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Abstract. Land cover and extreme weather events are closely connected to water yield and carbon sequestration. 13 
Understanding the tradeoffs between carbon and water and how they respond to human disturbances is critical for 14 
quantifying ecosystem services. The monthly scale ecosystem model, WaSSI, was tested and applied across Germany 15 
for mapping carbon and water balances from 2001-2019. We estimated that Germany generates 84.86 billion m3 of 16 
discharge and sequesters 106.03 Tg of carbon annually. The eastern states were comparatively drier than the rest of 17 
the country, as most of their precipitation was lost as evapotranspiration. Croplands, urban areas and Evergreen Needle 18 
Forests (ENF) provide 82.5% of the water yield, while the forests sequester the major share of carbon (56.3%) 19 
altogether. The results highlight the importance of sparse land covers (e.g. wetlands) in carbon sequestration. Findings 20 
also suggest that national water yield and carbon balances are sensitive to extreme events. In 2002 and 2013, due to 21 
high precipitation, the stocks of key ecosystem services were notably higher. Similarly, during the drought years of 22 
2003 and 2018, the services were reduced drastically, but we found that buffers from the previous year played an 23 
important role in mitigating negative impacts. This study highlights that, when integrated with local data, a relatively 24 
simple modelling approach is adequate to answer questions of coupled water and carbon responses to climatic 25 
variability at a large scale. We conclude that land management of both forests and croplands are vital to sustain 26 
ecosystem services under a changing climate. 27 

1. Introduction 28 

Ecosystem services such as water yield and carbon sequestration are intimately linked with land cover and climate 29 
extremes. The two key ecosystem services support life and economic activity (Morales et al., 2005). The tightly 30 
coupled links between water and carbon cycles through parameters such as precipitation, temperature, 31 
evapotranspiration (ET), and ecosystem services are well recognized (Beer et al., 2007; G. Sun et al., 2011). However, 32 
it is still unclear how changes in land cover and climate extremes have  impacted  these services in Germany at a 33 
national level. These services are challenging to measure directly, but an ecosystem services model can be applied to 34 
estimate them across the German landscape at a sub-basin scale. 35 

Changes in land cover are driven by multiple interconnected reasons two of them are improving living standards and 36 
population growth (Allan et al., 2022). Studies have shown that land cover change greatly reduces ecosystem services, 37 
but the impact varies spatially and temporally (Hasan et al., 2020). According to Pandey & Ghosh (2023), and Salerno 38 
et al. (2018), urbanization disrupts regulating service for e.g., water purification, soil retention, and climate regulation. 39 
On the other hand, Arowolo et al. (2018) and Cui et al. (2021) observed that expansion of cropland often increases 40 
goods from provisioning services such as food, fodder and water yield. A recent survey in 2022 from the German 41 
national forest inventory found that since 2017 the German forest has become a source of carbon dioxide, instead of 42 
being a sink. The reason behind the change in ecosystem functions is the high loss of living biomass due to climate 43 
change and low forest growth (Fourth Federal Forest Inventory 2022, 2024). 44 

Another environmental phenomena that impact ecosystem services are extreme climate events (e.g. droughts & 45 
floods). Catastrophic weather events not only made countries in the Global South but also in Global North vulnerable. 46 
Germany's 2021 summer flood resulted in a loss of 220 lives and US$ 40 Billion (Schumacher, 2022); the incurred 47 
damages from the 2003 drought, primarily on agriculture, were approximately US$13 Billion across Europe 48 
(Eisenreich, 2005). Germany has seen an increase in the intensity and frequency of heavy rainfall, more in winter than 49 
summer, the air temperatures are also projected to rise by 1.6 to 3.8ºC by 2080 (Schröter et al., 2005). A shift in 50 
precipitation season has been observed, which will potentially increase the risks of floods during winter and decrease 51 
the water supply during summer periods(Schröter et al., 2005). The extreme events are changing due to climate change. 52 
Their impacts may reduce terrestrial carbon uptake or gross primary productivity (GPP) (Williams et al., 2014). Which 53 
negatively affects other factors within the co-evolved processes of carbon-water cycle in an integrated terrestrial 54 
system (L. Zhang et al., 2018). Potentially leading to adverse effects on regional food and livelihood security. 55 

Although ecosystem services are essential and well-recognized in Germany, national-scale studies on both carbon and 56 
water yield are still lacking. There are multiple studies that focus on a specific land cover type or specific ecosystem 57 
services at the European, national or subnational scales. For example, Potter & Pass (2024) estimated the changes in 58 
net primary productivity (NEP or carbon sequestration) for Western Europe, including Germany. Gutsch et al. (2018) 59 
assessed German forest ecosystem services under climate change and different management scenarios. Their results 60 
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showed that climate change has negative impacts on water percolation and positive impacts on carbon sequestration. 61 
Using agricultural long-term field experiments, carbon sequestration was projected to increase in the southern parts 62 
of Germany, indicating higher productivity, and decrease in central and east Germany where poor soil will further 63 
reduce the productivity (Donmez et al., 2024). Other studies used regional analysis to assess water or carbon cycles 64 
(Al-Qubati et al., 2023; Prescher et al., 2010; Ungaro et al., 2021; Wu et al., 2021). The lack of integrated water-65 
carbon cycles assessment hampers deriving national or regional adaptive land management strategies to alleviate the 66 
adverse impacts resulting from environmental and climate change, particularly in the long term. 67 

