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Abstract. Inferences in Earth system science rely to a large degree on the numerical output of multiple Earth System Models.

It has been shown that for many variables of interest, the multi-model ensemble average often compares better with observa-

tions than the output from any one individual model. However, a simple arithmetic average does not reward or penalize models

according to their ability to predict available observations, and for this reason, a weighted averaging approach would be pre-

ferred for those cases in which there is information on model performance. We propose an approach based on concepts from5

information theory with the aim to approximate the Kullback-Leibler distance between model output and unknown reality,

and to assign weights to different models according to their relative likelihood of being the best-performing model in a given

grid cell. This article presents the theory and describes the steps necessary for obtaining model weights in a general form, and

presents an example for obtaining multi-model averages of carbon fluxes from models participating in the sixth phase of the

Coupled Model Intercomparison Project CMIP6. Using this approach, we propose a multi-model ensemble of land-atmosphere10

carbon exchange that could be used for inferring long-term carbon balances with much reduced uncertainties in comparison to

the multi-model arithmetic average.

1 Introduction

Inferences in Earth system science (ESS) depend to a large extent on the output from Earth system models (ESMs) that combine

different components of the carbon, water, and energy balance of Earth and make spatial and temporal predictions of a large15

number of variables of scientific interest. These models are relatively large and transcend specific knowledge of single disci-

plines. Multiple modeling groups run large simulations and participate in coordinated Model Intercomparison Projects (MIP),

where the forcings to the model are similar and the outputs across models are comparable (Eyring et al., 2016). For making in-

ferences about a particular aspect of the dynamics of the Earth system, one is confronted with the problem of what model to an-

alyze, how to assign a degree of belief to the results of a certain model, and how to perform averaging across models to obtain an20

unbiased estimator of some variable of interest (Hagedorn et al., 2005; Knutti, 2010; Knutti et al., 2010; Hausfather et al., 2022; Tebaldi and Knutti, 2007)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Giorgi and Mearns, 2002, 2003; Hagedorn et al., 2005; Knutti, 2010; Knutti et al., 2010; Hausfather et al., 2022; Tebaldi and Knutti, 2007; Sain and Kleiber, 2025)

.
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These problems are not new to science, and a lot of previous work has been done in the fields of information theory and

statistics to address some of these issues. In particular, the problem of model selection and multi-model inference in statistics,25

where the idea is to fit multiple models to observed data, is relatively well developed (Anderson, 2007; Burnham and Anderson,

2002; Millington and Perry, 2011; Claeskens and Hjort, 2008). However, classical multi-model inference methods have been

developed mostly for simple statistical models, usually expressed as polynomial functions, and not for dynamical models that

recursively update a large set of state variables based on a dynamical rule as in ESMs. Therefore, there is a need to expand the

existing theory of multi-model inference to the large-dimensional models used in Earth system science.30

Three main challenges emerge when trying to expand statistical methods of multi-model inference to ESMs. First, ESMs are

not parameterized using statistical techniques such as maximum likelihood estimation (MLE) for the entire set of parameters

of the model, which may vary spatially depending on the process being represented. Hirotugu Akaike showed in his seminal

work that a measure of distance among models can be obtained with the log-likelihood estimate of the model with respect to

an observational set (Akaike, 1974, 1981). Thus, the challenge is to find a way to obtain a distance metric that does not rely35

on MLE methods. This is particularly important for ESMs because model uncertainty not only includes parameter uncertainty

but also uncertainty due to initial states and boundary conditions (Tebaldi and Knutti, 2007). A second challenge is that the

total number of parameters in a given ESM is usually unknown to the user of ESM numerical output. The classical statistical

theory assigns penalties to models according to their number of parameters, but this is practically impossible for published

output from ESMs because there is no consistent reporting of the type and number of parameters, and whether they were40

obtained by an optimization method or agnostically inputted. Thus, the classical theory needs to be modified by an approach

that disregards model complexity and does not add a penalty for it. A third challenge is the high-dimensionality of the problem

of multi-model inference with ESMs. While the classical theory usually considers one predicted variable and a small set of

explanatory variables linked by a polynomial function, the problem in ESS
:
of

::::::::
inference

::
in
:::::

Earth
:::::::
system

::::::
science

:
is to obtain

expected values of a large set of state variables reported in a multi-dimensional lattice (geographical coordinates, time, and45

height or depth).

In this article, we propose an adaptation of the classical statistical theory of multi-model inference addressing the challenges

of lack of MLE, unknown parameter space, and high dimensionality. We explicitly deal with the problem of model averaging

following the conceptual approach described by Burnham and Anderson (2002), which builds on the work developed by H.

Akaike in the 1970s and 80s (Parzen et al., 1998).50

It has been shown in previous publications that the multi-model average of a variable of interest such as surface air tempera-

ture tends to agree better with observations than the predictions of any one single model (Doblas-Reyes et al., 2003; Hagedorn

et al., 2005; Elvidge et al., 2023). The arithmetic mean from a set of models gives no consideration about the ability of some

models to perform better than others. This is equivalent to assuming that each model is weighted equally in their prediction

ability. However, it has been shown that this ‘model democracy’ is inappropriate for multi-model inference in climate science55

(Knutti, 2010; Knutti et al., 2017). Although we are aware that other approaches for multi-model averaging of ESM output have

been proposed before (e.g., Knutti et al., 2017; Ribes et al., 2021; Sanderson et al., 2015; Giorgi and Mearns, 2002; Tebaldi and Knutti, 2007; Tebaldi et al., 2005; Elvidge et al., 2023)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Knutti et al., 2017; Ribes et al., 2021; Sanderson et al., 2015; Giorgi and Mearns, 2002; Tebaldi and Knutti, 2007; Tebaldi et al., 2005; Merrifield et al., 2020; Elvidge et al., 2023)
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, we are not aware of a previous methodology grounded on information-theoretic principles. In addition, some previous ap-

proaches calculate weights as fixed values for all output of a model, but it is desirable to obtain weights based on the ability of60

some models to provide better estimates for some spatial regions than others. Our proposed approach operates at the grid-cell

level and, therefore, produces weights based on the ability of a model to predict the spatial distribution of a variable of interest.

This article is organized as follows, first, we provide a conceptual derivation of a distance metric appropriate for ESMs

using classical concepts from multi-model inference, and a derivation of model weights to obtain ensemble averages and

uncertainties. The conceptual framework presented here follows the derivation presented by Burnham and Anderson (2002),65

but adapted to the specific case of ESMs. Then, we present a step-by-step description of the method applied to multidimensional

ESM numerical output. We later apply the method to the computation of the average net carbon exchange between the land

and the atmosphere using models from the CMIP6 archive and discuss the results.

