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Abstract. Nitro-aromatic compounds (NACs) are important atmospheric pollutants that impact air quality, atmospheric 

chemistry, and human health. Understanding the relationship between NACs formation and key environmental driving factors 15 

are crucial for mitigating their environmental and health impacts. In this work, we combined an ensemble machine learning 

(EML) model with the SHapley Additive exPlanation (SHAP) and positive matrix factorization (PMF) model to identify the 

key driving factors for ambient particulate NACs covering primary emissions, secondary formation, and meteorological 

conditions based on field observations at urban, rural, and mountain sites in eastern China. The EML model effectively 

reproduced ambient NACs and recognized that anthropogenic emissions (i.e., coal combustion, traffic emission, and biomass 20 

burning) were the most important driving factors, with the total contribution of 49.3%, while significant influences from 

meteorology (27.4%), and secondary formation (23.3%) were also confirmed. Seasonal variations analysis showed that direct 

emissions presented positive responses to NACs concentrations in spring, summer, and autumn, while lower temperature had 

the largest positive impact in winter. By evaluating NACs formation and loss under various locations in winter, we found that 

anthropogenic sources played a dominant role in increasing NACs levels in urban and rural sites, while reduced ambient 25 

temperature along with secondary formation from gas-phase oxidation was the main reason for relatively high particulate 

NACs levels at the mountain site. This work provides a reliable modelling method for understanding the dominant sources and 

influencing factors for atmospheric NACs and highlights the necessity of strengthening emission sources controls to mitigate 

organic aerosol pollution.  
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Abbreviations 

NACs Nitro-aromatic compounds BrC Brown carbon 

NPs Nitrophenol and its derivatives VOCs Volatile organic compounds 

NCs Nitrocatechol and its derivatives T Temperature 

NSAs Nitrosalicylic acids RH Relative humidity 

DNPs Dinitrophenol and its derivatives SSR Surface net solar radiation 

4NP 4-nitrophenol PMF Positive matrix factorization 

3M4NP 3-methyl-4-nitrophenol PCA Principal component analysi 

2M4NP 2-methyl-4-nitrophenol ML Machine learning 

2,6DM4NP 2.6-dimethyl-4-nitrophenol SHAP SHapley Additive exPlanation 

4NC 4-nitrocatechol EML Ensemble machine learning 

4M5NC 4-methyl-5-nitrocatechol BLH Boundary layer height 

3M6NC 3-methyl-6-nitrocatechol WS_H Horizontal wind speed 

3M5NC 3-methyl-5-nitrocatechol WS_V Vertical wind speed 

5NSA 5-nitrosalicylic acid Sa Aerosol surface area 

3NSA 3-nitrosalicylic acid EDTA ethylenediaminetetraacetic acid 

2,4DNP 2,4-dinitrophenol BB Biomass burning 

4M2,6DNP 4-methyl-2,6-dinitrophenol RF Random forest 

CC Coal combustion XGBoost Extreme gradient boosting 

TE Traffic emission LightGBM Light gradient boosting machine 

GR Gas-phase reaction MLP Multilayer perceptron 

PE Primary emission R2 Coefficient of determination 

SF Secondary formation MAE Mean absolute error 

  RMSE Root mean squared error 

1. Introduction 30 

Nitro-aromatic compounds (NACs) exist as one of the key components of atmospheric organic aerosols that consist of both 

one or more nitro (-NO2) and hydroxyl functional groups (-OH) attaching to a benzene ring. They can be classified into four 

categories based on the chemical structures and quantities of functional groups, including nitrophenol and its derivatives (NPs), 

nitrocatechol and its derivatives (NCs), nitrosalicylic acids (NSAs), and dinitrophenol and its derivatives (DNPs). As semi-

volatile compounds, NACs are widely distributed in the air, cloud, surface water, fog, rain, and snow in earth environment 35 

(Leuenberger et al., 1988; Lüttke et al., 1999; Lüttke et al., 1997; Vanni et al., 2001).They are recognized as the major 

constituents of brown carbon (BrC) that affect radiative forcing and regional climate through strong absorption of visible and 



3 

 

near-ultraviolet lights (Xie et al., 2017; Mohr et al., 2013). In addition, the photolysis of NACs can release OH radicals and 

produce HONO, increasing the atmospheric oxidative capacity and altering the nitrogen cycle (Bejan et al., 2006; Bejan et al., 

2007; Cheng et al., 2009; Yang et al., 2024). Recent toxicology studies have also shown that NACs can react with haemoglobin 40 

and further affect cell metabolism, which pose risks to human health (Fernandez et al., 1992; Purohit and Basu, 2000). 

Therefore, elucidating the sources and sinks of NACs is of particular importance for comprehensively assessing their 

environmental, climate, and health effects. 

The abundances of NACs in ambient air largely depend on primary emissions of anthropogenic activities including coal 

combustion (Lu et al., 2019a), biomass burning (Chow et al., 2016), traffic emissions (Delhomme et al., 2010), and industrial 45 

productions (Lu et al., 2021), with emission rates influenced by fuel types, combustion processes, and burning conditions. 

They can be also produced through nitration of anthropogenic aromatic volatile organic compounds (VOCs) initiated by OH 

and NO3 radicals in either the gas or aqueous phases (Harrison et al., 2005; Atkinson et al., 1989; Atkinson et al., 1992; Xie et 

al., 2017; Xia et al., 2023). In addition to phase partitioning, heterogeneous reaction of gas-phase NACs has been recently 

proposed as a formation pathway for the condensed-phase NACs (Wang et al., 2019). The secondary formation, phase 50 

partitioning, diffusion and transport, and wet and dry deposition of NACs strongly rely on meteorological conditions. 

Particularly, previous studies established a temperature (T)–dependent equilibrium for NACs between the gas and particle 

phases (Cai et al., 2022; Yuan et al., 2016). Higher relative humidity (RH) significantly facilitated the uptake of gas-phase 

NACs into aerosols (Vidović et al., 2018; Frka et al., 2016), while surface net solar radiation (SSR) exerted a dual effect by 

enhancing both the photochemical production and photolytic degradation of NACs (Peng et al., 2023b). The complex and 55 

synergetic effects of primary emissions, secondary formation, and meteorological conditions on the abundances of NACs make 

the quantification of the individual contribution of each factor a challenge. 