Furthermore, we observed a varied response of the coupled water-carbon cycle to changes in land cover and climate 68 
(Cheng et al., 2017; Jung et al., 2017; Zeng et al., 2018). The variation is manifested by the coupled mechanisms 69 
occurring at multiple timescales. These may be short-term leaf-gas exchanges, monthly or annual ET and carbon 70 
accumulation, and long-term water yield and species composition. This emphasizes that a single type of observation 71 
is not sufficient to provide the robust validation needed to address the response of water and carbon cycles to 72 
environmental disturbances or climate shocks (Margulis et al., 2006). Gentine et al. (2019) argued that terrestrial 73 
water-carbon cycles must be investigated as an integrated system. They recognized the importance of incorporating 74 
multiple observations on different timescales from various sources to better validate model simulations, which may 75 
reduce uncertainties, mitigate bias, and provide better predictions. Unfortunately, the suggested approach is seldomly 76 
applied in hydrological modelling (e.g. G. Sun et al., 2011, 2023; J. Zhang et al., 2022; Y. Zhang et al., 2016). Thus, 77 
impeding the improvement of our predictive ability to quantify the potential water-carbon changes and consequences 78 
that are vital to effective policy decision-making for developing climate adaptation and mitigation strategies. 79 
Therefore, we integrated multi-timescale observations and information sources in our model to validate simulated 80 
water yield and carbon sequestration. We used gauged river discharge (Q), in-situ measured ET and GPP from eddy 81 
flux towers, and remotely sensed ET and GPP data for model validation. 82 

In this study, the Water Supply Stress Index (WaSSI), an ecosystem service model, was applied on a monthly 83 
resolution to simulate the water and carbon process across the different land covers within Germany (G. Sun et al., 84 
2011). The model has been used globally for various purposes and under different climatic and socioeconomic 85 
conditions (Averyt et al., 2011; Caldwell et al., 2011, 2014, 2012; N. Liu et al., 2020; G. Sun et al., 2011; S. Sun et 86 
al., 2015) in the United States of America, Rwanda, Australia, and China (N. Liu, 2017; N. Liu et al., 2013; Mcnulty 87 
et al., 2016; G. Sun et al., 2011). By validating the WaSSI model, we aim to have an improved understanding of the 88 
response of water-carbon cycles on German land cover with climate variability at a watershed scale. Furthermore, we 89 
focus on three questions: (i) How did ET, water yield and NEP vary over time and space (ii) how did different land 90 
cover contribute to water yield and carbon sequestration? and (iii) to what extent and how sensitive are the two 91 
ecosystem services to extreme weather events (i.e., droughts and floods)? 92 

2. Methodology and Data 93 

The WaSSI model merges the water and carbon cycle using water use efficiency (WUE) parameters estimated from 94 
global eddy flux observations. It is made up of two components: a hydrological and a carbon sub-model. The required 95 
inputs are precipitation, temperature, digital elevation model, land cover, fractional impervious cover, leaf area index 96 
(LAI), and soil parameters, while the outputs are Q, ET, GPP, and net ecosystem exchange (NEE) (N. Liu, 2017). 97 
Transboundary inflows and outflows were not accounted in this study, therefore, watersheds close to Germany's 98 
boundary, which accumulated their flow across the border, were not considered.  99 

The WaSSI model estimates land cover specific water yield (mm per month), which can be aggregated as flow volume 100 
down streams (m3 per month) for any individual watersheds. The hydrologic fluxes estimated are snow melt, snow 101 
accumulation, soil storage, surface flow, base flow, routed flow accumulation, and ET (G. Sun et al., 2011). The model 102 
employs a conceptual method (McCabe & Wolock, 1999) that uses the monthly average temperature and mean average 103 
elevation of a watershed to partition precipitation into rainfall and snowfall, estimate the rate of snow melt and 104 
calculate the mean monthly snow water equivalent for each watershed (Caldwell et al., 2012). The Sacramento Soil 105 
Moisture Accounting (SAC-SMA) model was used for soil and runoff parameters, which runs infiltration, baseflow, 106 
surface runoff, and soil moisture processes, while also constraints ET estimates based on soil water content. For ET 107 
estimations, we used the Type II regression model from (Fang et al., 2016), where the ET model was developed using 108 

https://doi.org/10.5194/egusphere-2025-1629
Preprint. Discussion started: 4 August 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

quality-controlled global data from more than 200 eddy flux sites, incorporating the three most commonly available 109 
biophysical parameters precipitation (P), potential ET (PET) and LAI in the following equation: 110 

 𝐸𝑇 =  −4.79 + 0.75𝑃𝐸𝑇 + 3.92𝐿𝐴𝐼 + 0.04𝑃 (1) 

WaSSI estimates three main components of the carbon cycles: (i) GPP or total carbon uptake, (ii) ecosystem 111 
respiration (Re) representing carbon loss, and (iii) NEP or negative NEE or carbon sequestration. Equation 2 estimates 112 
the amount of NEP by subtracting Re from GPP.  113 

