Dear editor,

We would like to express our sincere appreciation to the reviewers for their insightful comments and suggestions on our manuscript entitled "The Critical Role of Volatile Organic Compounds Emission in Nitrate Formation in Lhasa, Tibetan Plateau: Insights from Oxygen Isotope Anomaly Measurements". We have carefully considered all feedback and provide below are our detailed, point-by-point responses to the comments and suggestions from both reviewers and the editorial office (Reviewers' and Editorial Office's comments are in italics; our responses are in regular font).

Editorial office's comments:

1: I noticed that the short summary includes a few abbreviations. I kindly ask you to adapt your short summary avoiding these abbreviations and using the full terms instead to make it better understandable for non-experts. This might require some text adaptation, since the 500-character limit could be exceeded. Please consider this new short summary for the next revision.

Response: Thank you for pointing this out. We have revised the short summary to remove all abbreviations and replace them with the corresponding full terms. The new version remains within the 500-character limit and has been updated in the submission system accordingly.

2: Please ensure that the colour schemes used in your maps and charts allow readers with colour vision deficiencies to correctly interpret your findings. Please check your figures using the Coblis – Color Blindness Simulator and revise the colour schemes accordingly.

Response: Thanks for your suggestion. All figures containing colour-coded elements (Figures 4, 5, S7.) have been re-evaluated using the Coblis – Color Blindness Simulator.

3: Figure 4, as well as Figure S2 may contain a territory that is disputed according to the United Nations. If and when the manuscript is accepted for final revised publication, you will be asked to choose one of the following options: (a) you could

remove the disputed territory from the map and submit new figure files, or (b) we could add a statement that some figures contain disputed territories.

Response: Thank you for the reminder. We acknowledge the presence of disputed territories in Figure 4 and Figure S2. For Figure S2, we are prepared to proceed with option (a) and will provide a revised version of the figure excluding the disputed territories. As for Figure 4, we kindly propose making a final decision between option (a) and option (b) after the manuscript has been formally accepted.

4: Please also add the full name (in addition to the email address) of the corresponding author to the manuscript pdf file.

Response: We have now included the full name of the corresponding author alongside the email address in the manuscript PDF file, as requested.

Summary: This manuscript presents an interesting study of aerosol nitrate formation

in an elevated urban environment (Lhasa, Tibetan Plateau, China), with a focus on

stable triple oxygen isotope measurements of aerosol nitrate. The authors collected

high-volume aerosol samples for offline chemical and isotopic analyses and used the

oxygen isotopic composition of nitrate (Δ^{17} 0) to infer the seasonality, and to a limited

extent, diurnal variation of NO_x oxidation and nitrate formation pathways. They

conclude that oxidation by NO₃ + VOC contributes significantly to aerosol nitrate

formation (~26%) based on a Bayesian isotope mixing model. While this study is

timely and potentially impactful, particularly due to the high-elevation urban setting

and the application of oxygen isotopes, it suffers from major methodological

limitations and interpretive leaps. For example, the mixing model appears to be

significantly underconstrained, and key assumptions (e.g., endmember Δ^{17} O values)

are not adequately justified or tested. The manuscript would benefit from deeper

contextualization, more rigorous uncertainty analysis, and supplemental modeling to

support the stated conclusions. I believe the study has potential but requires

substantial revision before it can be considered for publication in ACP.

Response: Thanks for your valuable comments, which really helped improve the

manuscript. Below, we will provide a detailed and point-by-point response to your

comments. All the changes have been included in the latest manuscript (Reviewers' and

Editorial Office's comments are in italics; our responses are in regular font).

Comments:

1. Text S2: This section is never referenced in the main manuscript but contains a

critical assumption about the fraction of NO_2 oxidation. Since the $\Delta^{17}O(NO_3)$

signature is largely derived from NO₂, this section should be moved to the main text.

Response: Thanks for your suggestion. We have moved Text S2 to Section 2.4. (Line

150-191)

Line 150-191: 2.4 Evaluation of NO₃ oxidation pathways

In our study, we aimed to quantify the relative contribution of different oxidation pathways to NO_3^- production based on $\Delta^{17}O-NO_3^-$. Due to the low Cl⁻ concentrations observed in Lhasa, the NO_3^- formation pathways considered in this study are limited to NO_2+OH , NO_3+VOC , and $N_2O_5+H_2O$. Although NO_3+VOC is generally considered a minor pathway in continental regions (Alexander et al., 2009), we included it because elevated VOC concentrations were observed at our sampling site in Lhasa, influenced by both biogenic emissions (e.g. incense burning) and anthropogenic sources (e.g. vehicle emissions) (Tang et al., 2022). The relative contributions of the three pathways were determined using a $\Delta^{17}O$ -based mass balance approach (Michalski et al., 2003), as shown in Equations (1) and (2):

$$\Delta^{17}\text{O-NO}_{3}^{-} = (\Delta^{17}\text{O-NO}_{3}^{-})_{\text{NO}2+\text{OH}} \times f_{\text{NO}2+\text{OH}} + (\Delta^{17}\text{O-NO}_{3}^{-})_{\text{NO}3+\text{VOC}} \times f_{\text{NO}3+\text{VOC}}$$

$$+ (\Delta^{17}\text{O-NO}_{3}^{-})_{\text{N2O}5+\text{H2O}} \times f_{\text{N2O}5+\text{H2O}} (1)$$

$$f_{\text{NO}2+\text{OH}} + f_{\text{NO}3+\text{VOC}} + f_{\text{N2O}5+\text{H2O}} = 1 (2)$$

where $\Delta^{17}\text{O-NO}_3^-$ value is the $\Delta^{17}\text{O}$ value of NO_3^- in PM_{2.5}. The $(\Delta^{17}\text{O-NO}_3^-)_{\text{NO}2+\text{OH}}$, $(\Delta^{17}\text{O-NO}_3^-)_{\text{NO}3+\text{VOC}}$, and $(\Delta^{17}\text{O-NO}_3^-)_{\text{N2O}5+\text{H2O}}$ correspond to the $\Delta^{17}\text{O}$ values from NO₂ + OH, NO₃ + VOC and N₂O₅ + H₂O, respectively. The $\Delta^{17}\text{O}$ values for each pathway were calculated using Equations (3), (4), and (5) (Savarino et al., 2016; Alexander et al., 2009):

$$(\Delta^{17}\text{O-NO}_3^{-1})_{\text{NO}2+\text{OH}} (\%) = 2/3\alpha \times \Delta^{17}\text{O-O}_3^* (3)$$

$$(\Delta^{17}\text{O-NO}_3^{-1})_{\text{NO}3+\text{VOC}} (\%) = 2/3\alpha \times \Delta^{17}\text{O-O}_3^* + 1/3 \times \Delta^{17}\text{O-O}_3^* (4)$$

$$(\Delta^{17}\text{O-NO}_3^{-1})_{\text{N2O}5+\text{H2O}} (\%) = 1/3\alpha \times \Delta^{17}\text{O-O}_3^* + 1/2(2/3\alpha \times \Delta^{17}\text{O-O}_3^* + 1/3 \times \Delta^{17}\text{O-O}_3^*) (5)$$

Previous studies have demonstrated a linear correlation between $\Delta^{17}\text{O-O}_3$ and $\Delta^{17}\text{O-O}_3^*$, with $\Delta^{17}\text{O(O}_3)$ values ranging from 20% to 40% in tropospheric O₃ (Vicars and Savarino, 2014; Ishino et al., 2017). The equations are shown as follows (Vicars et al., 2012):

$$\Delta^{17}\text{O-O}_3*=1.5\times\Delta^{17}\text{O-O}_3$$
 (6)

Based on previous observations of tropospheric O_3 , $\Delta^{17}O$ - O_3 * average value was approximately 39‰. The α value represents the proportional contribution of O_3 to the NO oxidation pathway and can be estimated using the following equations (7)

(Alexander et al., 2009). When NOx is in photochemical steady state, Δ^{17} O-NO₂ can be represented using the following equation (10):

$$\alpha = K_{P1} [O_3] \times [NO]/(K_{P1} \times [O_3] \times [NO] + K_{P2} \times [NO] \times [HO_2] + K_{P3} \times [NO] \times [RO_2])$$

$$(7)$$

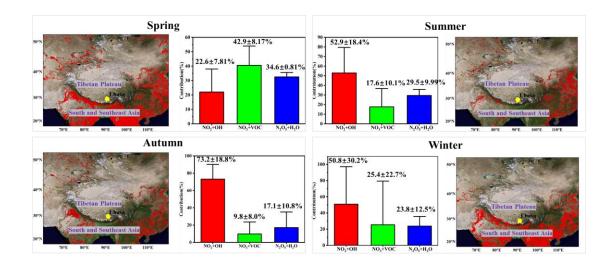
$$K_{P1} = 3.0 \times 10^{-12} \times e^{(-1500/T)} (8)$$

$$K_{P2} = K_{P3} = 3.5 \times 10^{-12} \times e^{(270/T)} (cm^3 \cdot molecule^{-1} \cdot s^{-1}) (9)$$

$$\Delta^{17}O - NO_2 = \alpha \Delta^{17}O - O_3 * (10)$$

where T represents the ambient temperature (K) (Kunasek et al., 2008). The HO₂ mixing ratios were estimated using empirical equations in the absence of direct HO₂ observations (Kanaya et al., 2007). Due to the lower temperatures in Lhasa during nonsummer seasons, HO₂ concentrations were assessed using a formula derived from winter conditions.

Winter


$$[HO_2 \cdot]/ppt = exp (5.7747 \times 10^{-2} [O_3] (ppb) - 1.7227)$$
 for daytime (11)
 $[HO_2 \cdot]/ppt = exp (7.7234 \times 10^{-2} [O_3] (ppb) - 1.6363)$ for nighttime (12)

Summer

$$[HO_2 \cdot]/pptv = exp (2.0706 \times 10^{-2} [O_3] (ppb) + 1.0625)$$
 for daytime (13)
 $[HO_2 \cdot]/pptv = 0.2456 + 0.1841 [O_3] (ppb)$ for nighttime (14)

2. TOC Figure: The figure may mislead readers by implying significant seasonal differences in $\Delta^{17}O(NO_3)$ that are not statistically supported in the results. Differences were observed only in spring. Uncertainties must be included for the pathway contributions, and once added, the seasonal distinctions may not hold.

Response: Thanks for your suggestion. We have revised the TOC figure to more accurately reflect the findings in the revised manuscript.

3. Lines 35–37: The uncertainty in the calculated pathway contributions should be provided.

Response: Thanks for your valuable suggestion. We have added it to the revised manuscript. (Line 42-44)

Line 42-44: Our results show that NO_2 + OH is the largest contributor to NO_3 -formation (46 ± 26%), followed by NO_3 + VOC (26 ± 18%), and N_2O_5 + H_2O (28 ± 11%) using the Bayesian Isotope Mixture Model.

4. Lines 37–39: Explain how this difference between seasons was determined

Response: Thanks for your suggestion. We have added it to the revised manuscript. (Line 44-45)

Line 44-45: Notably, there are significant differences in the $NO_2 + OH$, $NO_3 + VOC$, and $N_2O_5 + H_2O$ pathways between spring and other three seasons (T test, p < 0.05).

5. Lines 39-40: Add context to how these statements were concluded.

Response: Thanks for your suggestion. We have added it to the revised manuscript. (Line 47-50)

Line 47-50: By Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) dispersion model, we highlighted the influence of VOC emissions from regions such as Afghanistan and northern India, which enhanced NO₃⁻ concentrations in Lhasa during spring.

