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Abstract.  

Ammonia (NH3) emissions have been on continuous rise due to extensive fertilizer usage in agriculture and increasing 

production of manure and livestock. However, the current global to national NH3 emission inventories exhibit large 20 

uncertainties. We provide atmospheric inversion estimates of the global NH3 emissions over 2019-2022 at 1.27°×2.5° 

horizontal and daily (at 10-day scale) resolution. We use IASI-ANNI-NH3-v4 satellite observations, simulations of NH3 

concentrations with chemistry-transport model LMDZ-INCA, and finite difference mass-balance approach for inversions of 

global NH3 emissions. We take advantage of the averaging kernels provided in IASI-ANNI-NH3-v4 dataset, by applying them 

consistently to LMDZ-INCA NH3 simulations for comparison to the observations and then to invert emissions. The average 25 

global anthropogenic NH3 emissions over 2019-2022 is estimated as ~97 (94-100) Tg yr-1, which is ~61% (~55%-65%) higher 

than the prior CEDS inventory’s anthropogenic NH3 emissions and significantly higher than two other global inventories: 

CAMS’s anthropogenic NH3 emissions (by a factor of ~1.8) and CAMEO’s agricultural and natural soil NH3 emissions (by 

~1.4 times). The global and regional budgets are mostly within the range of other inversion estimates. The analysis provides 

confidence in their seasonal variability and continental to regional scale budgets. Our analysis shows rise in NH3 emissions by 30 

~5% to ~37% during COVID-19 lockdowns in 2020 over different regions compared to the same-period emissions in 2019. 

However, this rise is probably due to a decrease in atmospheric NH3 sinks due to decline in NOx and SO2 emissions during 

the lockdowns. 

1 Introduction 

Ammonia (NH3) plays a critical role in both atmospheric chemistry and ecosystem's nitrogen and carbon cycling, with 35 

significant implications for air quality and human health, climate change, and agriculture. Ammonia in the Earth’s atmosphere 

originates from both natural and anthropogenic sources, with the latter dominating emissions from the former. The agricultural 

sector is the largest source of NH3 emissions contributing to more than 81% of the total global NH3 emissions (Van Damme 

et al., 2021; Wyer et al., 2022) and other anthropogenic sources of NH3 mainly stem from domestic, vehicular, waste water 

treatment, and industrial activities (Behera et al., 2013a; Sutton et al., 2013). Global future NH3 emissions in 2100 are projected 40 

to increase by 30% to 50% compared to present-day levels, depending on the different Shared Socio-economic Pathways 

scenarios (Beaudor et al., 2024). Precise information on the NH3 sources and quantitative attribution of emissions to these 

sources and atmospheric NH3 concentration observations is essential in evaluating the impacts of NH3 on ecosystems, climate, 
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air quality, and human health, and formulating effective mitigation measures (Zhu et al., 2015). Timely estimates of global 

anthropogenic NH3 emissions are needed to formulate effective control strategies to reduce such emissions activities (Behera 45 

et al., 2013).  

Bottom-up NH3 emission inventories provide data on NH3 sources and their emissions (Beaudor et al., 2023; Bouwman et al., 

1997; Vira et al., 2020), enabling their integration into atmospheric chemistry-transport, climate models to simulate 

atmospheric ammonia concentrations, and assessing impacts of NH3 emissions. However, significant uncertainties are inherent 

in bottom-up NH3 emission inventories across spatiotemporal scales (Behera et al., 2013a; Luo et al., 2022; Sutton et al., 2013), 50 

stemming from the constraints of limited NH3 emission activity data and emission factors, high uncertainty of agriculture 

statistics, and a lack of recent information (Chen et al., 2021; Crippa et al., 2018; Xu et al., 2019). In situ measurements are 

essential for accurately developing NH3 emission inventories and for inversion of NH3 emissions, as well as for evaluating 

these emissions. However, the scarcity of in-situ NH3 measurements worldwide contributed to significant uncertainties in NH3 

emissions and in our understanding of NH3 sources and their distributions (Zhu et al., 2015). Advancements in satellite 55 