Traditionally, receptor models such as positive matrix factorization (PMF) and principal component analysis (PCA) are applied 

to apportion the major sources of NACs and their contributions. For example, Ren et al. (2022) and Yuan et al. (2021) have 

applied PMF model to reveal that the particulate NACs in China are closely associated with anthropogenic activities, 60 

particularly with the direct emissions from combustion sources. Li et al. (2016) combined PMF and PCA models and 

recognized that NACs from biomass burning are mainly responsible for urban haze events. Furthermore, statistical methods 

based on linear or multilinear regressions were also used to quantify the contributions of sources, meteorological conditions, 

and other factors on the variations of particulate NACs (Cai et al., 2022; Wang et al., 2019; Chow et al., 2016). However, these 

methods are typically based on linear algorithms that may overlook the multivariate nature and nonlinear relationships between 65 

NACs and the potential sources as well as the complex influences from meteorological conditions, potentially resulting in 

biased interpretations of NACs under complex atmospheric conditions. Therefore, a complementary data analysis approach is 

warranted to more efficiently uncover the hidden complicated relationships. Currently, machine learning (ML) methods, which 

are capable of simulating intricate and concealed nonlinear relationships and interactions among complex variables, have been 

widely used in predictions and evaluations of air pollutants (Chen et al., 2024; Wang et al., 2022a). Lundberg and Lee (2017) 70 
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proposed a SHapley Additive exPlanation (SHAP) algorithm based on game theory to improve the model’s interpretability, 

thereby providing a tool to explain and quantify the impacts of input variable values on model predictions. The interpretable 

ML methods in combination with interpretable SHAP algorithm have been recently applied to investigate the formation 

mechanism and influencing factors of atmospheric pollutants. For example, Qin et al. (2022) quantified the drivers of gaseous 

elemental mercury by using an ML model in combination with SHAP. Peng et al. (2023a) utilized an ML model coupled with 75 

SHAP to evaluate the effects of PM2.5 sources and RH on atmospheric visibility. Given the complex nonlinear links between 

primary emissions, secondary formation, and meteorological conditions and the ambient particulate NACs, a clear 

understanding of the separate role of each factor is challenging. Therefore, it is necessary to establish an effective and reliable 

evaluation method to comprehensively understand and assess the importance and contribution of each factor on the abundances 

of NACs under complicated atmospheric conditions. 80 

In this study, particulate NACs at various sampling sites in eastern China in different seasons were compared and characterized. 

By integrating observational datasets of NACs, meteorological data, particle loading (i.e., aerosol surface area data), and source 

apportionment results derived from PMF model, an ensemble machine learning (EML) model combined with the SHAP 

approach was applied to reveal the key variables regulating the ambient NACs and the complex interrelationships. This study 

makes a methodological contribution by employing a novel approach to quantify the seasonal shifts in drivers and spatial 85 

variations across urban, rural, and mountain regions in a nuanced manner. 

The purpose of this study is to (1) interpret the concentrations, compositions, and sources of particulate NACs at different 

sampling sites and seasons; (2) provide methods to identify the key driving factors for ambient NACs and quantify their relative 

contributions at various NACs concentration levels; and (3) elucidate the response of NACs to key driving factors under 

different pollution environments based on various sampling locations. This is the first attempt by combining PMF model results 90 

with the explainable EML method to build nonlinear relationships and identify the key driving factors of NACs. The findings 

highlight the critical roles of emission sources as well as the large impacts of temperature and secondary formation on ambient 

NACs and provide scientific basis for atmospheric pollution mitigation measures. 

2. Materials and methods 

2.1 Field observations 95 

The field sampling and measurements were conducted at eleven sites in eastern China from 2014 to 2021 (Figure 1), including 

four urban sites in Jinan (36.67° N, 117.05° E), Guangzhou (23.14° N, 113.36° E), Nanjing (32.20° N, 119.62° E), and Beijing 

(40.03° N, 116.42° E), five rural sites in Dongying (37.75° N, 118.97° E), Wangdu (38.70° N, 116.57° E), Yucheng (36.87° 

N, 116.57° E), and Qingdao (including two sampling sites: Qingdao Campus of Shandong University (36.36° N, 120.69° E) 

and Entrepreneurship Center of Blue Silicon Valley (36.35° N, 120.67° E); see Fig. 1b), and two mountain sites: Mount Tai 100 

(36.27° N, 117.10° E, 1,534 m a.s.l.), a typical high-elevation background site; and Mount Lao (36.15° N, 120.68° E, 166 m 
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a.s.l.), a lower-elevation site situated in a coastal mountainous region. More detailed descriptions about the sampling site were 

provided in Text S1 in the Supporting Information (SI). It should be noted that the basic data in Jinan (except for autumn), 

Wangdu, Yucheng, Qingdao, and Mount Tai (winter in 2019 and summer) have been reported in our previous studies (Li et 

al., 2020a; Wang et al., 2018; Jiang et al., 2024; Li et al., 2024), which mainly demonstrate the pollution characteristics of 105 

particulate NACs and determine the major origins with traditional PMF model. In contrast, the NAC data collected during the 

campaigns in spring at Mount Tai and Mount Lao, the campaigns in summer in Guangzhou and Dongying, the campaigns in 

autumn in Jinan and Nanjing, and the campaigns in winter in Bejing, Dongying and Mount Tai (2017) are newly reported in 

this study. More importantly, the novelty of this work lies in the integration of multi-season, multi-site dataset with an ensemble 

machine learning algorithm to comprehensively assess the key driving factors of particulate NACs across different sampling 110 

locations and seasons. 

 

Figure 1: (a) Map showing the sampling locations and (b) the different sampling sites located in Qingdao. The NOx emission data in 

2019 were downloaded from multi-resolution Emission Inventory for China (MEIC) website (available at: http://meicmodel.org.cn) 

(Li et al., 2017; Zheng et al., 2018). 115 

In urban and rural sites, PM2.5 samples were collected with a medium-volume sampler (TH-150A, Wuhan Tianhong, China) 

at a flow rate of 100 L min-1, with daytime samples (08:00–19:30, LT) and nighttime samples (20:00–07:30) obtained daily. 

Two high-volume air samplers (TE-6070, Tisch, U.S.A.; TE-5170, Tisch, U.S.A.) at flow rates of 994 L min-1 and 1000 L min-

1 were used to collect PM2.5 samples at Mount Tai (only in 2019) and Mount Lao, separately, with temporal resolutions of 3 

hours during the daytime (07:00–22:00) and 9 hours during the nighttime (22:00–07:00 the next day). Fine particulate matters 120 

were collected on prior pre-baked quartz fiber filters (Pallflex, U.S.A.) and 613 aerosol samples were obtained totally. Blank 
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samples were acquired before and after the field campaigns without sucking air, and the filter samples were immediately placed 

in clean plastic boxes or wrapped with pre-baked aluminium foil and stored at –20°C in darkness for subsequent chemical 

analysis. 