6. Line 42: Acronyms such as ALWC, NO₃-, and VOC are not defined in the abstract and should be introduced.

Response: Thanks for your suggestion, we have added all acronyms to the revised manuscript. (Line 39-41/Line 50-53)

Line 39-41: Atmospheric particulate nitrate aerosol (NO_3^-), produced via the oxidation of nitrogen oxides ($NOx = NO + NO_2$), plays an important role in atmospheric chemistry and air quality, yet its formation mechanism remains poorly constrained in the plateau region.

Line 50-53: Furthermore, the diurnal distribution of NO₃⁻ oxidation pathways varied distinctly across seasons, suggesting that these differences in NO₃⁻ pathways are attributed to aerosol liquid water content (ALWC), volatile organic compounds (VOC) concentration, and pollution levels.

7. Lines 87–89: It is unusual to target three "major" NO_3 - formation pathways in a continental setting, especially including $NO_3 + VOC$, which is generally minor. Consider referencing Alexander et al., 2019 and revisiting the classification of major pathways.

Response: Thanks for your suggestion. (1) We acknowledge that in many continental environments, NO₃ + VOC pathway is generally considered a minor contributor to NO₃⁻ formation. However, recent observation-based studies have increasingly reported that this pathway can play a significant role in NO₃⁻ production under certain atmospheric conditions (Zhang et al., 2022; Fan et al., 2021; Feng et al., 2023; Li et al., 2022).

- (2) Our sampling site is located in the central urban area of Lhasa, where air masses are influenced by both biogenic and anthropogenic sources of Volatile Organic Compounds (VOC), including biomass burning and incense burning. Tang et al. (2022) have shown that VOC concentrations in Lhasa are comparable to those in the North China Plain, supporting the plausibility of a significant contribution from the NO₃ + VOC pathway in this region.
- (3) To address the reviewer's concern, we have now cited the perspective provided by

Alexander et al. (2009) in the revised manuscript. We have also clarified that the classification of the major pathways in this study is based on region-specific observational evidence, rather than general assumptions (Line 156-159).

Line 156-159: Although NO₃ + VOC was generally considered a minor pathway in continental regions (Alexander et al., 2009), we included it because elevated VOC concentrations were observed at our sampling site in Lhasa, influenced by both biogenic emissions (e.g. incense burning) and anthropogenic sources (e.g. vehicle emissions) (Tang et al., 2022).

8. Lines 93–94: Since the site is at high elevation, provide information on altituderelated meteorology and its influence on boundary layer mixing and transport.

Response: Thanks for your suggestion. We have added it to the revised manuscript. (Line 111-114)

Line 111-114: The strong solar radiation and large diurnal temperature variations in this sampling site can lead to pronounced changes in boundary layer height, which in turn significantly influence vertical mixing and the transport of air pollutants.

9. Lines 94–95: Include more detail on the urban characteristics and land use of Lhasa to contextualize emissions.

Response: Thanks for your suggestion. We have added it to the revised manuscript. (Line 107-111)

Line 107-111: PM_{2.5} samples were collected on the roof of a building (\sim 15 m above ground) at the Meteorological Bureau of Lhasa (91.08°E, 29.40°N; Figure 1) in China. Lhasa, the capital of the Tibet Autonomous Region, is a rapidly developing city with a population of \sim 950000 and an urban area of \sim 30000 km² (Lhasa). The sampling site is surrounded by mixed land use, including residential areas, government offices, religious temples and commercial zones, with minimal heavy industry.

10. Lines 125–126: The link did not work. Ensure that all supplemental data used in the manuscript is archived and accessible via a reliable digital repository.

Response: Thanks for checking carefully. The link has been updated in our revised manuscript. (Line 149-151)

Line 149-151: Additionally, NO₂ and O₃ during the sampling campaign were downloaded from the National Meteorological Information Center (https://air.cnemc.cn:18007/).

11. Lines 131–132: The isotope mixing model assumes known $\Delta^{17}O$ endmembers. How were these determined, particularly for $\Delta^{17}O(NO_2)$? Please explain the derivation or source of these values.

Response: Thank you for your suggestion. We have added detailed explanation of the derivation of $\Delta^{17}O$ endmember values, particularly for $\Delta^{17}O(NO_2)$, in Section 2.4 of the revised manuscript.

12. Lines 150–153: The MDL for NO_3^- was given earlier (Line 114), but MDLs for other ions are missing here. Please include them.

Response: Thanks for your comment. We have now included MDLs for other relevant ions in the revised manuscript. (Line 136-138)

Line 136-138: The method detection limits (MDLs) for Cl⁻, NO₃⁻, SO₄²-, Na⁺, NH₄⁺, K^+ , Mg²⁺, and Ca²⁺ were 0.001 mg/L, 0.001 mg/L, 0.003 mg/L, 0.02 mg/L, 0.01 mg/L, 0.02 mg/L, and 0.02 mg/L, respectively.

13. Lines 154–157: The provided URL for the model is not a proper citation. Please cite the model formally and ensure access.

Response: Thanks for checking carefully. We have replaced the proper URL in the manuscript. (Line 225)

Line 225: https://www.ready.noaa.gov/HYSPLIT.

14. Lines 157–159: Add a supporting reference for the assumptions or parameterizations described here.

Response: Thanks for your suggestion. We have added supporting references in the

manuscript. (Line 225-227)

Line 225-227: This model has been widely used for simulating the transport and dispersion trajectories of pollutants such as PM_{2.5}, VOC, O₃, and NOx, among others (He et al., 2022; Zhao et al., 2015; Cao et al., 2023).

15. Lines 159–162: Why was 3,650 meters chosen for the model?

Response: Thanks for your comment. The height of 3650 meters was chosen because it corresponds to the actual altitude of our sampling site in Lhasa. To ensure consistency between the modeled air mass trajectories and the observational data, we used the same elevation as the receptor height in the HYSPLIT simulations.

16. Lines 173–175: The claim of an "opposite" trend is unclear; visually, it seems the trends are actually consistent. Please clarify.

Response: Thank you very much for your careful review and insightful comment. We agree that the original expression "opposite trend" was inaccurate and could cause confusion. We have revised it in the revised manuscript. (Line 241-243)

Line 241-243: Solar radiation intensity exhibited a seasonal trend consistent to those of temperature and RH, peaking in summer (394 W/m²) and reaching its lowest levels in winter (220 W/m²).

17. Lines 179–200: Nitrate concentrations depend strongly on gas-particle partitioning, which is influenced by chemical composition (e.g., NH_4^+) and meteorology. Discuss the observed spring peak in NO_3^- alongside NH_4^+ trends and partitioning behavior of HNO_3 .

Response: Thanks for your valuable comment. Although we did not measure gaseous HNO₃ in this study, we conducted correlation analysis between NO₃⁻ and NH₄⁺, Ca²⁺, and K⁺ concentrations, as well as temperature and relative humidity. We acknowledge the absence of HNO₃ data limits a full assessment of partitioning behavior. We will address this aspect more comprehensively in future studies using online gas-phase measurements and thermodynamic modelling (Line 252-258).

Line 252-258: NO₃⁻ mass concentrations ranged from 0.10 to 1.72 μg/m³, with an average value of $0.62 \pm 0.31 \,\mu\text{g/m}^3$. NO₃ concentrations exhibited distinct seasonal patterns. As shown in Figure S1, the equivalent concentrations of [SO₄² + NO₃] were considerably higher than those of [NH₄⁺], indicating that NH₄⁺ was insufficient to fully neutralize NO₃⁻. This suggests that a portion of NO₃⁻ may have existed in other forms, such as KNO₃ and Ca(NO₃)₂. This inference is supported by the strong positive correlations between NO₃⁻ and K⁺ (r = 0.64, p < 0.1) and Ca²⁺ (r = 0.43, p < 0.01), especially in spring, as shown in Figure S2. In contrast, NO₃⁻ showed relatively weak negative correlations with T (r = -0.27, p < 0.01) and RH (r = -0.22, p < 0.1), indicating that under the specific atmospheric conditions in Lhasa, meteorological parameters might not be the dominant factors controlling the gas-particle partitioning of NO₃⁻. The maximum monthly average values of NO₃⁻ concentration occurred in spring (0.83 ± $0.35 \,\mu \text{g/m}^3$) with the instantaneous maximum reaching $1.72 \,\mu \text{g/m}^3$, whereas the lowest was recorded in autumn $(0.23 \pm 0.13 \,\mu\text{g/m}^3)$ with an instantaneous minimum of only 0.09 μg/m³ (Table 1). The elevated NO₃⁻ concentrations in spring could be attributed to biomass burning emitted from south and Southeast Asia (Figure S3/Figure S4). The strong between NO₃ and K⁺ in spring further this explanation.

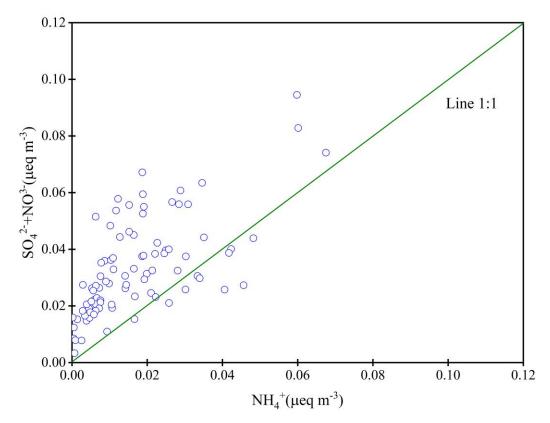


Figure S1 Equivalent concentrations of $SO_4^{2^2}+NO_3^2/NH_4^+$ in Lhasa during the sampling campaign.

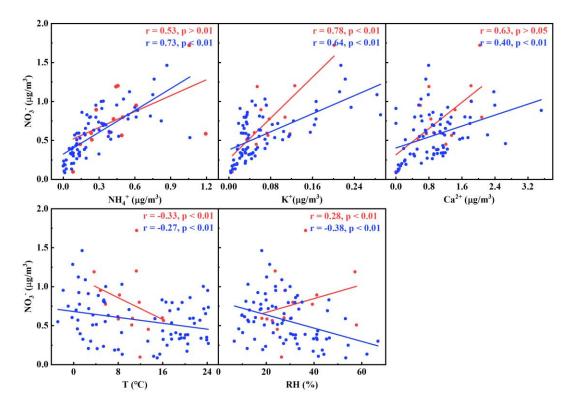


Figure S2 Relationships between NO_3^- and other parameters. The relationship between NO_3 and (a) NH_4^+ concentrations, (b) K^+ concentrations (c) Ca^{2+} , (d) T, and (e) RH; The red and blue represent spring and other seasons.

18. Lines 186–188: Provide a possible explanation for the observed concentration increase. Is there a local emission or meteorological reason?

Response: Thanks for your suggestion. We have added a more detailed explanation for the observed springtime NO₃⁻ concentration increase. Specifically, we suggest that the weak southeasterly winds may have limited atmospheric dispersion, leading to local accumulation of NO₃⁻ precursors. Furthermore, the southeast sector may be influenced by traffic or agricultural sources, which could contribute to the enhanced NO₃⁻ production. We have added it to the revised manuscript. (Line 265-270)

Line 265-270: The southeasterly sector of sampling site includes residential areas, agriculture land and major transportation routes, which are potential NOx sources. In spring, intensified agriculture activities (e.g., fertilization, biomass burning) increase emissions. Meanwhile, low wind speeds likely limit atmospheric dispersion, promoting the local accumulation of precursors and enhancing NO₃⁻ production.

19. Lines 190–191: The COVID-19 shutdown period seems to have ended before sampling. If not, describe local shutdown policies in the methods section.

Response: Thanks for your careful and constructive comment. We confirm that part of the sampling period, specifically during autumn 2022, coincided with strict COVID-19 control measures in Lhasa. During this period, the city implemented targeted lockdowns with near-total restrictions on vehicle traffic and pedestrian movement. We have added a description of these local measures in the methods section in the revised manuscript to clarify the context during sampling (Line 121-123).

