal wind speed (WS_H), and relative humidity (RH)), and secondary formation (i.e., gas-phase reaction (GR) and
heterogeneous reaction represented by the aerosol surface area (Sa)) to the variations of NACs in (a) urban, (b) rural, and (c)
mountain areas.

4. Conclusions and implications

450 In this study, we applied a multi-target variable ensemble machine learning framework coupled with SHAP algorithm to

explore the impacts of primary emissions, secondary formation, and meteorological conditions on fine particulate NACs in
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atmosphere at urban, rural, and mountain sites based on field-observation datasets. The EML model showed satisfactory
performance that could effectively capture and interpret the variations of ambient NACs during all the sampling periods.
Overall, primary emissions including coal combustion, traffic emission, and biomass burning were the most important
variables for NAC variations, contributing 49.3% in total, while meteorological conditions and secondary formation accounted
for 27.4% and 23.3%, respectively. Among the driving factors, primary emissions and secondary formation contributed
positively to the enhancement of NACs, while temperature and BLH (< 600 m) displayed negative impacts. Our results indicate
that the main influencing factors of particulate NACs varied across the four seasons and various locations due to differences
in pollutant emission intensities and meteorological conditions. Anthropogenic emissions represented primary sources of
NACs in spring, summer, and autumn, whereas temperature turned to be the most critical factor in winter, which may be
associated to the higher sample coverage from Mount Tai among all the samples. In addition, the main drivers of NACs differed
significantly among functional groups. Coal combustion and temperature served as the dominant driving factors for NPs, and
biomass burning had the largest impact on ambient NCs. Meanwhile, gas-phase oxidation emerged as the most important
contributor to the variation of NSAs. A detailed analysis in NACs formation and loss for different locations (including urban,
rural, and mountain areas) during wintertime revealed significant impacts of temperature, secondary formation, and biomass
burning on NACs at the mountain site. In contrast, the major contributors in urban areas were traffic emissions and coal

combustions and in rural areas were coal combustions and temperature.

This study integrated multiple field measurements with interpretable ensemble machine learning to investigate the impact of
primary emissions, secondary formation, and meteorological conditions on atmospheric particulate NACs. The result
elucidates the nonlinear atmospheric processes of particulate NACs and provides new insights into their sources and
influencing factors in various atmospheric environments. Particularly, the integration of PMF-based source apportionment
with a data-driven ensemble machine learning model and SHAP analysis method proved as a potent tool for rapidly diagnosing
the driving factors for organic aerosols, which is helpful for the control strategies targeting aerosol pollution. This hybrid
approach not only enhances the interpretability of ML results but also allows for a more robust and quantitative assessment of
the contributions of individual sources and environmental drivers. In future research, utilizing larger-scaled datasets and deep
learning techniques are required to achieve more comprehensive and precise predictions and understanding on atmospheric

NACSs and other organic components.

Data availability

The datasets used and analyzed during the current study are available from Mendeley (https://doi.org/10.17632/fp9zkv28p2.2;
Li and Wang (2025)).
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