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Response (in blue) to Reviewer’s comments #2 

Manuscript number: egusphere-2025-165 

Title: Explainable ensemble machine learning revealing enhanced anthropogenic emissions of particulate 

nitro-aromatic compounds in eastern China 

Response to reviewer #2: 

The manuscript investigated the sources and drivers of particulate nitro-aromatic compounds (NACs) in 

eastern China using a combination of machine learning and receptor modelling. The study’s main focus 

is how primary emissions, secondary formation, and meteorological factors contribute to ambient NAC 

levels across different locations and seasons. The authors proposed an ensemble machine learning (EML) 

model coupled with SHAP (SHapley Additive exPlanation) values and a PMF (Positive Matrix 

Factorization) source apportionment to interpret NAC variations. Eleven sampling sites (urban, rural, 

mountain) over multiple seasons provide a robust dataset of NAC concentrations and related variables. 

The EML model achieves high predictive performance (as can be expected from statistical modelling). 

The authors conclude that strengthened control of combustion emissions is necessary to mitigate 

particulate NAC pollution, as their modelling highlights the outsized role of human sources even in a 

region with complex meteorological and secondary processes. 

 

Overall, this work is important. It extends existing literature on NAC sources (which previously relied on 

linear models or standalone PMF) by providing a more interpretable quantification of each factor’s 

contribution. The study is well grounded in current literature and clearly exhibits its novelty by bridging 

source apportionment with explainable AI. A few methodological clarifications and edits (detailed below) 

could further strengthen the work before this paper could be submitted. 

We sincerely thank the review for the valuable feedback that we have used to improve the quality of our 

manuscript. According to the comments, we have made extensive modifications to this manuscript to 

make results convincing. In the revised version, the reviewer comments are laid out below in bold black 

font. Below, we provide a point-to-point response to each comment. Our response is given in blue and 

changes to our manuscript are all highlighted by using blue italic text. We have tried our best to improve 

the manuscript and we hope the revision would satisfactorily address the comments and concerns of the 

reviewer. 

Furthermore, we would like to show the details as below: 

1. I agree that the ensemble machine learning approach is appropriate for capturing complex 

nonlinear relationships, but some details would benefit from clarification to enhance confidence in 

the results. The authors note an 80/20 random split with cross-validation, but given data from 

multiple sites and seasons, it would be helpful to discuss whether any site-specific bias could affect 

the model. If, for instance, all data from a particular location or season mostly fell into the training 

set, the reported high R2 might not fully reflect generalizable performance. An ideal approach (if 

data allow) would be to test the model’s predictive skill in a leave-one-site-out or leave-one-season-

out manner to ensure it generalizes across different scenarios. 

Response: We appreciate the reviewer’s insightful comment regarding the potential influence of site-

specific or seasonal bias in our model evaluation. To address this concern and rigorously assess the spatial 

generalizability of our ensemble machine learning (EML) model, we performed a leave-one-site-out 
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cross-validation analysis. 

Under this cross-validation scheme, data from each site were systematically withheld from model training 

in turn, and predictions were made exclusively on the excluded site. The procedure ensured a strict 

separation between training and testing data, thereby providing an unbiased estimate of model 

transferability across different scenario. 

As shown in the revised manuscript (Figure S7), the leave-one-site-out results demonstrated good 

predictive performance, with an overall R2 of 0.84 and a regression slope of 0.92 between observed and 

predicted NACs concentrations, which further indicates that the model is generalizable rather than a 

location-specific model. The relevant description has been incorporated into the revised manuscript 

accordingly. 

Revised sentence in manuscript (Line 212–216): 

“To further evaluate the generalizability of the EML model, a leave-one-site-out cross-validation 

approach was implemented. The data from each site were iteratively excluded from model training and 

used exclusively for testing, ensuring complete independence between training and testing sets. The 

results show that this model exhibits robustness and transferability rather than limited to specific 

scenarios (see Fig. S7).” 

Added Figure S7 in Supporting Information: 

 

Figure S7. Comparison of observed and simulated NACs at different sites with a leave-one-site-out 

cross-validation approach. 

While the integration of PMF source contributions as input features is innovative, this could 

introduce circular reasoning if not carefully handled – since NAC concentrations themselves (via 

their speciation) inform the PMF factors. The authors should reassure that using PMF outputs (four 

source factor contributions) as predictors does not inadvertently “double count” NAC information. 