measurements of columnar NH3 abundance in the atmosphere in the past decades, provide high spatiotemporal resolution 

column concentration data, and inversion methods are progressively enhancing our ability to derive NH3 emissions. For the 

atmospheric inverse modeling of the NH3 emissions, satellite observations offer valuable data density and coverage, thus 

mitigating some of the limitations of the use of in-situ NH3 measurements, enabling a more comprehensive assessment of NH3 

emissions. The recent NH3 emission estimates based on satellite observations exhibit significant differences at both regional 60 

and global scales when compared to those reported by the bottom-up inventories (Cao et al., 2020; Chen et al., 2021; Van 

Damme et al., 2018; Luo et al., 2022; Evangeliou et al., 2021; Dammers et al., 2022). However, the satellite data also have 

some limitations, often lacking clear signals from the emissions outside the strongly polluted regions, bearing potential errors 

due to interference from other atmospheric constituents and to the complexity of their validation and calibration, and being 

sensitive to cloud cover and, in particular, providing an incomplete coverage in certain regions in presence of clouds.  65 

Currently, satellite NH3 observations are available from instruments such as: the Atmospheric Infrared Sounder (AIRS) on the 

NASA EOS Aqua satellite (Warner et al., 2016), the Aura Tropospheric Emission Spectrometer (TES) onboard EOS Aura 

satellite (Beer et al., 2008), the three of the Infrared Atmospheric Sounding Interferometer (IASI) series of instruments on  the 

MetOp (Meteorological Operational satellite programme) satellites (Clarisse et al., 2009; Van Damme et al., 2021), the 

Thermal and Near-infrared Spectrometer for Observation-Fourier Transform Spectrometer (TANSO-FTS) onboard the 70 

Greenhouse Gases Observing Satellite (GOSAT) (Someya et al., 2020), and three Cross-Track Infrared Sounder (CrIS) 

instruments onboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellites (Shephard et al., 2020). These 

datasets vary in their data record lengths, spatial coverage, and retrieval approaches. The NH3 observations derived from the 

IASI and CrIS measurements, which have similar instrumental characteristics but employ different retrieval approaches, are 

the most commonly used satellite data for constraining NH3 emission estimates. The IASI NH3 product is a widely used dataset 75 

as it provides continuous, long-term sampling commencing from 2007, with twice daily coverage across the globe. Except for 

its first version, subsequent versions of the IASI NH3 data products are based on the Artificial Neural Network for IASI (ANNI) 

approach for retrieval of NH3 total columns (Van Damme et al., 2017, 2021; Whitburn et al., 2016). However, the absence of 

the vertical averaging kernel (AK) in the IASI ANNI NH3 previous products hindered their utility for comprehensive 

comparisons to atmospheric chemistry-transport model and its suitability for assimilation in atmospheric inversion processes 80 

for NH3 emission estimations. The AK is proportional to the measurement vertical sensitivity profile and also describes the 

vertical structure of the impact of a priori information on the retrieval of NH3 columns. When comparing a chemistry transport 

model against the satellite column retrievals, e.g., in satellite data assimilation processes, the application of the AK should 

remove the influence of errors resulting from the a priori (or an assumed) atmospheric NH3 vertical profile used in the retrievals 

in the model-satellite comparison (Eskes and Boersma, 2003). Using synthetic satellite column observations of another short-85 
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lived species NO2, Cooper et al. (2020) examined the impact of differences between the modelled and a priori atmospheric 

vertical NO2 profiles on inversion of NOx emission estimates and found that discrepancies led to up to 30% increase in root 

mean square errors for realistic conditions over polluted regions, with inverted emission errors rising as the difference between 

simulated and a priori profiles increases. The application of AK enables the model-retrieval comparison to be independent of 

the a priori profile (Cooper et al., 2020; Douros et al., 2023). Recently, Clarisse et al. (2023) presented a new version 4 of 90 

ANNI retrieval framework including, for the first time, vertical AK in the IASI NH3 data product. In this study, we use this 

new version 4 of IASI ANNI NH3 dataset for comparison to the global chemistry-transport model simulations and for the 

atmospheric inversion of the global NH3 emissions.   

