Reviewer 1

Dear reviewer,

Thank you for your valuable comments, which have greatly helped improve the clarity

and quality of this manuscript. Please find our detailed responses below.

1. In general, the text in some figures is very small and difficult to read. Please make it

large enough to print and read on A4 paper.

v Response: Thank you for this suggestion. Figures 1, 2, 4, 10 and 11 have been

reformatted to enhance readability on A4 paper.

2. P4 Figure 1 - Where is the Constantine study area in Figurel? Does this refer to the

rectangular area of approximately 3km x Skm shown in Figure 1?

v Response: The study area corresponds to the red rectangular box shown in Figure
1 within Constantine Province. To avoid confusion, we have revised the figure
by improving the layout and annotations, making the boundaries of the study area

more explicit.

3. P4 Figure 1 - How is the extent of the landslide interpreted and shown in red in Figure
1? When a slope collapses, sometimes only the collapsed area is interpreted, and
sometimes the area where the collapsed soil and sand have deposited is also interpreted
in addition to the collapsed area. How is the area interpreted here? In my opinion, given

the main purpose of this paper, the former is preferable.

v Response: We thank the reviewer for this pertinent observation. Landslides were
delineated by mapping the entire affected area, from the main scarp to the toe,
thereby including both the source and accumulation zones. In this region,
dominated by clays and marls overlying hard substrates, displacements are

moderate and deposition zones relatively limited.

v" Changes in the manuscript: we added the following paragraph in the Landslide

inventory section: “Each landslide was delineated by mapping the entire affected



surface, from the main scarp to the toe, thus incorporating both the source and
accumulation zones. Due to the predominance of clays and marls overlying hard
limestone or conglomerate formations, most slope movements in the study area
are characterized by moderate displacements and relatively small deposition

areas.”

4. P4 L100 - Even if I read this section through, it is not clear when the landslide field
survey was carried out, meaning that the reader cannot determine when the landslide

shown in Figure 1 occurred.

v' Response: We acknowledge the importance of clarifying the inventory

timeframe. Field surveys were conducted between June and December 2024.

v Changes in the manuscript: This information has been added to the revised
manuscript as “The inventory including urban and non-urban landslides were
compiled during a comprehensive field and remote sensing interpretation survey

conducted between June and December 2024.”

5. P5 L127 - I understand the way how you made landslide inventory in Urbanized area.
However, 1 don’t know the method in which you made landslide inventory in non-
urbanized area. Would you tell it to me and the readers? At first, I tried to find the method
in Alharbi et al(2014), but I failed. The literature is just describing rural slope failures in
Faifa in Saudi Arabia.

v Response: We agree that the description of the inventory mapping method for
non-urbanized areas was insufficiently detailed. In non-urbanized sectors of the
study area, landslides were primarily identified using remote sensing techniques,
supported by field verification. The landslide inventory was established based on
morphological criteria, following the principles proposed by (Varnes, 1984). This
approach relies on the visual interpretation of geomorphic features typically
associated with mass movements, such as main scarps, toe bulges, surface cracks,
and accumulation zones. These morphodynamic indicators make it possible to
identify and delineate landslides. Therefore, the method applied in rural settings
is essentially based on direct geomorphological analysis, which complements the

approach adopted in urbanized areas.



v' Changes in the manuscript: We have added a sub section ‘Landslide Inventory
in Non-Urbanized Areas: In non-urbanized areas, the landslide inventory was
constructed primarily through remote sensing interpretation, complemented by
selective field verification. Mapping was guided by morphological criteria
following the principles of (Varnes, 1984) whereby typical geomorphic
signatures of mass movements, such as scarps, displaced material, surface cracks,
and toe bulges, were visually identified and delineated. This geomorphological
approach ensured that landslides in rural sectors were consistently captured and
provided a methodological counterpart to the field-based strategy applied in

urban areas.’

6. P6L144 - Fig.4 b-f ---> Fig.2 b&f ? To me “b-f” seems to indicate from b to f, that is “b,
c,d, e .

v" Response: Thank you for spotting this inconsistency. We have corrected the

figure references in the revised manuscript.

