
Reviewer 1 

Dear reviewer,  

Thank you for your valuable comments, which have greatly helped improve the clarity 

and quality of this manuscript. Please find our detailed responses below. 

1. In general, the text in some figures is very small and difficult to read. Please make it 

large enough to print and read on A4 paper. 

✓ Response: Thank you for this suggestion. Figures 1, 2, 4, 10 and 11 have been 

reformatted to enhance readability on A4 paper. 

2. P4 Figure 1 - Where is the Constantine study area in Figure1? Does this refer to the 

rectangular area of approximately 3km x 5km shown in Figure 1? 

✓ Response: The study area corresponds to the red rectangular box shown in Figure 

1 within Constantine Province. To avoid confusion, we have revised the figure 

by improving the layout and annotations, making the boundaries of the study area 

more explicit. 

3. P4 Figure 1 - How is the extent of the landslide interpreted and shown in red in Figure 

1? When a slope collapses, sometimes only the collapsed area is interpreted, and 

sometimes the area where the collapsed soil and sand have deposited is also interpreted 

in addition to the collapsed area. How is the area interpreted here? In my opinion, given 

the main purpose of this paper, the former is preferable. 

✓ Response: We thank the reviewer for this pertinent observation. Landslides were 

delineated by mapping the entire affected area, from the main scarp to the toe, 

thereby including both the source and accumulation zones. In this region, 

dominated by clays and marls overlying hard substrates, displacements are 

moderate and deposition zones relatively limited. 

✓ Changes in the manuscript: we added the following paragraph in the Landslide 

inventory section: “Each landslide was delineated by mapping the entire affected 



surface, from the main scarp to the toe, thus incorporating both the source and 

accumulation zones. Due to the predominance of clays and marls overlying hard 

limestone or conglomerate formations, most slope movements in the study area 

are characterized by moderate displacements and relatively small deposition 

areas.” 

4. P4 L100 - Even if I read this section through, it is not clear when the landslide field 

survey was carried out, meaning that the reader cannot determine when the landslide 

shown in Figure 1 occurred. 

✓ Response: We acknowledge the importance of clarifying the inventory 

timeframe. Field surveys were conducted between June and December 2024. 

✓ Changes in the manuscript: This information has been added to the revised 

manuscript as “The inventory including urban and non-urban landslides were 

compiled during a comprehensive field and remote sensing interpretation survey 

conducted between June and December 2024.” 

5. P5 L127 - I understand the way how you made landslide inventory in Urbanized area. 

However, I don’t know the method in which you made landslide inventory in non-

urbanized area. Would you tell it to me and the readers? At first, I tried to find the method 

in Alharbi et al(2014), but I failed. The literature is just describing rural slope failures in 

Faifa in Saudi Arabia. 

✓ Response: We agree that the description of the inventory mapping method for 

non-urbanized areas was insufficiently detailed. In non-urbanized sectors of the 

study area, landslides were primarily identified using remote sensing techniques, 

supported by field verification. The landslide inventory was established based on 

morphological criteria, following the principles proposed by (Varnes, 1984). This 

approach relies on the visual interpretation of geomorphic features typically 

associated with mass movements, such as main scarps, toe bulges, surface cracks, 

and accumulation zones. These morphodynamic indicators make it possible to 

identify and delineate landslides. Therefore, the method applied in rural settings 

is essentially based on direct geomorphological analysis, which complements the 

approach adopted in urbanized areas.  



✓ Changes in the manuscript: We have added a sub section ‘Landslide Inventory 

in Non-Urbanized Areas: In non-urbanized areas, the landslide inventory was 

constructed primarily through remote sensing interpretation, complemented by 

selective field verification. Mapping was guided by morphological criteria 

following the principles of (Varnes, 1984) whereby typical geomorphic 

signatures of mass movements, such as scarps, displaced material, surface cracks, 

and toe bulges, were visually identified and delineated. This geomorphological 

approach ensured that landslides in rural sectors were consistently captured and 

provided a methodological counterpart to the field-based strategy applied in 

urban areas.’ 

6. P6L144 - Fig.4 b-f ---> Fig.2 b&f ? To me “b-f” seems to indicate from b to f, that is “b, 

c, d, e, f”. 

✓ Response: Thank you for spotting this inconsistency. We have corrected the 

figure references in the revised manuscript. 