In recent years, numerous studies used satellite observations, mostly IASI and CrIS, to estimate NH3 emissions over specific 

regions (Cao et al., 2020, 2022; Chen et al., 2021; Ding et al., 2024; Fortems-Cheiney et al., 2020; Tichý et al., 2023; Xia et 95 

al., 2025) or across the globe (Dammers et al., 2022; Evangeliou et al., 2021; Luo et al., 2022). Some recent regional scale 

inversion studies over the USA (Cao et al., 2020; Chen et al., 2021), China (Jin et al., 2023; Momeni et al., 2023), UK (Marais 

et al., 2021), and Europe (Cao et al., 2022; Ding et al., 2024; Van Der Graaf et al., 2022) show approximately 20%-100% 

differences between the inversion-based and the bottom-up NH3 emissions. The NH3 inversion problem raises challenges and 

requires a high spatial resolution of the emissions since the NH3 emissions are highly localized due to short lifetime of a few 100 

hours to a day of ammonia in the atmosphere. The impact of the atmospheric chemistry challenges the linearization underlying 

the traditional inversion approaches or the use of relatively simple models of the atmospheric chemistry and transport. The 

conventional variational or Kalman filter approaches, which are among the most sophisticated ones, have been used for 

regional scale inversions (Cao et al., 2020, 2022; Ding et al., 2024; Jin et al., 2023). However, covering the globe at a suitable 

spatial resolution represents an inversion problem whose dimension makes the application of such approaches very demanding 105 

in terms of computational cost. That is probably why, compared to regional studies, global inversions of NH3 emissions based 

on satellite observations are relatively scarce (Van Damme et al., 2018; Dammers et al., 2022; Evangeliou et al., 2021; Luo et 

al., 2022). Studies such as Van Damme et al. (2018) and Dammers et al. (2019), covered emissions worldwide, but focusing 

on the detection and estimation of NH3 large point sources or hotspot areas. Using high-resolution maps of atmospheric 

ammonia from IASI, Van Damme et al. (2018) detected 248 NH3 hotspot locations and large source regions across the globe 110 

and reported that the satellite data constrained NH3 emissions for the source regions vary within a factor of three from the 

corresponding estimates extracted from the Emissions Database for Global Atmospheric Research (EDGAR) emission 

inventory. However, the emissions from these detected large NH3 point sources or source regions only account for a small 

fraction of the overall global NH3 emissions budget (Dammers et al., 2019). For instance, the cumulative NH3 emissions from 

the 249 point sources identified by Dammers et al. (2019) contributed to merely 5% of the total global NH3 emissions in the 115 

Hemispheric Transport Atmospheric Pollution version 2 (HTAPv2) inventory.  

Only a very few global scale inversion studies provided more comprehensive timeseries of full NH3 emission maps using 

computationally intensive inversion frameworks. Recently, Dammers et al. (2022) derived global NH3 emission maps at a high 

spatial resolution (0.2°×0.2°) based on a multi-source gaussian plume method using CrIS observations, and discarding any 

chemistry or aerosols mechanism associated with the short-lived species NH3 in the multi-source Gaussian plume method. 120 

They showed that satellite-based total NH3 emissions over the globe are ~1.8 times higher than those reported in previously 

identified anthropogenic NH3 source locations in CAMS-GLOB-ANT v4.2 global anthropogenic NH3 emission inventory, and 

the total estimates rise to ~4 times greater when newly detected anthropogenic and natural sources are taken into account. 

However, this approach also introduces uncertainties in the estimates due to the assumption of a globally constant atmospheric 

lifetime for NH3 which is a limiting factor on the basis that chemical loss and deposition are highly variable processes that can 125 

change the lifetime drastically (Van Damme et al., 2018), and uncertainties in plume-spread, wind speed, and wind direction 

when fitting a multi-source Gaussian plume model to the observations.  
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In two recent studies of global inversion of NH3 emissions using previous versions of IASI ANNI NH3 data products, 

Evangeliou et al. (2021) and Luo et al. (2022) estimated long-term monthly global NH3 emissions over a decade period starting 

from 2008 and reported their estimates to be higher than those in the bottom-up inventories. However, significance differences 130 

were observed between these two NH3 emission estimates. In both studies, inversions rely on the NH3 lifetime diagnosed 

differently from the simulations of different global chemistry-transport models (CTM), and the modelled NH3 total columns. 