𝑁𝐸𝑃 =  − 𝑁𝐸𝐸 = − (𝑅𝑒 − 𝐺𝑃𝑃) (2) 

Furthermore, a closely coupled relationship between ET and GPP has been found in multiple studies (Law et al., 2002; 114 
G. Sun et al., 2011), as presented in Equation 3. GPP is linearly correlated to ET and land cover specific WUE 115 
parameters were estimated using 142 eddy flux tower data (Y. Zhang et al., 2016). Similarly, the Re from heterotrophic 116 
and autotrophic bacteria can be estimated using Equation 4, where regression coefficients are estimated from eddy 117 
flux data. The coefficient (a, m, and n) values used in this study are provided in Table S1 in the supporting documents. 118 

 𝐺𝑃𝑃 =  𝑎 × 𝐸𝑇 (3) 

 𝑅𝑒 = 𝑚 + 𝑛 × 𝐺𝑃𝑃 (4) 

2.1. Model Validation 119 

We validated the model outputs using both in-situ observed data (e.g., stream discharge data from gauge stations and 120 
ET eddy flux data) and remotely sensed data (e.g., ET and GPP estimates from satellites). Initially, the discharge was 121 
validated for twelve upstream watersheds across Germany, (Fig. 1). The performance criteria to determine the 122 
accuracy of monthly outputs are model bias (%), R2, scatter plots, Nash-Sutcliffe efficiency (NSE), and Kling-Gupta 123 
efficiency (KGE). The estimated ET was validated against several timescale data, including daily eddy flux, monthly 124 
MODIS ET, and watershed-specific water balance values calculated by subtracting Q from precipitation on a monthly 125 
and annual timescale. For carbon, we compared the GPP estimates with GPP measurements from eddy flux towers, 126 
MODIS GPP, and CGLS GPP.   127 
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 128 

Figure 1: A map of the study area presenting a) Germany's boundaries with all the 804 watersheds delineated, Global 129 
Runoff Data Center's (GRDC) gauge station locations, major rivers, eddy flux tower sites and representative 130 
watersheds for Q and ET validation and b) Germany's land cover and state boundaries. 131 

2.2. Input Data 132 

2.2.1. Climate Data 133 

Climate data (i.e., precipitation and temperature) is sourced from Germany's national meteorological service (DWD, 134 
2018). Datasets have a spatial resolution of 1km and a temporal resolution of months. The gridded data are prepared 135 
by estimating monthly deviations for each station, which are then interpolated using inverse squared distance weighted 136 
interpolation and transformed back into real values using reference grids (Kaspar et al., 2013). 137 

2.2.2. Land cover classification 138 

CORINE land cover (CLC) map of 2018 with a 100m spatial resolution was used in this study (EEA, 2021). Validation 139 
studies showed that it can capture land cover with an accuracy of 85% (Büttner et al., 2021; Keil, 2017).  This study 140 
reclassified land cover into 10 major classes to reduce complexity. Table S2 shows the range of CLC classes that were 141 
merged along with their percentage across Germany.  142 

2.2.3. Leaf Area Index 143 

Climate Data Record's (CDR) Vegetation (VGT) sensor LAI was used. The data is available from 2001 to 2014, with 144 
a 10-day temporal and 1km spatial resolution.  All pixels with an invalid LAI status were removed during quality 145 
control (Verger et al., 2018). Validation studies of this product showed that it underestimates ground data with a bias 146 
of 0.31 and a correlation of 0.72, while against multiple satellite datasets, it overestimates with biases ranging between 147 
0.03 (for MODIS) to 0.36 (for GLOBCARBON) (Camacho & Cernicharo, 2014). 148 
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2.2.4. Fractional impervious cover and soil data  149 

The fractional impervious cover is derived from the Global Man-made Impervious Surface (GMIS) dataset (Brown 150 
de Colstoun et al., 2017). It has a spatial resolution of 30m.  151 

Digital soil map BUEK 200 was used to estimate eleven soil parameters following Y. Zhang et al. (2011) and Anderson 152 
et al. (2006). Land cover and soil properties were used to obtain the curve number (CN) that controls the partitioning 153 
of soil into upper and lower zones. The water allocation between tensed and free water storage is determined by soil 154 
composition. The final product has a spatial resolution of 500 m.  155 

2.3. Validation Data 156 

2.3.1. Stream Discharge Data 157 

The discharge data used for validation are sourced from the Global Runoff Data Center (GRDC).  Twelve upstream 158 
stations were identified from a large group of stations for validation of discharge in this work because upstream 159 
watersheds have less anthropogenic influences. The stations were selected for different regions of Germany to ensure 160 
different land uses and land covers were validated. The location of stations can be observed in Fig. 1, while their 161 
names and ID are provided in Table S3. 162 