One way to address this would be to emphasize that the ML model’s target was the total NAC (or 

NAC subgroups) concentration and that PMF factors, being based on species patterns, serve as 
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independent explanatory variables capturing source-type influences. Clarifying these points will 

help readers understand the modelling strategy and trust that the conclusions (e.g., anthropogenic 

share of ~49%) are data-driven and not an artifact of the model design. 

Response: Thanks for the reviewer’s valuable comment regarding the potential risk of circular reasoning 

due to the integration of PMF source contributions as input features in the ML model. In this study, the 

target variable of the ML model is the total concentration of NACs, which includes not only the NACs 

species used in the PMF model (i.e., 4NP, 3M4NP, 2M4NP, 4NC, 4M5NC, 3M6NC, 5NSA, 3NSA), but 

also other NACs that were not included in the PMF input matrix (as shown in Table S1). Therefore, there 

is no direct overlap between the target variable and the PMF input. 

Additionally, the PMF outputs are composite source-type signatures derived from the covariation of these 

eight NACs and tracer gases, rather than reconstructions of individual NAC concentrations.  

Importantly, in the ML modeling process, we used only the PMF-derived source contributions as input 

features, and no individual NAC concentrations were directly included. As a result, the ML model avoids 

any potential data leakage or double-counting of NACs, which further supports the robustness of the 

conclusion regarding anthropogenic influence. 

In the revised manuscript, we have added relevant sentence and provided a comprehensive description of 

the data-driven modeling framework on PMF and ML. 

Revised sentence in manuscript (Line 192–198): 

“The dataset (613 rows) used for the four ML algorithms consisted of eleven parameters as inputs, 

including PMF-derived source contributions, meteorological conditions (T, BLH, RH, SSR, WS_H, and 

WS_V), and heterogeneous reaction represented by the aerosol surface area (Sa), all of which influence 

the sources and sinks of NACs. To avoid circular reasoning, the ML model was constructed to predict the 

total concentration of NACs as target variable. The four PMF-derived source contribution factors, which 

serve as independent explanatory variables capturing source-type influences, were used as input features 

instead of individual NAC species. This approach ensures a clear separation between PMF inputs and 

the ML target, effectively preventing data leakage or double counting.” 

Added Table S1 in Supporting Information: 

Table S1. Sampling sites and sampling periods involved in this study. 

Sampling 

site 
Site type Sampling period Season 

Number of 

samples 
Detected species 

Jinan urban 

2016.04.12-2016.04.27 spring 9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2014.09.04-2014.09.21 
summer 37 

1, 2, 3, 5, 6, 7, 8, 9, 10 

2016.06.27-2016.07.11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2017.10.22-2017.11.01 autumn 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2013.11.26-2014.01.05 
winter 16 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2016.02.19-2016.03.07 1, 2, 3, 5, 6, 7, 8, 9, 10 

Guangzhou urban 2017.06.28-2017.07.08 summer 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Nanjing urban 2017.10.22-2017.10.31 autumn 16 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Beijing urban 2018.01.15-2018.01.31 winter 14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Yucheng rural 2014.06.09-2014.06.20 summer 16 1, 2, 3, 5, 6, 7, 8, 9, 10 

Wangdu rural 2014.06.19-2014.06.29 summer 18 1, 2, 3, 5, 6, 7, 8, 9, 10 
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Dongying rural 
2017.06.04-2017.06.15 summer 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2017.01.15-2017.01.23 winter 9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Qingdao rural 
2019.01.10-2019.02.23 

winter 132 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2019.11.11-2019.12.25 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 

Mount Tai mountain 

2018.03.22-2018.04.05 spring 25 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2014.07.27-2014.08.06 summer 17 1, 2, 3, 5, 6, 7, 8, 9, 10 

2017.11.28-2017.12.09 
winter 157 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2019.12.01-2019.12.31 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Mount Lao mountain 2021.04.16-2021.05.19 spring 97 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

NOTE: 1 4-nitrophenol (4NP). 2 3-methyl-4-nitrophenol (3M4NP). 3 2-methyl-4-nitrophenol (2M4NP). 4 2,6-dimethyl-4-

nitrophenol (2,6DM4NP). 5 4-nitrocatechol (4NC). 6 4-methyl-5-nitrocatechol (4M5NC). 7 3-methyl-6-nitrocatechol 

(3M6NC). 8 3-methyl-5-nitrocatechol (3M5NC). 9 5-nitrosalicylic acid (5NSA). 10 3-nitrosalicylic acid (5NSA). 11 2,4-

dinitrophenol (2,4DNP). 12 4-methyl-2,6-dinitrophenol (4M2,6DNP). 