Evangeliou et al. (2021) applied a basic mass-balance inversion approach to estimate monthly NH3 emissions in each grid cells 

as a ratio of the observed total NH3 column from IASI and the lifetime of NH3 computed from a CTM simulations. Using a 

previous version of IASI NH3 observations, Luo et al. (2022) modified the basic mass-balance approach used in Evangeliou 135 

et al. (2021) by updating the prior NH3 emissions with an additive correction term. This correction is proportional to the 

difference between the observed and modelled NH3 columns and inversely proportional to the NH3 lifetime estimated by 

accounting for the deposition fluxes of the whole NHx (NH3 + NH4
+) family instead of only using the NH3 losses. However, 

estimating lifetime of NH3 in the atmosphere is more complex due to the impact of transport mechanisms, loss of atmospheric 

NH3 by the formation of ammonium sulfate or ammonium nitrate particles (Cao et al., 2020), and nonlinearities in NH3-related 140 

chemistry affecting deposition and concentration. Changes in NH3 concentrations due to emission affect its lifetime through 

its interaction with the other trace chemical species like SO2, NOx, HCl, HONO (Behera et al., 2013b) and the basic mass-

balance approaches in Evangeliou et al. (2021) and Luo et al. (2022) do not consider the impact of NH3 emission changes in 

their estimation of NH3 lifetime in atmospheric inversions, which may affect the accuracy of emission estimates.  

Variations of the mass-balance inversion methodology, such as, the finite difference mass-balance (FDMB) approach (Cooper 145 

et al., 2017; Lamsal et al., 2011), have been proposed for atmospheric inversion of emissions of short-lived species, which 

aims to reduce errors in basic mass-balance methods due to nonlinear sensitivity associated between a species emissions and 

ambient concentrations. The FDMB inversion approach is computationally efficient for the global scale inversions at coarse 

resolutions and it has been widely used for estimating anthropogenic surface emissions of short-lived species like NOx and 

SO2 at global and regional scales (Cooper et al., 2017; Lamsal et al., 2011). It derives the fluxes by scaling a prior emission 150 

estimates, usually derived from bottom-up inventories. This scaling is derived from the computation of the local sensitivity of 

concentrations to local emission changes from simulations with a CTM, and from the relative differences between observations 

and the modelled columns. Only a few studies have investigated the FDMB approach for NH3 emission inversion at regional 

scales: Momeni et al. (2023) and Li et al. (2019). They applied iterative FDMB approach to constrain the NH3 emissions of 

East Asia with CrIS and North America with IASI satellite observations. In this study, we investigate the use of the FDMB 155 

approach at the global scale to derive maps of the NH3 emissions at a relatively high temporal resolution worldwide. While 

earlier global-scale inversion studies by Luo et al. (2022) and Evangeliou et al. (2021) derived NH3 emission estimates at the 

one-month scale, we aim to provide daily estimates at 10-day scale (deriving 10-day running average). The FDMB inversion 

approach involves a chemistry transport model for simulations of NH3 concentrations. We use a global chemistry-aerosols 

transport model LMDZ-INCA (Hauglustaine et al., 2004, 2014) for global NH3 concentration simulations. Our LMDZ-INCA 160 

model configuration has a relatively high spatial resolution of 1.27°×2.5° (latitude × longitude) horizontally, and 79 vertical 

levels. The absence of the averaging kernel in previous versions of IASI ANNI NH3 data products used in the previous 

inversion studies prevented utilization of this information to integrate the modelled NH3 profile consistently with the IASI 

NH3 retrievals. This limitation may have impacted the final NH3 emission estimates. In this study, we take advantage of the 

availability of AKs in version 4 of IASI NH3 product for suitable assimilation of such data into a global inversion framework 165 

relying on a CTM. The application of AK in our global atmospheric inversion of NH3 emissions with the new version 4 of the 

IASI NH3 retrievals is one of the main features in this study. 