2.3.2. Eddy Flux ET and GPP 163 

ET and GPP in-situ measurements were acquired from the FLUXNET2015 database. The data available is quality 164 
controlled and the gaps within the data are filled and corrected to offer high-quality information. Energy balance 165 
closure correction factors (EBC_CF) were used to correct these datasets. The EBC_CF were estimated using three 166 
different methods each assuming that the Bowen ratio holds true. In this study, monthly latent heat turbulent flux (LE) 167 
was converted to ET with and without energy closure corrections and GPP was calculated using the daytime 168 
partitioning method (Pastorello et al., 2020). 169 

2.3.3. MODIS ET and GPP Data 170 

The Moderate Resolution Imaging Spectroradiometer (MODIS) ET product MOD16A2GF is employed in this work. 171 
The remote sensing data is used to compare the spatial variation of model output. MODIS has a spatial resolution of 172 
500m and a temporal resolution of 8-day. The ET estimation follows the Penman-Monteith equation (Running et al., 173 
2019b). The product has been comprehensively validated in multiple studies (Kim et al., 2012; Z. Liu et al., 2015; 174 
Trambauer et al., 2014; Velpuri et al., 2013) and used to evaluate the output of hydrological models (G. Sun et al., 175 
2011).  This study used a monthly sum of ET values and spatial average calculated on a sub-watershed scale. 176 

The gap-filled GPP product employed in this study is MOD17A2HGF, with a spatial resolution of 500m and a 177 
temporal resolution of 8-day.  It follows Monteith's logic and uses land cover specific light use efficiency (ɛ), fraction 178 
of absorbed photosynthetically active radiation (FPAR), incident photosynthetically active radiation (IPAR), the 179 
deficit of vapor pressure, and minimum air temperature (Running et al., 2019a). Insights on the application and 180 
validation of MOD-GPP are provided in multiple studies (Z. Liu et al., 2015; G. Sun et al., 2011; Turner et al., 2006; 181 
Wang et al., 2017; Zhu et al., 2018).  182 

Copernicus Global Land Service (CGLS) GPP are derived from the Gross Dry Matter Productivity (GDMP) values. 183 
We used the version 2 product from SPOT/VGT and PROBA-V satellites to evaluate the model GPP estimates for the 184 
period of 2001 – 2019. The GDMP product has a spatial and temporal resolution of 1km and 10-day. It represents the 185 
additional gross dry biomass stored in vegetation, which could be converted into gross carbon uptake by multiplying 186 
it with a scaling factor of 0.45 gC/gDM, as shown in the following equation (Smets et al., 2019). 187 

 𝐺𝑃𝑃 (𝑔𝐶 𝑚−2 𝑑𝑎𝑦−1) = 𝐺𝐷𝑀𝑃 (𝑘𝑔 𝐷𝑀 ℎ𝑎−1 𝑑𝑎𝑦−1) ∗ 0.45 ∗ 0.1 (5) 

https://doi.org/10.5194/egusphere-2025-1629
Preprint. Discussion started: 4 August 2025
c© Author(s) 2025. CC BY 4.0 License.



7 

 

3. Results  188 

3.1. Model Validation 189 

3.1.1. Discharge Validation 190 

Model discharge validated on a monthly scale gives Kling-Gupta efficiency (KGE) for eight out of the twelve 191 
watersheds above 0.5 and NSE for six out of twelve watersheds greater than 0.6, as shown in Table S3. While on an 192 
annual scale the values of model bias (%) for eleven out of the twelve stations were between -25% to 25% and for R2 193 
ten out of twelve stations were above 0.60, as presented in Table S4. The scatter plot between modelled and observed 194 
discharge, across the twelve watersheds on both annual and monthly scales, is presented in Fig. S1. The plot showed 195 
high correlation between the two datasets suggesting the model performed reasonably well. Furthermore, the 196 
hydrograph plots revealed that the model, in general, was able to simulate the monthly flows reasonably well, as 197 
shown in Fig. 2. Except for the Wasserthaleben station, where the model performance was weak with bias equal to 198 
131.8 % and annual R2 of 0.18.  199 
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 200 

 201 

Figure 2: Monthly discharge time series from WaSSI simulation in mm (maroon) plotted against observed gauge 202 
station flow in mm (blue) during 2000-2020. 203 
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3.1.2. ET Validation 204 

The ET estimates from WaSSI were compared with multiple eddy flux (EC) ET observations that are available within 205 
Germany. Monthly land cover specific validation of simulated ET against EC ET is presented in Fig. 3. The ET 206 
estimates were captured reasonably well by the model as the points in the scatter plot generally stayed close to the 1:1 207 
line except for Grassland. The detailed validation results are provided in Table S5. Ten out of eleven watersheds had 208 
an R2 value > 0.6 and a correlation > 0.75. Seven out of eleven watersheds had a model bias (%) between -25% to 209 
25%, and KGE estimate ≥ 0.6. The greatest discrepancy in this validation was found in Lackenberg with a bias of 52.4 210 
%. Overall, the model was able to capture ET values reasonably well across different land covers within Germany 211 
(Fig. S2a).  212 