2 Conceptual approach

We assume that a model g is an approximation of the unknown full reality f , and the distance
:::::::::
divergence between g and f is70

given by the Kullback-Liebler information

I(f,g) =

∫
f(x) log

(
f(x)

g(x|θ)

)
dx, (1)

where x is the variable being modeled, and θ is the set of parameters in the model g. In this framework, both f and g are

understood as probability density functions. In the case of ESM model output, we can think of them as the proportional

distribution of some quantity x over a spatial and temporal domain. For ESMs, the vector θ not only includes the set of75

parameters in the model, but also the set of initial conditions for the state variables that may lead to different ESM outputs.

This distance
:::
The

::::::::::
information

::
or

::::::::::
divergence I(f,g) can be interpreted as the

:
is

:::::
often

:::::::::
interpreted

::
as

::
a
:::::::
distance

::::::::
between

:::
two

:::::::::::
distributions

::::
even

::::::
though

::
it

::::
does

:::
not

:::::
meet

:::
the

:::::::::::
mathematical

:::::::::
definition

::
of

:
a
::::::::

distance
::::::
metric;

:::
i.e.

::
it

::
is

:::
not

:::::::::
symmetric

::::
(the

::::
value

:::::
from

:
f
:::

to
:
g
:::
can

:::
be

:::::::
different

::::
than

:::::
from

:
g
::
to
:::
f )

:::
and

::
it

::::
does

:::
not

::::::
satisfy

:::
the

:::::::
triangle

::::::::
inequality

::::::::::::::::::::::
(Cover and Thomas, 2006)

:
.

:::::::::::
Nevertheless,

:::
for

:::
the

::::::
purpose

:::
of

:::
this

::::::
article,

::
it

::
is

:::::
useful

::
to

:::::
think

::
of

::::::
I(f,g)

::
as

::
a

:::::::
distance

:::::::
between

:::::::::
probability

:::::::::::
distributions,

::::
and80

::
we

::::
will

:::
use

:::
the

::::
term

:::::::
distance

::
as

::::::::
synonym

::
of

::::::::::
divergence

:::::::::
throughout

:::
this

::::::
article.

:

:::::
I(f,g)

::::
can

::::
also

:::
be

:::::::::
interpreted

:::::
from

:::
the

:::::
point

::
of

:::::
view

::
of

:::::::::::
information

:::::
theory

:::
as

:::
the

:::::::
amount

::
of

::::::::::
information

::::::::
available

:::
to

::::::::::
discriminate

:
g
:::::
from

:
f
::::::::::::::::::::::::
(Kullback and Leibler, 1951)

:
,
::
or

::
as

:::
the loss of information from full reality by the model

:::::::::::
approximation.

In principle, we are interested in selecting or ranking models according to I(f,g), but in practice, we cannot compute f(x).

This limitation is partly alleviated, as we will see later, by the expansion of equation 1 as85

I(f,g) =

∫
f(x) logf(x)dx−

∫
f(x) log(g(x|θ))dx. (2)

Notice that each of these terms on the rhs of equation 2 can be considered as an expectation of a probability distribution.

Furthermore, because full reality f is a fixed quantity that does not depend on parameters or initial conditions, the first term on

the rhs of 2 can be considered as a constant. In terms of expectations, equation 2 can be written as

I(f,g) = Ef [log(f(x))]−Ef [log(g(x|θ))]. (3)90
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This equation suggests that for a given model g, there would be a set θm that minimizes the distance from reality f .

In the process of model development, investigators often make decisions about initial and boundary conditions, and the

proper parameterization of the model based on previous knowledge and certain data y that they have at hand. A model would

have a set of estimated parameters depending on the available data, which can be expressed as θ̂(y). It is reasonable to expect

that the set θ̂ does not correspond to θm, and in fact, in most cases, the configuration of a model would be further apart from95

the configuration that would minimize its distance to full reality.

In terms of expectations, we are then interested in obtaining an estimator of the distance I(f,g) with respect to the variable

of interest x and the available data y, expressed as

Ey Ex[log(g(x|θ̂(y)))]. (4)

The seminal work of H. Akaike showed that this expectation can be approximated by the log-likelihood function of the fitted100

parameters given the data

log(L(θ̂|y))−K
:::

≈ Ey Ex[log(g(x|θ̂(y)))], (5)

which is equivalent to
:::::
where

::
K

::
is

:
a
::::::::::::
bias-correction

:::::
term.

::::::
Akaike

:::::
found

::::
that

:::::
under

::::::
certain

:::::::::
conditions,

:::
the

::::::
number

:::
of

:::::::::
parameters

::
in

:::
the

:::::
model

::
is
::

a
:::::
good

::::::::::::
approximation

::
to
::::

the
:::
bias

:::
in

:::::
using

:::
the

::::::::::::
log-likelihood

::
to

:::::::::::
approximate

:::
the

::::::::
expected

::::::
relative

::::::::
distance

:::::::
between

:::
the

:::::
model

::::
and

:::
full

::::::
reality.

:::::::::
Therefore,

::
K

::
is
::::::::
generally

::::::::
assumed

::
as

:::
the

::::::
number

:::
of

:::::::::
parameters

::
in

::
a

::::::
model.

::::::::
However,

:::
the105

::::::
number

::
of

::::::::::
parameters

::
in

:::::
ESMs

::
is
::::::::

generally
:::::

very
::::
large

::::
and

::::::::
unknown

:::
for

::::
users

:::
of

:::::
model

::::::
output

:::::
data,

:::
and

:::
its

:::::::
inclusion

:::
in

:::
the

::::::::
estimation

::
of

:::
the

::::::
I(f,g)

:::::::
distance

::::::
would

::::::::
dominate

::::
over

::
the

:::::
value

::
of

:::
the

::::::::::::
log-likelihood.

:::::::::
Therefore,

:::
we

::::::
ignore

::
the

::::
bias

:::::::::
correction

::::
term

::
K

:::
and

:::::
arrive

:::
to

::
the

::::::::::
expression

log(L(θ̂|y))≈ Êθ̂[I(f, ĝ)], (6)

where the ≈ symbol is used here instead of an equality because a bias-correction term
::
the

::::::::
exclusion

::
of

:
K(number of parameters110

in the model) used by Akaike is ignored in this expression. The key result is that the log-likelihood of a model, configured

with parameters and initial conditions consistent with some observed data, is an approximation of its expected distance to full

reality.