7. P8 Table 1 - Was the NDVI calculated based on the imagery on 28 March 2017? Or that
on 2 February 2025? Why did you use two images? I think that readers may be wondering
which came first: the dates the satellite images were taken or the dates the landslides

occurred.

v" Response: We thank the reviewer for highlighting this ambiguity. NDVI was
derived from a multi-temporal series of harmonized Sentinel-2 MSI images
spanning 28 March 2017 to 2 February 2025, rather than a single scene. This
approach reduces cloud contamination, seasonal effects, and signal noise. We

used the median NDVI across the time series.

v Changes in the manuscript: This has been clarified in Table 1 Summary of

landslide conditioning factors used in this study.

Factor Type Source Resolution




Harmonised Sentinel-2 MSI (median of time
NDVI series between 28 March 2017 and 2 February 10 etres
2025) (Claverie et al., 2018)

8. P10 L199 - Slope <5 degree ---> slope > 5 degree?

v Response: We thank the reviewer for pointing out this ambiguity. Our intention
was to indicate that landslide occurrence increases with steeper slope angles. The
threshold value in the text was a typographical oversight. The correct statement
should read “slope > 5°” (not “slope < 5°”), since in our study area slopes above

this threshold showed markedly higher landslide frequencies.

v" Changes in the manuscript: Certain factor ranges (e.g., slope >5° or elevation
between 500 and 600 m) align with higher or lower landslide frequencies,

informing both susceptibility modelling and mitigation strategies.

9. P10 L201 - What this sentence shows strongly depends on the definition of the “urban

landslide area”. What is the urban landslide area?

v Response: We thank the reviewer for this observation. The definition of the
“urban landslide area” is provided in the manuscript under the subsection
Landslide Inventory in Urbanized Areas. “To establish a comprehensive
inventory within urbanized portions of the study area, landslide identification

was primarily based on in-situ observations.”

v" Changes in the manuscript: For more clarity we edited this part as: “To
establish a comprehensive inventory within urbanized portions of the study area,
landslide identification was primarily based on in-situ observations and mapped
where polygons intersect with built-up zones, as defined by the land cover map

and validated through local land use.”

10. P11 L225 - At what angle does a slope have to be considered "steep" or “low”? According

to Figure 4, the difference in occurrence between urban and non-urban landslides appears



to be the difference in landslide occurrence density on slopes of 10 degrees or steeper.

So, do you call slopes of 10 degrees or more “steeper slopes™?

v Response: In this study, we identified an empirical threshold of about 8°, as
shown in Figure 4. At this point, the non-urban landslide density begins to exceed
that of non-landslide terrain, providing a natural break between “moderate” and
“steeper” slopes. Accordingly, we refer to gentle/low slopes as <8° and steeper
slopes as >8°. While non-urban landslides are concentrated on >8°, urban
landslides also occur on slopes <8° due to anthropogenic disturbances such as

excavation and drainage mismanagement.

v Changes in the manuscript: In non-urban regions, landslides predominantly
occur on steeper slopes (>8°), where gravitational failures are more frequent in
the absence of human disturbance. In urban settings, landslides are common on
moderate to steep slopes but may also develop on gentle slopes (<8°) when
construction activities when construction practices, such as excavation and
drainage mismanagement, undermine natural stability. Although slope remains a
primary driver of landslides across both contexts, urban activities can widen the

range of vulnerable gradients.
11. P11 L240 - This sentence seems to be difficult to understand

v" Response: We thank the reviewer for pointing this out. The sentence has been

revised for clarity.

v Changes in the manuscript: “From the density curves, urban landslides are
generally associated with lower NDVI values, reflecting the reduced vegetation
cover typical of built-up environments. In contrast, non-urban landslides often
occur at moderately higher NDVI levels, where vegetation provides low root
reinforcement. Nevertheless, agricultural and semi-natural areas may still
experience slope failures when land management practices such as deforestation
or inadequate irrigation degrade vegetation quality. This pattern indicates that

vegetation cover alone does not guarantee slope stability”



12. P12 Figure 4 - I think that the definition of the landslide density should be obviously

shown using an equation if possible

v" Response: We thank the reviewer for this helpful suggestion. The densities
shown in Figure 4 were obtained using a Kernel Density Estimation (KDE)
approach, which provides a smoothed representation of the probability

distribution of landslide versus non-landslide cells for each conditioning factor.