WaSSI ET on an interannual scale showed that it can satisfactorily simulate the variability of ET captured by MODIS 213 
across Germany, as shown in Fig S2b-c. The model mostly underestimated ET in southern and northwestern Germany, 214 
while slightly overestimating the ET in mid-western and eastern Germany. When the simulated ET was assessed 215 
against ET estimates as precipitation minus observed discharge (P-Q observed) interannually, the mean annual biases for 216 
all the twelve watersheds were within ± 25% threshold. Eight out of the twelve watersheds had biases within ± 10%, 217 
indicating a very good model performance (Table S6).  218 
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 219 

Figure 3: Land cover specific simulated ET validation (WS_ID) against corrected eddy flux ET data. The line running 220 
diagonally through the scatter plot is a 1:1 line. 221 
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3.1.3. GPP Validation   222 
A monthly land cover specific validation was conducted between modelled GPP and observed GPP from EC towers. 223 
The observed GPP estimates were developed using the daytime partitioning method (GPP_DT_VUT_REF). The 224 
results showed that nine out of fourteen watersheds had a model bias within ± 25%, twelve had R2 > 0.6, seven had 225 
NSE > 0.5, six had KGE > 0.5, and all the watersheds had a correlation > 0.6, as shown in Table 1. Furthermore, the 226 
results showed that simulated GPP from WaSSI were higher compared to the remotely sensed GPP estimates from 227 
Copernicus and MODIS satellite by approximately 7% and 16%, respectively. The difference, correlation and 228 
regression between simulated GPP and remotely sensed GPP is shown in Fig. S3. 229 

Table 1: Monthly validation of WaSSI-GPP against EC-GPP. Stations are grouped for different land covers e.g. 230 
cropland (CRO), deciduous broadleaf forest (DBF), ENF, grassland (GRA) and wetland (WET). 231 

  232 

Eddy Flux Tower 
Watershed 

ID 

Land 

cover 

Model 

bias % 
R2 Corr NSE KGE 

Selhausen Juelich 457 

CRO 

 

-15.94 0.65 0.81 0.45 0.33 

Klingenberg 394 8.34 0.38 0.62 0.37 0.37 

Gebsee 415 13.54 0.48 0.69 0.41 0.35 

Hainich 390 

DBF 

8.28 0.84 0.92 0.73 0.57 

Leinefelde 390 3.19 0.87 0.93 0.75 0.57 

Lackenberg 631 

ENF 

224.09 0.83 0.91 -5.82 -1.51 

Oberbärenburg 394 -13.4 0.86 0.93 0.74 0.59 

Tharandt 394 -19.7 0.89 0.94 0.73 0.59 

Grillenburg 394 

GRA 

-35.42 0.75 0.87 0.37 0.3 

Rollesbroich 457 -26.79 0.81 0.9 0.55 0.49 

Schechenfilz 

Nord 
737 

WET 

2.61 0.68 0.83 0.67 0.82 

Spreewald 269 -50.54 0.82 0.91 0.18 0.16 

Zarnekow 38 21.62 0.84 0.92 0.77 0.7 

Anklam 23 -40.91 0.63 0.79 0.28 0.2 

 233 

3.2. Understanding the water-carbon coupling across Germany 234 

3.2.1. Spatial variation of ET from 2001 - 2019 235 

Over a nineteen-year period, the mean annual ET across Germany ranged between 250 to 800 mm yr-1 and had a 236 
spatial mean and standard deviation of 530 ± 49.5 mm yr-1. Eastern Germany (Saxony Anhalt, Brandenburg, 237 
Mecklenburg Vorpommern, Saxony, and Thuringia) had lower ET than the spatial mean, while the South and West 238 
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had higher ET, as shown in Fig. 4a. On an annual scale, Bavaria and Lower Saxony experienced significant ET losses. 239 
The absolute losses were 39.5 billion m3 yr-1 in Bavaria and 25.7 billion m3 yr-1 in Lower Saxony. Bavaria had a 240 
smaller fraction of its precipitation lost as ET (0.3 to 0.9) compared to Lower Saxony (0.5 to 0.9). Across Germany 241 
the eastern states lost the largest share of their precipitation as ET (0.8 – 1.0), leading to a very limited available water 242 
supply in the region, shown in Fig. 4b. Furthermore, to understand whether ET is limited by energy or water 243 
availability, we estimated ET:PET ratio across Germany. The actual ET of watersheds near the Alps exceeds the PET. 244 
These watersheds receive more precipitation compared to the rest and thus energy limits the ET values, while the 245 
water availability limits ET for the rest parts of Germany (Fig. 4c). Lastly, eastern states and some watersheds in 246 
Rhineland-Pfalz and Hessen are drier with relatively high-water scarcity as they receive less precipitation compared 247 
to their PET (Fig. 4d). 248 

 249 

Figure 4: Modelled parameters presenting ET dynamics on a watershed scale across Germany over state boundaries 250 
within the period of 2001 - 2019. The separate sections show a) mean annual actual ET (mm yr-1), b) ratios between 251 
ET and precipitation, c) ratios between ET and potential ET and d) ratios between precipitation and potential ET.  252 
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3.2.2. Ecosystem services across Germany throughout 2001 – 2019. 253 