The non-trivial problem now is to determine a reasonable value of a log-likelihood for a parameterized ESM given some

observed data. In contrast to common statistical methods of maximum likelihood estimation (MLE) for simple statistical115

models, there is not (to our knowledge) any method for MLE
::
no

:::::::::
consistent

:::
use

::
of

:::::
MLE

:::::::
methods

:
dealing with the hundreds of

parameters in an
:
a
:::::
fully

::::::
coupled

:
ESM. Also, there is not really any observed data on the gridded format required for comparison

with ESM output because measurements are not performed systematically for all points on the surface of the Earth. What we

usually have available is data products that are derived from sparse observations and scaled to the terrestrial surface following

some data manipulation technique.120

Under strong assumptions of linearity, equal variance, and probability distributions from the exponential family (normal,

exponential), least-square estimates are identical to maximum likelihood estimates. This is surely not the case for the distri-

bution of output variables from ESMs, but given the absence of any other method for obtaining a log-likelihood function of a

4



parameterized ESM with respect to data, we make here the strong assumption that

n log(σ̂2)≈ log(L(θ̂|y)), (7)125

where

σ̂2 =

∑n
ϵ̂2j

n
,

and ϵ̂ are residuals
::
σ̂2

::
is

:::
the

:::::
mean

:::::::
squared

::::::::
deviation

:
between model predictions and some available data product.

::::
They

:::
are

:::::::
obtained

::
as

:

σ̂2 =

∑n
ϵ̂2t

n
,

::::::::::

(8)130

:::
and

:̂
ϵ
:::
are

::::::::
residuals. The lhs in equation 7

::
(7) is the first component of Akaike’s Information Criterion (AIC) for the least-squares

case without the correction term K. Although not perfect, this approximation to the AIC and the log-likelihood function can be

estimated from existing model output from ESMs and some observational data product, provided that both are available for the

same spatial and temporal coordinates. Thus, mimicking the definition of AIC, we define for our purposes the distance metric

A as135

A := n log(σ̂2). (9)

One characteristic of A is that it preserves some of the properties of AIC; it can be viewed as a negative entropy (Akaike,

1985), and can be used to compare its value across different models on an absolute scale. In other words, one can compute Ai

for a set of models i ∈ [1, . . . ,k] and rank them according to their relative difference. One of the models in the set would have

the minimum value Am and can be considered as the model with the minimum distance to the observations. Furthermore, for140

any other model in the set, we can calculate their difference with respect to this ‘best’ model as

∆i :=Ai −Am. (10)

More importantly, the values of ∆i are estimates of

Eθ̂[Î(f,gi)]−minEθ̂[Î(f,gi)], (11)

i.e., they are estimates of the relative difference between the expected distance between the model and full reality with respect145

to the same distance for the model that is closer to full reality (Figure 1). Recall from equation 3 that the expected value for

full reality is a constant, therefore its actual value plays no role regarding these values of ∆i.

Another important contribution of H. Akaike is a method to obtain the likelihood of a model given the data L(gi|data) based

on the value of ∆i for each model. It can be interpreted as the relative strength of evidence for a particular model in the set of

models being considered given the available data, and it is expressed as150

L(gi|data)∝ exp

(
−∆i

n

)
. (12)
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f(x) data g1(x|θ̂(y)) g2(x|θ̂(y)) g3(x|θ̂(y)) g4(x|θ̂(y))

I(f, g1)

I(f, g2)

I(f, g3)

I(f, g4)

A1 = Am

A2

A3

A4

∆2

∆3

∆4

Figure 1. Conceptual representation of the approximation of the Kullback-Liebler distance between models and full reality I(f,gi) by

the proposed metric Ai, and relative ranking of models according to the metric ∆i. Models gi predict the value of variable x based on a

configuration of parameters and initial conditions encoded in the vector θ̂, which is based on some a priori data y. In this example, the model

with the closest distance to the reference data is g1, so A1 =Am. The relative ranking among models is defined as ∆i =Ai −Am. Notice

that the distance from full reality and data is always constant as well as the distance from full reality to model g1. Therefore, the relative

ranking of the models is similar to ranking models based on their Kullback-Liebler distance to full reality.

For each model gi in the set of models, it is also possible to obtain model probabilities, which are weights of the evidence in

favor of a model being the model with the lowest I(f,g) distance. These model probabilities or weights can be obtained as

wi =
exp(−∆i

n )∑k
r=1 exp(−∆r

n )
. (13)

Note that
∑

wi = 1.155

:::::::::
Combining

:::::::
equation

::::
(13)

:::::
with

::::::::
equations

::::
(10)

:::
and

:::
(9)

::::
and

::::
after

::::::::::::
simplification,

:::
we

:::::
arrive

::
at

::
an

::::::::::
expression

::
of

:::
the

:::::::
weights

::
in

::::
terms

:::
of

:::
the

::::
mean

:::::::
squared

:::::::::
deviations

wi =
1/σ̂2

i∑k
r=1 1/σ̂

2
r

.

::::::::::::::

(14)

:::::
Thus,

:::
the

::::::
weights

::::
can

::
be

::::::::::
understood

::
as

:::::
being

:::::
based

::
on

:::
the

:::::::
inverse

::
of

:::
the

:::::::::
deviations

:::::::
between

::::::
model

:::::
output

::::
and

::::
data

:::::::
product.

::::
This

:::::::::
expression

::
for

:::
the

:::::::
weights

::::::::
(equation

::::
14)

:
is
::::::::
identical

::
to

:::
the

:::::::
formula

:::
for

:::::::::::::
inverse-variance

:::::::::
weighting,

::::::
which

::
is

:
a
:::::::::
maximum160

::::::::
likelihood

::::::::
estimator

:::
for

:::
the

:::::
mean

::
of

::
a
::::::::
statistical

:::::::::
population

::::
with

:::::::::::
independent

:::
and

::::::::
Gaussian

::::::::::
distribution

::::::::::::::::
(Bonamente, 2022)

:
.

:::
The

::::::::::
equivalence

:::::::
between

:::::
these

:::
two

::::::::::
expressions

:::
for

:::
the

:::::::
weights

:::::::::
(equations

::::
(13)

:::
and

::::
(14))

::::::::
emerges

::::
only

:::::::
because

:::
our

::::::
choice

::
of

:::::::
distance

:::::
metric

::
A

::
to

:::::::::::
approximate

:::
the

::::::::::::
log-likelihood

:::::::
function,

:::
but

:::
for

:::::
other

::::::::::::
representations

::
of
:::
A

::::
these

::::::::
formulas

:::::
would

::::::
differ.
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With these weights, we can now proceed to compute averages of model predictions according to our strength of belief in the

predictions of each model. For a variable of interest x, the multi-model average is simply165

x̄=

k∑
i=1

wi ·xi. (15)

The estimate of uncertainty of this weighted averagex̄ would have to incorporate two components, a variance due to

inter-model variability, and a variance of each model with respect to the available data y. Thus,

σ2
x̄ =

k∑
i=1

wi

[
(xi − x̄)2 +(xi − y)2

]
.