Line 121-123: During the autumn of 2022, Lhasa experienced intermittent COVID-19 control measures, including restricted movement, reduced traffic activity, and temporary lockdowns in urban areas (Daily).

20. Lines 191–195: This statement implies minimal local influence. Consider emphasizing regional transport instead.

Response: Thanks for pointing this out. We acknowledge that the original statement may have underemphasized the potential role of regional transport. We have revised the relevant sentences to clarify that although local emissions were suppressed due to COVID-19 lockdowns in autumn, the persistence of detectable NO₃⁻ concentrations under stagnant conditions suggests a likely contribution from regional transport. We have revised it in the manuscript (Line 270-284).

Line 270-284: During the rainy summer, shorter NO₃⁻ lifetimes indicated a weak influence from regional transport, with a more pronounced contribution from local emissions. In autumn, NO₃⁻ concentrations were relatively low, which coincided with strict local COVID-19 restrictions in Lhasa. These measures significantly reduced human activity and traffic, leading to suppressed local emissions. Despite low wind speeds typically favor pollutant accumulation, NO₃⁻ concentrations remained low, suggesting that both reduced local sources and seasonal meteorological conditions constrained NO₃⁻ production. Nevertheless, the persistence of measurable NO₃⁻ under such stagnant conditions also implied a potential contribution from regional transport during this period. In winter, elevated NO₃⁻ concentrations under low wind speeds (< 3)

m/s) emphasized the significant contribution of local emissions. These findings underscored that both regional transport and local emissions were important contributors to NO₃⁻ concentrations in Lhasa.

21. Lines 193–195: If COVID-19 restrictions impacted emissions, explain why no corresponding impact is evident in your data.

Response: Thanks for insightful comment. Although local COVID-19 restrictions likely reduced emissions, NO₃⁻ was still detectable during autumn, possibly due to background levels and regional transport. We have clarified this in the revised text by acknowledging that reduced local emissions alone may not fully explain the observed concentrations, and that regional transport may have contributed to the persistence of NO₃⁻.

22. Lines 213–215: The data do not clearly show seasonal differences. Spring appears elevated, but other seasons are similar. Please clarify the interpretation.

Response: Thanks for your helpful comment. We agree with your assessment. In the revised manuscript, we have removed the original sentence that inaccurately suggested clear seasonal variation in $\Delta^{17}\text{O-NO}_3^-$ values. (Line 298-300:)

Line 298-300: As shown in Table S2, the observed $\Delta^{17}\text{O-NO}_3^-$ values in this study were similar to most mid- and low-latitude regions, but lower than those in polar regions (~32%). As listed in Table S1, the average $\Delta^{17}\text{O-NO}_3^-$ values in spring, summer, autumn, and winter were 28.8 \pm 8.0%, 25.5 \pm 2.20%, 25.6 \pm 1.35%, and 25.9 \pm 3.56%, respectively.

23. Lines 216–218: Why was NO_2 formation not included in the discussion? It's central to $\Delta^{17}O(NO_3^-)$.

Response: Thanks for your suggestion. We acknowledge that NO_2 formation plays a central role in controlling the $\Delta^{17}O\text{-NO}_3$. While direct measurements of NO_2 were not available during the campaign, we have addressed the $NO\text{-NO}_2$ conversion process indirectly through the parameter α , which represents the relative contribution of O_3 to

NO oxidation (Section 4.1). We acknowledge, however, that the absence of direct NO₂ observations introduces uncertainty, and we will consider the inclusion of NO₂ measurements in future field campaigns to better constrain this process. (**Line 326-333**) **Line 326-333:** Typically, observations of $\Delta^{17}\text{O-NO}_3^-$ and estimated α (the proportion of O₃ oxidation in NO₂ production rate) values are employed to quantify the contributions of major NO₃⁻ oxidation pathway in conjunction with a Bayesian model. The α value ranged from 0.63 to 0.93, with an average of 0.83 \pm 0.06, suggesting the significance of O₃ participation in NO oxidation during the sampling campaign. On the other hand, our α values were lower than those (0.85-1) for other midlatitude regions (Alexander et al., 2009). The α values are influenced by the relative amount of O₃, HO₂ and RO₂ in NO*x* cycling. Due to the generally high O₃ concentrations (O₃ > 50 ppb) observed in Lhasa, nearly all α values exceeded 0.8 (Figure S6).

24. Lines 220–223: Consider including a plot of this data.

Response: Thanks for your suggestion. We added it to the revised manuscript. (**Figure S5**)/ (Line 307-308)

Figure S5 Diurnal variation of $\Delta^{17}O-NO_3^-$ values in summer and winter during the sampling campaign

Line 301-303: In contrast, the lower $\Delta^{17}\text{O-NO}_3^-$ values in other three seasons suggested a greater production of NO_3^- formation via NO_2 + OH pathway, leading to more negative $\Delta^{17}\text{O-NO}_3^-$ values. Diurnal variation in $\Delta^{17}\text{O-NO}_3^-$ values also differed across season (Figure S5).

25. Lines 240–241: A more detailed description of how alpha was determined is needed. A supplementary figure showing alpha and estimated $\Delta^{17}O(NO_2)$ over time would strengthen this section.

Response: Thanks for your suggestion. A more detailed explanation of how the α value was determined has now been added in Section 2.4 of the revised manuscript. In particular, we clarified that α was estimated based on the relative contributions of O₃, HO₂, and RO₂ to NO₂ production, using their respective concentrations and reaction rate constants during the observation period.

To strengthen this section, we have included a new supplementary figure (Figure S6) presenting the time series of O₃, HO₂, RO₂ and α . Regarding $\Delta^{17}O(NO_2)$, we acknowledge that we were not able to directly measure $\Delta^{17}O$ in ozone ($\Delta^{17}O$ -O₃) due to instrumental and logistical constraints. Instead, we adopted a literature-based value of $\Delta^{17}O$ -O₃* = 39‰. Because the $\Delta^{17}O$ in NO₂ is calculated via the equation ($\Delta^{17}O$ -NO₂ = $\alpha \times \Delta^{17}O$ -O₃*), the temporal trend of estimated $\Delta^{17}O$ -O₃* is similar to the α . We have added this explanation to the text. We also note that future work will aim to directly measure $\Delta^{17}O$ -O₃ under high-altitude conditions like Lhasa to improve the estimation of $\Delta^{17}O$ -NO₂. (Line 321-328).

Line 321-328: Typically, observations of $\Delta^{17}\text{O-NO}_3^-$ and estimated α (the proportion of O_3 oxidation in NO_2 production rate) values are employed to quantify the contributions of major NO_3^- oxidation pathway in conjunction with a Bayesian model. The α value ranged from 0.63 to 0.93, with an average of 0.83 \pm 0.06, suggesting the significance of O_3 participation in NO oxidation during the sampling campaign. On the other hand, our α values were lower than those (0.85-1) for other midlatitude regions (Alexander et al., 2009). The α values are influenced by the relative amount of O_3 , O_3 and O_4 in O_3 cycling. Due to the generally high O_3 concentrations ($O_3 > 0$ 0 ppb) observed in

Lhasa, nearly all α values exceeded 0.8 (Figure S6).

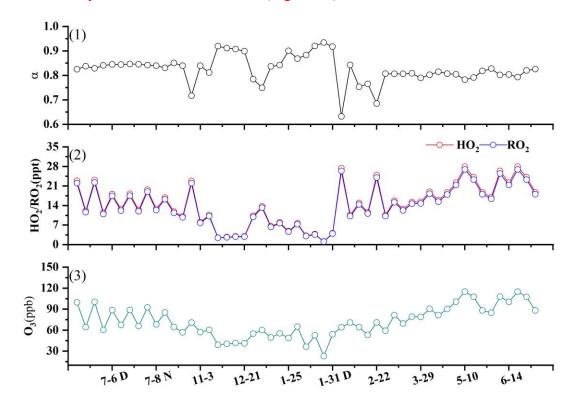


Figure S6 Time series of (1) α value; (2) HO_2 and RO_2 concentrations; (3) O_3 concentrations during the sampling campaign. The volume mixing ratios were calculated from mass concentrations ($\mu g/m^3$) based on the local atmospheric pressure and temperature conditions in Lhasa.

26. Lines 244–246: The pathway model lacks independent validation. Aside from the mixing model (which appears underconstrained), consider constructing a simple box model to test the plausibility of the proposed NO₃- formation routes.

Response: Thanks for your thoughtful suggestion. We fully agree that independent validation using a mechanistic model, such as a box model, would help further test the plausibility of the proposed NO₃⁻ formation pathways. However, our current dataset is based on a year-long field observation, which is robust in terms of temporal coverage but lacks the necessary time-resolved gas-phase precursors (e.g., NO₃, N₂O₅, VOC) required to reliably constrain a box model. Therefore, we were unable to conduct an independent model validation at this stage. We acknowledge this as a limitation of the current study, and we have added a note (4.4 Implication) in the revised manuscript to highlight this point. In future work, we plan to incorporate box modeling and/or online measurements of key reactive species to better constrain the chemical mechanisms

involved.

27. Lines 252–253: In most continental urban settings, NO₃ + VOC is a minor contributor to aerosol nitrate. Reassess this conclusion in light of existing literature Response: Thank you for your suggestion. We acknowledge that in many continental urban environments, the NO₃ + VOC pathway is typically considered a minor contributor to aerosol nitrate. However, Lhasa presents a distinct atmospheric setting, characterized by relatively high O₃ levels and significant VOC emissions from both local (e.g., biomass burning, incense burning, residential heating) and regional (e.g., long-range transport from South Asia) sources, especially during spring.

Growing evidence suggests that the southern Tibetan Plateau, including Lhasa, is impacted by long-range transported pollutants from South Asia in spring. As a result, it is likely that both locally emitted and transported VOC could participate in nocturnal NO₃ chemistry via the NO₃ + VOC pathway. Nonetheless, we acknowledge the need for further observational and modelling studies to more quantitatively assess the importance of this pathway under high-altitude and complex emission conditions.

28. Lines 254–256: If VOC data are available, use them to estimate the contribution of the NO_3 + VOC pathway. Also, at this elevation, stratospheric intrusions may occur. Could this be a source of high $\Delta^{17}O$ nitrate?

Response: Thanks for your insightful comment.

(1) Regarding the use of VOC data to estimate the contribution of the NO₃ + VOC pathway:

Unfortunately, VOC concentrations were not simultaneously measured during our sampling campaign. Although Tang et al. (2022) reported that elevated VOC levels in Lhasa, the available VOC data had limited temporal resolution and lacked comprehensive speciation. As a result, it was not feasible to quantitatively constrain the NO₃ + VOC pathway using observational VOC data. Future work integrating VOC data into a kinetic box model or MCM framework will help improve constraints on this pathway.

(2) Regarding the potential influence of stratospheric intrusion on Δ^{17} O-NO₃⁻:

We acknowledge the possibility of stratospheric intrusions at high elevations, which may introduce ozone with elevated $\Delta^{17}\text{O-NO}_3^-$ values. Previous studies have reported stratospheric intrusion events at high-altitude sites such as Nepal (5079 m a.s.l.) and Qomolangma Station (4300 m a.s.l.) during spring and winter. Given Lhasa's elevation and geographic setting, similar events may occur and could contribute to the enhanced $\Delta^{17}\text{O-NO}_3^-$ values observed in spring. This possible influence of a mixed stratospheric-tropospheric O₃ has been noted as a factor in NO₃- formation during this period. We have added it to the revised manuscript. (Line 410-419)

Line 410-419: A significant increase in the $f_{\text{NO3+VOC}}$ values was observed in spring (p < 0.05). First, O₃ and NO₂ are precursors of NO₃. In this work, the highest concentrations of O₃ were found in spring (114.9 \pm 18.1 μ g/m³), likely leading to elevated NO₃ concentrations. Additionally, the low temperature and reduced OH radical concentrations in spring facilitate the reaction of NO₂ and O₃ to synthesize NO₃. This might be an appropriate reason for the $f_{\text{NO3+VOC}}$ values in spring. High-altitude locations such as Nepal (5079 m a.s.l.) and Qomolangma Station (4300 m a.s.l.) have experienced stratospheric ozone intrusions, especially in spring and winter, as reported in previous studies (Zhang et al., 2025; Cristofanelli et al., 2010; Morin et al., 2007; Zhang et al., 2022; Lin et al., 2016; Yin et al., 2017; Wang et al., 2020b). Notably, such intrusions in spring may elevate tropospheric O₃ levels in Lhasa, resulting in a mixture of tropospheric and stratospheric O₃ that enhances NO₃- production.