The mean annual water yield across Germany ranges between 31.8 – 1477.5 mm yr-1, has a spatial average of 259 ± 254 
173.5 mm yr-1 and generates a total discharge of 84.86 billion m3 per year (Fig. 5a). In eastern states the water yield 255 
was lower than the spatial average, while in southern states it was higher. The mean annual GPP estimates (Fig. 5b) 256 
were found between 0 – 2046.5 g C m-2 yr-1 with a spatial average of 1278.8 ± 237.7 g C m-2 yr-1 and a total national 257 
carbon uptake of 441.54 Tg C yr-1. The mean annual NEP values (Fig. 5c) were observed between 0 – 665.5 g C m-2 258 
yr-1 with a spatial average of 308.3 ± 78.2 g C m-2 yr-1 and a total national carbon sequestration of 106.03 Tg C yr-1.  259 

 260 

Figure 5: Spatial distribution of model simulated a) mean annual total water yield (mm yr-1), b) mean annual GPP (g C 261 
m-2 yr-1), and c) mean annual NEP (g C m-2 yr-1). 262 

3.2.3. Temporal variability of ecosystem services and the control of land cover on these services. 263 

The mean annual precipitation for the period 2001–2019 was estimated at 779 ± 106.2 mm/year. Notably, 2002 and 264 
2007 were identified as the two wettest years within this timeframe. Precipitation in 2002 exceeded the mean by 265 
30.2%, while in 2007 it was 24% higher than the mean. Conversely, the driest years were 2003 and 2018, with rainfall 266 
falling below the mean by 22.7% and 25.5%, respectively. There were relatively high variations in Q and NEP during 267 
these wet and dry years, indicating that these two fluxes are sensitive to changes in precipitation compared to ET and 268 
GPP. In 2018, which is the driest year in the study period, we observed that compared to the mean there was 25.5% 269 
less precipitation. This was accompanied by 11.7% less ET, a 26.8% reduction in Q, 11.7% less GPP and 24.7% lower 270 
NEP. Alternatively, during 2002, the wettest year in our study, we found 30.2% more precipitation compared to mean. 271 
Which may have lead to 7.4% more in ET, 73.4% higher Q, 7.3% more GPP, and 15.5% rise in NEP, relative to mean. 272 
An annual overview for temporal variation is presented in Fig. 6.  273 
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 274 

Figure 6: Ecosystem fluxes (Precipitation, ET, NEE, GPP) across Germany simulated by the model from 2001 - 2019 275 
to observe annual variation.  276 

To evaluate the role of land cover in water yield and carbon sequestration, we estimated the share of ecosystem services 277 
provided by the ten different land cover classes. The most essential land covers that provide the largest share of water 278 
across Germany are Cropland (52.1%), ENF (16.7%), and Urban (13.7%); they supply 82.5% of the water in total. 279 
The land covers that sequester most carbon are DBF (25.3%), mixed forest (MF) (16.3%), and ENF (14.7%); they 280 
contribute 56.3% of carbon sequestered in Germany. Lastly, we would like to highlight that a small portion of land 281 
covers, such as wetlands, open shrubland, closed shrubland, and grasslands cover less than 2% of German territory; 282 
however, they regulate > 30% of the total carbon sequestered in Germany, indicating the high importance of 283 
conserving these ecosystems, as shown in Fig. 7. 284 

 285 
Figure 7:  The mean percentage or share of carbon sequestration and water supply originating from different land 286 
covers across Germany. 287 
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3.2.4. Spatial variability of ecosystem services during extreme weather events 288 

To understand the impact of droughts and floods on ecosystem services, we examined the droughts for the year 2003 289 
& 2018 and the floods for the year 2002 and 2013. During 2003, precipitation was 22.7% less than its average and 290 
only western states had close to average precipitation. The total water yield was 29.6% less than average. The carbon 291 
sequestration was 18.5% lower than average. While western states had close to average carbon sequestration the rest 292 
experienced significantly reduced levels. Compared to 2003, the pattern and intensity of the 2018 drought was more 293 
severe. During this event, Germany cumulatively received 25.5% less precipitation, had a 26.8% lower water yield, 294 
and had 24.7% less carbon sequestration. The total water yield was 62.13 billion m3, total carbon uptake was 389.77 295 
TgC, and total carbon sequestration was 79.82 TgC. The variations in ecosystem services due to both drought events 296 
are presented in Fig. 8. On the other hand, during the extremely wet year of 2002, Germany received 30% more 297 
precipitation than annual mean. The water yield and carbon sequestration were 70% and 15.5% higher than the mean, 298 
respectively. The second wet year of 2013 suffered from severe regional floods. The regions that received higher 299 
precipitation had a larger water yield and sequestered more carbon. Interestingly, northwest Germany was drier than 300 
the mean, as a result the overall ecosystem services for 2013 were close to the mean estimates. The variations in 301 
ecosystem services during both years are presented in Fig. 9. 302 