::
To

::::::
obtain

::
the

::::::::
variance

::
of

:::
the

::::::::
weighted

:::::::
average,

::
we

::::
take

:::::::::
advantage

::
of

:::
the

:::
fact

::::
that

:::
the

:::::::
variance

::
of

::
an

::::::::::::::
inverse-variance

::::::::
weighted170

::::::
average

::
is

:::::
equal

::
to

:::
the

::::::
inverse

::
of

:::
the

:::::::::
deviations

:::::::::::::::::::::::::::::::::::::::::::::
(Bonamente, 2022; Kanters, 2022; Rotondi et al., 2022)

Var(x̄) =
1∑k

i=1 1/σ̂
2
i

.

::::::::::::::::::

(16)

A note of caution. The last term of this equation needs to be specified more precisely due to the space-time coordinate indexing

of
::::
This

:::::::::
expression

:::
for

:::
the

:::::::
variance

::
is

:::::::::
consistent

::::
with

:::
the

:::::::::
expression

::
of

:::
the

:::::::
weights

::
as

::
in

::::::::
equation

:::
(14)

::::::
where

::::
each

:::::::::
individual

:::::::
estimate

::
of

:::
the

:::::::::::::
inverse-variance

:::
for

::::
each

:::::
model

::
is

:::::::::
normalized

:::
by

::::
their

:::
sum

::::::
across

::
all

:::::::
models.

:::::::::::
Furthermore,

:::
the

:::::
values

:::::
1/σ̂2

i ::::
have175

:
a
::::::
special

:::::::::::
interpretation

:::::
from

::
an

::::::::::
information

::::::::
theoretic

::::::::::
perspective,

::::
they

:::
are

::::::::
estimates

::
of

:::::::
Fisher’s

::::::::::
information

:::
for

:::::::::::
distributions

::
of

:::
the

::::::::::
exponential

:::::
family

::::::::::::::::::
(Rotondi et al., 2022)

:
.
::::
They

::::
can

::
be

::::::::::
interpreted

::
as

:::
the

::::::
amount

:::
of

::::::::::
information

::::::::::
contributed

::
by

::::::
model

:
i
::
to the data and the models. This aspect will be clarified in the next section

:::::::
weighted

:::::::
average,

::
so

:::
the

::::::
larger

:::
the

::::::::
dispersion

:::
of

:::::
model

:::::::
output

::::
from

:::
the

:::::::::::
observations,

:::
the

:::::
lower

:::
the

::::::::::
contribution

::
of

:::
the

::::::
model

::
to

:::
the

::::::::
weighted

::::::
average.

3 Implementation with ESM output and gridded data products180

Most numerical output from an ESM is indexed along three coordinate axes, one for time, and two for spatial coordinates.

Because the spatial coordinates can be simplified to just one coordinate if we know the mapping from a one-dimensional index

to a two-dimensional coordinate space, we define s as the spatial coordinate, and t as the time coordinate. We also define i as

the indexing for the models in the set of all considered ESMs. Given these definitions, we consider a model variable x available

from one single model for one single grid cell at one point in time as xi,s,t. Similarly, we assume that we have a comparable185

variable derived from observations y from a specific data product j for one grid cell s and one time point t and denote it by

yj,s,t. The residual for each grid cell and each time point between model i and data product j is given by

ϵ2i−j,s,t = (xi,s,t − yj,s,t)
2. (17)

This equation can be used to produce
:::::::::::
geographical maps of residuals between one single model i and data-product j for

each point in time. An estimate of the variance over time
::::
mean

:::::::
squared

::::::::
deviation, from the first time point t0 until a final time190

point tf would be
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σ2
i−j,s =

∑tf
t=t0

ϵ2i−j,s,t

n
, (18)

with n= h(tf − t0), i.e., the total number of time points, from t0 to tf multiplied by the time-step h. This equation is used

to produce one single map (no time points) of variances
::::
mean

:::::::
squared

:::::::::
deviations for the grid cells of the model versus the

available data product. Now we can compute the distance metric A as195

Ai−j,s = n log(σ2
i−j,s). (19)

This equation leads to one single map for each model-data product combination. If we repeat this calculation for all models

being considered, i ∈ [1, . . . ,k], we will obtain the set of k number of maps Ai−j,s := [A1−j,s, . . . ,Ak−j,s]. Our purpose now

is to identify the grid-cells from this set of maps in which the values of A are the lowest, and produce one single map as

Amin
j,s =min

i−j
[A1−j,s, . . . ,Ak−j,s]. (20)200

Notice that this map is a combination of all the grid cells that better agree with the data from any of the models. It does not

select uniformly all the grid cells of a particular model that perform better, but rather the grid cells from any of the models with

minimum A distance. By doing this, we make sure that we select spatial regions in which particular models perform better

than others.

Now we proceed to calculate a set of k maps of differences with respect to this minimum as205

∆i−j,s =Ai−j,s −Amin
j,s . (21)

We are now ready to compute a set of k maps of weights as

wi−j,s =
exp(−∆i−j,s

n )∑k
i=1 exp(−

∆i−j,s

n )

exp(−∆i−j,s

n )∑k
r=1 exp(−

∆r−j,s

n )
, or wi−j,s =

1/σ2
i−j,s∑k

r=1 1/σ
2
r−j,s

::::::::::::::::::::::::::::::::::::::::::::

. (22)

This will result in a set of k maps of weights that will be used to produce a set of n maps (along the time dimension) of the

weighted average for the variable of interest as210

x̄j,s,t =

k∑
i=1

wi−j,s ·xi,s,t, or
::::::

x̄j,s,t =

∑k
i=1xi,s,t/σ

2
i−j,s∑k

i=1 1/σ
2
i−j,s

:::::::::::::::::::::

. (23)

The variance would be the sum of the variance due to variability with respect to data plus variability with respect to the

weighted average

σ2
x̄j,s,t

=

k∑
i=1

wi−j,s

[
(xi,s,t − x̄j,s,t)

2 +σ2
i−j,s

]
.
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::
of

:::
the

:::::::
weighted

:::::::
average

::
is

:::::::
obtained

::
as
:::
the

::::
sum

::
of

:::
the

:::::::::::::::
inverse-deviation

:::::
across

::::::
models

:
215

Var(x̄j,s) =
1∑k

i=1 1/σ
2
i−j,s

.

:::::::::::::::::::::::

(24)

In some cases, it is useful to analyze the variance due to deviation from the average, i.e., only the first term of equation ??.

Notice that the weights
:::
and

:::
the

:::::::
variance

:::
of

:::
the

::::::::
weighted

::::::
average

:
are fixed over time (not time-dependent), but they can be

used to obtain averages
:::
and

::::::::
prediction

:::::::::::
uncertainties

:
that include the time dimension. One consequence of this is that ,

:::::
even

::
for

::::::
model

::::::
output

:::
that

:::::
spans

:::::::
beyond

:::
the

::::
time

:::::::
interval

::
of

:::
the

::::::::
available

:::::::::::
observations.