7. P8 Table 1 - Was the NDVI calculated based on the imagery on 28 March 2017? Or that 

on 2 February 2025? Why did you use two images? I think that readers may be wondering 

which came first: the dates the satellite images were taken or the dates the landslides 

occurred. 

✓ Response: We thank the reviewer for highlighting this ambiguity. NDVI was 

derived from a multi-temporal series of harmonized Sentinel-2 MSI images 

spanning 28 March 2017 to 2 February 2025, rather than a single scene. This 

approach reduces cloud contamination, seasonal effects, and signal noise. We 

used the median NDVI across the time series. 

✓ Changes in the manuscript: This has been clarified in Table 1 Summary of 

landslide conditioning factors used in this study. 

Factor Type Source Resolution 



NDVI 

Harmonised Sentinel-2 MSI (median of time 

series between 28 March 2017 and 2 February 

2025) (Claverie et al., 2018) 

10 etres 

 

8. P10 L199 - Slope < 5 degree ---> slope > 5 degree? 

✓ Response: We thank the reviewer for pointing out this ambiguity. Our intention 

was to indicate that landslide occurrence increases with steeper slope angles. The 

threshold value in the text was a typographical oversight. The correct statement 

should read “slope > 5°” (not “slope < 5°”), since in our study area slopes above 

this threshold showed markedly higher landslide frequencies. 

✓ Changes in the manuscript: Certain factor ranges (e.g., slope >5° or elevation 

between 500 and 600 m) align with higher or lower landslide frequencies, 

informing both susceptibility modelling and mitigation strategies. 

9. P10 L201 - What this sentence shows strongly depends on the definition of the “urban 

landslide area”.   What is the urban landslide area? 

✓ Response: We thank the reviewer for this observation. The definition of the 

“urban landslide area” is provided in the manuscript under the subsection 

Landslide Inventory in Urbanized Areas. “To establish a comprehensive 

inventory within urbanized portions of the study area, landslide identification 

was primarily based on in-situ observations.” 

✓ Changes in the manuscript: For more clarity we edited this part as: “To 

establish a comprehensive inventory within urbanized portions of the study area, 

landslide identification was primarily based on in-situ observations and mapped 

where polygons intersect with built-up zones, as defined by the land cover map 

and validated through local land use.” 

10. P11 L225 - At what angle does a slope have to be considered "steep" or “low”? According 

to Figure 4, the difference in occurrence between urban and non-urban landslides appears 



to be the difference in landslide occurrence density on slopes of 10 degrees or steeper. 

So, do you call slopes of 10 degrees or more “steeper slopes”? 

✓ Response: In this study, we identified an empirical threshold of about 8°, as 

shown in Figure 4. At this point, the non-urban landslide density begins to exceed 

that of non-landslide terrain, providing a natural break between “moderate” and 

“steeper” slopes. Accordingly, we refer to gentle/low slopes as <8° and steeper 

slopes as ≥8°. While non-urban landslides are concentrated on ≥8°, urban 

landslides also occur on slopes <8° due to anthropogenic disturbances such as 

excavation and drainage mismanagement.  

✓ Changes in the manuscript: In non-urban regions, landslides predominantly 

occur on steeper slopes (≥8°), where gravitational failures are more frequent in 

the absence of human disturbance. In urban settings, landslides are common on 

moderate to steep slopes but may also develop on gentle slopes (<8°) when 

construction activities when construction practices, such as excavation and 

drainage mismanagement, undermine natural stability. Although slope remains a 

primary driver of landslides across both contexts, urban activities can widen the 

range of vulnerable gradients. 

11. P11 L240 - This sentence seems to be difficult to understand 

✓ Response: We thank the reviewer for pointing this out. The sentence has been 

revised for clarity.  

✓ Changes in the manuscript: “From the density curves, urban landslides are 

generally associated with lower NDVI values, reflecting the reduced vegetation 

cover typical of built-up environments. In contrast, non-urban landslides often 

occur at moderately higher NDVI levels, where vegetation provides low root 

reinforcement. Nevertheless, agricultural and semi-natural areas may still 

experience slope failures when land management practices such as deforestation 

or inadequate irrigation degrade vegetation quality. This pattern indicates that 

vegetation cover alone does not guarantee slope stability” 



12. P12 Figure 4 - I think that the definition of the landslide density should be obviously 

shown using an equation if possible 

✓ Response: We thank the reviewer for this helpful suggestion. The densities 

shown in Figure 4 were obtained using a Kernel Density Estimation (KDE) 

approach, which provides a smoothed representation of the probability 

distribution of landslide versus non-landslide cells for each conditioning factor.  