Several major tracer gases (SO2, NO, NO2, and O3) were simultaneously monitored by online analyzers at most sampling sites. 125 

For the Nanjing and Guangzhou sites, where on-site gas measurements were not available, the corresponding data were 

downloaded from the China National Environmental Monitoring Centre (available at: http://106.37.208.233:20035/). NO 

concentrations were unavailable at these two sites due to data limitations, and were therefore excluded from this study. 

Meteorological parameters, such as temperature and relatively humidity, were recorded by automated meteorological stations 

or obtained from Weather Underground (available at: https://www.wunderground.com). Detailed information on the trace gas 130 

analyzers and meteorological stations was provided in the Text S1. Other hourly meteorological data for all sampling sites, 

including SSR, boundary layer height (BLH), and horizontal wind speed (WS_H) and vertical wind speed (WS_V) at a height 

of 10 m (a.g.l.) were taken from the European Centre for Medium-Range Weather Forecasts (ECMWF, ERA5 data). Particle 

number size distributions at Mount Tai in 2019 were measured by a scanning mobility particle sizer (SMPS, Grimm, Germany), 

which were used to derive the aerosol surface area (Sa) data. Additionally, Sa data for the remaining sites were estimated by 135 

using predictive capability machine learning algorithms based on the input variables of PM2.5 and meteorological parameters. 

Detailed descriptions on the estimation method of Sa can refers to Text S2 and Fig. S1, and the predicted Sa results were shown 

in Fig. S2. 

2.2 Chemical analysis 

The analytical protocol of particulate NACs in PM2.5 samples used in this study was adapted from those developed by 140 

Kitanovski et al. (2012) and Wang et al. (2018). Briefly, the filter samples were extracted ultrasonically or with a thermostatic 

orbital shaker with methanol (containing 30 µL saturated ethylenediaminetetraacetic acid, EDTA) for 30 min and repeated 

three times. The extracts were filtered through 0.20 µm polytetrafluoroethylene syringe filters (PTFE, Millex-FG, Millipore) 

to remove insoluble matters. They were then evaporated and concentrated using ultra-high purity nitrogen to dryness and the 

concentrates were re-dissolved in 300 µL methanol containing the internal standard. All the sample solutions were analyzed 145 

by ultra-performance liquid chromatography coupled with a mass spectrometer detector (UHPLC-MS, Thermo Scientific, 

U.S.A.) operating in negative mode under selected ion monitoring (SIM) mode. Finally, the following twelve target compounds 

were identified based on retention time and spectra of the standards, including NPs (4-nitrophenol (4NP), 3-methyl-

4nitrophenol (3M4NP), 2-methyl-4-nitrophenol (2M4NP), and 2.6-dimethyl-4-nitrophenol (2,6DM4NP)), NCs (4-

nitrocatechol (4NC), 4-methyl-5-nitrocatechol (4M5NC), 3-methyl-6-nitrocatechol (3M6NC), and 3-methyl-5-nitrocatechol 150 

(3M5NC)), NSAs (5-nitrosalicylic acid (5NSA) and 3-nitrosalicylic acid (3NSA)), and DNPs (2,4-dinitrophenol (2,4DNP) 

and 4-methyl-2,6-dinitrophenol (4M2,6DNP)). Standard curves, derived from the gradient concentrations of the authentic 

standard mixtures, were utilized to quantify the contents of the above twelve NACs. More detailed analytical methods are 
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provided in Text S3 of the Supporting Information. It also should be noted that due to methodological differences, the species 

of measured NACs varied across various locations and seasons, as specified in Table S1. Additionally, the average recovery 155 

rates for the filter samples were determined to be within the range of 81.5% to 106.5%, and the field blank signals of most 

species accounted for less than 3% of NACs in the ambient NACs, while NSAs and DNPs in the blanks contributed 

approximately 10% to the determined NACs, which were considered in the subsequent calculations. Moreover, the 

instrumental precision was determined by repeated analysis of standard solutions (n = 5) under the same operating conditions, 

yielding relative standard deviations of ±3.8% for the target NACs, which indicates high analytical reproducibility. Taking 160 

into account errors from extraction recovery rates, instrumental precision, and blank subtraction, the total measurement 

uncertainty for NACs was estimated to be approximately ±19.1%. 

2.3 Positive matrix factorization model 

The PMF model (EPA 5.0) is a useful tool for qualitatively identifying the NACs sources and quantitatively assigning their 

contributions to the total NACs and is employed in our study. The fundamental principles of the PMF model can be described 165 

as follows Eq. (1) (Paatero and Tapper, 1994): 

Xi×j = Gi×p∙ Fp×j + Ei×j (1) 

where Xi×j  represents the observed data matrix, with i samples and j chemical species.  Gi×p  and Fp×j  are the source 

contribution matrix and source profile matrix, respectively. p is the number of sources contributing to the NACs. Ei×j represents 

the residual error matrix capturing the difference between the measured and simulated data, which were calculated by 170 

minimizing the function Q based on Eq. (2): 

Q = ∑ ∑ [
Ei×j

ui×j
]

2
m
j=1

n
i=1  (2) 

where ui×j is the uncertainty, which were determined through the comparison with detection limit. Detailed information can 

be seen in previous study by Zhang et al. (2018). 

In this study, the PMF input matrix consisted of 613 daily aerosol samples and ten components (including 4NP, 3M4NP, 175 

2M4NP, 4NC, 4M5NC, 3M6NC, 5NSA, 3NSA, NO2, and O3). For the input data, the treatment and calculation of the 

concentrations and associated uncertainties for each species followed the methodology described in our previous study (Li et 

al., 2020a). Here, by comparing the Q value results with two to six factor numbers, the optimal number of source factors was 

determined to be four. Specific details of the PMF model configuration and evaluation can be found in Text S4 and Fig. S3. 

Based on the outputs from the PMF model, four major sources of NACs, including coal combustion (CC), traffic emission 180 

(TE), secondary formation associated with gas-phase reaction (GR), and biomass burning (BB), were identified from samples 

collected at the 11 sampling sites (Text S4) and the corresponding source profiles are presented in Fig. S4. 
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2.4 Ensemble machine learning model 

Four widely employed ML algorithms, including random forest (RF), extreme gradient boosting (XGBoost), light gradient 

boosting machine (LightGBM), and multilayer perceptron (MLP), were selected in this study for model development. RF is 185 

an ensemble learning method that constructs multiple decision trees, with the strength in its interpretability (Wang et al., 2022b; 

Petkovic et al., 2017). XGBoost, a gradient boosting learner that optimizes performance and efficiency, has a strength in 

stability and precision (Si and Du, 2020; Gui et al., 2020). LightGBM is a gradient boosting framework designed for high 

efficiency and scalability (Ju et al., 2019; Ma et al., 2022). MLP, as a class of feedforward artificial neural network, has 

advantages in flexibility and the ability to handle non-linear relationships (Reifman and Feldman, 2002). Detailed information 190 

about these four ML algorithms is provided in Text S5.1. 