Here, we estimate global daily (as a 10-day running average) anthropogenic NH3 emissions over the land at 1.27°×2.5° 

horizontal resolution across a period of four years from 2019 to 2022 using the new version 4 of IASI ANNI NH3 data product 
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and the FDMB inversion approach (Cooper et al., 2017; Lamsal et al., 2011). We first compare the LMDZ-INCA model global 170 

NH3 simulations against the IASI NH3 observations to assess our model’s performance and its suitability for global inversions 

of NH3 emissions. In both model-satellite comparisons and inversions, we take advantage of averaging kernels provided in the 

version 4 of IASI ANNI NH3 data product to remove the impact of the vertical NH3 profile assumption in the retrievals. We 

present and discuss the results of our model comparison analysis with the IASI NH3 observations and the global inversions of 

the NH3 emissions at both global and regional scales, considering temporal scales ranging from daily (10-day scale) to monthly, 175 

seasonal, and annual. We evaluated our inversion approach and emissions estimates by conducting LMDZ-INCA simulations 

using the optimized NH3 emissions and comparing the model results with the IASI NH3 observations. Finally, we compare our 

estimated global NH3 emissions with independent global bottom-up inventories and other estimated NH3 emissions over the 

globe and over the selected regions. The structure of the paper is as follows. Section 2 describes the new version 4 of the IASI 

NH3 observations, chemistry-transport model and its setup for global NH3 concentration simulations, our strategy to compare 180 

model NH3 simulations with the satellite observations, and the FDMB inversion approach used for global daily NH3 emission 

estimations. Section 3 presents the results followed by their discussions and limitations of the study in section 4. Key 

conclusions of this study are provided in section 5.     

2 Material and methods 

2.1 IASI NH3 version 4 observations 185 

IASI is an infrared Fourier transform spectrometer onboard the Sun-synchronous polar-orbiting Metop-A/B/C satellites, which 

were respectively launched in 2006, 2012, and 2018 (Clerbaux et al., 2009). IASI has a cross-track scanning swath width of 

~2200 km, with a pixel size of ~12 km in diameter at nadir. Each instrument onboard one of the sun-synchronous satellites 

covers almost all locations over the globe twice a day, once at daytime and once at nighttime, with overpasses around 09:30 

and 21:30 local solar time (LST), respectively. The vertical sensitivity of the IASI NH3 measurements, mainly in the boundary 190 

layer where NH3 is predominantly confined, varies as a function of the thermal contrast between the surface and the 

atmospheric layers (Clarisse et al., 2010; Di Gioacchino et al., 2024). The NH3 total column observations from the IASI 

measurements in the first version were retrieved using the so-called hyperspectral range index (HRI) in an extended spectral 

range (800-1200 cm-1) and using look-up-tables (LUT) built from forward radiative transfer model simulations (Van Damme 

et al., 2014). In the subsequent versions, an Artificial Neural Network for IASI (ANNI) retrieval approach was then developed 195 

and used for retrievals of IASI NH3 total columns (Van Damme et al., 2017, 2021; Whitburn et al., 2016). The ANNI NH3 

retrieval approach uses an assumed Gaussian-shaped vertical profile of NH3 volume mixing ratio (the “prior” profile), which 

is modelled as a function of altitude above the ground or ocean surface, the peak concentration altitude, and the width of the 

profile of significant NH3 concentrations. The peak altitude over land is set at the ground surface with a width equal to the 

boundary layer height (Clarisse et al., 2023), as the NH3 emission is generally higher near the surface and NH3-related 200 

chemistry and dispersion cause concentration to decrease with altitude. Whereas, over the ocean, it is set to 1.4 km with a 

width of 0.9 km (Clarisse et al., 2023). In this study, we use daily NH3 total columns from a recently released version 4 (ANNI-