29. Lines 283–284: The logic in this sentence doesn't follow clearly from the preceding text. Please revise.

Response: Thank you for pointing this out. We have revised the sentence to improve the logical flow. (Line 398-403)

Line 393-402: Figure S7 illustrates the seasonal variations in the relative contributions of the three main oxidation pathways to NO_3^- formation. When comparing different seasons, the f_{NO2+OH} values were lower (p < 0.01) in spring (22.6%) than in winter (50.8%), summer (52.9%) and autumn (73.2%). The dominance of NO_2 + OH pathway in autumn is consistent with observations at Mt. Everest during the autumn seasons of

2017 and 2018, suggesting that NO₃⁻ formation on the Tibetan Plateau in autumn may be mainly driven by NO₂ + OH pathway (Lin et al., 2021; Wang et al., 2020b).

30. Lines 286–287: High O_3 levels increase $\Delta^{17}O(NO_2)$, which strongly influences $\Delta^{17}O(NO_3)$. This should be acknowledged explicitly.

Response: Thank you for the insightful comment. We agree that high O_3 levels can elevate $\Delta^{17}O(NO_2)$, which in turn strongly affects $\Delta^{17}O(NO_3^-)$. Although we did not directly measure $\Delta^{17}O$ of NO_2 in this study, we evaluated the impact of O_3 on $\Delta^{17}O(NO_3^-)$ through the parameter α , which reflects the relative importance of NO_2 oxidation pathways involving O_3 . In Section 4.1 of the revised manuscript, we have explicitly discussed the influence of elevated O_3 concentrations on the α value in Lhasa.

31. Lines 295–297: Why is VOC assumed to be the only contribution from the biomass burning plume? Could oxidized nitrogen compounds also be transported?

Response: Thanks for your insightful comment. In our manuscript, VOC was considered a major contributor from the biomass burning primarily due to two reasons. First, previous studies have shown that VOC concentrations in Lhasa are comparable to those in the North China Plain, suggesting a relatively high local VOC level (e.g., Li et al., 2020). Second, our results indicate that the relative contribution of the NO₃ + VOC pathway is significantly elevated in spring, a season when long-range transport from South Asia is active. Previous studies have reported that VOC originating from biomass burning and industrial emissions in South Asia can be transported to the Tibetan Plateau, leading to increased VOC concentrations. We therefore infer that the enhanced f_{NO3+VOC} in spring is largely driven by elevated VOC levels from both local and transported sources.

Nonetheless, we agree with the reviewer that oxidized nitrogen species (e.g., NOx,) are also present in biomass burning and may be co-transported to the region. These reactive nitrogen compounds could further participate in NO_3^- formation and cannot be ruled out as contributors. We have added clarification in the revised manuscript. (Line 410-440)

Line 410-440: A significant increase in the $f_{NO3+VOC}$ values was observed in spring (p < 0.05). First, O₃ and NO₂ are precursors of NO₃. In this work, the highest concentrations of O₃ were found in spring (114.9 \pm 18.1 µg/m³), likely leading to elevated NO₃ concentrations. Additionally, the low temperature and reduced OH radical concentrations in spring facilitate the reaction of NO₂ and O₃ to synthesize NO₃. This might be an appropriate reason for the $f_{NO3+VOC}$ values in spring. High-altitude locations such as Nepal (5079 m a.s.l.) and Qomolangma Station (4300 m a.s.l.) have experienced stratospheric ozone intrusions, especially in spring and winter, as reported in previous studies (Zhang et al., 2025; Cristofanelli et al., 2010; Morin et al., 2007; Zhang et al., 2022; Lin et al., 2016; Yin et al., 2017; Wang et al., 2020b). Notably, such intrusions in spring may elevate tropospheric O₃ levels in Lhasa, resulting in a mixture of tropospheric and stratospheric O₃ that enhances NO₃⁻ production. Second, previous study has indicated that the Afghanistan-Pakistan-Tajikistan region, the Indo-Gangetic Plain, and Meghalaya-Myanmar region could transport industrial VOC to various zones in Tibet from west to east. Additionally, agricultural areas in northern India could contribute biomass burning-related VOC to the middle-northern and eastern regions of Tibet (Li et al., 2017). During our sampling campaign, South and Southeast Asia air clusters were notably prevalent in the springtime, coinciding with intensive fire spots observed in Afghanistan, Pakistan, India, Nepal, and Bhutan (Figure S3/S4). These observations, combined with the prevailing South and Southeast Asia air mass trajectories in spring, strongly suggest that long-range transported VOC from South Asia were delivered to Lhasa and likely participated in local NO₃- production via NO₃ + VOC pathway. Moreover, recent studies have shown that ambient VOC concentrations in the urban areas on the Qinghai-Tibet Plateau were comparable to those in the North China Plain (Tang et al., 2022). The input of VOC through longrange transport might further elevate VOC concentrations, thereby promoting NO₃⁻ formation via NO₃ + VOC pathway and contributing to the enhanced $f_{NO3+VOC}$ values observed in spring. While VOC appears to play a dominant role in the process, it should be noted that other nitrogen species (e.g., NO, NO₂) associated with biomass burning emissions may also be transported over long distances and influence NO₃⁻ formation in

Lhasa. These co-transported nitrogen compounds, although not directly quantified in this study, could further contribute to NO₃⁻ production in spring. Taken together, these findings provide strong evidence that long-range transport of biomass burning emissions, particularly from South Asia, can substantially influence springtime NO₃⁻ formation in Lhasa.

32. Lines 315–320: The diurnal nitrate interpretation doesn't account for the atmospheric lifetime of NO_3 . Some residual NO_3 from nighttime may persist into the daytime. Please consider this in the discussion.

Response: Thanks for your comment. In the revised manuscript, we have explicitly acknowledged the importance of the atmospheric lifetime of NO_3^- when interpreting diurnal variations in $\Delta^{17}O-NO_3^-$. (Line 480-484)

Line 480-484: Moreover, when interpreting the diurnal differences in $\Delta^{17}\text{O-NO}_3^-$ values, the atmospheric lifetime of NO_3^- must be considered. Given the atmospheric lifetime of NO_3^- is generally more than 12 hours, each sample might reflect both daytime and nighttime NO_3^- production impacting on $\Delta^{17}\text{O-NO}_3^-$ values (Park et al., 2004; Vicars et al., 2013).

33. Lines 319–320: NO_3 and N_2O_5 chemistry is unlikely to significantly contribute to daytime NO_3 - formation due to their short lifetimes in sunlight. Please calculate and discuss the expected lifetime.

Response: Thanks for your comment. We fully agree that NO₃ and N₂O₅ radicals are highly reactive species with short atmospheric lifetimes under sunlight. Due to the limited availability of concurrent photolysis rate data and relevant concentrations (NO₃ and N₂O₅ concentrations) during our sampling campaign, we were unable to quantitatively calculate the daytime atmospheric lifetimes of these species at our site. Nevertheless, we have revised the manuscript to include a more explicit discussion based on previous studies. (Line 450-484)

Line 450-484: Interestingly, distinct diurnal patterns of NO_3^- oxidation pathways were observed during the sampling campaign (Figure 5). In summer, NO_2 + OH pathway

showed a significantly higher contribution during the daytime (55.1%) compared to nighttime (44.9±%), which is attributed to increased OH radical synthesis during longer days and higher temperatures in Lhasa (Rohrer and Berresheim, 2006). A previous study indicated that lower NO2 and higher O3 concentrations enhance the relative contribution of OH pathway to NO₃⁻ formation (Wang et al., 2019). Additionally, the concentration of ALWC (the detailed information is given in Text S3) was higher at night than during the day in summer, favoring NO₃⁻ formation through nocturnal formation. In winter, $f_{\text{NO2+OH}}$, $f_{\text{NO3+VOC}}$ and $f_{\text{N2O5+H2O}}$ were similar during both day and night. Typically, photolytic destruction and chemical reactions with NO are rapid sinks during the daytime, with lifetimes generally less than 5 seconds and resulting in extremely low concentrations. Similarly, the atmospheric lifetime of N₂O₅ under sunlight is also very short (Wang et al., 2018). Thus, daytime NO₃ and N₂O₅ chemistry is often considered negligible. However, a recent study revealed that a non-negligible amount of NO₃ radicals can persist during the daytime in cold months, owing to the limited solar radiation (Hellén et al., 2018). Wang et al. (2020a) found that the daytime production rate of NO₃ can be substantial due to elevated concentrations of O₃ and NO₂, suggesting that the mixing ratios of NO₃ and N₂O₅ during the day may not be negligible. Furthermore, in winter, lower temperatures and elevated NO₂ concentrations facilitate a quasi-steady-state equilibrium between NO₃ and N₂O₅, slowing the overall reactivity of the NO₃⁻ precursors (Brown et al., 2003). This equilibrium condition minimizes diurnal fluctuations in precursor concentrations, resulting in relatively stable nocturnal and daytime NO₃⁻ formation pathways, including NO₃ + VOC and N₂O₅ + H₂O. Nevertheless, we acknowledge that the exact role of daytime NO₃/N₂O₅ chemistry remains uncertain in Lhasa and should be further assessed using concurrent filed observations or chemical transport models. Moreover, when interpreting the diurnal differences in Δ^{17} O-NO₃ values, the atmospheric lifetime of NO₃ must be considered. Given the atmospheric lifetime of NO₃⁻ is generally more than 12 hours, each sample might reflect both daytime and nighttime NO_3^- production impacting on $\Delta^{17}O-NO_3^$ values (Park et al., 2004; Vicars et al., 2013).

35. Figure 5: Uncertainty/error bars are needed for all pathway contributions. These are model-derived estimates with inherent uncertainties and should not be presented as precise values.

Response: Thanks for your suggestion. We agree that the pathway contributions are model-derived estimates and should be presented with appropriate uncertainties. In the revised manuscript, we have added error bars to represent the uncertainties associated with each pathway contribution.

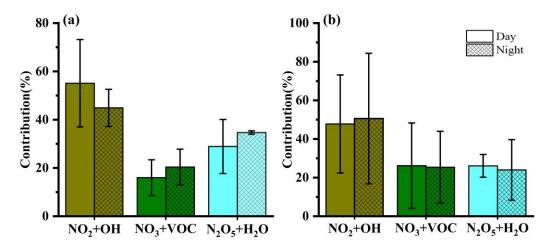


Figure 5. the relative contributions (mean \pm SD values) of $NO_2 + OH$, $NO_3 + VOC$, and $N_2O_5 + H_2O$ to NO_3 formation during the day and night (a) in summer and (b) winter in Lhasa during the sampling campaign.

36. Lines 355–364: Much of the mechanistic discussion here is speculative. Consider using a simple model framework (e.g., kinetic or box model) to evaluate the chemical feasibility of the proposed pathways.