v" Changes in the manuscript: To improve clarity, we have now added the KDE

formulation in the “Landslide causative factors” section as follows:

To understand the influence of environmental and anthropogenic factors
on slope stability, probability density functions were estimated for each

conditioning variable using a kernel density estimator (KDE):

fulx) = %ZK(’C;’”)

i=

=

where f,(x): estimated probability density at x, n the number of
observations, h the bandwidth (smoothing parameter), K the kernel function

(e.g., Gaussian), and x; the individual observations.

This approach provides a smoothed representation of the distributions of
landslide and non-landslide cells, while allowing urban and non-urban

landslide occurrences to be analyzed separately.

13. Rural landslide ---> Non-urban landslide? Rural? Non-urban? Are they different from

each other?

v Response: We thank the reviewer for highlighting this inconsistency. In our
study, “rural” and “non-urban” were intended to refer to the same category of
landslides occurring outside built-up areas. To avoid confusion, we have
standardized the terminology throughout the manuscript and now consistently
use the term “non-urban landslides.” This ensures clear distinction between urban

(within built-up areas) and non-urban (outside built-up areas) contexts.



14.

P13 L26 - In the latter sentences, you mentioned “...the urban dataset achieves the
highest overall performance despite being the smallest dataset”. To allow readers to find
that the urban dataset is the smallest, you should show some evidence somehow. How
about adding one table to show the number and the area of landslides for each subset,
Urban, Non-urban, and Mixed? The maximum, minimum, and average size of landslides
for each subset should be also shown. It might be helpful for readers to understand the

landslide characteristics.

v" Response: We thank the reviewer for this comment. To provide clear evidence
that the urban dataset is the smallest, we computed descriptive statistics for the

urban, non-urban, and mixed landslide inventories.

v" Changes in the manuscript: To further characterize the mapped landslides,
descriptive statistics were calculated for the urban, non-urban, and mixed
inventories. The urban dataset comprises 123 landslides totaling 18.4 ha, while
the non-urban dataset includes 61 landslides covering 21.2 ha. Combined, the
mixed inventory contains 184 landslides with a total area of 39.6 ha. Despite its

larger number of events, the urban dataset represents the smallest total area.

Table 1. Descriptive statistics of mapped landslides in the study area

Total Mean Area | Median Area | Min Area | Max
Type Count

Area (ha) | (ha) (ha) (ha) Area (ha)
Non-urban | 61 21.24 0.348 0.111 0.0058 3.97
Urban 123 18.4 0.1496 0.041 0.0006 4.37

Mixed 184 39.64 0.215 0.051 0.0006 4.37




15. P13 L275 - Finally, there appears to be no explanation of how to classify landslides into

urban, non-urban, and mixed datasets.

v Response: We thank the reviewer for pointing out this missing clarification. In
the revised manuscript, we now provide a clear description of the procedure used
to classify landslides into urban, non-urban, and mixed datasets. Landslides were
first delineated as polygons and overlaid with the official land-cover dataset. An
event was classified as urban when its polygon intersected built-up zones or was
directly associated with infrastructures. Conversely, events located entirely
outside these zones, within bare or agricultural land cover, were classified as non-

urban.

v' Changes in the manuscript: The following paragraph were added to the
Landslide inventory section: “Landslide inventory classification: The landslide
inventory was constructed with the objective of distinguishing between urban and
non-urban slope failures while maintaining methodological consistency across
the study area. Classification was carried out by overlaying mapped landslide
polygons with the land-cover dataset. An event was defined as urban when its
polygon intersected built-up zones or close to infrastructure. Conversely,
landslides located entirely outside these zones and in areas characterized by bare

or agricultural land cover were classified as non-urban.”
16. P17 L 311 - VIF (>30) ---> VIF (>40)?

v Response: We thank the reviewer for noticing this inconsistency. The correct
threshold used in our analysis is VIF > 40, not 30. We have corrected this in the

revised manuscript.