✓ Changes in the manuscript: To improve clarity, we have now added the KDE 

formulation in the “Landslide causative factors” section as follows: 

To understand the influence of environmental and anthropogenic factors 

on slope stability, probability density functions were estimated for each 

conditioning variable using a kernel density estimator (KDE): 
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where 𝑓ℎ(𝑥) : estimated probability density at 𝑥, n the number of 

observations, h the bandwidth (smoothing parameter), K the kernel function 

(e.g., Gaussian), and 𝑥𝑖 the individual observations. 

This approach provides a smoothed representation of the distributions of 

landslide and non-landslide cells, while allowing urban and non-urban 

landslide occurrences to be analyzed separately.  

13. Rural landslide ---> Non-urban landslide?  Rural? Non-urban? Are they different from 

each other? 

✓ Response: We thank the reviewer for highlighting this inconsistency. In our 

study, “rural” and “non-urban” were intended to refer to the same category of 

landslides occurring outside built-up areas. To avoid confusion, we have 

standardized the terminology throughout the manuscript and now consistently 

use the term “non-urban landslides.” This ensures clear distinction between urban 

(within built-up areas) and non-urban (outside built-up areas) contexts. 



14. P13 L26 - In the latter sentences, you mentioned “…the urban dataset achieves the 

highest overall performance despite being the smallest dataset”. To allow readers to find 

that the urban dataset is the smallest, you should show some evidence somehow. How 

about adding one table to show the number and the area of landslides for each subset, 

Urban, Non-urban, and Mixed? The maximum, minimum, and average size of landslides 

for each subset should be also shown. It might be helpful for readers to understand the 

landslide characteristics. 

✓ Response: We thank the reviewer for this comment. To provide clear evidence 

that the urban dataset is the smallest, we computed descriptive statistics for the 

urban, non-urban, and mixed landslide inventories. 

✓ Changes in the manuscript: To further characterize the mapped landslides, 

descriptive statistics were calculated for the urban, non-urban, and mixed 

inventories. The urban dataset comprises 123 landslides totaling 18.4 ha, while 

the non-urban dataset includes 61 landslides covering 21.2 ha. Combined, the 

mixed inventory contains 184 landslides with a total area of 39.6 ha. Despite its 

larger number of events, the urban dataset represents the smallest total area. 

Table 1. Descriptive statistics of mapped landslides in the study area 

Type Count 
Total 

Area (ha) 

Mean Area 

(ha) 

Median Area 

(ha) 

Min Area 

(ha) 

Max 

Area (ha) 

Non-urban 61 21.24 0.348 0.111 0.0058 3.97 

Urban 123 18.4 0.1496 0.041 0.0006 4.37 

Mixed 184 39.64 0.215 0.051 0.0006 4.37 

 



15. P13 L275 - Finally, there appears to be no explanation of how to classify landslides into 

urban, non-urban, and mixed datasets. 

✓ Response: We thank the reviewer for pointing out this missing clarification. In 

the revised manuscript, we now provide a clear description of the procedure used 

to classify landslides into urban, non-urban, and mixed datasets. Landslides were 

first delineated as polygons and overlaid with the official land-cover dataset. An 

event was classified as urban when its polygon intersected built-up zones or was 

directly associated with infrastructures. Conversely, events located entirely 

outside these zones, within bare or agricultural land cover, were classified as non-

urban.  

✓ Changes in the manuscript: The following paragraph were added to the 

Landslide inventory section: “Landslide inventory classification: The landslide 

inventory was constructed with the objective of distinguishing between urban and 

non-urban slope failures while maintaining methodological consistency across 

the study area. Classification was carried out by overlaying mapped landslide 

polygons with the land-cover dataset. An event was defined as urban when its 

polygon intersected built-up zones or close to infrastructure. Conversely, 

landslides located entirely outside these zones and in areas characterized by bare 

or agricultural land cover were classified as non-urban.”  

16. P17 L 311 - VIF (>30) ---> VIF (>40)? 

✓ Response: We thank the reviewer for noticing this inconsistency. The correct 

threshold used in our analysis is VIF > 40, not 30. We have corrected this in the 

revised manuscript. 