NH3-v4) of the IASI ANNI retrievals of NH3 (Clarisse et al., 2023). The most important feature of this new ANNI-NH3-v4 

data product is the introduction of the column averaging kernel (AK). The vertical AK is essential for comparison of chemistry-

transport model simulations against the satellite NH3 retrievals, which can be used to remove the effect of the prior vertical 205 

NH3 profiles used in the retrievals of the IASI NH3 total columns in the model-satellite comparison. Note that the NH3 

distribution from IASI-ANNI-v4 is very similar to the ones with previous version 3, although values are about 15-20% larger 

due to the improved setup of HRI (Clarisse et al., 2023). Furthermore, the ANNI-NH3-v4 data product provides a more accurate 

characterization of the measurement uncertainty, along with several other changes, resulting in the improved temporal 

consistency of the IASI NH3 dataset spanning from 2007 onwards (Clarisse et al., 2023).  210 
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We use daily IASI-NH3-v4 NH3 global observations over land from the Metop-B satellite from 2019 to 2022. We select the 

NH3 observations from the morning overpass (around 09:30 LST) only because of the better precision of morning observations 

as IASI is more sensitive at this time of day to the atmospheric boundary layer, where the signature of the surface emissions 

is the higher, owing to more favorable thermal conditions. We use high-quality IASI NH3 observations only with the cloud 

coverage lower than and equal to 10% (Clarisse et al., 2023). We applied pre- and post-retrieval filters which accompany the 215 

dataset. The application of these filters removes respectively the observations corresponding to erroneous L1 processing of the 

spectra or excess cloud coverage, and observations corresponding to measurements with limited or no sensitivity to the 

measured quantity and retrievals satisfying certain threshold conditions (Clarisse et al., 2023). 

2.2 LMDZ-INCA global chemistry-transport model and simulations 

We use the global climate-aerosol-chemistry transport model LMDZ-INCA to simulate the global NH3 concentrations, along 220 

with a state-of-the art gas phase tropospheric chemistry scheme as well as aerosols including sulfate, nitrate, black carbon 

(BC), particulate organic matter (POM), dust and sea-salt. LMDZ-INCA is a coupled model based on an atmospheric general 

circulation model (GCM) LMDZ V6 (Laboratoire de Météorologie Dynamique) (Boucher et al., 2020; Hourdin et al., 2020), 

a chemistry and aerosols model INCA V6 (INteraction with Chemistry and Aerosol) (Hauglustaine et al., 2004, 2014), and a 

global land surface dynamical vegetation model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic Ecosystems) 225 

(Krinner et al., 2005). The model uses a monotonic finite-volume second order parameterization to calculate large-scale 

advection of water vapor, liquid and solid water, and tracers (Boucher et al., 2020). The model uses the “New Physics” (NP) 

version of the physical parameterizations, which includes a turbulent scheme based on the prognostic equation for the turbulent 

kinetic energy (Yamada, 1983), the “Thermal Plume Model” for the convective boundary layer (Rio and Hourdin, 2008), a 

parameterization for cold pools and wakes resulting from convective rainfall evaporation (Grandpeix and Lafore, 2010), and 230 

Emanuel’s deep convection parameterization scheme (Emanuel, 1991). LMDZ-INCA interactively accounts for the emissions, 

transport (resolved and subgrid scales), deposition (both dry and wet) of chemical species and aerosol, and incorporates a full 

chemical scheme for the NH3 cycle and nitrate particle formation (Hauglustaine et al., 2014).  

LMDZ-INCA model configuration used in this study has a horizontal resolution of 1.27° in latitude × 2.5° in longitude and 

with 79 hybrid σ-pressure levels within a terrain following vertical coordinate stretches up to 80 km. We conducted LMDZ-235 

INCA spin-up simulations from 2010 to 2018 and then reference simulations for a period of four years from 2019 to 2022, 

which we use for the model comparison with the IASI NH3 observations and for the global NH3 emission inversions. The 

simulations were driven by nudging the GCM winds with a 3.6 h relaxation time to the 6-hourly ECMWF Reanalysis v5 