17. P19 L336 - You should describe the definition of the landslide susceptibility index shown

in Figure 8.

v" Response: We have now clarified the definition of the Landslide Susceptibility
Index (LSI) in the revised manuscript. LSI represents the relative spatial
probability that a given location is prone to landslides, based on environmental,

geological, and anthropogenic conditioning factors. Unlike hazard or risk,



susceptibility refers only to predisposition and does not include a time component
or expected consequences. In our study, the LSI was derived from the machine
learning model outputs, where each grid cell was assigned, a continuous value
reflecting its relative likelihood of landslide occurrence. Higher values

correspond to areas of greater susceptibility.

v" Changes in the manuscript: “The Landslide Susceptibility Index (LSI)
expresses the relative spatial probability of landslide occurrence. It reflects how
prone an area is to landslides, without reference to the timing or potential impacts.
In this study, LSI values were obtained from the machine learning model outputs,
where each grid cell was assigned, a continuous score indicating its relative
susceptibility. Higher LSI values correspond to greater likelihood of landslide

occurrence.”

18. In this section, landslide susceptibility maps using the various models and the different
datasets are only compared to each other. This is important, but I think there is one thing
missing. That is these maps should be also compared to the real landslide inventory
shown in Figure 1. Furthermore, not only landslide inventory but also the “stable areas”
shown in Figure 6 should be compared to the landslide susceptibility maps. Some stable

areas seem to be evaluated highly susceptible in some models.

e Response: We thank the reviewer for this valuable remark. In order to
compare the maps with each other, we propose to analyse the superposition
of landslide and stable areas on the susceptibility maps, and to display this
comparison through their distribution of susceptibility values. This approach,
illustrated in Figure 9, highlights how each model differentiates landslide
cells from stable cells: landslides should cluster at higher susceptibility
values, while stable areas should be concentrated at lower values. This
complementary analysis allows us to directly assess model performance with

respect to both the landslide inventory and stable areas.
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v Changes in the manuscript: “Figure 9 compares the density distributions of
Landslide Susceptibility Index (LSI) values for landslide cells and stable cells

across models and datasets. Clear separation between the two distributions

indicates good discrimination.

LightGBM. Urban landslides form a tight mode near 0.8—1.0, while urban
non-landslide cells concentrate at low LSI, indicating good discrimination.
Non-urban landslides also peak at high LSI but with a broader spread, and
the non-urban stable curve shows a long high-LSI tail, implying more false
positives. The mixed curves closely track the non-urban shapes, suggesting

that, in the combined dataset, non-urban signatures dominate, which dilutes

urban landslides.

XGBoost. Among all models, XGBoost shows the clearest discrimination.
In the urban dataset, landslide cells cluster sharply at LSI = 0.95, while non-
landslide curves collapse toward 0-0.2 with negligible right tails. In non-
urban terrain, separation remains strong and superior to LightGBM, with only
a small fraction of stable cells assigned high LSI. By contrast, the mixed

dataset exhibits a broader, flatter spread of LSIs, reflecting the heterogeneity



of urban and non-urban signatures and the resulting dilution of the decision
boundary. This reinforces the benefit of modelling the two environments

separately.

Random Forest. Urban landslides peak around 0.8 with low urban stable
densities at high LSI, evidencing good urban performance. In non-urban
areas, landslide densities shift to 0.6—-0.8 and overlap more with stable cells,
reflecting misclassifications. The mixed curves closely mirror the non-urban
shapes, indicating that RF’s piecewise partitions are dominated by the more
non-urban conditions, which reduces selectivity when both environments are
pooled. Environment-specific calibration (or thresholds) would likely

improve non-urban specificity.

MLP. The MLP concentrates landslide probabilities at the high end,
indicating good sensitivity. Non-landslide curves are mostly compressed
below 0.2, yet they retain residual right-tails, more visible for mixed and
urban sets, so a small fraction of stable cells is assigned high LSI (false
positives). This pattern is consistent with a high-capacity model capturing
non-linear interactions but becoming over-confident under heterogeneous

predictors.

Logistic Regression. Distributions are broader with substantial overlap,
but a consistent right-shift of landslide curves remains: landslide modes lie
around 0.60-0.75, while non-landslide modes are closer to 0.20-0.45. The
density is highest in urban dataset but shifted to low LSI and it weakens in
non-urban and mixed datasets, indicating the poorest discrimination

capabilities.”