:::::
Thus,

:::
the

::::::::
weighted

:::::::
average

::::
with

:::::::
interval220

::::::::
estimation

::
at
::::
one

:::::::
standard

::::::::
deviation

:::
can

::
be

::::::::
obtained

::
as

:::::::::::::::::::::
(c.f. Rotondi et al., 2022)

x̄j,s,t ±

√√√√Var(x̄j,s)+

k∑
i=1

wi−j,s(xi,s,t − x̄j,s,t)2,

::::::::::::::::::::::::::::::::::::::::

(25)

::::
with

::::::::::
t ∈ [t−0 ,f

+
f ];

:::
i.e.,

:::::
with

:::::
initial

::::
times

:::::::
starting

::::::
before

:::::
model

::::::
output

:::
and

::::
data

::::::
product

:::::::
overlap

::::::::
(t−0 ≤ t0)

:::::
and/or

:::::
final

::::
time

::::
after

:::::
model

::::::
output

:::
and

::::
data

::::::
product

:::::::
overlap

::::::::
(t+f ≥ tf ).

:::
In

::::
other

::::::
words,

:
we can take a smaller period of time when the observational

product and the model output overlap to obtain the weights, and then use the weights to average across the entire time span of225

the available model output.

::
As

::
a

::::::::
reference,

::
it

:
is
::::::
useful

::
to

:::::
obtain

:::
the

:::::::
average

:::
and

:::
the

::::::::
prediction

::::::::
intervals

::
for

:::
the

::::::::::::
equal-weights

:::::::
scheme,

:::::
where

:::
the

:::::::
average

:
is
:::::
given

:::
by

x̄s,t =

∑k
i=1xi,s,t

k
,

:::::::::::::::

(26)

:::
and

:::
the

::::::::
prediction

:::::::
interval

:::
can

:::
be

::::::::
expressed

::
as

:
230

x̄s,t ±
√

(xi,s,t − x̄s,t)2

k
.

::::::::::::::::::::

(27)

:::::
Notice

::::
that

:::
the

::::::::
prediction

:::::::
intervals

:::
for

::::
this

:::::::::::::
equal-weighting

::::
case

::
do

:::
not

:::::::
include

:
a
:::::::
variance

::::
term

::::
with

::::::
respect

::
to

:::
an

:::::::::::
observational

:::::::
product.

::::
This

::
is

::::::
simply

:::::::
because

::
it
::

is
:::::::::

irrelevant
::
to

:::::::
include

::::
this

::::::
source

::
of

::::::::
variation

:::::
when

:::
the

:::::::::
averaging

::::
does

::::
not

::::
take

::::
into

:::::::::::
consideration

:::
the

:::::::
existence

::
of

::::
any

:::::::
reference

:::::::::::
observation.

::::::::
However,

::
for

:::::::::
comparing

:::
the

:::::::::
prediction

:::::::
intervals

:::::::
between

:::
the

:::::::::::
equal-weights

:::
and

:::
the

::::::::
weighted

::::::::
average,

:::
the

:::::::
variance

:::::::::
Var(x̄j,s)::::

term
:::

in
:::::::
equation

::::
(25)

:::::
adds

:::
an

::::::::
undesired

::::::
source

::
of
::::::::::

variability.
:::
To

:::::
make235

::::::::::
comparisons

:::
on

::::
equal

:::::::
footing,

:::
we

::::
thus

:::
use

:
a
::::::::
modified

::::::
version

:::
of

:::
the

::::::::
prediction

:::::::
intervals

:::
for

:::
the

::::::::
weighted

:::::::
average

::
as

x̄j,s,t ±

√√√√ k∑
i=1

wi−j,s(xi,s,t − x̄j,s,t)2,

::::::::::::::::::::::::::::::

(28)

:::::
which

::
is

::::::::
identical

::
to

::::
the

:::::::::
expression

::::
used

:::
in

:::::
other

::::::
model

::::::::
weighting

::::::::::
approaches

::::::::::
previously

::::::::
proposed

::::
with

:::::::
climate

::::::
model

::::::::
ensambles

:::::::::::::::::::::::::::
(Sain and Kleiber, 2025, p. 212).

:
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Table 1. Earth system models from the CMIP6 archive used in this study and their relevant features.

Earth system
model

Modelling
centre

NEP NBP N cycle Fires
Dynamic
vegetation

Land carbon
model

ACCESS-ESM1-5 CSIRO Yes Yes
Yes

(P-cycle)
No No

CABLE2.4 with

CASA-CNP

BCC-CSM2-MR BCC Yes No No No No BCC-AVIM2

CanESM5 CCCma Yes Yes No No
Only

wetlands
CLASS-CTEM

CESM2 CESM No Yes Yes Yes Yes CLM5

CNRM-ESM2-1 CNRM Yes Yes Implicit
Yes

(Natural)
No ISBA-CTRIP

NOAA-GFDL-ESM4
NOAA,

GFDL
Yes Yes No Yes Yes LM4p1

MPI-ESM1-2-LR MPI Yes Yes Yes Yes Yes JSBACH3.2

NorESM2-LM NCC Yes Yes Yes Yes No CLM5

UKESM1-0-LL UK Yes Yes Yes No Yes JULES-ES1.0

4 Ensemble average of land-atmosphere carbon exchange from CMIP6 models240

To demonstrate the use of the procedure described above, we computed model weights and a multi-model ensemble average

of the net flux between the land and the atmosphere using two different observational products as reference, X-BASE (Nelson,

Jacob A and Walther, Sophia et al., 2024) and the Jena CarboScope (Rödenbeck, 2005). For the model ensemble, we used 9

models from the CMIP6 archive that report gross primary production and respiration fluxes as well as net biome production

(Table 1).245

The X-BASE product is based on the upscaling of eddy-covariance measurements that quantify the net ecosystem exchange

(NEE) of carbon dioxide due to the assimilation and respiration of carbon by vegetation and soils. Therefore, this product

can be compared with the difference between gross primary production (GPP) and ecosystem respiration (Re) (NEP=GPP-Re)

from ESMs. The Jena CarboScope product is based on an atmospheric inversion system that uses mole fraction data of carbon

dioxide and predicts net carbon exchange fluxes using an atmospheric transport model. This product is comparable with the250

variable net biome production (NBP) reported by the ESMs and includes, in addition to GPP and Re, fluxes due to disturbances

such as fires and land-use changes.

The minimum distance maps Am obtained using the X-BASE and the Jena CarboScope products, showed large differences

among each other (Figure 2). However, these maps should not be compared directly because the distance metric A is an

absolute distance metric, and since values of NEP tend to be higher than values of NBP, it is expected that the Am distance of255

the models to the X-BASE product would be higher than the distance of the models to the CarbonScope product (Figure 2).