The dataset (613 rows) used for the four ML algorithms consisted of eleven parameters as inputs, including PMF-derived 

source contributions, meteorological conditions (T, BLH, RH, SSR, WS_H, and WS_V), and heterogeneous reaction 

represented by the aerosol surface area (Sa), all of which influence the sources and sinks of NACs. To avoid circular reasoning, 

the ML model was constructed to predict the total concentration of NACs as target variable. The four PMF-derived source 195 

contribution factors, which serve as independent explanatory variables capturing source-type influences, were used as input 

features instead of individual NAC species. This approach ensures a clear separation between PMF inputs and the ML target, 

effectively preventing data leakage or double counting. The whole dataset was randomly divided, with 80% allocated to the 

training set and the remaining 20% to the testing set. Then, GridSearch and 10-fold cross-validation were employed to prevent 

overfitting and tune the optimal hyperparameters. The performances of model outcomes were evaluated using the coefficient 200 

of determination (R2), mean absolute error (MAE), and root mean squared error (RMSE), and the optimal hyperparameters 

were listed in Table S2. As shown in Fig. S5, XGBoost and LightGBM models exhibited better performances, with the lower 

MAE (6.82 and 7.38 ng m-3, respectively) and RMSE values (11.05 and 12.07 ng m-3, respectively) than the other two ML 

models. Meanwhile, the modelled NACs by the XGBoost and LightGBM algorithms were highly consistent with the observed 

data, with R2 values of 0.88 and 0.86, respectively. The RF model also performed well with an R2 value of 0.85, while the 205 

MLP model demonstrated inadequate forecasting performance (R2 = 0.60). 

Due to the unique strengths and limitations of different ML algorithms, the integrated EML model enhanced the predictive 

performance by leveraging the strengths of each ML algorithm while mitigating their weaknesses (Opitz and Maclin, 1999). 

Therefore, the base learners (RF, XGBoost, and LightGBM) were selected and integrated into the EML model framework 

based on a ridge regression model (Carneiro et al., 2022), and 10-fold cross-validation was applied to prevent overfitting. The 210 

evaluation results showed that EML model exhibited higher accuracy and precision, with the R2 of 0.91, and with MAE, and 

RMSE of 6.11, and 9.94 ng m-3, respectively (Fig. S6), making it the preferred option for the subsequent analysis. To further 

evaluate the generalizability of the EML model, a leave-one-site-out cross-validation approach was implemented. The data 

from each site were iteratively excluded from model training and used exclusively for testing, ensuring complete independence 

between training and testing sets. The results show that this model exhibits robustness and transferability rather than limited 215 
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to specific scenarios (see Fig. S7). Additionally, multi-target predictions were conducted by using the EML model with 

different functional groups compounds, including NPs, NCs, and NSAs, simultaneously set as target variables. Different types 

of NACs also exhibited very good predictive performances with R2 of 0.90, 0.85, and 0.93 for NPs, NCs, and NSAs, 

respectively, confirming the computational accuracy and the strong ability to solve non-linear relationships (shown in Table 

S3). Furthermore, to quantify the contributions of input features to the target variable, the SHAP algorithm was employed in 220 

this study, which evaluated the specific impacts of different driving factors based on the marginal contribution of individuals 

within the framework of cooperative game theory. This approach enables a robust and interpretable explanation of the 

relationship between each predictor and the average model prediction. Detailed information about the EML assessment method 

and SHAP algorithm was introduced in Text S5.2 and S5.3 in the SI, respectively. 

The latest scikit-learn packages (https://scikit-learn.org/stable/) are used for running the ensemble machine learning model and 225 

the SHAP algorithm (https://shap.readthedocs.io/en/latest/) is applied for quantifying each feature’s contribution to NACs 

concentrations, which are performed in a Python (v 3.11) environment. 

3. Results and discussion 

3.1 Seasonal and spatial variations of NACs 

The particulate NACs measured in this study exhibited relatively high levels, with an average total concentration of 28.5 ± 230 

32.7 ng m-3 across four seasons at eleven sampling sites. As shown in Figure 2, the concentrations of fine particulate NACs 

exhibited distinct seasonal variations, with the highest total concentrations appearing in winter (42.0 ± 38.3 ng m-3, mean ± 

standard deviation), followed by autumn (18.3 ± 22.8 ng m-3), spring (13.5 ± 11.2 ng m-3), and summer (10.6 ± 9.2 ng m-3). 

The above seasonal variation trend is consistent with other whole-year observations in urban Xi’an, Beijing, and Hong Kong, 

China (Yuan et al., 2021; Chow et al., 2016; Wang et al., 2021; Yang et al., 2020), rural Flanders, Belgium (Kahnt et al., 2013), 235 

and Mount Wuyi, China (Ren et al., 2023). Such a large seasonal difference in NAC abundances can be attributed to discrepant 

emission intensities, formation rates, and meteorological conditions. As seen in Table 1, NO2, which acts as an important 

nitration agent in NAC formation and a major tracer of traffic emissions, also showed higher concentrations in winter, autumn, 

and spring when compared to summer. Meanwhile, SO2 and CO, which share common anthropogenic sources such as coal 

combustion and biomass burning, also exhibited higher levels in cold seasons than the hot season at the same site. In addition, 240 

the lower temperature in winter was favourable for gas-to-particle partitioning of NACs and their precursors. Additionally, the 

accumulation of NACs during cold season was exacerbated by relatively weak radiation and the presence of lower mixed 

boundary layer. Conversely, during summer, strong light intensity, favourable diffusion conditions, and the abundant oxidants 

facilitate the photolysis and dilution of NACs. Furthermore, the abundance of NACs also varied greatly with locations. In 

general, elevated NACs concentrations were observed at urban and rural sites when compared with mountain environments. 245 

It is because that there were higher emissions and/or formation rates at urban and rural sites especially under the conditions of 
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high NOx and intensive anthropogenic VOCs, while mountain sites were affected by anthropogenic emissions rarely and to a 

small extent. Moreover, data from 2014 to 2021 revealed no significant trends in NAC concentrations across the same seasonal 

and site-type conditions, therefore temporal variation was not considered as a primary focus of this study. 

Table 1: Sampling information and average concentrations (± standard deviation) of NACs (unit: ng m-3), trace gases, and 250 
meteorological parameters. 