 303 
Figure 8: The response of ecosystem services (water yield (mm) and carbon sequestration (g C m-2)) during two 304 
drought events (2003 and 2018). Both drought events had different spatial patterns and intensities, thus the response 305 
from the ecosystem varied spatially. The anomalies in the figure were estimated by subtracting the mean annual values 306 
for the period 2001 – 2019 from the estimates of the individual drought years 2003 and 2018 on a watershed scale. 307 
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 308 
Figure 9: The response of ecosystem services (water yield (mm) and carbon sequestration (g C m-2)) during two flood 309 
events (2002 and 2013). Both events had different spatial patterns and intensities, thus the response from the ecosystem 310 
varied spatially. The anomalies in the figure were estimated by subtracting the mean annual values for the period 2001 311 
– 2019 from the estimates of the individual year 2002 and 2013 on a watershed scale. 312 

4.  Discussion 313 

This study explores the response of water-carbon cycle to land cover and extreme events across Germany on watershed 314 
scale. The WaSSI model performs reasonably well in this region and is estimated to generate 84.86 billion m3 of 315 
discharge and 106.03 TgC of carbon sequestration per year. The results also highlight the importance of sparse 316 
landcovers (e.g. wetlands, open shrubland, closed shrubland, and grasslands) in regulating carbon sequestration. 317 
Furthermore, the study shows that ecosystem services are quite sensitive to droughts and floods, but buffers developed 318 
from previous year can play a significant role in mitigating this effect. 319 

The model validation results successfully demonstrate that the model can be applied across central Europe (e.g. 320 
Germany). The simulated discharge had small model bias percentage and high regression values. Furthermore, the 321 
spatial and temporal variability of the discharge was modelled reasonably well with high NSE, KGE, R2, and low P-322 
bias for most watersheds (Table S3 - S4). Except for station Wasserthaleben, which had very high flow values leading 323 
to a P-bias equal to 131.8%, KGE of -1.48, and annual R2 of 0.18. The poor performance of this individual station 324 
could be attributed to several possible reasons, including its relatively small surface area, the uncertainty of input data 325 
(soil parameters or climate data), underestimation of losses to groundwater, simplification of physical processes that 326 
estimate surface runoff, or the presence of prevalent unidentified dams in the watershed (Caldwell et al., 2012). 327 
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Simulated ET validated reasonably well against data from different eddy flux towers across the study area (Fig. 3). 328 
The largest discrepancy was found in Lackenberg station. Even though corrected ET values are used for validation, 329 
there might be uncertainties in correction factor (Pastorello et al., 2020) and inaccuracies in the observed data due to 330 
energy imbalance. For spatial analysis, the simulated ET was compared with MODIS data. The model values were 331 
low compared MODIS ET in southern and northwestern Germany, but high in mid-western and eastern Germany. The 332 
discrepancies between MODIS-ET and WaSSI ET could be attributed to multiple factors, i.e. the intrinsic limitations 333 
of the different algorithms used by the model and MODIS to estimate ET, uncertainty from the misclassification of 334 
land cover between the two datasets, uncertainties in the model's input data, uncertainties in MODIS's input data, 335 
exclusion of waterbodies in ET estimation by MODIS, and the role of interception in MODIS-ET estimation (Kim et 336 
al., 2012; Trambauer et al., 2014). 337 

Furthermore, the model performance across different land covers showed that simulated GPP estimates capture forest 338 
biomes significantly well, except for the station in Lackenberg Forest. The model performance for the rest of the land 339 
covers was complex, but reasonable. For example, croplands had good model biases but low regression values; 340 
grasslands had poor model biases, but high regression estimates; wetlands are more complicated (see Table 1). The 341 
discrepancies in the results can be from 1) the model's inherent limitation i.e., lack of radiation in model PET leading 342 
to underestimation of GPP, 2) an insufficient number of eddy flux data for different land covers, and uncertainty in 343 
eddy flux GPP. The uncertainty of daily GPP can reach 15% to 20% (Falge et al., 2002; Hagen et al., 2006; Lasslop 344 
et al., 2010; Verma et al., 2014). Understanding uncertainties in eddy flux GPP is ongoing research. The mismatch of 345 
land cover and landscape heterogeneity at the evaluation sites between the model (watershed scale) and the eddy flux 346 
(single location) will reduce as more data becomes available with time (Verma et al., 2014). Lastly, the difference 347 
between spatial distribution of simulated GPP and remotely sensed GPP may be due to WUE parameters. They were 348 
derived from the global FLUXNET database, which might not have sufficient representation of certain ecosystems 349 
(e.g., wetlands and savannas) resulting in a bias of GPP estimation (G. Sun et al., 2011). Nevertheless, multiple studies 350 
have also shown that data from remote sensing tends to underestimate GPP (Z. Liu et al., 2015; Wang et al., 2017; 351 
Zhu et al., 2018).  352 