2. The claim of “enhanced anthropogenic emissions” driving NAC pollution needs to be 

positioned against existing studies to ensure the manuscript’s novelty is clear. Prior works have 

already pointed to combustion sources (coal, biomass burning, vehicle emissions) as major NAC 

contributors. My understanding is, the manuscript’s novelty is primarily methodological, and this 

study’s added value lies in quantifying the contributions with a new method and revealing nuanced 

patterns (like seasonal driver shifts and differences between urban/rural/mountain sites). The 

authors should ensure readers recognize that the significance lies in using an explainable ML 

approach to confirm and detail known drivers, rather than in discovering an entirely new source 

of NACs. This steer will prevent any impression that the study is merely repeating known 

information, instead of providing new insights into the magnitude and context of anthropogenic 

influence. 

Response: Thanks for the constructive comment. As suggested, we have clarified that the key 

contribution of this study lies not in identifying new NAC sources, but in employing an explainable 

ensemble machine learning framework to provide high-resolution, quantitative assessment of the relative 

importance of known sources under complex atmospheric conditions. By applying this approach across 

urban, rural, and mountain sites and throughout different seasons, we revealed nuanced shifts in drivers, 

which have not been captured in prior NAC source apportionment studies. 

To ensure the manuscript’s novelty is clear, we have changed the title and add some sentences in the 

revised manuscript: 

a. Title has been changed into “Explainable ensemble machine learning revealing spatiotemporal 

heterogeneity in driving factors of particulate nitro-aromatic compounds in eastern China” 

b. One supplemental clarification is in the Introduction, to position this study with the context of prior 

source apportionment research and emphasize our methodological innovation. 

c. Another supplemental clarification is in Section 3.2, to highlight the added value of the new approach 

in refining the understanding of known drivers under different environmental conditions. 

Revised sentence in manuscript (Line 84–86 and Line 299–303): 

“This study makes a methodological contribution by employing a novel approach to quantify the seasonal 

shifts in drivers and spatial variations across urban, rural, and mountain regions in a nuanced manner.” 

“This enhancement in anthropogenic emissions is consistent with the findings reported in previous NAC 
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studies (Wang et al., 2018; Yuan et al., 2021). However, the integration of the explainable EML 

framework constitutes a methodological advancement by enabling quantitative evaluation of source 

contributions, thereby providing a more nuanced and context-specific understanding of the driving 

factors across diverse atmospheric conditions.” 

3. The use of SHAP values is a strong point of the study, but some aspects of the SHAP-based 

findings could be explained more clearly to avoid confusion. One issue is the meaning of negative 

SHAP contributions for certain factors. For example, the authors mention that at the mountain site, 

primary emissions had a mean SHAP contribution of –5.7 ng m-3, which initially sounds like 

primary sources were somehow reducing NAC levels. The intended meaning is presumably that 

local primary emissions are minimal at the mountain (so their absence corresponds to lower 

baseline NAC, hence a negative SHAP relative to other sites). Also for discussions regarding 

“temperature” and “BLH”, providing one or two sentences of intuition (e.g., “a negative SHAP 

value for a factor means that higher values of that factor are associated with lower NAC 

concentrations”) when introducing the SHAP results would make the explanation more accessible, 

especially for readers new to SHAP analysis. 

Response: Thanks for the review’s valuable comment. We have revised the manuscript to clarify the 

interpretation of SHAP values. Specifically, the negative SHAP contribution of primary emissions at the 

mountain site reflects minimal local emissions, which results in lower NAC concentrations, rather than 

indicating an actual reduction in NACs due to these sources. Additionally, we also provided concise 

explanations for the SHAP interpretations of the input variables. These revisions aim to improve the 

clarity and accessibility of the SHAP-based analysis, especially for readers who are less familiar with the 

method. 

Revised sentence in manuscript (Line 315–317 and Line 423–424): 

“A positive SHAP value indicates that the variable increases the predicted NAC concentration relative to 

the baseline, whereas a negative SHAP value suggests that higher values of the variable are associated 

with a decrease in NAC concentrations.” 

“This negative value reflects the minimal contribution of local anthropogenic emissions in this region, 

resulting in lower concentrations of NACs compared to other sites.” 