Response: Thanks for your suggestion. We fully agree that incorporating a simple model framework such as a box or kinetic model would provide stronger mechanistic support for evaluating the chemical feasibility of the proposed pathways. However, due to the current lack of sufficient observational data (e.g., VOC, radical concentrations), we are unable to implement such a model in the present study. We acknowledge this limitation in the revised manuscript and will prioritize the development of a modelling component in our future work to improve the mechanistic understanding of NO₃-formation under high-altitude conditions.

Reference

- Alexander, B., Hastings, M., Allman, D., Dachs, J., Thornton, J., and Kunasek, S.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ^{17} O) of atmospheric nitrate, Atmospheric Chemistry and Physics, 9, 5043-5056, 2009.
- Brown, S. S., Stark, H., and Ravishankara, A.: Applicability of the steady state approximation to the interpretation of atmospheric observations of NO₃ and N₂O₅, Journal of Geophysical Research: Atmospheres, 108, 2003.
- Cao, X., Xing, Q., Hu, S., Xu, W., Xie, R., Xian, A., Xie, W., Yang, Z., and Wu, X.: Characterization, reactivity, source apportionment, and potential source areas of ambient volatile organic compounds in a typical tropical city, Journal of Environmental Sciences, 123, 417-429, 2023.
- Cristofanelli, P., Bracci, A., Sprenger, M., Marinoni, A., Bonafè, U., Calzolari, F., Duchi, R., Laj, P., Pichon, J.-M., and Roccato, F.: Tropospheric ozone variations at the Nepal Climate Observatory-Pyramid (Himalayas, 5079 m asl) and influence of deep stratospheric intrusion events, Atmospheric Chemistry and Physics, 10, 6537-6549, 2010.
- Daily, B., https://xinwen.bjd.com.cn/content/s6340d130e4b0b60bbc5d4ecd.html
- Fan, M.-Y., Zhang, Y.-L., Lin, Y.-C., Hong, Y., Zhao, Z.-Y., Xie, F., Du, W., Cao, F., Sun, Y., and Fu, P.: Important role of NO₃ radical to nitrate formation aloft in urban Beijing: Insights from triple oxygen isotopes measured at the tower, Environmental Science & Technology, 56, 6870-6879, 2021.
- Feng, X., Chen, Y., Chen, S., Peng, Y., Liu, Z., Jiang, M., Feng, Y., Wang, L., Li, L., and Chen, J.: Dominant Contribution of NO₃ Radical to NO₃⁻ Formation during Heavy Haze Episodes: Insights from High-Time Resolution of Dual Isotopes Δ^{17} O and δ^{18} O, Environmental Science & Technology, 57, 20726-20735, 2023.
- He, S., Huang, M., Zheng, L., Chang, M., Chen, W., Xie, Q., and Wang, X.: Seasonal variation of transport pathways and potential source areas at high inorganic nitrogen wet deposition sites in southern China, Journal of Environmental Sciences, 114, 444-453, https://doi.org/10.1016/j.jes.2021.12.024, 2022.

- Hellén, H., Praplan, A. P., Tykkä, T., Ylivinkka, I., Vakkari, V., Bäck, J., Petäjä, T., Kulmala, M., and Hakola, H.: Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest, Atmospheric Chemistry and Physics, 18, 13839-13863, 2018.
- Ishino, S., Hattori, S., Savarino, J., Jourdain, B., Preunkert, S., Legrand, M., Caillon, N., Barbero, A., Kuribayashi, K., and Yoshida, N.: Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica, Atmospheric Chemistry and Physics, 17, 3713-3727, 2017.
- Kanaya, Y., Cao, R., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y., Koike, M., Tanimoto, H., Takegawa, N., and Kondo, Y.: Urban photochemistry in central Tokyo:

 1. Observed and modeled OH and HO₂ radical concentrations during the winter and summer of 2004, Journal of Geophysical Research: Atmospheres, 112, 2007.
- Kunasek, S., Alexander, B., Steig, E., Hastings, M., Gleason, D., and Jarvis, J.: Measurements and modeling of $\Delta^{17}O$ of nitrate in snowpits from Summit, Greenland, Journal of Geophysical Research: Atmospheres, 113, 2008.
- Lhasa, T. P. s. G. o., Overview of Lhasa: https://www.lasa.gov.cn/lasa/yxls/yx.shtml
- Li, H., He, Q., Song, Q., Chen, L., Song, Y., Wang, Y., Lin, K., Xu, Z., and Shao, M.: Diagnosing Tibetan pollutant sources via volatile organic compound observations, Atmospheric Environment, 166, 244-254, 2017.
- Li, Z., Walters, W. W., Hastings, M. G., Song, L., Huang, S., Zhu, F., Liu, D., Shi, G., Li, Y., and Fang, Y.: Atmospheric nitrate formation pathways in urban and rural atmosphere of Northeast China: Implications for complicated anthropogenic effects, Environmental Pollution, 296, 118752, https://doi.org/10.1016/j.envpol.2021.118752, 2022.
- Lin, M., Zhang, Z., Su, L., Hill-Falkenthal, J., Priyadarshi, A., Zhang, Q., Zhang, G., Kang, S., Chan, C. Y., and Thiemens, M. H.: Resolving the impact of stratosphere-to-troposphere transport on the sulfur cycle and surface ozone over the Tibetan Plateau using a cosmogenic ³⁵S tracer, Journal of Geophysical Research: Atmospheres, 121, 439-456, 2016.

- Lin, Y.-C., Zhang, Y.-L., Yu, M., Fan, M.-Y., Xie, F., Zhang, W.-Q., Wu, G., Cong, Z., and Michalski, G.: Formation mechanisms and source apportionments of airborne nitrate aerosols at a Himalayan-Tibetan Plateau site: Insights from nitrogen and oxygen isotopic compositions, Environmental Science & Technology, 55, 12261-12271, 2021.
- Michalski, G., Scott, Z., Kabiling, M., and Thiemens, M. H.: First measurements and modeling of Δ^{17} O in atmospheric nitrate, Geophysical Research Letters, 30, 2003.
- Morin, S., Savarino, J., Bekki, S., Gong, S., and Bottenheim, J.: Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ^{17} O) of atmospheric nitrate, Atmospheric Chemistry and Physics, 7, 1451-1469, 2007.
- Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, Journal of Geophysical Research: Atmospheres, 109, 2004.
- Rohrer, F. and Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442, 184-187, 2006.
- Savarino, J., Vicars, W. C., Legrand, M., Preunkert, S., Jourdain, B., Frey, M. M., Kukui, A., Caillon, N., and Gil Roca, J.: Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign, Atmospheric Chemistry and Physics, 16, 2659-2673, 2016.
- Tang, G., Yao, D., Kang, Y., Liu, Y., Liu, Y., Wang, Y., Bai, Z., Sun, J., Cong, Z., Xin, J., Liu, Z., Zhu, Z., Geng, Y., Wang, L., Li, T., Li, X., Bian, J., and Wang, Y.: The urgent need to control volatile organic compound pollution over the Qinghai-Tibet Plateau, iScience, 25, 105688, https://doi.org/10.1016/j.isci.2022.105688, 2022.
- Vicars, W., Morin, S., Savarino, J., Wagner, N., Erbland, J., Vince, E., Martins, J., Lerner, B., Quinn, P., and Coffman, D.: Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate: Results from the CalNex 2010 field study, Journal of Geophysical Research: Atmospheres, 118, 10,567-510,588, 2013.
- Vicars, W. C. and Savarino, J.: Quantitative constraints on the 17 O-excess (Δ^{17} O)

- signature of surface ozone: Ambient measurements from 50 N to 50 S using the nitrite-coated filter technique, Geochimica et Cosmochimica Acta, 135, 270-287, 2014.
- Vicars, W. C., Bhattacharya, S., Erbland, J., and Savarino, J.: Measurement of the ¹⁷O-excess (Δ¹⁷O) of tropospheric ozone using a nitrite-coated filter, Rapid Communications in Mass Spectrometry, 26, 1219-1231, 2012.
- Wang, H., Chen, X., Lu, K., Hu, R., Li, Z., Wang, H., Ma, X., Yang, X., Chen, S., Dong, H., Liu, Y., Fang, X., Zeng, L., Hu, M., and Zhang, Y.: NO₃ and N₂O₅ chemistry at a suburban site during the EXPLORE-YRD campaign in 2018, Atmospheric Environment, 224, 117180, https://doi.org/10.1016/j.atmosenv.2019.117180, 2020a.
- Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Lou, S., Tang, M., Wu, Y., Zhu, W., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N₂O₅ uptake and NO₃ oxidation in the outflow of urban Beijing, Atmos. Chem. Phys., 18, 9705-9721, 10.5194/acp-18-9705-2018, 2018.
- Wang, K., Hattori, S., Kang, S., Lin, M., and Yoshida, N.: Isotopic constraints on the formation pathways and sources of atmospheric nitrate in the Mt. Everest region, Environmental Pollution, 267, 115274, 2020b.
- Wang, Y. L., Song, W., Yang, W., Sun, X. C., Tong, Y. D., Wang, X. M., Liu, C. Q., Bai,
 Z. P., and Liu, X. Y.: Influences of atmospheric pollution on the contributions of
 major oxidation pathways to PM_{2.5} nitrate formation in Beijing, Journal of
 Geophysical Research: Atmospheres, 124, 4174-4185, 2019.
- Yin, X., Kang, S., de Foy, B., Cong, Z., Luo, J., Zhang, L., Ma, Y., Zhang, G., Rupakheti, D., and Zhang, Q.: Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness, Atmospheric Chemistry and Physics, 17, 11293-11311, 2017.
- Zhang, Y.-L., Zhang, W., Fan, M.-Y., Li, J., Fang, H., Cao, F., Lin, Y.-C., Wilkins, B. P., Liu, X., and Bao, M.: A diurnal story of Δ¹⁷O(NO₃-) in urban Nanjing and its implication for nitrate aerosol formation, npj Climate and Atmospheric Science, 5, 50, 2022.
- Zhang, Y., Zhao, T., Ning, G., Xu, X., Chen, Z., Jia, M., Sun, X., Shu, Z., Lu, Z., and

- Liu, J.: A unique mechanism of ozone surges jointly triggered by deep stratospheric intrusions and the Tibetan Plateau topographic forcing, Geophysical Research Letters, 52, e2024GL114207, 2025.
- Zhao, M., Huang, Z., Qiao, T., Zhang, Y., Xiu, G., and Yu, J.: Chemical characterization, the transport pathways and potential sources of PM_{2.5} in Shanghai: Seasonal variations, Atmospheric Research, 158, 66-78, 2015.

Zheng et al., showed that volatile organic compounds play a critical role in the nitrate production on a plateau city, as inferred from the oxygen isotope anomaly of nitrate $(\Delta^{17}O\text{-NO}_3^-)$. The $\Delta^{17}O\text{-NO}_3^-$ hold a wealth information about the atmospheric oxidation environment, which can be used to complement the model work as an observational constraint for NOx chemistry. I believe this study is of significant importance to the community as there are very sparse measurements of oxygen isotope anomaly of nitrate in high-elevation plateau environments. While I agree with most of the interpretation, some of the results, i.e., the day-night difference in $\Delta^{17}O\text{-NO}_3^-$ require further deliberation. In addition, considerable improvements could be made in the presentation of the results, refining the methodology, the layout of the figures, as well as enhancing the overall clarity of the writing. Overall, the manuscript should be subjected to major revisions listed below.

Response: We would like to express our deepest gratitude for the constructure comments, which have significantly improved the quality of our work. Below, we provide detailed, point-by-point responses to all the reviewers' comments. All the changes have been included in the newest manuscript (Reviewers' and Editorial Office's comments are in italics; our responses are in regular font).