Sampling site Season ΣNACs SO2 (ppbv) NO2 (ppbv) O3 (ppbv) CO (ppbv) T (°C) RH (%) 

Jinan 

Spring 34.0 ± 24.0 13.7 ± 7.7 43.7 ± 23.2 79.3 ± 19.9 920.2 ± 307.1 20.1 ± 2.5 37.2 ± 13.5 

Summer 10.4 ± 4.5 14.7 ± 14.7 26.7 ± 13.7 42.6 ± 26.3 1049.2 ± 573.5 24.0 ± 4.3 66.9 ± 16.4 

Autumn 26.3 ± 27.9 4.4 ± 1.8 35.2 ± 15.8 21.7 ± 14.5 812.1 ± 354.5 11.7 ± 3.0 44.8 ± 12.2 

Winter 60.7 ± 31.9 21.4 ± 9.6 26.3 ± 12.1 30.2 ± 17.6 1053.0± 403.3 8.6 ± 3.8 36.3 ± 11.7 

Guangzhou Summer 19.8 ± 10.5 3.0 ± 0.5 20.0 ± 3.8 13.0 ± 13.2 566.2 ± 82.0 27.1 ± 3.0 79.3 ± 11.2 

Nanjing Autumn 8.2 ± 3.3 3.4 ± 0.8 30.2 ± 11.0 23.5 ± 15.8 529.4 ± 126.2 14.1 ± 3.3 69.6 ± 15.2 

Beijing Winter 42.1 ± 27.1 3.7 ± 3.0 21.1 ± 13.2 21.2 ± 9.9 691.0 ± 489.6 -3.3 ± 4.4 36.4 ± 13.5 

Yucheng Summer 5.8 ± 2.7 3.2 ± 3.0 20.9 ± 12.5 45.9 ± 18.9 665.8 ± 146.8 24.5 ± 3.5 69.3 ± 15.3 

Wangdu Summer 5.9 ± 3.7 7.0 ± 5.6 14.2 ± 7.6 56.9 ± 23.3 521.2 ± 203.9 27.0 ± 4.4 55.4 ± 18.1 

Dongying 
Summer 20.9 ± 12.5 3.6 ± 1.5 5.1 ± 2.2 77.0 ± 28.5 478.2 ± 173.0 27.7 ± 3.6 60.2 ± 11.9 

Winter 41.7 ± 27.6 4.6 ± 3.6 11.6 ±5.2 21.8 ± 7.1 1494.8 ± 553.9 -2.6 ± 1.9 76.9 ± 13.7 

Qingdao Winter 53.6 ± 53.2 3.7 ± 2.1 16.8 ± 9.3 22.2 ± 11.1 757.2 ± 382.5 4.0 ± 5.5 64.3 ± 18.0 

Mount Tai 

Spring 10.8 ± 4.9 2.1 ± 1.4 2.1 ± 1.3 72.7 ± 8.9 445.1 ± 121.3 8.5 ± 4.0 67.4 ± 18.5 

Summer 2.5 ± 1.6 2.6 ± 2.0 2.7 ± 0.8 70.3 ± 18.6 331.6 ± 148.9 19.7 ± 2.6 86.9 ± 8.9 

Winter 30.3 ± 13.6 2.0 ± 1.3 4.2 ± 2.7 40.9 ± 7.6 308.2 ± 168.3 -3.8 ± 3.3 51.8 ±20.5 

Mount Lao Spring 12.3 ± 8.3 1.0 ± 0.8 7.7 ± 3.7 50.3 ± 12.2 273.0 ± 99.2 16.7 ± 3.6 56.0 ± 22.6 

Figure 3 compared the abundances of particulate NACs across different sites in the same season by similar analytical methods. 

During springtime, the average NACs concentration in Jinan in this work was comparable to that reported in urban Rome, 

Italy (Cecinato et al., 2005) and significantly higher than those in other urban, rural, and mountain sites over the world (Fig. 

3a). Summertime NACs measured in urban Jinan and Guangzhou also showed elevated concentrations when compared with 255 

those observed in other locations (Ren et al., 2022; Ikemori et al., 2019), which is mainly attributed to the large anthropogenic 

emissions in these two cities (Fig. 3b). Moreover, particulate NACs concentrations also showed higher levels in rural Dongying, 

where it was significantly affected by biomass burning activities in early summer, as confirmed by Zhang et al. (2021). Lower 

summertime particulate NACs concentrations were detected in rural sites (i.e., Wangdu and Yucheng), similar to the results in 

previous studies conducted in rural Xianghe, China (Teich et al., 2017) and urban Los Angeles, U.S.A. (Zhang et al., 2013) in 260 

summer. In addition, the average NACs level in Jinan in northern China in autumn (Fig. 3c) was generally comparable to that 
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measured in urban Beijing and Xi’an (Li et al., 2020b; Yuan et al., 2021), but higher than those observed in urban Hong Kong 

(Chow et al., 2016) and Nanjing (this study) in southern China, where was relatively rarely affected by coal combustion and 

biomass burning and experienced frequent rainfall. Moreover, the wintertime observations in northern China in this study were 

as high as those in most previous studies, further indicating the high emissions and concentrations of NACs caused by 265 

intensified combustion activities for heating (Fig. 3d). 

 

Figure 2: Box plots of NACs concentrations and pie charts of their compositions at urban, rural, and mountain sites in different 

seasons. 

The composition of particulate NACs also varied according to the sampling locations and seasons. As shown in the pie chart 270 

in Fig. 2, NPs and NCs were the most abundant species among the four categories of NACs at most urban and rural sites due 

to their higher emission factors, abundant precursors, and longer atmospheric lifetimes than other NACs. The dominance of 

NPs and NCs in this study coincides with the findings from previous studies in other locations (Cai et al., 2022; Li et al., 2020c; 

Wang et al., 2019). However, the fractional composition of NACs in spring and winter at mountain sites, being dominated by 

NPs and DNPs, differed from that at other types of sites. Previous studies have suggested that DNPs could be formed from 275 

further oxidation of NPs by acquiring a nitro group (Yuan et al., 2016), thus the elevated DNPs fractions at mountain sites are 
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mainly attributable to the secondary formation processes. Additionally, it should be noted that the increased proportions of 

NSAs were observed in rural and mountain sites in summer (Fig. 2b), which is in good agreement with recent study in urban 

Nanjing (Cao et al., 2023) and rural Indo-Gangetic Plain (IGP) (Rana and Sarkar, 2024). The dominance of NPs and NSAs at 

these remote sites may arise from aged plumes or intensive photochemical oxidation of aromatic precursors in the presence of 280 

NOx (Jang and Kamens, 2001). The above results suggest that the difference in particulate NACs compositions across various 

locations and seasons was probably associated with anthropogenic emissions and secondary formation processes. 