SHAP can sometimes capture pairwise interactions, the authors could discuss on interactions or co-

variability among factors if any were observed. For example, did the authors notice if certain 

meteorological conditions amplify the effect of emissions (high humidity aiding secondary 

formation of NACs, etc.)? Ensuring the SHAP results are clearly linked back to physical processes 

(mixing, photochemistry, emissions timing) will make the conclusions more convincing and useful 

for policy implications. 

Response: Thanks for the insightful comment. In response, we conducted a detailed analysis of pairwise 

SHAP interaction values among key variables. Notably, a significant interaction between temperature (T) 

and aerosol surface area (Sa) was identified, as shown in the newly added Figure S8. The interaction 

pattern indicates that high Sa facilitates NACs formation under low-temperature conditions (T < 10°C), 

suggesting the enhanced gas-particle partitioning and heterogenous reactions. In contrast, high Sa appears 

to inhibit NACs formation at high temperature (T > 10°C), potentially due to intensified photochemical 

reactions shifting towards gas-phase products, high temperature promoting to particle-to-gas partitioning, 

or dilution effects arising from elevated mixing heights in hot seasons. The temperature-dependent 

behavior highlights the complex role of heterogenous reaction in atmospheric aerosol formation. 
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However, no other variable pairs exhibited comparable interaction effects across the dataset. Future 

research incorporating more comprehensive datasets with machine learning or deep learning model is 

required to better elucidate the synergistic effects on ambient NAC concentrations. 

Revised sentence in manuscript (Line 332–337): 

“Notably, at low temperature (approximately < 10°C), the contribution on NACs exhibited an explosive 

enhancement, accompanied by a pronounced synergistic effect with higher Sa (Fig. S8), indicating 

enhanced gas-to-particle partitioning and heterogeneous formation. Conversely, at higher temperature, 

high Sa appears to suppress NAC formation, possibly as a result of intensified photochemical reactions 

facilitating gas-phase products, high temperature promoting to the partitioning to particle phase, or 

dilution effects caused by increased mixing heights in hot seasons.” 

Added Figure S7 in Supporting Information: 

 

Figure S8. (a) The interaction effect of temperature (T) and aerosol surface area (Sa), (b) the main effects 

of T on NACS, and (c) the interaction SHAP value between T and Sa shows how the effect of T on NACs 

varies with Sa. 

4. Line 186, the multi-target modelling approach, where NPs, NCs, and NSAs were predicted 

simultaneously (mentioned in the Methods), is an interesting aspect but is not very prominently 

discussed in the results. The conclusion hints that different functional groups had different key 
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drivers (e.g., gas-phase oxidation dominating NSAs). It would strengthen the paper to emphasize 

these findings a bit more in the Results section 3.3 or 3.4 – for instance, explicitly stating which 

sources were most important for each NAC subclass. This adds depth to the analysis (showing the 

model’s strength in capturing subtle differences). 

Response: Thanks for the comment. As suggested, in the revised manuscript, we have incorporated a 

summary paragraph at Section 3.3 to explicitly highlight the distinct sources for different NAC subclasses. 

Specifically, coal combustion was identified as the primary contributor to NPs, biomass burning emerged 

as the dominant source for NCs, and NSAs were predominantly associated with gas-phase formation. 

These results demonstrate the model’s capacity to resolve nuanced differences in source attribution across 

functional groups and underscore the importance of implementing targeted control strategies. 

Revised sentence in manuscript (Line 395–399): 

“Overall, the results demonstrate that the multi-target EML model effectively captured the distinct source 

contributions and formation pathways associated with different NAC subclasses. Coal combustion was 

identified as the most important driver for NPs, biomass burning dominated the formation of NCs, and 

NSAs were primarily linked to gas-phase formation. These findings highlight the strength of this 

integrated EML approach in differentiating functional group-specific drivers and emphasize the 

importance of targeted mitigation strategies for various NAC species.” 

Also, given that the data span 2014–2021, there could be a question that if trends over that period 

were considered – for example, have emission controls in China over the years impacted NAC levels? 

This may be outside the scope of the current paper’s focus on spatial drivers, but a short note in the 

discussion could acknowledge that temporal trends were not the focus here (assuming no strong 

trend was observed after accounting for other factors). 

Response: We appreciate the reviewer’s thoughtful comment. We appreciate the suggestion to explore 

potential temporal trends in NAC concentrations, particularly considering the emission control measures 

implemented in China over the years. We have conducted a thorough analysis of the data spanning from 

2014 to 2021, and our results indicate that, under consistent seasonal and site-type conditions, NAC 

concentrations did not exhibit any significant temporal trends, suggesting that the factors influencing 

NAC levels during this period were primarily spatial rather than temporal. We have added a brief note in 

the Discussion section to acknowledge that temporal trends were not the focus of this study, and clarify 

that no strong significant trends were observed after accounting for other variables. 