Similarly, when comparing regional differences within any of the two Am maps, it is also clear that regions with low carbon

fluxes such as the arid and semi-arid regions in Africa, the Arabian Peninsula and Central Australia show the lowest distances

to the models. However, these short distances do not necessarily mean that the models perform well in these regions. It just

shows that when fluxes are low, the models predict a low distance to the observational product, but this cannot be confused with260
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10000 8200 6400 4600 2800 1000
m

Figure 2. Minimum distances (Am) between (a) NEP from CMIP6 ESMs and X-BASE, and (b) NBP from CMIP6 ESMs and the Jena

CarboScope product. More negative values in darker colors indicate smaller distances (values in logarithmic scale), representing larger

similarity between the ESMs and the observational products. Note that the numerical scales between a and b are different.

good performance. For ranking model performance a relative measure such as ∆ (Figures A3 and A4) and the model weights

w are preferred.

The weights obtained for each model provide a relative ranking of the models with respect to their distance to the observa-

tional product, and serve as a suitable metric to assess model performance. The values obtained differed considerably between

the NEP and the NBP reference (Figures 3 and 4), which shows that model weights may change substantially depending on265

the observational product being used as a reference. Furthermore, for each model, it is clear that there are regions that perform

better or worse than others in comparison to the observational product. For example, the MPI-ESM1-2-LR model performs

consistently poorly in the Amazon region, in tropical Africa and North America, but performs relatively well in Europe and

northern Eurasia. Other models also show consistent spatial patterns of good or poor performance, indicating that the weights

do not capture randomly spaced grid-cells, but aggregated regions where the models tend to perform consistently in either270

direction with respect to the observations. These maps of weights also show that there is no one single model that performs

best everywhere, or contrastingly, one single model that performs worse everywhere.

11



BCC-CSM2-MR CanESM5

CNRM-ESM2-1 ACCESS-ESM1-5

UKESM1-0-LL MPI-ESM1-2-LR

NorESM2-LM NOAA-GFDL-ESM4

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
w

Figure 3. Weights w of CMIP6 models for the variable NEP with respect to the X-BASE observational product. The diverging color palette

is centered at a value of 1/8, indicating whether a model contributes more or less than the equal weight of 1/8 from the k = 8 models. For

each grid cell, the sum of the weights of the 8 models adds up to 1.
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CanESM5 CNRM-ESM2-1

ACCESS-ESM1-5 UKESM1-0-LL

MPI-ESM1-2-LR CESM2

NorESM2-LM NOAA-GFDL-ESM4

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
w

Figure 4. Weights w of CMIP6 models for the variable NBP with respect to the Jena CarboScope observational product. The diverging color

palette is centered at a value of 1/8, indicating whether a model contributes more or less than the equal weight of 1/8 from the k = 8 models.

For each grid cell, the sum of the weights of the 8 models adds up to 1.
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The values of weights for each grid cell were combined with the predictions of the variable of interest for each model to

produce weighted averages at the grid cell level for each time step, and then summed across grid cells to obtain time series

(Figure 5). The obtained results show that the weighted average of NEP is consistently lower than the arithmetic average275

::::::
(38.2%), mostly because the influence of models that make predictions with values much higher than the observational product

have much less weight in the weighted average (Figure 5a). In fact, the models that predict the highest values of NEP, namely

NOAA-GFDL-ESM4 and ACESS-ESM1-5, make predictions well outside the uncertainty range obtained for the weighted

average, indicating the small contribution that these models make to the obtained average.
:::
The

:::::::::
prediction

:::::::::
uncertainty

::::
was

::::
also

::::::::::
considerably

:::::::
smaller

::
for

:::
the

::::::::
weighted

:::::::
average,

::::::::::::
approximately

::::::
38.2%

:::::
lower

::::
than

:::
the

:::::::::
uncertainty

:::
for

:::
the

:::::::::
arithmetic

:::::::
average.

:
280

For the variable NBP, the arithmetic and the weighted average are relatively close to each other for the entire simulation

period (Figure 5b). In this case, most models make predictions close to each other and, therefore, they contribute more evenly

to the weighted average. Nevertheless, the obtained uncertainty range is lower for the weighted average
::::::
(39.1%), indicating that

those models closer to the observational product have more weight in terms of both the average and its variance, and therefore

help to reduce overall uncertainty in the predictions.285

For both variables, NEP and NBP, the estimate of uncertainty with our proposed approach is also significantly lower than the

uncertainty based on equal weights (Figures 5 and
::::::
Figure A2). We obtained a much lower level of uncertainty for the weighted

average because the method applies probabilities or strengths of belief to the different models and grid cells, and therefore this

averaging procedure increases confidence in the inferred multi-model average.

However,
:::
the

::::::::
prediction

:::::::
intervals

::
in
:
Figure 5 only shows the first component of the variance from equation ??

::
do

:::
not

:::::::
include290

::
the

::::::::::
inter-model

:::::::
variance

:::::
term

::::::::
Var(x̄j,s)::::

from
::::::::
equation

::::
(25); i.e., only the deviation of the models with respect to the averages

excluding the deviation of the models from the observational product. When combining both sources of uncertainty, the overall

variance is much larger , but the uncertainty of the weighted average is still consistently lower than that of the
::
for

:::
the

::::::::
weighted

::::::
average

:::::::
(Figure

::::
A2).

:::
For

:::
the

:::::::::
arithmetic

:::::::
average,

::::
this

::::::
source

::
of

::::::::
variation

::
is

::::::::
generally

:::
not

::::::::
included

:::::::
because

:
it
::
is
:::::::::
irrelevant

::
in

:::
this

::::::
context

::
to
::::::::
compare

:::
the

::::::
models

::::
with

:::::::::::
observations,

:::
but

::
in
::::
case

::::
this

::::::
source

::
of

:::::::::
uncertainty

::::::
would

::
be

::::::::
included,

:::
the

:::::::::
prediction295

:::::::
intervals

::
of

:::
the arithmetic average (Figure A2)

:::::
would

:::
be

:::::
much

:::::
larger

::::
than

::
for

:::
the

::::::::
weighted

:::::::
average.

It is also important to note that even though the observational products are only available for a short period of time, we used

the obtained weights for the entire period of the simulations of the ESMs under the assumption that a model that performs well

during the period in which observations are available, should be able to perform well for other periods. This assumption is

obviously questionable, and probably inadequate for periods of time much beyond the time range of available data. However,300

we still believe that this assumption is better than to assume that all models are equally reliable for all periods of time as it is

implicitly assumed with an equal weight approach.

5 Discussion

Although other authors have proposed methods to obtain weights and multi-model averages from the predictions of ESMs

(Tebaldi and Knutti, 2007, and references therein)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Tebaldi and Knutti, 2007; Merrifield et al., 2020, and references therein), we305
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Figure 5. Annual time series of (a) NEP and (b) NBP from individual CMIP6 ESMs obtained as arithmetic averages (purple lines) and

the weighted averages using the method proposed here (black lines). Uncertainty ranges are expressed as the average value ± the value of

σ including only the first
:::::
second term from equation ??