 

Figure 3: Comparison of particulate NACs measured in this study (marked with filled black lines) with previous studies conducted 

in China and other countries in (a) spring, (b) summer, (c) autumn, and (d) winter. 285 
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3.2 Key driving factors of NACs variation identified by the SHAP approach 

With the data of source apportionment, meteorological parameters (i.e., T, RH, wind speed, surface solar radiation, and 

boundary layer height), and particle loading (i.e., Sa), we further quantified the impacts of different primary emissions (PE), 

meteorological factors, and secondary formation (SF, including gas-phase reaction (GR) and heterogeneous reaction 

represented by aerosol surface area (Sa)) on the variations of total NACs via the SHAP algorithm. The mean absolute SHAP 290 

values can be used to rank the major driving factors in the production (including emission and formation) and loss of fine 

particulate NACs across all samples, with a larger absolute SHAP value representing a higher influence on NAC levels. As 

shown in Fig. 4a, coal combustion ranked as the most important factor affecting NAC concentrations, exhibiting an average 

contribution of 8.0 ± 4.9 ng m-3, followed by traffic emission, temperature, biomass burning, aerosol surface area, gas-phase 

reaction, boundary layer height, and surface solar radiation, with the SHAP values of 7.4 ± 6.6, 6.9 ± 3.0, 6.3 ± 6.3, 5.6 ± 7.1, 295 

4.6 ± 4.3, 1.9 ± 1.8, and 1.0 ± 0.8 ng m-3, respectively. The mean SHAP values of the remaining factors were less than 1.0 ng 

m-3, which had minor impacts on ambient NACs in this work. Overall, the major primary emissions including coal combustion, 

traffic emission, and biomass burning together contributed 49.3% to the variation of NACs during the sampling periods, while 

meteorological conditions and secondary formation explained 27.4% and 23.3%, respectively (Fig. 4b). This enhancement in 

anthropogenic emissions is consistent with the findings reported in previous NAC studies (Wang et al., 2018; Yuan et al., 300 

2021). However, the integration of the explainable EML framework constitutes a methodological advancement by enabling 

quantitative evaluation of source contributions, thereby providing a more nuanced and context-specific understanding of the 

driving factor across diverse atmospheric conditions. 
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Figure 4: (a) The ranking of the importance for all input variables (“CC”: coal combustion; “TE”: traffic emission; “T”: 305 
temperature; “BB”: biomass burning; “Sa”: aerosol surface area; “GR”: gas-phase reaction; “BLH”: boundary layer height; “SSR”: 

surface net solar radiation; “RH”: relative humidity; “WS_H”: horizontal wind speed; “WS_V”: vertical wind speed) calculated via 

SHAP algorithm (average absolute contribution), (b) the impacts of driving factors on variations of NACs from SHAP analysis 

during the whole sampling periods (“PE” and “SF” represent primary emissions and secondary formation, respectively), (c) SHAP 

summary plots for all samples with the shift in colour of the scatter plot from blue to red indicating an increase in driving factor 310 
values, and the relationships between the SHAP values and parameter values for (d) temperature (T), (e) aerosol surface area (Sa), 

(f) boundary layer height (BLH), and (g) surface net solar radiation (SSR) with the right y axis corresponding to the frequency 

distribution of the measured variables. 

Figure 4c-g show the SHAP values for each feature and each sample and display the relationships between the SHAP value 

and the feature value to investigate its influence on the variation of NACs. A positive SHAP value indicates that the variable 315 

increases the predicted NAC concentration relative to the baseline, whereas a negative SHAP value suggests that higher values 

of the variable are associated with a decrease in NAC concentrations. As shown in Fig. 4c, among the different primary sources, 

coal combustion, traffic emission, and biomass burning all exhibited a strong positive correlation with predicted NACs, in 

alignment with previous studies which suggest the important roles of anthropogenic emissions in driving high NACs 

concentrations. For example, our previous study determined that the emission factors of particulate NACs for residential coal 320 

combustion were 0.2–10.1 mg kg-1, with the total emission of 178 Mg in China in 2016 (Lu et al., 2019a). Particulate NACs 

were also detected from direct traffic emissions, with the emission factor reaching up to 89.6 µg km−1 (Nojima et al., 1983; Lu 

et al., 2019b). Furthermore, the emission factor of NACs from biomass burning can exceed 10 mg kg-1, which make them 

regarded as key tracers of biomass-burning organic aerosols (Wang et al., 2017; Iinuma et al., 2010). Gas-phase reaction also 

demonstrated a positive association with NACs formation, mainly attributed to the fact that oxidation and nitration of 325 

precursors acted as important formation pathways for atmospheric NACs. Additionally, temperature as the leading 

meteorological contributor, showed a negative response to NACs formation (see Fig. 4d). This result confirms the recent 

finding that the concentrations of particulate NACs largely depended on the temperature-dependent partitioning between the 

gas and particle phase and were prone to produce at low ambient temperatures via enhanced transfer from the gas phase (Al-

Naiema and Stone, 2017; Yuan et al., 2016). With the increase in aerosol surface area, its SHAP values increased accordingly 330 

(Fig 4e), which is similar to the previous study in Beijing where high Sa would facilitate gas/particle partitioning of NACs and 

their precursors and subsequent heterogeneous reactions (Wang et al., 2019). Notably, at low temperature (approximately < 

10°C), the contribution on NACs exhibited an explosive enhancement, accompanied by a pronounced synergistic effect with 

higher Sa (Fig. S8), indicating enhanced gas-to-particle partitioning and heterogeneous formation. Conversely, at higher 

temperature, high Sa appears to suppress NAC formation, possibly as a result of intensified photochemical reactions facilitating 335 

gas-phase products, high temperature promoting to the partitioning to particle phase, or dilution effects caused by increased 

mixing heights in hot seasons. The relationship between boundary layer height and their SHAP values showed a nonlinear 

response (Fig. 4f), with a decreasing trend in low-BLH regimes (0–600 m), accompanied by a relatively constant SHAP value 

in high-BLH regimes (> 600 m). In low-BLH conditions, increasing BLH levels reduced the concentrations of NACs due to 

the enhanced diffusion and dilution (Krautstrunk et al., 2000). When BLH was above 600 m, the BLH ceased to affect the 340 

surface concentrations of NAC. As to surface solar radiation, its SHAP values did not present an obvious correlation with its 
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levels (Fig. 4g). Generally, high solar radiation can promote the secondary formation of some NACs (Vione et al., 2001), but 

it also acts as a sink for NACs via photolysis during the daytime (Bejan et al., 2020). 

3.3 Driving forces of NAC variation for different seasons and functional types 

To make clear the dominant driving factors for the variations of fine particulate NACs in different seasons, the contribution of 345 

each factor during four seasons was compared in Figure 5. As shown in Figure 5a-c, overall, primary emissions were still the 

main drivers, accounting for 45.9%–62.5% of NACs across the four seasons, with the lowest impacts appearing in winter. 