Specific comments:

1: The author highlights that VOCs+NO3 is of particular important for nitrate formation in Lhasa in spring based on the Δ^{17} O measurements and a simple massbalance model calculation (i.e., Bayesian). The author did a lot of statistical analysis based on the Bayesian model outputs. It is well known that the Bayesian models of this nature was mathematically underdetermined and there was no unique solution with only one constraint but for three solutions (see Phillips et al., 2014), therefore model results will be associated with significant uncertainty. The comparison, statistical analysis and any conclusions draw from these results should be approached with great caution. For example, the contribution of OH+NO2 likely

fluctuates around 50% throughout the year.

Response: Thanks for your valuable suggestion. We fully acknowledge that Bayesian isotope mixing model (SIAR) used in our study is mathematically underdetermined when constrained by a single tracer ($\Delta^{17}\text{O-NO}_3^-$) and three potential pathways, as discussed in Phillips et al. (2014). As a result, the output carries inherent uncertainty, and the exact source apportionment solutions are not unique.

To assess the robustness of our findings, we conducted a sensitivity analysis by varying two key parameters: (1) α , the fraction of NO₂ oxidized by O₃, and (2) Δ^{17} O of terminal O atoms in O₃ (Δ^{17} O-O₃*). As shown in Table S1, both parameters influence the partitioning results. When Δ^{17} O-O₃* was fixed at 39‰, increasing α from 0.7 to 0.9 led to a substantial increase in the contribution of the NO₂ + OH pathway (from 25% to 46%), while the NO₃ + VOC pathway decreased (from 46% to 25%). In contrast, the N₂O₅ + H₂O contribution remained nearly constant at 28-29%, indicating its relative insensitivity to α .

Similarly, when α was set between 0.8-0.9, increasing $\Delta^{17}\text{O-O}_3*$ from 37% to 39% resulted in a rise in the NO₂ + OH contribution (from 37% to 46%) and a decline in NO₃ + VOC (from 35% to 26%), while the N₂O₅ + H₂O pathway again remained stable. These results suggest that although the NO₂ + OH and NO₃ + VOC pathways are sensitive to assumptions about α and $\Delta^{17}\text{O-O}_3*$, the N₂O₅ + H₂O pathway is relatively robust across the tested range.

Given that Lhasa is characterized by relatively high VOC concentrations and that $\Delta^{17}\text{O-O}_3$ * is typically close to 39‰, we believe that our parameter assumptions are reasonable.

To address your concern, we have carefully revised the main text to avoid overstatements and now use more cautious language when discussing model-derived pathway contributions. (Line 333-348)

Line 333-348: To evaluate the impact of key parameters on the estimated contributions of different NO_3^- formation pathways, we conducted a sensitivity analysis by assumed the α values and $\Delta^{17}O$ value of the terminal oxygen atoms of O_3 ($\Delta^{17}O-O_3^*$). As listed in Table S3, the assumption of α and $\Delta^{17}O-O_3^*$ have an impact on the NO_3^- formation

mechanisms. When $\Delta^{17}\text{O-O}_3^*$ was fixed at 39‰, increasing α from 0.7 to 0.9 led to a notable increase in the relative contribution of the NO₂ + OH pathway from 25% to 46%, while that of the NO₃ + VOC pathway decreased from 46% to 25%. The N₂O₅ + H₂O pathway remained nearly constant, with contributions ranging between 28% and 29%, indicating that this pathway is relatively insensitive to changes in α values. Similarly, when α was varied within a reasonable range (0.68-0.93), increasing the $\Delta^{17}\text{O-O}_3^*$ value from 37‰ to 39‰ led to an increase in the NO₂ + OH contribution from 37% to 46%, and a corresponding decrease in the NO₃ + VOC contribution from 35% to 26%. Again, the N₂O₅ + H₂O contribution remained stable at \sim 28%. These results suggest that the estimated contributions of NO₂ + OH and NO₃ + VOC pathways are sensitive to assumptions about α and $\Delta^{17}\text{O-O}_3^*$, whereas the contribution of the N₂O₅ + H₂O pathway is relatively robust under the tested conditions. Because Lhasa is characterized by relatively high VOC concentrations and $\Delta^{17}\text{O-O}_3^*$ is generally close to 39‰ in the troposphere, we consider our parameter assumptions reasonable for further estimating NO₃ formation pathways for each sample.

Table S3 The average contribution of three oxidation pathways to NO_3^- formation for the different the α values and $\Delta^{17}O\text{-}O_3^*$ values

parameters	relative contribution of different oxidation pathways (%)		
	NO ₂ +OH	NO ₃ +VOC	$N_2O_5+H_2O$
$\Delta^{17}\text{O-O}_3^*=39\%$			
$\alpha=0.7$	25	47	28
$\alpha=0.8$	41	29	30
$\alpha=0.9$	46	26	28
$\alpha = 0.68 - 0.93$			
$\Delta^{17}\text{O-O}_3*=37\%_0$	37	35	28
$\Delta^{17}\text{O-O}_3*=38\%_0$	42	30	28
$\Delta^{17}\text{O-O}_3*=39\%$	46	26	28

2: Regarding the source of VOCs, the authors suggest that high ambient VOCs in spring may originate from South Asia via long-range transport. There are growing evidence that long-range transport of atmospheric pollutants from South Asia regulating the aerosol loadings in south of Tibetan Plateau in spring. Does nitrate aerosol in Lhasa also be impacted by the long-range transport, especially in spring? It is likely that the author assumed that long-range transported VOCs involve in the local nitrate production in Lhasa through NO₃+VOC pathways. This should be explicitly addressed in the main text.

Response: Thanks for your insightful comment. As suggested, we have revised the main text to explicitly clarify the potential influence of long-range transported VOC on NO_3^- formation in Lhasa, particularly during spring. We highlight that air masses originating from South Asia (e.g., Afghanistan, Pakistan, northern India, Nepal) during spring are likely to carry biomass burning-related VOC, which could enhance local NO_3^- formation via the NO_3^- + VOC pathway. We have also noted that elevated ambient VOC levels in urban areas on the Qinghai-Tibet Plateau, comparable to those in the North China Plain, may be further amplified by this long-range transport. Furthermore, we acknowledged the potential co-transport of nitrogenous species (e.g., NO_3^- formation. (Line 410-440)

Line 410-440: A significant increase in the $f_{\text{NO3+VOC}}$ values was observed in spring (p < 0.05). First, O₃ and NO₂ are precursors of NO₃. In this work, the highest concentrations of O₃ were found in spring (114.9 \pm 18.1 μ g/m³), likely leading to elevated NO₃ concentrations. Additionally, the low temperature and reduced OH radical concentrations in spring facilitate the reaction of NO₂ and O₃ to synthesize NO₃. This might be an appropriate reason for the $f_{\text{NO3+VOC}}$ values in spring. High-altitude locations such as Nepal (5079 m a.s.l.) and Qomolangma Station (4300 m a.s.l.) have

experienced stratospheric ozone intrusions, especially in spring and winter, as reported in previous studies (Zhang et al., 2025; Cristofanelli et al., 2010; Morin et al., 2007; Zhang et al., 2022; Lin et al., 2016; Yin et al., 2017; Wang et al., 2020b). Notably, such intrusions in spring may elevate tropospheric O₃ levels in Lhasa, resulting in a mixture of tropospheric and stratospheric O₃ that enhances NO₃ production. Second, previous study has indicated that the Afghanistan-Pakistan-Tajikistan region, the Indo-Gangetic Plain, and Meghalaya-Myanmar region could transport industrial VOC to various zones in Tibet from west to east. Additionally, agricultural areas in northern India could contribute biomass burning-related VOC to the middle-northern and eastern regions of Tibet (Li et al., 2017). During our sampling campaign, South and Southeast Asia air clusters were notably prevalent in the springtime, coinciding with intensive fire spots observed in Afghanistan, Pakistan, India, Nepal, and Bhutan (Figure S3/S4). These observations, combined with the prevailing South and Southeast Asia air mass trajectories in spring, strongly suggest that long-range transported VOC from South Asia were delivered to Lhasa and likely participated in local NO₃ production via NO₃ + VOC pathway. Moreover, recent studies have shown that ambient VOC concentrations in the urban areas on the Qinghai-Tibet Plateau were comparable to those in the North China Plain (Tang et al., 2022). The input of VOC through longrange transport might further elevate VOC concentrations, thereby promoting NO₃⁻ formation via NO₃ + VOC pathway and contributing to the enhanced $f_{NO3+VOC}$ values observed in spring. While VOC appears to play a dominant role in the process, it should be noted that other nitrogen species (e.g., NO, NO₂) associated with biomass burning emissions may also be transported over long distances and influence NO₃⁻ formation in Lhasa. These co-transported nitrogen compounds, although not directly quantified in this study, could further contribute to NO₃⁻ production in spring. Taken together, these findings provide strong evidence that long-range transport of biomass burning emissions, particularly from South Asia, can substantially influence springtime NO₃⁻ formation in Lhasa.

3: (1) The methodology for the determination of specific pathway contribution to

nitrate based on $\Delta^{17}O$ should be clearly presented in the Method section. One of the most important of part is the A value (i.e, the relative importance of O_3 versus RO_2 in NO_2 formation), when using $\Delta^{17}O$ to distinguish nitrate formation pathways. First, I noticed that the author derived the RO_2 concentrations based on a empirical relationship about O_3 mixing ratio. This relationship between RO_2 and O_3 indeed has been widely used in relevant study as concurrent RO_2 measurement is unavailable. This method is feasible at present. However, the relationship between RO_2 and O_3 the author used in this study is referred to Kanaya et al., 2007, which was conducted in urban site in central Tokyo. I believe that the atmospheric condition in Lhasa is completely different from that in Tokyo, i.e., the dominant RO_2 source. RO_2 production is majorly determined by solar radiations, which is also different between the two sites, as noticed in the Introduction. I recommend the calculation of RO_2 concentrations using MCM model and recent field observations of VOCs at Lhasa (see Chunxiang Ye et al., 2023).

Response: Thanks for your valuable suggestion. We sincerely thank the reviewer for pointing out the importance of accurately estimating RO_2 concentrations in the calculation of the α value, which is indeed a critical parameter for $\Delta^{17}O$ -based pathway apportionment. As noted, we adopted an empirical relationship between RO_2 and O_3 based on Kanaya et al. (2007), due to the absence of direct RO_2 observations and the lack of local model constraints. We fully acknowledge that this parameterization, developed for urban Tokyo, may not fully reflect the atmospheric conditions in high-altitude Lhasa, particularly given differences in radiation intensity and VOC composition.

Unfortunately, due to the lack of comprehensive VOC datasets and the necessary input parameters, we were unable to conduct a robust MCM (Master Chemical Mechanism) simulation for RO₂ in this study. We agree that such modelling, particularly with reference to recent VOC measurements in Lhasa, would significantly improve the accuracy of pathway estimation. We will prioritize this in our future work as more data becomes available.

(2) Second, the author also suggests that nighttime RO_2 may play a role in the NOx oxidations. Similarly, the derivation of nighttime RO_2 is valid only when O_3 oxidation VOC dominates the RO_2 production (Kanaya et al., 2007). Nighttime RO_2 production mechanisms in Lhasa maybe unknown, however, in other urban cities such as Beijing in China, NO_3 radical + VOC is the dominant channel for nighttime RO_2 production. In this case, nighttime RO_2 will be roughly correlated with the NO_3 radical production rate, $k_{O3+NO_2[O3][NO_2]}$. Although, given the high nighttime O_3 concentration in Lhasa, it maybe reasonable to assume O_3 dominant nighttime NO oxidation. To improve the robustness of the pathway differentiation, I recommend that this part could be done according to the approach of Alexander et al., 2020, and compare the field $\Delta^{17}O-NO_3$ measurements with the model results in Alexander et al., 2020.