References:
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S. V., and Justice, C.: The Harmonized Landsat and Sentinel-2 surface reflectance data set,

Remote Sensing of Environment, 219, 145-161, https://doi.org/10.1016/j.rse.2018.09.002,

2018.

Varnes, D. J.: Landslide hazard zonation: a review of principles and practice, 1984.



Reviewer 2

Dear reviewer,

We thank you for your constructive comments, which have helped improve the clarity, depth,

and overall quality of our manuscript. Please find the detailed responses below.

19. While the decoupling of urban and non-urban landslides is the main contribution, the
introduction and discussion do not sufficiently contrast this approach with existing
international studies. Please highlight more explicitly what gap in the literature is addressed

and how this study advances current knowledge.

v" Response: We thank the reviewer for this valuable comment. In the revised
manuscript, we strengthened the Introduction by explicitly contrasting our approach
with previous international studies. We now highlight that, although machine
learning has been widely applied in landslide susceptibility mapping (LSM), most
existing research treats the landscape as a single entity without distinguishing urban

from non-urban environments.

v' Changes in the manuscript: We have improved the discussion about this
shortcoming as follow: “Although extensive research has been carried out on
landslide hazard assessment in urban areas (Bathrellos et al., 2009; Huang et al.,
2023; Pascale et al., 2010, 2013), these studies generally examine urban
environments in isolation. They rarely investigate how urban and non-urban
processes differ, particularly in transitional zones where the two settings interact. At
the same time, the broader international literature shows that machine learning (ML)
has become a widely adopted tool for landslide susceptibility mapping. However,
most applications still treat the landscape as a homogeneous entity, without
explicitly distinguishing between urban and non-urban contexts.

Early work illustrates this limitation. For instance, (Caniani et al., 2008) applied
artificial neural networks in Potenza, Italy, but without differentiating urban from
non-urban landslides either in the inventory or during modeling. More recent studies
have followed a similar approach. (Islam et al., 2025) applied a hybrid ML model to
a rapidly urbanizing area in Bangladesh, and (Luo et al., 2025) assessed landslide

hazards in the central Guizhou urban agglomeration using SVM, DNN, and bagging



algorithms; in both cases, inventories did not explicitly separate urban from non-
urban events.

This limitation is critical because urban landslides are often shaped by
anthropogenic factors, including slope modification, drainage alteration,
construction practices, and infrastructure density, that differ markedly from the
natural drivers that dominate in non-urban areas. Without explicitly accounting for
these differences, susceptibility models risk oversimplifying complex processes and
overlooking the distinct mechanisms of slope failure across contrasting

environments.”

20. The construction of the landslide inventory is described, but the exact criteria for classifying
events as “urban” or “non-urban” remain unclear. More detail is needed on how transitional

or mixed zones were treated.

v Response: We agree that clearer detail on classification criteria is necessary. In the
revised manuscript, we now explicitly describe the procedure used to differentiate
urban from non-urban landslides. An event was classified as urban when its mapped
polygon intersected built-up areas or infrastructures (residential blocks, roads,
retaining structures, utilities) as defined by the land cover map, while landslides

located entirely in natural or agricultural zones were classified as non-urban.

v" Changes in the manuscript: The following clarification were added to the
Landslide inventory section: “Landslide inventory classification: The landslide
inventory was constructed with the objective of distinguishing between urban and
non-urban slope failures while maintaining methodological consistency across the
study area. Classification was carried out by overlaying mapped landslide polygons
with the land-cover dataset. An event was defined as urban when its polygon
intersected built-up zones or close to infrastructure. Conversely, landslides located
entirely outside these zones and in areas characterized by bare or agricultural land

cover were classified as non-urban.”