Revised sentence in manuscript (Line 248–249): 

“Moreover, data from 2014 to 2021 revealed no significant trends in NAC concentrations across the same 

seasonal and site-type conditions, therefore temporal variation was not considered as a primary focus of 

this study.” 

 

Minor issues: 

The paper is generally well-written, but a few sentences should be edited for clarity or correctness. 

Here below are examples but the authors need to read through the manuscript for such minor 

language issues: 

Line 73, “Given the complex nonlinear links… it is necessary to establish an effective and reliable 

evaluation method to comprehensively understand and assess the importance and contribution of 

each factor…”. This could be broken into two sentences to avoid confusion. 
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Response: Thanks for the helpful suggestion. In response, we have revised the sentence by dividing it 

into two parts to enhance clarity. 

Revised sentence in manuscript (Line 76–80): 

“Given the complex nonlinear links between primary emissions, secondary formation, and meteorological 

conditions and the ambient particulate NACs, a clear understanding of the separate role of each factor 

is challenging. Therefore, it is necessary to establish an effective and reliable evaluation method to 

comprehensively understand and assess the importance and contribution of each factor on the abundances 

of NACs under complicated atmospheric conditions.” 

Line 258, the phrasing “is in coincided with” is grammatically incorrect. 

Response: Thanks for the comment. It has been corrected in the revised manuscript. 

Revised sentence in manuscript (Line 272–273): 

“The dominance of NPs and NCs in this study coincides with the findings from previous studies in other 

locations (Cai et al., 2022; Li et al., 2020c; Wang et al., 2019).” 

Line 182, a typo “leaner” should be “learner” 

Response: Thanks for the comment. It has been corrected. 

Line 389, “Jinan ang Beijng” should be “and Beijing” 

Response: Thanks for the comment. It has been corrected. 

Line 363, “confirmed by a previous observational study” 

Response: Thanks for the comment. It has been corrected. 

1. As noted, the manuscript uses many abbreviations (NACs, PMF, EML, SHAP, NP, NC, NSA, 

BLH, SSR, WS_V, WS_H, etc.). It would be very helpful to provide a list of abbreviations early on 

to improve readability. 

Response: Thanks for the valuable comment. As suggested by the reviewer, a comprehensive list of 

abbreviations was added early in the manuscript to enhance clarity and ensure the accessibility of the 

main text. 

Abbreviation 

NACs Nitro-aromatic compounds BrC Brown carbon 

NPs Nitrophenol and its derivatives VOCs Volatile organic compounds 

NCs Nitrocatechol and its derivatives T Temperature 

NSAs Nitrosalicylic acids RH Relative humidity 

DNPs Dinitrophenol and its derivatives SSR Surface net solar radiation 

4NP 4-nitrophenol PMF Positive matrix factorization 

3M4NP 3-methyl-4-nitrophenol PCA Principal component analysi 

2M4NP 2-methyl-4-nitrophenol ML Machine learning 

2,6DM4NP 2.6-dimethyl-4-nitrophenol SHAP SHapley Additive exPlanation 

4NC 4-nitrocatechol EML Ensemble machine learning 

4M5NC 4-methyl-5-nitrocatechol BLH Boundary layer height 

3M6NC 3-methyl-6-nitrocatechol WS_H Horizontal wind speed 
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3M5NC 3-methyl-5-nitrocatechol WS_V Vertical wind speed 

5NSA 5-nitrosalicylic acid Sa Aerosol surface area 

3NSA 3-nitrosalicylic acid EDTA ethylenediaminetetraacetic acid 

2,4DNP 2,4-dinitrophenol BB Biomass burning 

4M2,6DNP 4-methyl-2,6-dinitrophenol RF Random forest 

CC Coal combustion XGBoost Extreme gradient boosting 

TE Traffic emission LightGBM Light gradient boosting machine 

GR Gas-phase reaction MLP Multilayer perceptron 

PE Primary emission R2 Coefficient of determination 

SF Secondary formation MAE Mean absolute error 

  RMSE Root mean squared error 

2. Line 95, there is a minor point about terminology. Calling Mount Lao a “mountain” site when 

it’s only 166 m altitude is a bit confusing as Mount Tai is at 1534 m a.s.l. It might be worth clarifying 

that Mount Lao site is at a lower elevation (perhaps a foothill or a coastal mountain location) to 

avoid readers questioning if it truly represents a clean mountain background. 