Response: Thanks for your insightful comment. Following your suggestion, we have further elaborated on the potential role of nighttime RO₂ in NO₃⁻ formation in Lhasa and its possible link to NO₃ + VOC pathway. Although the exact mechanism of nighttime RO₂ production in Lhasa remains uncertain, previous studies have identified NO₃ + VOC reactions as the dominant source of RO₂ during nighttime. This process forms alkyl and multifunctional nitrates (RONO₂), which can undergo hydrolysis to yield HNO₃, contributing to NO₃⁻ production. We also acknowledge the importance of O₃ and NO₂ in controlling the nighttime NO₃ radical production rate. Given that nighttime O₃ concentrations in Lhasa are relatively high, it is plausible that NO₃ radical levels are also elevated, enhancing NO₃ + VOC pathway. We have added it to the revised manuscript. (Line 351-388)

Line 351-388: On average, the relative contributions of NO₂ + OH ($f_{\text{NO2+OH}}$), NO₃ + VOC ($f_{\text{NO3+VOC}}$) and N₂O₅ + H₂O ($f_{\text{N2O5+H2O}}$) to NO₃⁻ formation in Lhasa during the sampling campaign were 46 ± 26%, 26 ± 19% and 28 ± 11%, respectively. To better understand the characteristics of NO₃⁻ formation mechanism in Lhasa, we performed a detailed comparison around the China for the relative contributions of key oxidation pathways using the Δ^{17} O methodology (Figure 4). Overall, similar to most Chinese cities, NO₃⁻ formation in Lhasa was predominantly driven by the NO₂ + OH pathway,

exhibiting distinct seasonal and regional variations. In particular, the average f_{NO3+VOC} values were generally several times higher in spring in Lhasa than in other urban cities. Compared to rural/remote areas, the average $f_{NO3+VOC}$ values showed higher fractions in Lhasa, revealing the influence of anthropogenic emission, i.e., vehicle exhaust and heating, on NO₃⁻ formation. In Lhasa, the Capital of Tibet, field measurements among different years showed a substantial increase in VOC concentrations in urban areas of the Tibet Plateau, comparable to those in North China (Tang et al., 2022), revealing the importance of the active NO₃ + VOC pathway for NO₃ pollution formation in Lhasa. In fact, recent studies have recognized NO₃ + VOC as a major formation mechanism for NO_3^- production. For instance, Fan et al. (2021) found that $f_{NO3+VOC}$ in Beijing increased from 17% in summer to 32% in winter based on Δ^{17} O-NO₃ measurements. He et al. (2018) estimated the relative contributions of $NO_3 + VOC$ and $N_2O_5 + Cl^-$ to NO₃ formation and found that NO₃ + VOC and N₂O₅ + Cl were in the range of 16-56%, underscoring the significant roles of these pathways during haze events in Beijing. Similarly, Feng et al. (2023) also reported that the $f_{NO3+VOC}$ values were up to 49.6% in winter in northern China. In Guangzhou, Wang et al. (2023) noted that the average $f_{\text{NO3+VOC}}$ value was at the 488m (25%) higher than that at the ground (12%). Furthermore, Li et al. (2022) reported that $f_{\text{NO3+VOC}}$ increased from 5% in urban to 13.5% in rural regions in Northeast China. Although the specific nighttime RO₂ production mechanism in Lhasa remains unclear, studies in other cities have demonstrated that NO₃+VOC pathway was the dominant channel for nighttime RO₂ (Fisher et al., 2016), which in turn leads to the formation of alkyl and multifunctional nitrates (RONO₂) and eventually NO₃⁻. In such cases, the RO₂ concentration is expected to be correlated with NO₃ radical production, which depends on the reaction rate of O₃ and NO₂ (Brown and Stutz, 2012). Given the relatively high nighttime O₃ concentrations in Lhasa, it is plausible that O₃-driven nighttime NO₃ chemistry plays an important role, thereby enhancing NO₃+VOC derived from RO₂ production and NO₃⁻ formation. Global modelling studies also support the significant of this pathway. For instance, Alexander et al. (2020) reported that the NO₃+VOC pathway via the RONO₂ mechanism accounted for 3% of global NO_3^- formation on average. The relatively high $f_{NO3+VOC}$

values observed in Lhasa are broadly consistent with these findings, especially under conditions of high VOC concentrations and strong nighttime oxidant levels.

4: I DONOT agree with the interpretation of the observed day-night differences in $\Delta^{17}\text{O-NO}_3$ during winter and summer (Lines: 307-333). Remember that daytime NO₃ and N₂O₅ chemistry should be negligible in nitrate chemistry, and no supporting evidence for this claim could be found in reference in Brown et al., 2011. Note high NO₃ production rate not means high mixing ratio of NO₃, NO₃ and N₂O₅ will be rapidly decomposed under sunlight. Although there are increasing studies showing the potential impact of daytime NO₃ radical chemistry, the importance of daytime NO₃/N₂O₅ chemistry should be investigated with concurrent field observations or model experiments. The atmospheric residence time of nitrate should be considered for the comparison of day-night difference in $\Delta^{17}\text{O-NO}_3$, see Vicars et al., 2013.

Response: Thanks for your valuable suggestion. Specifically, we acknowledge that under typical atmospheric conditions, NO₃ and N₂O₅ are rapidly photolyzed during the day, with reported NO₃ lifetimes of less than 10 seconds in sunlight, making their daytime accumulation negligible. However, we also note that several recent studies suggest that daytime NO₃ production rates can be non-negligible, especially in winter. To address the reviewer's concern, we have clarified the distinction between production rate and ambient concentration, and we now explicitly acknowledge the uncertainty in the role of daytime NO₃/N₂O₅ chemistry. Additionally, we now consider the atmospheric residence time of nitrate, as recommended (Vicars et al., 2013), which may lead to integrated contributions from both daytime and nighttime chemistry in each sample. (Line 450-484)

Line 450-484: Interestingly, distinct diurnal patterns of NO₃⁻ oxidation pathways were observed during the sampling campaign (Figure 5). In summer, NO₂ + OH pathway showed a significantly higher contribution during the daytime (55.1%) compared to nighttime (44.9%), which is attributed to increased OH radical synthesis during longer days and higher temperatures in Lhasa (Rohrer and Berresheim, 2006). A previous

study indicated that lower NO₂ and higher O₃ concentrations enhance the relative contribution of OH pathway to NO₃⁻ formation (Wang et al., 2019). Additionally, the concentration of ALWC (the detailed information is given in Text S3) was higher at night than during the day in summer, favoring NO₃⁻ formation through nocturnal formation. In winter, $f_{\text{NO2+OH}}$, $f_{\text{NO3+VOC}}$ and $f_{\text{N2O5+H2O}}$ were similar during both day and night. Typically, photolytic destruction and chemical reactions with NO are rapid sinks during the daytime, with lifetimes generally less than 5 seconds and resulting in extremely low concentrations. Similarly, the atmospheric lifetime of N₂O₅ under sunlight is also very short (Wang et al., 2018). Thus, daytime NO₃ and N₂O₅ chemistry is often considered negligible. However, a recent study revealed that a non-negligible amount of NO₃ radicals can persist during the daytime in cold months, owing to the limited solar radiation (Hellén et al., 2018). Wang et al. (2020a) found that the daytime production rate of NO₃ can be substantial due to elevated concentrations of O₃ and NO₂, suggesting that the mixing ratios of NO₃ and N₂O₅ during the day may not be negligible. Furthermore, in winter, lower temperatures and elevated NO₂ concentrations facilitate a quasi-steady-state equilibrium between NO₃ and N₂O₅, slowing the overall reactivity of the NO₃⁻ precursors (Brown et al., 2003). This equilibrium condition minimizes diurnal fluctuations in precursor concentrations, resulting in relatively stable nocturnal and daytime NO₃⁻ formation pathways, including NO₃ + VOC and N₂O₅ + H₂O. Nevertheless, we acknowledge that the exact role of daytime NO₃/N₂O₅ chemistry remains uncertain in Lhasa and should be further assessed using concurrent filed observations or chemical transport models. Moreover, when interpreting the diurnal differences in Δ^{17} O-NO₃⁻ values, the atmospheric lifetime of NO₃⁻ must be considered. Given the atmospheric lifetime of NO₃⁻ is generally more than 12 hours, each sample might reflect both daytime and nighttime NO_3^- production impacting on $\Delta^{17}O-NO_3^$ values (Park et al., 2004; Vicars et al., 2013).

General comment

1: The description of nitrate formation pathways (Text S1) and the associated Δ^{17} O

signatures should be presented in the main text.

Response: Thanks for your suggestion. We have added it to the main text in the revised manuscript (2.4).

2: Line 62-63 Numerous field experiments have demonstrated that the N_2O_5 uptake probability on aerosol varied significantly, depending on the aerosol composition, meteorological parameters.

Response: Thanks for your valuable suggestion. We have clarified this point in the revised manuscript by specifying that one of the major sources of uncertainty in modelling NO_3^- formation via the $N_2O_5 + H_2O$ pathway is the wide variability in the N_2O_5 uptake probability (γ), which has been shown in numerous field experiments to depend strongly on aerosol composition and meteorological conditions such as temperature and relative humidity. (Line 72-75)

Line 72-75: However, there is considerable uncertainty in modelling the contribution of individual oxidation pathways to NO_3^- formation, particularly for the $N_2O_5 + H_2O$ pathway, due to the wide variability of key parameters such as the N_2O_5 uptake coefficient, which has been shown to vary significantly with aerosol composition, relative humidity, and temperature.

3: Line 237: I think the highlight of the text is the comparison of nitrate chemistry in high-elevation city with that in plain region. More discussion is needed to explore the mechanisms regulating the nitrate oxidation pathways, rather than a simple comparison of relative importance.

Response: Thanks for your suggestion. Specifically, we have expanded the discussion to include potential mechanisms that may regulate the observed differences in oxidation pathways, with a particular focus on the NO₃ + VOC pathway. In this context, we discuss the role of elevated nighttime O₃ concentrations in Lhasa. Since this issue overlaps with the reviewer's Specific Comment 3 regarding the role of nighttime RO₂ and the importance of linking NO₃ radical production to ambient oxidant levels, we addressed both concerns together in the revised discussion to provide a more robust and

coherent mechanistic interpretation.

4: Line 345-347 Recent field radical measurements in urban sites in China found that OH and HO2 radical during haze period is comparable to clean days, see Slater et al., 2020, Lu et al., 2019.

Response: Thanks for your suggestion. We sincerely apologize for not citing the most up-to-date literature in our original manuscript. Initially, we referred to earlier studies, which may have led to an outdated understanding of radical behavior under polluted conditions. In response to the reviewer's helpful comment, we have carefully reviewed recent findings and incorporated updated references (Slater et al., 2020; Yang et al., 2021), which indicate that OH and HO₂ radical levels during haze periods can be comparable to those on clean days in urban China. We have revised the manuscript. (Line 502-511)

Line 502-511: As shown in Figure S8, NO₃ + VOC pathway emerged as the major contributor to NO₃⁻ formation during periods of high NO₃⁻ spikes. To elucidate the NO₃⁻ formation pathways under different NO₃⁻ concentrations, NO₃⁻ samples were categorized into different concentration ranges (Figure 6). We found the $f_{\text{NO3+VOC}}$ values increased and $f_{\text{NO2+OH}}$ values decreased with the NO₃⁻ concentrations. Although recent field radical measurements in urban sites in China found that OH and HO₂ radical during haze period is comparable to clean days (Slater et al., 2020; Yang et al., 2021), our results suggested that NO₃+VOC pathway still played an important role in NO₃⁻ production under high-NO₃⁻ concentration in Lhasa, possibly due to enhanced VOC emission.

5: Line 373 The implication sounds impotent. It is well known that aerosol liquid water content (ALWC) and Ox (oxidation capacity) regulate nitrate concentrations—ALWC impacts gas-to-particle partitioning, while Ox affects oxidation efficiency. The authors should focus on the specific or unique environmental conditions in the Tibetan Plateau that could be reflected by the measurements of Δ^{17} O-NO₃-.