17. P19 L336 - You should describe the definition of the landslide susceptibility index shown 

in Figure 8.  

✓ Response: We have now clarified the definition of the Landslide Susceptibility 

Index (LSI) in the revised manuscript. LSI represents the relative spatial 

probability that a given location is prone to landslides, based on environmental, 

geological, and anthropogenic conditioning factors. Unlike hazard or risk, 



susceptibility refers only to predisposition and does not include a time component 

or expected consequences. In our study, the LSI was derived from the machine 

learning model outputs, where each grid cell was assigned, a continuous value 

reflecting its relative likelihood of landslide occurrence. Higher values 

correspond to areas of greater susceptibility.  

✓ Changes in the manuscript: “The Landslide Susceptibility Index (LSI) 

expresses the relative spatial probability of landslide occurrence. It reflects how 

prone an area is to landslides, without reference to the timing or potential impacts. 

In this study, LSI values were obtained from the machine learning model outputs, 

where each grid cell was assigned, a continuous score indicating its relative 

susceptibility. Higher LSI values correspond to greater likelihood of landslide 

occurrence.” 

18. In this section, landslide susceptibility maps using the various models and the different 

datasets are only compared to each other. This is important, but I think there is one thing 

missing. That is these maps should be also compared to the real landslide inventory 

shown in Figure 1. Furthermore, not only landslide inventory but also the “stable areas” 

shown in Figure 6 should be compared to the landslide susceptibility maps. Some stable 

areas seem to be evaluated highly susceptible in some models. 

• Response: We thank the reviewer for this valuable remark. In order to 

compare the maps with each other, we propose to analyse the superposition 

of landslide and stable areas on the susceptibility maps, and to display this 

comparison through their distribution of susceptibility values. This approach, 

illustrated in Figure 9, highlights how each model differentiates landslide 

cells from stable cells: landslides should cluster at higher susceptibility 

values, while stable areas should be concentrated at lower values. This 

complementary analysis allows us to directly assess model performance with 

respect to both the landslide inventory and stable areas.  



 

 

✓ Changes in the manuscript: “Figure 9 compares the density distributions of 

Landslide Susceptibility Index (LSI) values for landslide cells and stable cells 

across models and datasets. Clear separation between the two distributions 

indicates good discrimination. 

LightGBM. Urban landslides form a tight mode near 0.8–1.0, while urban 

non-landslide cells concentrate at low LSI, indicating good discrimination. 

Non-urban landslides also peak at high LSI but with a broader spread, and 

the non-urban stable curve shows a long high-LSI tail, implying more false 

positives. The mixed curves closely track the non-urban shapes, suggesting 

that, in the combined dataset, non-urban signatures dominate, which dilutes 

urban landslides. 

XGBoost. Among all models, XGBoost shows the clearest discrimination. 

In the urban dataset, landslide cells cluster sharply at LSI ≈ 0.95, while non-

landslide curves collapse toward 0–0.2 with negligible right tails. In non-

urban terrain, separation remains strong and superior to LightGBM, with only 

a small fraction of stable cells assigned high LSI. By contrast, the mixed 

dataset exhibits a broader, flatter spread of LSIs, reflecting the heterogeneity 



of urban and non-urban signatures and the resulting dilution of the decision 

boundary. This reinforces the benefit of modelling the two environments 

separately. 

Random Forest. Urban landslides peak around 0.8 with low urban stable 

densities at high LSI, evidencing good urban performance. In non-urban 

areas, landslide densities shift to 0.6–0.8 and overlap more with stable cells, 

reflecting misclassifications. The mixed curves closely mirror the non-urban 

shapes, indicating that RF’s piecewise partitions are dominated by the more 

non-urban conditions, which reduces selectivity when both environments are 

pooled. Environment-specific calibration (or thresholds) would likely 

improve non-urban specificity. 

MLP. The MLP concentrates landslide probabilities at the high end, 

indicating good sensitivity. Non-landslide curves are mostly compressed 

below 0.2, yet they retain residual right-tails, more visible for mixed and 

urban sets, so a small fraction of stable cells is assigned high LSI (false 

positives). This pattern is consistent with a high-capacity model capturing 

non-linear interactions but becoming over-confident under heterogeneous 

predictors.  