Among the four identified sources, coal combustion and traffic emission had large impacts on the variation of NACs, with a 

total contribution of 67.3%–80.8%. Particularly, enhanced contribution from primary emissions in particular traffic emissions 

was noticed in autumn. As to meteorological parameters, according to the absolute SHAP values, temperature had the greatest 350 

impacts with a contribution of 52.9%–68.3%. Additionally, the impacts of secondary formation on ambient NACs exhibit 

minimal fluctuation across different seasons, except in winter, when a slightly higher contribution (27.8%) was observed. 

Then, we further compare the positive or negative feature importance of various driving factors on the variations in particulate 

NACs. As shown in Fig. 5d-g, the impacts in spring, summer, and autumn were significantly different from that in winter. The 

most crucial driving factor in spring was coal combustion, contributing 6.9 ng m-3 to ambient NACs, followed by surface solar 355 

radiation and horizontal wind speed. In summer, the main influencing factor was traffic emissions, with the SHAP value of 

2.6 ng m-3, followed by heterogeneous reaction (0.87 ng m-3) (Fig. 5e). Particularly, traffic emission stood out and exhibited 

very high positive contribution to NAC levels in autumn with the SHAP value of 12.5 ng m-3 (Fig. 5f). However, during 

wintertime, temperature ranked first among all driving factors, with a contribution of 5.6 ng m-3 (Fig. 5g), followed by biomass 

burning (2.9 ng m-3), gas-phase reaction (2.1 ng m-3), and coal combustion (1.9 ng m-3). This difference implied that the low 360 

ambient temperature in winter strongly affected the emissions intensity and gas to particle partitioning, which enhanced the 

production of particulate NACs. The dominance impact of temperature rather than combustion sources in winter was also 

related to the relatively higher fraction of atmospheric samples from Mount Tai in this season. Moreover, the significant 

enhancements of primary emissions (i.e., biomass burning and coal combustion) and secondary formation in winter when 

compared with autumn and summer indicate that the air masses in winter mainly associated with substantial emissions of 365 

anthropogenic pollutants and subsequent oxidation processes. 
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Figure 5: The absolute contributions of (a) meteorological conditions, (b) all factors, and (c) primary emissions on the variations of 

NACs in four seasons from SHAP analysis and box plots with the order of SHAP values for each driving factor in (d) spring, (e) 

summer, (f) autumn, and (g) winter. “PE” and “SF” refer to primary emissions and secondary formation, respectively. 370 

In addition, we further explore the differences in dominant driving factors for NACs with different functional groups (i.e., NPs, 

NCs, and NSAs) based on the model of multi-objective variables. Generally, it is evident that primary emissions played 

important roles in the variations of all three types of NACs including NPs, NCs, and NSAs, with the highest contribution of 

66.7% for NCs, followed by NPs (50.2%) and NSAs (23.1%) (Fig. 6a-c). Meteorological parameters also exhibited high 

contributions to the variations of NPs with the mean value of 28.0%, followed by NCs (17.4%) and NSAs (13.5%). 375 

Additionally, secondary formation contributed the most to particulate NSAs levels, with a proportion of 63.4%, which was 

obviously higher than NPs (21.8%) and NCs (16.0%). Specifically, as shown in Fig. 6 and Fig. S9a, coal combustion had the 

largest impact on NPs, followed by temperature and traffic emissions, with the average absolute SHAP values of 5.7 ± 3.1, 4.3 

± 2.1 and 3.9 ± 2.7 ng m-3, respectively. This result aligns with previous studies that highlighted the intensive emissions of 

particulate NPs from coal combustion and traffic sources, with emission factors of 0.01–0.9 mg kg-1 and 1.7–26.7 µg km-1, 380 

respectively (Lu et al., 2019b; Lu et al., 2019a). Besides, the semi-volatile characteristic and relatively high saturated vapor 

pressures of NPs make them more susceptible to the change in temperature, as confirmed by a previously observational study 

(Li et al., 2020a). For NCs, biomass burning showed a dominant effect on their variation, with the average absolute SHAP 
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value of 4.6 ± 5.8 ng m-3, contributing approximately 1.3 and 2.1 times more than traffic emissions and coal combustion, 

respectively (see Fig. 6 and Fig. S9b). The predominance of biomass burning in the source of NCs is in accordance with 385 

previous studies. As reported by previous study of Wang et al. (2017), NCs were the most abundant compounds detected in 

freshly emitted particulate NACs during biomass burning periods. Apart from direct emissions, early measurements also 

identified cresol and substituted cresols from widespread wood burning activities, which were mainly produced from the 

pyrolysis of lignin. The oxidation of cresol, methylated cresol and methyl-catechols emitted from biomass burning-related 

sources is also expected as an important contributor to NCs (Iinuma et al., 2010). As to NSAs, they exhibited a strong positive 390 

association with gas-phase reaction (Fig. S9c), with the average absolute value of 1.7 ± 1.3 ng m-3, suggesting that these 

compounds were mainly produced through the oxidation and nitration of precursors, which is consistent with other field 

observations (Yuan et al., 2021). Furthermore, aerosol surface area also contributed significantly to the variation of NACs, 

especially for NPs (2.6 ± 3.9 ng m-3) and NCs (2.0 ± 2.4 ng m-3) (Fig. 6f), indicating the important contribution from 

heterogeneous formation. Overall, the results demonstrate that the multi-target EML model effectively captured the distinct 395 

source contributions and formation pathways associated with different NAC subclasses. Coal combustion was identified as the 

most important driver for NPs, biomass burning dominated the formation of NCs, and NSAs were primarily linked to gas-

phase formation. These findings highlight the strength of this integrated EML approach in differentiating functional group-

specific drivers and emphasize the importance of targeted mitigation strategies for various NAC species. 

 400 
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Figure 6: The impacts of primary emissions (PE), meteorological conditions, and secondary formation (SF) on the variations of (a) 

NPs, (b) NCs, and (c) NSAs from SHAP analysis and relative importance of (d) primary emissions (including coal combustion (CC), 

traffic emission (TE), and biomass burning (BB)), (e) meteorological conditions (including temperature (T), boundary layer height 

(BLH), surface net solar radiation (SSR), relative humidity (RH), horizontal wind speed (WS_H), and vertical wind speed (WS_V)), 

and (f) secondary formation (including gas-phase reaction (GR) and heterogeneous reaction represented by aerosol surface area 405 
(Sa)). 