21. The finding that urban datasets outperform rural datasets is described as “unexpected.” This
requires deeper explanation—possible reasons include smaller sample size, greater

homogeneity of urban triggers, or biases in negative sample selection.



v" Response: We agree that the superior results from the urban dataset warrant
additional explanation, particularly given its smaller size. Specifically, we now
discuss how urban landslides create a sharper contrast between unstable and stable
cells, as illustrated in Fig. 4, where urban events occupy narrower and more
distinctive ranges of several conditioning factors, while non-urban landslides span
broader, overlapping ranges. This enhances model separability despite the smaller
sample size. We also acknowledge the potential role of negative sample selection
biases, as stable areas were identified through knowledge-based methods, which
may blur class distinctions in rural terrain. Finally, we clarify that urban slopes
generally present lower geomorphological complexity and more uniform triggering
factors compared with rural environments. processes in rural settings. These
elements likely ease the classification task for models in urban contexts, despite the

limited sample volume.

v Changes in the manuscript: We have improved the discussion as follow: “Several
explanations may account for this counterintuitive result. In urban areas, landslides
often create a sharper contrast between unstable and stable cells. As shown in Fig.
4, urban landslides occupy narrower, more distinctive ranges in several predictors,
whereas non-urban landslides span broader, overlapping ranges with the stable class.
This improves model separability despite the smaller sample size. In addition,
negative sample selection biases may further accentuate the contrast as stable areas
were identified through knowledge-based methods, thereby blurring class
distinctions. Finally, urban slopes typically display lower geomorphological

complexity and greater uniformity of triggering factors compared with rural terrain.”

22. SHAP-based interpretations are sometimes vague (e.g., “being farther from streams may

increase instability”’). More context-specific engineering explanations should be provided.

v" Response: We acknowledge the need for more precise and context-specific

interpretations of the SHAP results.

v Changes in the manuscript: The improved description now reads: “Across all three
datasets, both natural factors (slope, distance to streams, lithology) and
anthropogenic factors (particularly roads) emerge as key landslide predictors, with

their relative importance shifting depending on the urban or non-urban context. In



urban environments, natural drainage patterns are often disrupted by impervious
surfaces and redirected through engineered systems. Areas farther from natural
streams may lack adequate subsurface drainage infrastructure, leading to
groundwater accumulation and increased pore water pressure, a primary trigger for
slope instability. In contrast, non-urban terrains follow more common
geomorphological logic, with proximity to streams or steep slopes strongly
increasing instability. The mixed dataset blends these trends, underscoring that
roads, topography, and hydrological factors are consistently significant across
diverse landscapes. By comparing these results, decision-makers can better tailor
landslide mitigation strategies, focusing on slope stabilization and drainage
management in urban expansions, while prioritizing safe road infrastructure and

vegetation conservation in more rural settings.”

23. Validation relies solely on cross-validation and internal metrics. If feasible, please add
independent validation (e.g., comparison with external maps or independent inventory) or

at least discuss this limitation.

v" Response: We agree that external, independent validation offers a more
comprehensive assessment of a model's true predictive power. However, the
available landslide inventory for the study area is relatively limited in size and has
already been partitioned into separate urban and non-urban witch reduce the data
even more. This subdivision limits the possibility of extracting a completely
independent inventory, making the option of additional validation less suitable in
the context of this work. We also appreciate the reviewer’s suggestion regarding
comparison, and we have added a discussion contrasting our results with existing
susceptibility maps from previous studies in Constantine Province. This provides an

additional, indirect form of external validation.

v Changes in the manuscript: We have added the following discussion in the results

and discussion section:

“Beyond these internal performance metrics, it is also important to situate our
findings in relation to previous susceptibility assessments conducted in Constantine

Province. Several studies have produced maps using statistical, expert-based, or



multi-criteria methods, which provide a useful external reference for comparison

with our results.

Landslide susceptibility in Constantine Province has been evaluated in several
previous studies using different approaches. For instance, (Achour et al., 2017)
analyzed a highway road section using statistical methods; however, their study area
does not intersect with ours, limiting the relevance of direct comparison. (Abd1 et
al., 2021) applied AHP and Fuzzy-AHP methods in a zone that partially overlaps
our study area. Although their validation inventory was compiled at a smaller scale,
the main landslide-prone zones they identified correspond closely to areas that our
mixed and non-urban models classify as high to very high susceptibility. In contrast,
their mapping underrepresents small urban landslides, which may explain why our
urban model captures additional events not emphasized in their results. Similarly,
(Bourenane and Bouhadad, 2021; Bourenane et al., 2015) developed susceptibility
maps based on expert judgment and statistical approaches. While their analyses were
also conducted at a coarser scale, our non-urban and mixed models broadly agree
with their delineation of landslide and highly susceptible areas. Despite a smaller
study area, this work represents the most comprehensive assessment to date of
landslide susceptibility in the Constantine region. It stands out for its spatial scale,
the level of detail and reliability of the compiled inventory, the integration of

advanced learning methods, and advanced analysis of the findings.”