Logistic Regression. Distributions are broader with substantial overlap, 

but a consistent right-shift of landslide curves remains: landslide modes lie 

around 0.60–0.75, while non-landslide modes are closer to 0.20–0.45. The 

density is highest in urban dataset but shifted to low LSI and it weakens in 

non-urban and mixed datasets, indicating the poorest discrimination 

capabilities.” 

References: 

Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., Skakun, 

S. V., and Justice, C.: The Harmonized Landsat and Sentinel-2 surface reflectance data set, 

Remote Sensing of Environment, 219, 145–161, https://doi.org/10.1016/j.rse.2018.09.002, 

2018. 

Varnes, D. J.: Landslide hazard zonation: a review of principles and practice, 1984. 



Reviewer 2 

Dear reviewer,  

We thank you for your constructive comments, which have helped improve the clarity, depth, 

and overall quality of our manuscript. Please find the detailed responses below. 

19. While the decoupling of urban and non-urban landslides is the main contribution, the 

introduction and discussion do not sufficiently contrast this approach with existing 

international studies. Please highlight more explicitly what gap in the literature is addressed 

and how this study advances current knowledge. 

✓ Response: We thank the reviewer for this valuable comment. In the revised 

manuscript, we strengthened the Introduction by explicitly contrasting our approach 

with previous international studies. We now highlight that, although machine 

learning has been widely applied in landslide susceptibility mapping (LSM), most 

existing research treats the landscape as a single entity without distinguishing urban 

from non-urban environments. 

✓ Changes in the manuscript: We have improved the discussion about this 

shortcoming as follow: “Although extensive research has been carried out on 

landslide hazard assessment in urban areas (Bathrellos et al., 2009; Huang et al., 

2023; Pascale et al., 2010, 2013), these studies generally examine urban 

environments in isolation. They rarely investigate how urban and non-urban 

processes differ, particularly in transitional zones where the two settings interact. At 

the same time, the broader international literature shows that machine learning (ML) 

has become a widely adopted tool for landslide susceptibility mapping. However, 

most applications still treat the landscape as a homogeneous entity, without 

explicitly distinguishing between urban and non-urban contexts. 

Early work illustrates this limitation. For instance, (Caniani et al., 2008) applied 

artificial neural networks in Potenza, Italy, but without differentiating urban from 

non-urban landslides either in the inventory or during modeling. More recent studies 

have followed a similar approach. (Islam et al., 2025) applied a hybrid ML model to 

a rapidly urbanizing area in Bangladesh, and (Luo et al., 2025) assessed landslide 

hazards in the central Guizhou urban agglomeration using SVM, DNN, and bagging 



algorithms; in both cases, inventories did not explicitly separate urban from non-

urban events.  

This limitation is critical because urban landslides are often shaped by 

anthropogenic factors, including slope modification, drainage alteration, 

construction practices, and infrastructure density, that differ markedly from the 

natural drivers that dominate in non-urban areas. Without explicitly accounting for 

these differences, susceptibility models risk oversimplifying complex processes and 

overlooking the distinct mechanisms of slope failure across contrasting 

environments.” 

20. The construction of the landslide inventory is described, but the exact criteria for classifying 

events as “urban” or “non-urban” remain unclear. More detail is needed on how transitional 

or mixed zones were treated. 

✓ Response: We agree that clearer detail on classification criteria is necessary. In the 

revised manuscript, we now explicitly describe the procedure used to differentiate 

urban from non-urban landslides. An event was classified as urban when its mapped 

polygon intersected built-up areas or infrastructures (residential blocks, roads, 

retaining structures, utilities) as defined by the land cover map, while landslides 

located entirely in natural or agricultural zones were classified as non-urban. 

✓ Changes in the manuscript: The following clarification were added to the 

Landslide inventory section: “Landslide inventory classification: The landslide 

inventory was constructed with the objective of distinguishing between urban and 

non-urban slope failures while maintaining methodological consistency across the 

study area. Classification was carried out by overlaying mapped landslide polygons 

with the land-cover dataset. An event was defined as urban when its polygon 

intersected built-up zones or close to infrastructure. Conversely, landslides located 

entirely outside these zones and in areas characterized by bare or agricultural land 

cover were classified as non-urban.” 

21. The finding that urban datasets outperform rural datasets is described as “unexpected.” This 

requires deeper explanation—possible reasons include smaller sample size, greater 

homogeneity of urban triggers, or biases in negative sample selection. 