3.4 Response of NACs to driving factors in different locations 

To understand the combined impacts of three categories of driving factors (i.e., primary emissions, secondary formation, and 

meteorological conditions) on the variations of NACs, more than 300 samples collected in wintertime that covered multiple 

sites were selected for further analysis. Based on the discrepancies in geographical locations and emission intensity of air 410 

pollutants, these sampling sites were categorized into three scenarios, i.e., urban (Jinan and Beijing), rural (Dongying and 

Qingdao), and mountain (Mount Tai) areas, respectively. 

As shown in Fig. 7 and Fig. S10, there were large discrepancy in the dominant driving factors for fine particulate NACs across 

different locations. In urban areas, primary emissions exhibited positive impacts on ambient NACs, with the mean SHAP value 

of 17.2 ng m-3. Among the 11 variables, traffic emission ranked first in urban areas, contributing 14.9 ng m-3 to the NAC 415 

variation, followed by coal combustion (7.7 ng m-3). The direct emissions from traffic sources have been reported as one of 

the significant contributors to the particulate NACs in urban areas (Delhomme et al., 2010; Sjögren et al., 1995). The observed 

enhancement of traffic emissions in this study is mostly responsible for the heavily trafficked urban districts in Jinan and 

Beijing, especially at rush hours. In rural areas, the integrated impacts of primary sources also contributed positively to 

particulate NACs, with mean SHAP values of 15.2 ng m-3. Coal combustion and biomass burning turned to be the most 420 

important driving factors, with the mean SHAP value of 6.1 and 5.6 ng m-3, respectively, which can be attributed to emissions 

from central- and residential-heating activities in cold seasons. In contrast, at mountain area, the mean contribution of primary 

sources reduced to –5.7 ng m-3. This negative value reflects the minimal contribution of local anthropogenic emissions in this 

region, resulting in lower concentrations of NACs compared to other sites. Then gas-phase oxidation dominated secondary 

formation significantly affected NAC levels with the mean contribution of 5.9 ng m-3. This is ascribed to rare anthropogenic 425 

emission sources at the top of mountain, where multiple oxidations and nitrations reactions became remarkable. The relatively 

high concentrations of particulate NACs at the mountain site were also probably associated with the air masses transport from 

anthropogenic activities in urban regions (Jiang et al., 2022), with the mean SHAP value of 2.1 ng m-3 for biomass burning. 

These results indicate that primary sources served as the predominant contributors to particulate NACs in urban and rural areas, 

suggesting the necessity of making control policy on long-term reduction of anthropogenic emissions for addressing the NAC 430 

pollution. Additionally, temperature ranked high among all driving factors, with mean contributions of 3.3, 5.6, and 5.9 ng m-

3 for urban, rural, and mountain areas, respectively, suggesting the enhanced partitioning of the gas-phase NACs into the 

particle phase under low temperature during wintertime. Besides, heterogenous reaction represented by aerosol surface area 

also presented positive contributions at urban and rural areas, with the mean values of 5.3 and 4.5 ng m-3, respectively. Severe 

polluted sites in urban and rural areas tended to have increased particle number and high aerosol surface area density, which 435 
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facilitated the partitioning of NACs and related precursors from gas phase to particle phase and the heterogeneous reaction 

processes. However, heterogenous reaction showed negative impacts on NACs formation at the mountain site, which may be 

affected by various factors, such as relatively low atmospheric particulate matter levels, diffusion, and transport processes. 

The above machine-learning results reveal the combined but differential contributions of primary sources, secondary formation, 

and meteorological conditions to the variations of ambient NACs in different locations. Particularly, this study provides a 440 

foundation for developing more precisely targeted control strategies on NACs with implications to mitigate particulate matter 

pollutions. 

 

Figure 7: The combined contributions of sources (i.e., coal combustion (CC), traffic emission (TE), and biomass burning (BB)), 

meteorological conditions (i.e., temperature (T), boundary layer height (BLH), surface net solar radiation (SSR), vertical wind speed 445 
(WS_V), horizontal wind speed (WS_H), and relative humidity (RH)), and secondary formation (i.e., gas-phase reaction (GR) and 

heterogeneous reaction represented by the aerosol surface area (Sa)) to the variations of NACs in (a) urban, (b) rural, and (c) 

mountain areas. 

4. Conclusions and implications 

In this study, we applied a multi-target variable ensemble machine learning framework coupled with SHAP algorithm to 450 

explore the impacts of primary emissions, secondary formation, and meteorological conditions on fine particulate NACs in 
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atmosphere at urban, rural, and mountain sites based on field-observation datasets. The EML model showed satisfactory 

performance that could effectively capture and interpret the variations of ambient NACs during all the sampling periods. 

Overall, primary emissions including coal combustion, traffic emission, and biomass burning were the most important 

variables for NAC variations, contributing 49.3% in total, while meteorological conditions and secondary formation accounted 455 

for 27.4% and 23.3%, respectively. Among the driving factors, primary emissions and secondary formation contributed 

positively to the enhancement of NACs, while temperature and BLH (< 600 m) displayed negative impacts. Our results indicate 

that the main influencing factors of particulate NACs varied across the four seasons and various locations due to differences 

in pollutant emission intensities and meteorological conditions. Anthropogenic emissions represented primary sources of 

NACs in spring, summer, and autumn, whereas temperature turned to be the most critical factor in winter, which may be 460 

associated to the higher sample coverage from Mount Tai among all the samples. In addition, the main drivers of NACs differed 

significantly among functional groups. Coal combustion and temperature served as the dominant driving factors for NPs, and 

biomass burning had the largest impact on ambient NCs. Meanwhile, gas-phase oxidation emerged as the most important 

contributor to the variation of NSAs. A detailed analysis in NACs formation and loss for different locations (including urban, 

rural, and mountain areas) during wintertime revealed significant impacts of temperature, secondary formation, and biomass 465 

burning on NACs at the mountain site. In contrast, the major contributors in urban areas were traffic emissions and coal 

combustions and in rural areas were coal combustions and temperature.  

This study integrated multiple field measurements with interpretable ensemble machine learning to investigate the impact of 

primary emissions, secondary formation, and meteorological conditions on atmospheric particulate NACs. The result 

elucidates the nonlinear atmospheric processes of particulate NACs and provides new insights into their sources and 470 

influencing factors in various atmospheric environments. Particularly, the integration of PMF-based source apportionment 

with a data-driven ensemble machine learning model and SHAP analysis method proved as a potent tool for rapidly diagnosing 

the driving factors for organic aerosols, which is helpful for the control strategies targeting aerosol pollution. This hybrid 

approach not only enhances the interpretability of ML results but also allows for a more robust and quantitative assessment of 

the contributions of individual sources and environmental drivers. In future research, utilizing larger-scaled datasets and deep 475 

learning techniques are required to achieve more comprehensive and precise predictions and understanding on atmospheric 

NACs and other organic components. 
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