24. Discussion should go beyond performance ranking to highlight the strengths, weaknesses,

and applicability of each algorithm.

v" Response: We thank the reviewer for this constructive suggestion. In the revised
manuscript, we expanded the Results and discussion section to provide a detailed
evaluation of the strengths, weaknesses, and applicability of each algorithm.
Specifically, we explain that boosting methods (XGBoost and LightGBM) achieved
the highest predictive performance but tended to underestimate susceptibility zones,
yielding more conservative predictions. Random Forest, while slightly less accurate
in raw metrics, offered the best balance between over- and underestimation, making
it a robust and pragmatic choice for operational applications. The Multi-Layer
Perceptron showed capacity to capture complex non-linear interactions but
displayed variable performance in smaller or subdivided datasets, suggesting it is

better suited to larger or multi-temporal inventories. Logistic Regression, although



the least accurate, systematically overestimated susceptibility and delineated the
largest high-risk zones, which may be advantageous in contexts where maximum
precaution is required.

Changes in the manuscript: We have added the following subsection to the
manuscript: “Strengths, limitations of the algorithms

While performance metrics provide a quantitative comparison of the models, it is
equally important to examine their qualitative strengths, limitations, and practical
applicability. Each algorithm interprets the data in a different way, leading to
distinctive patterns of susceptibility mapping, ranging from conservative
underestimation to precautionary overestimation.

XGBoost and LightGBM consistently achieved the highest predictive performance
in this study. Their strength lies in their ability to capture non-linear interactions
between conditioning variables and to partition the feature space into highly
discriminative regions. This capacity was particularly evident in the urban dataset,
where landslide and non-landslide cells display sharp contrasts in predictor ranges.
Both boosting models also incorporate advanced regularization, which helps to
prevent overfitting in relatively small samples. However, one limitation observed is
a tendency to underestimate susceptibility in certain marginal areas, leading to
smaller zones classified as highly susceptible compared to other algorithms and
expert insights. This suggests that, while boosting methods maximize accuracy, they
may provide conservative predictions that require careful interpretation in risk-
averse contexts.

Random Forest also demonstrated strong and stable performance across datasets.
Although slightly less precise than boosting methods in terms of raw metrics, it
offered the best overall balance between overestimation and underestimation of
susceptibility zones. Its robustness to noise and low sensitivity to hyperparameter
settings make it an attractive choice for operational applications, particularly where
inventories are small or unevenly distributed. Random Forest also proved effective
in identifying consistent susceptibility patterns in both urban and non-urban settings,
highlighting its reliability as a middle-ground solution that balances predictive
strength with practical usability.

The Multi-Layer Perceptron, by contrast, showed more variable performance. It was
capable of capturing complex, non-linear patterns and sometimes rivalled tree-based

methods in predictive accuracy, but its sensitivity to dataset and tuning was evident.



With smaller inventories, particularly after splitting into urban and non-urban
subsets, MLP became less reliable (High spread of performance metrics) and
producing higher false positives. As such, MLP is better suited to larger or to
contexts where multi-temporal data are available to stabilize training.

Logistic Regression served as a valuable baseline model, offering transparency and
straightforward interpretability of predictor effects. However, the simplicity of
Logistic Regression also represents its main limitation: it relies on linear decision
boundaries and systematically overestimated susceptibility in our study, producing
the largest areas classified as high or very high risk. While this may reduce precision,
it could also be advantageous in contexts where a high level of precaution is
required, since it minimizes the risk of overlooking unstable zones. Logistic
Regression thus remains valuable for rapid preliminary assessments, for
communicating clear risk signals, and in situations where maximal safety margins

are prioritized.”
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