✓ Response: We agree that the superior results from the urban dataset warrant 

additional explanation, particularly given its smaller size. Specifically, we now 

discuss how urban landslides create a sharper contrast between unstable and stable 

cells, as illustrated in Fig. 4, where urban events occupy narrower and more 

distinctive ranges of several conditioning factors, while non-urban landslides span 

broader, overlapping ranges. This enhances model separability despite the smaller 

sample size. We also acknowledge the potential role of negative sample selection 

biases, as stable areas were identified through knowledge-based methods, which 

may blur class distinctions in rural terrain. Finally, we clarify that urban slopes 

generally present lower geomorphological complexity and more uniform triggering 

factors compared with rural environments. processes in rural settings. These 

elements likely ease the classification task for models in urban contexts, despite the 

limited sample volume. 

✓ Changes in the manuscript: We have improved the discussion as follow: “Several 

explanations may account for this counterintuitive result. In urban areas, landslides 

often create a sharper contrast between unstable and stable cells. As shown in Fig. 

4, urban landslides occupy narrower, more distinctive ranges in several predictors, 

whereas non-urban landslides span broader, overlapping ranges with the stable class. 

This improves model separability despite the smaller sample size. In addition, 

negative sample selection biases may further accentuate the contrast as stable areas 

were identified through knowledge-based methods, thereby blurring class 

distinctions. Finally, urban slopes typically display lower geomorphological 

complexity and greater uniformity of triggering factors compared with rural terrain.” 

22. SHAP-based interpretations are sometimes vague (e.g., “being farther from streams may 

increase instability”). More context-specific engineering explanations should be provided. 

✓ Response: We acknowledge the need for more precise and context-specific 

interpretations of the SHAP results.  

✓ Changes in the manuscript: The improved description now reads: “Across all three 

datasets, both natural factors (slope, distance to streams, lithology) and 

anthropogenic factors (particularly roads) emerge as key landslide predictors, with 

their relative importance shifting depending on the urban or non-urban context. In 



urban environments, natural drainage patterns are often disrupted by impervious 

surfaces and redirected through engineered systems. Areas farther from natural 

streams may lack adequate subsurface drainage infrastructure, leading to 

groundwater accumulation and increased pore water pressure, a primary trigger for 

slope instability. In contrast, non-urban terrains follow more common 

geomorphological logic, with proximity to streams or steep slopes strongly 

increasing instability. The mixed dataset blends these trends, underscoring that 

roads, topography, and hydrological factors are consistently significant across 

diverse landscapes. By comparing these results, decision-makers can better tailor 

landslide mitigation strategies, focusing on slope stabilization and drainage 

management in urban expansions, while prioritizing safe road infrastructure and 

vegetation conservation in more rural settings.” 

23. Validation relies solely on cross-validation and internal metrics. If feasible, please add 

independent validation (e.g., comparison with external maps or independent inventory) or 

at least discuss this limitation. 

✓ Response: We agree that external, independent validation offers a more 

comprehensive assessment of a model's true predictive power. However, the 

available landslide inventory for the study area is relatively limited in size and has 

already been partitioned into separate urban and non-urban witch reduce the data 

even more. This subdivision limits the possibility of extracting a completely 

independent inventory, making the option of additional validation less suitable in 

the context of this work. We also appreciate the reviewer’s suggestion regarding 

comparison, and we have added a discussion contrasting our results with existing 

susceptibility maps from previous studies in Constantine Province. This provides an 

additional, indirect form of external validation. 

✓ Changes in the manuscript: We have added the following discussion in the results 

and discussion section: 

“Beyond these internal performance metrics, it is also important to situate our 

findings in relation to previous susceptibility assessments conducted in Constantine 

Province. Several studies have produced maps using statistical, expert-based, or 



multi-criteria methods, which provide a useful external reference for comparison 

with our results. 

Landslide susceptibility in Constantine Province has been evaluated in several 

previous studies using different approaches. For instance, (Achour et al., 2017) 

analyzed a highway road section using statistical methods; however, their study area 

does not intersect with ours, limiting the relevance of direct comparison. (Abdı et 

al., 2021) applied AHP and Fuzzy-AHP methods in a zone that partially overlaps 

our study area. Although their validation inventory was compiled at a smaller scale, 

the main landslide-prone zones they identified correspond closely to areas that our 

mixed and non-urban models classify as high to very high susceptibility. In contrast, 

their mapping underrepresents small urban landslides, which may explain why our 

urban model captures additional events not emphasized in their results. Similarly, 

(Bourenane and Bouhadad, 2021; Bourenane et al., 2015) developed susceptibility 

maps based on expert judgment and statistical approaches. While their analyses were 

also conducted at a coarser scale, our non-urban and mixed models broadly agree 

with their delineation of landslide and highly susceptible areas. Despite a smaller 

study area, this work represents the most comprehensive assessment to date of 

landslide susceptibility in the Constantine region. It stands out for its spatial scale, 

the level of detail and reliability of the compiled inventory, the integration of 

advanced learning methods, and advanced analysis of the findings.” 