::
25. For the arithmetic average, the weights for the computation of uncertainty are

wi = 1/8.

presented here an approach based on information-theoretic concepts that is easy to implement and can help to improve infer-

ences from ESMs minimizing biases and reducing uncertainties. Some of the
::::
Most

:::::::::
previously

::::::::
proposed

:::::::
methods

::::
have

:::::::
focused

::
on

:::
the

::::::::
problem

::
of

:::::::::::
probabilistic

::::::
climate

:::::::
change

:::::::::
projection

:::::
taking

::::
into

:::::::
account

:::
the

:::::::::
variability

::::::
around

::::
the

::::::::
ensamble

:::::::
average

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Giorgi and Mearns, 2002, 2003; Tebaldi et al., 2005; Knutti et al., 2017)

:
.
:::::::::
Therefore,

:::::
many

:::
of

::::
these

::::::::
methods

::::
lack

::
a
::::
level

:::
of

::::::::
generality

:::::::
adequate

:::
for

:::::
other

::::::::
problems

::
of

::::::
interest.

::
In
::::::::
addition,

:::::
many

::
of

:::
the

::::::::
previously

::::::::
proposed

:::::::
methods

:::::::
include

:
a
:::
step

::
in
::::::
which310

:
a
:::::::::
generalized

:::::
linear

::::::
model

::
is

::
fit

:
to
:::
the

::::::
model

:::::
output

::
to

::::::
obtain

::::::
weights

:::
for

::::::
specific

:::::::
regions

::
or

::::::
periods

::
of

::::
time

:::::::::::::::::
(Greene et al., 2006)

:
.
:::
For

:::::::::
approaches

:::
that

::::
use

:
a
::::::::
Bayesian

:::::::
approach

:::::::::::::::::::::
(e.g. Tebaldi et al., 2005),

::
it
::
is

::::::::
necessary

::
to

::::::
specify

:
a
::::::
family

::
of

::::
prior

:::::::::::
distributions

::
for

:::
the

:::::
mean

:::
and

::::::::
variance,

::::::
which

::::
adds

:
a
:::::
layer

::
of

:::::::::
complexity

::::
and

:::::::::
uncertainty

:::
for

::::::::
obtaining

:::
the

::::::
model

:::::::
weights.

::
As

:::::::
opposed

::
to

:::::
these

:::::::
previous

::::::::
methods,

:::
our

:::::::
approach

::::::
makes

::
no

:::::::::::
assumptions

::
of

:
a
::::::::::
generalized

:::::
model

::::::
and/or

::::
prior

:::::::::::
distributions.

:::::::::
Additional advantages of this method over others include: (1) a theoretical foundation based on concepts from probability and315

information theory (Akaike, 1974, 1981; Anderson, 2007; Burnham and Anderson, 2002). (2) The weights have a relevant
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interpretation, they are evidence in favor of a model prediction having the smallest distance to full reality, even though com-

parisons are only performed with respect to an uncertain observational product.
::
For

:::
the

::::::::
particular

::::::
choice

::
of

::
A
:::
as

::
the

:::::::::
logarithm

::
of

:::
the

:::::
mean

:::::::
squared

:::::::::
deviations,

:::
the

:::::::
weights

::::
have

::
a
:::::::
straight

:::::::
forward

::::::::::::
interpretation:

:::
the

::::::
models

::::
with

::::
less

::::::::
deviation

:::::
from

:::
the

::::::::::
observations

:::::::::
contribute

::::
more

::
to

:::
the

::::::::
weighted

:::::::
average. (3) Calculation of weights

:::
The

:::::::::
calculation

::
of

:::::::
weights

::
is based on spatial320

performance of model output with respect to observations, and not a uniform weight for all grid-cells of a model.

:::
For

:::
the

::::::::
particular

::::::
choice

::
of

:::
the

:::::::
distance

:::::
metric

::
A

::
as
:::
the

:::::::::
logarithm

::
of

:::
the

:::::
mean

::::::
squared

::::::::
deviation

:::::::
between

::::::
model

:::::
output

::::
and

:::::::::::
observational

:::::::
product,

:::
we

:::::::
obtained

:::::::
weights

::::
that

:::
are

::::::
similar

::
to

:::
an

:::::::::::::
inverse-variance

:::::::::
weighting

:::::::
scheme.

::::
This

:::::
result

::
is

::::::::
expected

::::::
because

::::
the

::::::::::::::
inverse-variance

::::::::
weighted

:::::::
average

::
is

:::
an

:::::::
efficient

:::::::::
maximum

:::::::::
likelihood

::::::::
estimator

:::
of

:::
the

:::::
mean

:::
of

:
a
:::::::::

statistical

:::::::::
population,

:::::
which

:::::::::::
corresponds

::
to

:::
our

:::::
choice

:::
of

:::
the

::::
mean

:::::::
squared

::::::::
deviation

::
as

:
a
::::::::::::
log-likelihood

::::::::
function.

:::
But

:::
we

:::::
know

:::
that

::::
this325

:::::
choice

::
of

::::::::::::
log-likelihood

:::::::
function

::
is
:::
not

:::::
ideal,

::::
and

::::::
should

::
be

:::::::
replaced

::
if

:::::
other

:::::::::
approaches

:::
for

:::::
MLE

:::
are

::::::::
available,

:::::
which

::::::
would

::::
result

:::
in

::
an

:::::::::
expression

:::
for

:::
the

:::::::
weights

::::::::
different

::::
than

:::
the

::::::::::::::
inverse-variance

:::::::
weights.

:::::::::::
Nevertheless,

:::
the

::::
use

::
of

::::::::::::::
inverse-variance

::::::::
weighting

::
is

:::
an

:::::::
intuitive

::::
and

::::
easy

::::::::
approach

::
to

:::::
apply

:::
to

:::::
ESM

:::::::::
ensambles,

::::
and

::
it

::
is

::::
also

:::::::
common

:::
in

:::::
other

:::::
fields

::::
such

::
as

:::
in

:::::::::::
meta-analyses

:::::::::::::::::::::::::::::::
(Hartung et al., 2008; Kanters, 2022)

:::
and

::
in

:::::::::
biomedical

::::::
studies

:::::::::::::::::::::::::::
(Mansournia and Altman, 2016).

:

However, as with other approaches, some weaknesses should be acknowledged and should be improved in future research.330

These are: first, lack of a log-likelihood function for the assessment of model-observation distances. Although such a function

would be unrealistic
:
is
:::::::
difficult

:
to obtain given the process of development and parameterization of ESMs, it is still desirable

to obtain an unbiased estimator of the log-likelihood of a parameterized model with respect to available data. We are not aware

of another method that could be used to replace the simple log of square residuals used here, but it is also important to point

out that other measures of distance used in other methods apply mostly the squared residuals as a distance metric. Therefore,335

our method offers a small theoretical improvement over previous approaches based on the theoretical knowledge that, under

certain assumptions, the logarithm of square residuals is a first-order approximation to a maximum likelihood estimator.