Response: Thanks for the comment. In response, we have revised the manuscript to characterize Mount 

Lao more precisely as a lower-elevation site situated in a coastal mountainous region. This clarification 

aims to provide a more accurate depiction of the site's geographic and environmental context, and to avoid 

potential ambiguity regarding its representativeness as a clean mountain background location. 

Revised sentence in manuscript (Line 100–102): 

“…and two mountain sites: Mount Tai (36.27° N, 117.10° E, 1,534 m a.s.l.), a typical high-elevation 

background site; and Mount Lao (36.15° N, 120.68° E, 166 m a.s.l.), a lower-elevation site situated in a 

coastal mountainous region.” 

3. Line 184, when talking about the performance of a model, it cannot be validated or verified as 

natural systems are never closed, it can only be evaluated. 

Response: Thanks for the careful comment. Accordingly, we have revised the manuscript to replace 

“validation” to “evaluation” to ensure accuracy. 

4. Linked to point 2, it’s needed to ensure Figure (e.g., Figures 4-7) legends and captions fully 

describe what the plots represent. The caption may list the variables by name (or refer to a legend) 

so readers don’t have to infer abbreviations (e.g., PE, SF, etc). 

Response: Thanks for the comment. In accordance with your suggestion, we have revised the captions of 

Figure 4-7 to explicitly list the variables by name and, where applicable, refer to the corresponding 

legends to avoid the need for reader to infer abbreviations. 

Revised caption of Figure 4 in manuscript (Line 305–313): 

“Figure 4: (a) The ranking of the importance for all input variables (“CC”: coal combustion; “TE”: 

traffic emission; “T”: temperature; “BB”: biomass burning; “Sa”: aerosol surface area; “GR”: gas-

phase reaction; “BLH”: boundary layer height; “SSR”: surface net solar radiation; “RH”: relative 

humidity; “WS_H”: horizontal wind speed; “WS_V”: vertical wind speed) calculated via SHAP 

algorithm (average absolute contribution), (b) the impacts of driving factors on variations of NACs from 

SHAP analysis during the whole sampling periods (“PE” and “SF” represent primary emissions and 
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secondary formation, respectively), (c) SHAP summary plots for all samples with the shift in colour of 

the scatter plot from blue to red indicating an increase in driving factor values, and the relationships 

between the SHAP values and parameter values for (d) temperature (T), (e) aerosol surface area (Sa), (f) 

boundary layer height (BLH), and (g) surface net solar radiation (SSR) with the right y axis corresponding 

to the frequency distribution of the measured variables.” 

Revised caption of Figure 5 in manuscript (Line 368–370): 

“Figure 5: The absolute contributions of (a) meteorological conditions, (b) all factors, and (c) primary 

emissions on the variations of NACs in four seasons from SHAP analysis and box plots with the order of 

SHAP values for each driving factor in (d) spring, (e) summer, (f) autumn, and (g) winter. “PE” and “SF” 

refer to primary emissions and secondary formation, respectively.” 

Revised caption of Figure 6 in manuscript (Line 401–406): 

“Figure 6: The impacts of primary emissions (PE), meteorological conditions, and secondary formation 

(SF) on the variations of (a) NPs, (b) NCs, and (c) NSAs from SHAP analysis and relative importance of 

(d) primary emissions (including coal combustion (CC), traffic emission (TE), and biomass burning (BB)), 

(e) meteorological conditions (including temperature (T), boundary layer height (BLH), surface net solar 

radiation (SSR), relative humidity (RH), horizontal wind speed (WS_H), and vertical wind speed (WS_V)), 

and (f) secondary formation (including gas-phase reaction (GR) and heterogeneous reaction represented 

by aerosol surface area (Sa)).” 

Revised caption of Figure 7 in manuscript (Line 444–448): 

“Figure 7: The combined contributions of sources (i.e., coal combustion (CC), traffic emission (TE), and 

biomass burning (BB)), meteorological conditions (i.e., temperature (T), boundary layer height (BLH), 

surface net solar radiation (SSR), vertical wind speed (WS_V), horizontal wind speed (WS_H), and 

relative humidity (RH)), and secondary formation (i.e., gas-phase reaction (GR) and heterogeneous 

reaction represented by the aerosol surface area (Sa)) to the variations of NACs in (a) urban, (b) rural, 

and (c) mountain areas.” 