24. Discussion should go beyond performance ranking to highlight the strengths, weaknesses, 

and applicability of each algorithm. 

✓ Response: We thank the reviewer for this constructive suggestion. In the revised 

manuscript, we expanded the Results and discussion section to provide a detailed 

evaluation of the strengths, weaknesses, and applicability of each algorithm. 

Specifically, we explain that boosting methods (XGBoost and LightGBM) achieved 

the highest predictive performance but tended to underestimate susceptibility zones, 

yielding more conservative predictions. Random Forest, while slightly less accurate 

in raw metrics, offered the best balance between over- and underestimation, making 

it a robust and pragmatic choice for operational applications. The Multi-Layer 

Perceptron showed capacity to capture complex non-linear interactions but 

displayed variable performance in smaller or subdivided datasets, suggesting it is 

better suited to larger or multi-temporal inventories. Logistic Regression, although 



the least accurate, systematically overestimated susceptibility and delineated the 

largest high-risk zones, which may be advantageous in contexts where maximum 

precaution is required. 

✓ Changes in the manuscript: We have added the following subsection to the 

manuscript: “Strengths, limitations of the algorithms 

While performance metrics provide a quantitative comparison of the models, it is 

equally important to examine their qualitative strengths, limitations, and practical 

applicability. Each algorithm interprets the data in a different way, leading to 

distinctive patterns of susceptibility mapping, ranging from conservative 

underestimation to precautionary overestimation. 

XGBoost and LightGBM consistently achieved the highest predictive performance 

in this study. Their strength lies in their ability to capture non-linear interactions 

between conditioning variables and to partition the feature space into highly 

discriminative regions. This capacity was particularly evident in the urban dataset, 

where landslide and non-landslide cells display sharp contrasts in predictor ranges. 

Both boosting models also incorporate advanced regularization, which helps to 

prevent overfitting in relatively small samples. However, one limitation observed is 

a tendency to underestimate susceptibility in certain marginal areas, leading to 

smaller zones classified as highly susceptible compared to other algorithms and 

expert insights. This suggests that, while boosting methods maximize accuracy, they 

may provide conservative predictions that require careful interpretation in risk-

averse contexts.  

Random Forest also demonstrated strong and stable performance across datasets. 

Although slightly less precise than boosting methods in terms of raw metrics, it 

offered the best overall balance between overestimation and underestimation of 

susceptibility zones. Its robustness to noise and low sensitivity to hyperparameter 

settings make it an attractive choice for operational applications, particularly where 

inventories are small or unevenly distributed. Random Forest also proved effective 

in identifying consistent susceptibility patterns in both urban and non-urban settings, 

highlighting its reliability as a middle-ground solution that balances predictive 

strength with practical usability.  

The Multi-Layer Perceptron, by contrast, showed more variable performance. It was 

capable of capturing complex, non-linear patterns and sometimes rivalled tree-based 

methods in predictive accuracy, but its sensitivity to dataset and tuning was evident. 



With smaller inventories, particularly after splitting into urban and non-urban 

subsets, MLP became less reliable (High spread of performance metrics) and 

producing higher false positives. As such, MLP is better suited to larger or to 

contexts where multi-temporal data are available to stabilize training. 

Logistic Regression served as a valuable baseline model, offering transparency and 

straightforward interpretability of predictor effects. However, the simplicity of 

Logistic Regression also represents its main limitation: it relies on linear decision 

boundaries and systematically overestimated susceptibility in our study, producing 

the largest areas classified as high or very high risk. While this may reduce precision, 

it could also be advantageous in contexts where a high level of precaution is 

required, since it minimizes the risk of overlooking unstable zones. Logistic 

Regression thus remains valuable for rapid preliminary assessments, for 

communicating clear risk signals, and in situations where maximal safety margins 

are prioritized.” 
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