Second, other authors have raised concerns over the issue of model independence (Knutti, 2010; Knutti et al., 2010), a

problem that we do not address explicitly here. They argue that many models share the same base code or are based on the

same underlying principles, and cannot be treated as completely independent estimates for obtaining an unbiased average. In340

particular, the method of Knutti et al. (2017) produces weights that penalize a model according to its prediction distance to that

of other models. We think this is a valid concern, particularly when weights are obtained for the aggregated (sums or averages)

across all grid cells of a model. However, the implementation of similar processes in two models but with differences in other

components such as its climate sensitivity may lead to very different predictions. For instance, CESM2 and NorESM2-LM

share the same land vegetation model, CLM5 (Table 1). Although the spatial distribution of the weights for NBP with these345

models tends to correlate well, the correlation is not uniform across all grid cells and is mostly below 90% (Figure 6). This

implies that a shared component of a model can interact with other non-shared componentsof each model, resulting in different

predictions that should be treated differently for the calculation of weights.

It is also important to note that, in the ideal case in which we would have a perfect understanding of Earth system processes,

all mathematical models representing these processes would converge to the same predictions. Therefore, it is still debatable350

whether models that agree with each other because they have a common representation of underlying processes should be
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Figure 6. Pearson correlation coefficients ρ of variable NBP between CESM2 (m1) and NorESM-LM (m2). These two models share the

same land model (CLM5), but due to differences in other components of the model, the predictions of NBP are not similar and often correlate

with values of ρ < 0.9.

penalized. For this reason, we refrain from introducing a penalization term to our computation of weights, but we acknowledge

that this is an issue that deserves more theoretical work.
:
In

:::::::::
particular,

::::
from

:::
an

:::::::::::::::::
information-theoretic

:::::
point

::
of

:::::
view,

:::
the

:::::::
problem

:::::
should

:::
be

:
a
:::::::
dressed

::
in

:::::
terms

::
of

:::
the

::::::
mutual

::::::::::
information

:::::
shared

::::::
among

:::::::
models

::::::::::::::::
(Majhi et al., 2023).

:

A third issue that deserves more attention is the lack of penalization for model complexity in the approach we propose. The355

original work proposed by H. Akaike is very well known for the introduction of a penalization term due to the number of pa-

rameters in the model, a penalization well supported by mathematical theory and philosophy of science (Akaike, 1974, 1981).

However, the scientific trend in ESM development is the addition of increased levels of detail supported by increased com-

putational power (Held, 2005, 2014). We do not have information on the total number of parameters used in each ESM, but

we believe it should be on the order of 102 – 103. Therefore, adding a penalization term as in the traditional form in the360

computation of AIC would lead to differences among models that are dominated by differences in their number of parameters,

obscuring differences in model distances with respect to observations. But ignoring the penalization due to model complexity,

as we do in our approach, implies that we continue ignoring the tension between model complexity and understanding, and

focus exclusively on model performance. We believe this a topic that deserves much more theoretical attention and should be

addressed in future improvements on the approach we propose.365
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6 Conclusions

We proposed here an approach to obtain probabilities of model performance with respect to available observational products,

and to derive weights of evidence in favor of a model being the best from a set of available models. These weights are not

constants for a particular model, but are obtained at the grid-cell level for each model. They provide estimates of the relative

likelihood that a model performs well at a particular grid cell and therefore can be used as the weight of evidence for a370

model performing well in a particular location. We believe this probabilistic interpretation, grounded on solid concepts from

information theory, provides advantages over other methods and can be of real practical use for making inferences of average

behavior in Earth system science.

Using this approach for obtaining ensemble averages of the variables NEP and NBP from models participating in CMIP6,

we found that our proposed weights can significantly reduce bias when a small number of models make predictions further375

away from a reference observational product and all other models in the ensemble. The prediction uncertainty for the weighted

average is also smaller than the uncertainty of the arithmetic average. Overall, the approach helps to increase confidence in

inferring spatial and temporal behaviors from multiple models.

Code and data availability. The exact version of the code used to produce the results used in this article is archived on repository under

DOI: 10.5281/zenodo.15167573 (Sierra and Muñoz, 2025), as well as the model weights necessary to compute model averages (Sierra and380

Muñoz, 2025).
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Appendix A: Supplementary figures

a b

0.0 0.4 0.8 1.2 1.6 2.0
Var(xs) [Pg C m 2 yr 1]2 1e 13

0.0 0.8 1.6 2.4 3.2 4.0
Var(xs) [Pg C m 2 yr 1]2 1e 14

Figure A1. Annual time series
::::::
Variance

:
of

::
the

:::::::
weighted

::::::
average

::::
from

:::
the

::::::
CMIP6

:::::
ESMs

::::::
outputs

::
of (a) NEP

::::
using

:::::::
X-BASE and (b) NBP

from individual CMIP6 ESMs obtained as arithmetic averages (purple lines) and the weighted averages using the method proposed here

(black lines)
:::
Jena

::::::::::
CarboScope. Uncertainty ranges are expressed as the average value ± the full value of σ

:::
The

::::::
variance

::
is

::::::::
calculated from

equation??
:::
(24).For the arithmetic average, the weights for the computation of uncertainty are wi = 1/8.
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Figure A2.
:::::
Annual

::::
time

:::::
series

::
of

::
(a)

::::
NEP

::::
from

::::::
CMIP6

:::::
ESMs

:::
and

::::::::
X-BASE,

:::
and

:::
(b)

::::
NBP

::::
from

::::::
CMIP6

:::::
ESMs

:::
and

:::
the

:::
Jena

::::::::::
CarboScope

:::::
product

:::::::
obtained

::
as
:::
the

:::::::
weighted

:::::::
averages

::::
using

:::
the

::::::
method

:::::::
proposed

::::
here

:::::
(black

:::::
lines).

:::::::::
Uncertainty

:::::
ranges

:::
are

::::::::
expressed

::
as

:::
the

::::::
average

::::
value

::
±

::
the

:::
full

:::::
value

::
of

:::::::
prediction

:::::::::
uncertainty

::::
from

::::::
equation

::::
(25).
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Figure A3. Maps of differences ∆ with respect to minimum distances (Am) of CMIP6 models for the variable NEP and the X-BASE

observational product. Small numbers in darker colors indicate smaller distances, representing a larger similarity between ESMs and X-

BASE.
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Figure A4. Maps of differences ∆ with respect to minimum distances (Am) of CMIP6 models for the variable NBP and the Jena Carbo-

Scope observational product. Small numbers in darker colors indicate smaller distances, representing a larger similarity between ESMs and

CarboScope.
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