Response: Thanks for your suggestion. We have strengthened the Implications section

to better highlight the unique environmental conditions of the Tibetan Plateau, particularly those that influence nitrate oxidation as captured by $\Delta^{17}\text{O-NO}_3$. Specifically, we now emphasize the role of high solar radiation, persistently elevated O_3 levels, and seasonally enhanced VOC concentrations in Lhasa, which together promote active NO_3 + VOC chemistry — especially in spring. These features are characteristic of high-altitude urban environments and contribute to the distinct oxidation pathways observed in this region.

At the same time, we acknowledge the limitations of our study. Due to the lack of direct observations of HO₂ concentrations in Lhasa, we adopted empirical estimations based on other regions, which introduces uncertainty into the pathway apportionment. Additionally, the absence of measurements related to nighttime NO emissions and NO₂-NO isotope exchange in the region may affect the accuracy of the diurnal pattern interpretation. We have added these points to the revised Implications section to clarify the scope and robustness of our conclusions. (Line 540-559)

Line 540-559: The oxidation pathways of NO_3^- in Lhasa, China, were constrained using a full year of $\Delta^{17}O$ - NO_3^- measurements from 2022 to 2023. Based on seasonal data, we observed a significant increase in the relative contribution of the NO_3 +VOC to NO_3^- formation during spring. Furthermore, the diurnal distribution of NO_3^- oxidation pathways varied distinctly across seasons. To better understand the factors influencing these pathways, we integrated meteorological conditions, NOx precursors, and ALWC for a more comprehensive analysis of NO_3^- formation. The results revealed that Ox and ALWC are more reliable indicators of NO_3^- oxidation pathways than meteorological factors. Notably, Lhasa's unique high-altitude environment such as strong solar radiation, persistently high O_3 , and seasonally elevated VOC, promotes active NO_3 + VOC chemistry, especially in spring. Atmospheric ALWC is primarily produced by hygroscopic aerosols such as SO_4^{2-} , NH_4^+ , and CI^- . Therefore, in addition to controlling NO_2 , O_3 , and VOC, reducing these hygroscopic aerosols is crucial for effective $PM_{2.5}$ pollution control.

Although this study provides valuable insights into NO₃⁻ formation mechanisms in Lhasa, we must acknowledge the associated uncertainties due to the lack of

comprehensive observational constraints in Lhasa. Specifically, the limited understanding of local HO_2 concentrations led us to adopt empirical parameterizations and refer to measurements from other regions, which inevitably introduce uncertainty into the pathway apportionment. In addition, the absence of direct observations of nighttime NO emissions and the NO_2 -NO isotope exchange processes in this region further complicates the interpretation of diurnal variations in NO_3 - formation pathways. To improve the robustness of Δ^{17} O-based pathway analysis, future studies should consider synchronous measurements of both NO_2 and NO_3 - isotopes.

6: Additionally, many sentences throughout the manuscript require careful revision for clarity and grammar (e.g., Lines 31–33)

Response: Thanks for your suggestion. We have carefully reviewed and revised the entire manuscript to improve the clarity, grammar, and overall readability of all sentences, including the example in Lines 31–33.

Reference

- Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations, Atmospheric Chemistry and Physics, 20, 3859-3877, 2020.
- Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chemical Society Reviews, 41, 6405-6447, 2012.
- Brown, S. S., Stark, H., and Ravishankara, A.: Applicability of the steady state approximation to the interpretation of atmospheric observations of NO₃ and N₂O₅, Journal of Geophysical Research: Atmospheres, 108, 2003.
- Cristofanelli, P., Bracci, A., Sprenger, M., Marinoni, A., Bonafè, U., Calzolari, F., Duchi, R., Laj, P., Pichon, J.-M., and Roccato, F.: Tropospheric ozone variations at the Nepal Climate Observatory-Pyramid (Himalayas, 5079 m asl) and influence of deep stratospheric intrusion events, Atmospheric Chemistry and Physics, 10, 6537-6549, 2010.
- Fan, M.-Y., Zhang, Y.-L., Lin, Y.-C., Hong, Y., Zhao, Z.-Y., Xie, F., Du, W., Cao, F., Sun, Y., and Fu, P.: Important role of NO₃ radical to nitrate formation aloft in urban Beijing: Insights from triple oxygen isotopes measured at the tower, Environmental Science & Technology, 56, 6870-6879, 2021.
- Feng, X., Chen, Y., Chen, S., Peng, Y., Liu, Z., Jiang, M., Feng, Y., Wang, L., Li, L., and Chen, J.: Dominant Contribution of NO₃ Radical to NO₃⁻ Formation during Heavy Haze Episodes: Insights from High-Time Resolution of Dual Isotopes Δ^{17} O and δ^{18} O, Environmental Science & Technology, 57, 20726-20735, 2023.
- Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan Miller, C., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Mao, J., Wennberg, P. O., Crounse, J. D., Teng, A. P., Nguyen, T. B., St. Clair, J. M., Cohen, R. C., Romer, P., Nault, B. A., Wooldridge, P. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Shepson, P. B., Xiong, F., Blake, D. R., Goldstein, A. H., Misztal, P. K., Hanisco, T. F., Wolfe, G. M., Ryerson, T. B., Wisthaler, A., and Mikoviny, T.: Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich

- atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US, Atmos. Chem. Phys., 16, 5969-5991, 10.5194/acp-16-5969-2016, 2016.
- He, P., Xie, Z., Chi, X., Yu, X., Fan, S., Kang, H., Liu, C., and Zhan, H.: Atmospheric Δ¹⁷O(NO₃-) reveals nocturnal chemistry dominates nitrate production in Beijing haze, Atmospheric Chemistry and Physics, 18, 14465-14476, 2018.
- Hellén, H., Praplan, A. P., Tykkä, T., Ylivinkka, I., Vakkari, V., Bäck, J., Petäjä, T., Kulmala, M., and Hakola, H.: Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest, Atmospheric Chemistry and Physics, 18, 13839-13863, 2018.
- Li, H., He, Q., Song, Q., Chen, L., Song, Y., Wang, Y., Lin, K., Xu, Z., and Shao, M.: Diagnosing Tibetan pollutant sources via volatile organic compound observations, Atmospheric Environment, 166, 244-254, 2017.
- Li, Z., Walters, W. W., Hastings, M. G., Song, L., Huang, S., Zhu, F., Liu, D., Shi, G., Li, Y., and Fang, Y.: Atmospheric nitrate formation pathways in urban and rural atmosphere of Northeast China: Implications for complicated anthropogenic effects, Environmental Pollution, 296, 118752, https://doi.org/10.1016/j.envpol.2021.118752, 2022.
- Lin, M., Zhang, Z., Su, L., Hill-Falkenthal, J., Priyadarshi, A., Zhang, Q., Zhang, G., Kang, S., Chan, C. Y., and Thiemens, M. H.: Resolving the impact of stratosphere-to-troposphere transport on the sulfur cycle and surface ozone over the Tibetan Plateau using a cosmogenic ³⁵S tracer, Journal of Geophysical Research: Atmospheres, 121, 439-456, 2016.
- Morin, S., Savarino, J., Bekki, S., Gong, S., and Bottenheim, J.: Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ^{17} O) of atmospheric nitrate, Atmospheric Chemistry and Physics, 7, 1451-1469, 2007.
- Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, Journal of Geophysical Research: Atmospheres, 109, 2004.

- Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., Semmens, B. X., and Ward, E. J.: Best practices for use of stable isotope mixing models in food-web studies, Canadian Journal of Zoology, 92, 823-835, 10.1139/cjz-2014-0127, 2014.
- Rohrer, F. and Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442, 184-187, 2006.
- Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Crilley, L. R., Kramer, L., Bloss, W., Vu, T., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Elevated levels of OH observed in haze events during wintertime in central Beijing, Atmos. Chem. Phys., 20, 14847-14871, 10.5194/acp-20-14847-2020, 2020.
- Tang, G., Yao, D., Kang, Y., Liu, Y., Liu, Y., Wang, Y., Bai, Z., Sun, J., Cong, Z., Xin, J., Liu, Z., Zhu, Z., Geng, Y., Wang, L., Li, T., Li, X., Bian, J., and Wang, Y.: The urgent need to control volatile organic compound pollution over the Qinghai-Tibet Plateau, iScience, 25, 105688, https://doi.org/10.1016/j.isci.2022.105688, 2022.
- Vicars, W., Morin, S., Savarino, J., Wagner, N., Erbland, J., Vince, E., Martins, J., Lerner, B., Quinn, P., and Coffman, D.: Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate: Results from the CalNex 2010 field study, Journal of Geophysical Research: Atmospheres, 118, 10,567-510,588, 2013.
- Wang, H., Chen, X., Lu, K., Hu, R., Li, Z., Wang, H., Ma, X., Yang, X., Chen, S., Dong, H., Liu, Y., Fang, X., Zeng, L., Hu, M., and Zhang, Y.: NO₃ and N₂O₅ chemistry at a suburban site during the EXPLORE-YRD campaign in 2018, Atmospheric Environment, 224, 117180, https://doi.org/10.1016/j.atmosenv.2019.117180, 2020a.
- Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Lou, S., Tang, M., Wu, Y., Zhu, W., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N₂O₅ uptake and NO₃ oxidation in the outflow of urban Beijing, Atmos. Chem. Phys., 18, 9705-9721, 10.5194/acp-18-9705-2018, 2018.
- Wang, K., Hattori, S., Kang, S., Lin, M., and Yoshida, N.: Isotopic constraints on the

- formation pathways and sources of atmospheric nitrate in the Mt. Everest region, Environmental Pollution, 267, 115274, 2020b.
- Wang, Y., Liu, J., Jiang, F., Chen, Z., Wu, L., Zhou, S., Pei, C., Kuang, Y., Cao, F., and Zhang, Y.: Vertical measurements of stable nitrogen and oxygen isotope composition of fine particulate nitrate aerosol in Guangzhou city: Source apportionment and oxidation pathway, Science of The Total Environment, 865, 161239, 2023.
- Wang, Y. L., Song, W., Yang, W., Sun, X. C., Tong, Y. D., Wang, X. M., Liu, C. Q., Bai,
 Z. P., and Liu, X. Y.: Influences of atmospheric pollution on the contributions of
 major oxidation pathways to PM_{2.5} nitrate formation in Beijing, Journal of
 Geophysical Research: Atmospheres, 124, 4174-4185, 2019.
- Yang, X., Lu, K., Ma, X., Liu, Y., Wang, H., Hu, R., Li, X., Lou, S., Chen, S., and Dong,
 H.: Observations and modeling of OH and HO₂ radicals in Chengdu, China in summer 2019, Science of The Total Environment, 772, 144829, 2021.
- Yin, X., Kang, S., de Foy, B., Cong, Z., Luo, J., Zhang, L., Ma, Y., Zhang, G., Rupakheti, D., and Zhang, Q.: Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness, Atmospheric Chemistry and Physics, 17, 11293-11311, 2017.
- Zhang, Y.-L., Zhang, W., Fan, M.-Y., Li, J., Fang, H., Cao, F., Lin, Y.-C., Wilkins, B. P., Liu, X., and Bao, M.: A diurnal story of Δ¹⁷O(NO₃-) in urban Nanjing and its implication for nitrate aerosol formation, npj Climate and Atmospheric Science, 5, 50, 2022.
- Zhang, Y., Zhao, T., Ning, G., Xu, X., Chen, Z., Jia, M., Sun, X., Shu, Z., Lu, Z., and Liu, J.: A unique mechanism of ozone surges jointly triggered by deep stratospheric intrusions and the Tibetan Plateau topographic forcing, Geophysical Research Letters, 52, e2024GL114207, 2025.