The model helps determine the stocks and flows of ecosystem services across Germany. We found that Zink et al. 353 
(2016) and Huang et al. (2010) estimated similar annual ET and water scarcity patterns across Germany in their 354 
individual studies. The eastern region in Germany generally receives less precipitation, has high mean annual 355 
temperature, high ET from forests and low water yield, implying intense water use competition. The total water supply 356 
reported by German Environment Agency (UBA) was higher than the simulated results because WaSSI model does 357 
not take into account transboundary inflows (J. Arle et al., 2018). Furthermore, the southern region in Germany had 358 
slightly higher carbon uptake and sequestration values then the rest of the country. The distribution patterns of carbon 359 
sequestration were similar to carbon uptake because NEP and GPP have a linear relationship. Urban areas did not 360 
sequester any carbon but played a significant role in providing water supply. The distribution and management of land 361 
use and land cover determine how ecosystem services vary. To ensure adequate quantity and quality of services, like 362 
freshwater and natural sink of CO2, land use decision-making must incorporate the assessment of currently available 363 
stocks and their actual value according to regional and national priorities.  Based on historical data, the available 364 
stocks quantified in this study provide evidence to relevant stakeholders of different regions. Furthermore, the 365 
significance of minor land covers or ecosystems in terms of proportional coverage, such as wetlands, is also 366 
highlighted. Germany aims to become CO2 neutral by 2045; synergies and tradeoffs of ecosystem services can be used 367 
to design land use policy that align with Sustainable Development Goals. A science-based approach will be necessary 368 
to leverage the potential of natural C sink to fix and offset carbon emissions. 369 

As the frequency and intensity of periodic dry and wet spells change due to global warming so does their impact 370 
through drought and flood. In this work, we, quantified the response of water yield and carbon sequestration to extreme 371 
drought and high precipitation events across Germany. During the drought events of 2003 and 2018 the lack of 372 
precipitation, overall, had a direct negative impact on water yield and carbon sequestration. But it is interesting to see 373 
that soil is able to store water from the previous years which act as a buffer and provide limited relief during extreme 374 
drought events (Fig. 8). According to Ciais et al. (2005), a 30% reduction in carbon uptake was observed across Europe 375 
during the drought of 2003, while we estimated a reduction of around 8.8% for Germany. Europe-wide studies on the 376 
impacts of the 2018 drought event on carbon sequestration are presented by Thompson et al. (2020) and Smith et al. 377 
(2020). They found that the annual sequestration anomaly in 2018 across northern Europe was 0.02 ± 0.02 PgC yr -1 378 
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less compared to a 10-year European mean (Thompson et al., 2020). It was estimated that during the year 2018 an 379 
overall reduction in sequestration was around 57 TgC (Smith et al., 2020). However, a direct comparison between our 380 
research is difficult due to the difference in the spatial boundaries. In general, Germany has no shortage of water, 381 
however, a trend to have less precipitation during summer seasons or prolonged dry spells during main vegetation 382 
growing months can have substantial adverse effects on both surface water and groundwater supply. Temporary 383 
seasonal rainfall deficiency can cause significant losses of surface water supply and carbon sequestration, leading to 384 
dry conditions that negatively affect the yields and products from the agriculture and forestry sectors. For example, 385 
low soil water availability weakens forest health and favors bark beetle infestation, resulting in huge economic losses 386 
of timber values and forest areas in Germany over the last few years (Lausch et al., 2013; Zimmermann & Hoffmann, 387 
2020). Therefore, land use transformation to adapt to climate change is indispensable to developing ecological 388 
resiliency based on an improved understanding of the role of various land covers in providing ecosystem services. 389 

While this study provides valuable insights on response of water-carbon cycle to land cover and extreme events, it is 390 
limited by the scope of WaSSI Model. The monthly temporal resolution of the model prevents it from estimating peak 391 
flows accurately. The use of WUE to connect ET and carbon sequestration is limited due to insufficient eddy flux 392 
tower coverage. The lack of transboundary river flow and omission of crop rotation further limits the application of 393 
this model. In future, we plan to use WaSSI model across hydrological boundaries, apply projected climate data and 394 
projected landcover data to run simulations for different scenarios. The analysis will help us evaluate future changes 395 
in ecosystem services.  396 

5. Conclusions 397 

This study presents new insights into the relationship between water-carbon cycle and land cover, and the impacts of 398 
climate extremes across Germany. The model validation results holistically show that the simple water and carbon 399 
model could capture ecosystem services reasonably well at the national level. Furthermore, the spatial and temporal 400 
relationship between carbon and water highlighted that the eastern states of Germany are comparatively drier than the 401 
rest of the country because most of their precipitation is lost as ET. The average water yield across Germany ranges 402 
from 32 – 1478 mm yr-1 and generates a total annual discharge of 84.86 billion m3 per year. Similarly, the average 403 
carbon sequestration ranges from  0 – 666 g C m-2 yr-1 and annually sequesters 106Tg C yr-1. Our simulation results 404 
showed that croplands supply the largest percentage of available water, while DBF sequester the major share of carbon. 405 
The analysis also emphasized the critical role of minor land covers (e.g. wetlands, open shrubland, closed shrubland, 406 
and grasslands) in providing ecosystem services for carbon sequestration. The extreme events in 2003 and 2018 had 407 
a significant impact on ecosystem services at the national level. Moreover, the severe flood of 2013 also played a 408 
major role on a regional scale in the Elbe and Danube River basins. This rigorously verified model provides confidence 409 
that the model can be used to strategic applications for developing Nature-based Solutions (NbS), which will be helpful 410 
for Germany to meet its net-zero carbon emissions by 2050. In the future, we aim to concentrate our research efforts 411 
on understanding how land use land cover change or landscape transformation will affect water yield and carbon 412 
sequestration across different watersheds for climate adaptation.  413 
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