(ERA5) data, regridded onto the LMDZ-INCA model grid. In LMDZ-INCA simulations, we used monthly global 

anthropogenic emission of the chemical species and gases, including NH3, from the open-source Community Emissions Data 240 

System (CEDS) global bottom-up gridded inventories (McDuffie et al., 2020) with an initial horizontal resolution of 0.5°×0.5° 

and interpolated onto the model horizontal grid. We use conservative regridding by ensuring that the total mass (e.g., 

emissions) is preserved during the interpolation. The CEDS global emission inventories provides emissions of NH3, NOx, 

SO2, NMVOCs, CO, OC, and BC from eleven anthropogenic sectors, including agriculture, energy, on-road, non-road 

transportation, residential, commercial, waste solvents, international shipping, and others (McDuffie et al., 2020). The CEDS 245 

inventory also includes emissions of NO and NH3 from agricultural soils with both synthetic and manure fertilizers. Since 

CEDS anthropogenic emissions are available only up to 2019, the CEDS emission fluxes for the post-2019 years were 

developed based on the combination of the CEDS emissions in 2019 with the carbon emission growth rate from 2019 to the 

target year. The data on emissions growth rate are derived from the Carbon Monitor dataset (https://carbonmonitor.org/) and 

calculated by source sector, by month, and by country. This approach to extrapolate emission fluxes based on CO2 data has 250 

been commonly applied to various species, particularly those associated with the fossil fuel emissions. The led to noticeable 

variations in emissions of species like SO2 and NOx, which have been simultaneously used in the LMDZ-INCA simulations 
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with full chemical scheme for sulfate and nitrate particles formation. However, as extrapolation calculations are conducted for 

each source sector separately and NH3 emissions mostly come from agricultural activities, which do not emit CO2 directly, 

applying this approach to extrapolate NH3 emissions for the post-2019 years resulted in almost invariant NH3 emissions after 255 

2019. While this approach may seem simplistic for NH3 fluxes, it is used in this study to construct the spatial distribution of 

prior emissions, as we expect satellite data to drive year-to-year variations in the final inversion results. Since the 

anthropogenic emissions are derived from the CEDS inventory at a monthly resolution, they are uniformly distributed in time 

at the hourly resolution in the input to the LMDZ-INCA simulations, without incorporating diurnal cycles. We use fire 

emissions from the Global Fire Emissions Database (GFED4) (Van Der Werf et al., 2017), and biogenic volatile organic 260 

compound (VOC) emissions calculated from the ORCHIDEE vegetation model (Messina et al., 2016). Emission fluxes from 

anthropogenic and natural sources are prescribed to the model as monthly forcing files for different species. We sample the 

simulated NH3 concentration at an hourly frequency over a four years period from 2019 to 2022. We use these hourly LMDZ-

INCA model simulated NH3 dataset for our analysis and inversions with IASI NH3 observations from the morning overpass.   

2.3 Model and satellite comparison approach 265 

The retrievals of NH3 total columns observations, Ω𝑜𝑏𝑠, where “obs” stands for “observed” IASI NH3 total columns in the IASI 

ANNI-NH3-v4 data product, are implicitly dependent on an assumed (prior) Gaussian-shaped vertical profiles of the NH3 

volume mixing ratio above the land and sea surfaces (Clarisse et al., 2023). As a result, the comparison between satellite-

retrieved and model-simulated column abundances is influenced by the shape of the vertical profile of NH3 mixing ratios 

assumed in the retrievals. The total column averaging kernel (AK), as provided in the ANNI-NH3-v4 data product, 270 

characterizes the altitude-dependent sensitivity of the retrieved atmospheric column to changes in true profile (Eskes and 

Boersma, 2003). The importance of the AK in correctly comparing model simulations with the satellite observations has long 

been established (Cooper et al., 2020; Douros et al., 2023 for NOx; Koukouli et al., 2018 for SO2). There are several possible 

approaches of comparing model simulations with the satellite observations enabling the model-retrieval comparison to be 

independent of assumption on the profiles in the retrievals (Cooper et al., 2020; Douros et al., 2023; Cao et al., 2022; Ding et 275 

al., 2024). Here, we convolved the simulated LMDZ-INCA NH3 vertical profiles with the IASI NH3 total column AKs. The 

convolved LMDZ-INCA model simulation of the NH3 columns, Ω𝑚𝑜𝑑 , where “mod” stands for “modelled” LMDZ-INCA NH3 

total column, is obtained by weighting the vertical integration of the model NH3 sub-columns (𝑥𝑙) with the averaging kernel 

(AKl) (Clarisse et al., 2023; Eskes and Boersma, 2003):  

Ω𝑚𝑜𝑑  =  ∑ 𝐴𝐾𝑙  𝑥𝑙𝑙       (1) 280 

where the summation over l is over the 14 vertical levels of IASI NH3 retrievals (on which an assumed NH3 vertical profile 

and AKs of retrievals are defined). Here, 𝑥𝑙  are obtained by interpolating LMDZ-INCA original NH3 mole fraction vertical 

profiles (at 79 levels) onto the levels corresponding to IASI ANNI-NH3-v4 retrievals (14 levels). The interpolation is 

performed in a manner that conserves the NH3 total column amount. The application of the AK to the simulated LMDZ-INCA 

NH3 profile ensures the elimination of an assumed NH3 profile error contribution to model-satellite comparison (Boersma et 285 

al., 2004; Eskes and Boersma, 2003), and that the model simulated column is integrated in a way that reflects the retrieval 

sensitivity.  

In order to illustrate the impact of the AK on modelled NH3 total columns, Figure 1 shows LMDZ-INCA simulated NH3 mole 

fraction vertical profiles over a model grid cell in India on three clear-sky days (February 24, March 30, October 28) in 2019, 

and the modelled NH3 sub-columns with and without the application of the AKs corresponding to one of the IASI pixel in that 290 

model grid cell, obtained from the modelled NH3 mole fraction profile interpolated on the vertical levels of IASI ANNNI-

NH3-v4 retrievals. Despite the AK values varying relatively smoothly with altitude above the ground surface, the application 

of the AK can amplify modeled NH3 sub-columns at higher altitudes compared to those calculated without the AK (Figure 1). 

This effect is generally due to the interaction between the vertical structure of the modeled NH3 vertical profile and the 



 

8 

 

thickness (or pressure width) of the sub-columns. Since each NH3 sub-column represents the mass of NH3 within a specific 295 

pressure layer, layers with both significant NH3 concentrations and wider pressure intervals can result in larger NH3 sub-

column values, even if the AK is not at its peak for those layers (Figure 1). Consequently, even modest AK values at higher 

altitudes, combined with substantial NH3 mass in thick pressure layers, can lead to amplified contributions to the total column. 

The subfigures in Figure 1 show that the LMDZ-INCA NH3 local vertical profiles mostly decrease with the altitude and are 

almost similar the Gaussian-shaped NH3 vertical profile centered at the land surface used as a prior in the IASI ANNI-NH3-300 

v4 retrievals. However, the model simulated vertical NH3 profiles for some days (e.g., Figure 1(b)) deviate from such a general 

smoothed NH3 vertical profile shape assumed in the IASI NH3 retrievals and show secondary peak(s) at some higher altitude. 

Although the short-lived species like NH3 largely resides within the atmospheric boundary layer and the long-term averaged 

NH3 vertical distribution in the boundary layer or in the lower troposphere could be assumed as smoothly decreasing with the 

altitudes with maximum at the land surface, high-temporal-scale NH3 vertical profiles corresponding to the IASI overpass time 305 

can be a little more complex than this averaged smoothed profile, as observed in both model simulations (Figure 1(b)) and 

aircraft- and surface-based in-situ measurements (Cady-Pereira et al., 2024; Guo et al., 2021; Pu et al., 2020). This suggests a 

potential need to refine the assumed NH3 vertical profile for more accurate satellite NH3 retrievals, though the necessity for 

this refinement may depend on specific locations and meteorological conditions. Across all these days, the application of the 

AK results in higher LMDZ-INCA NH3 total column values compared to the ones without applying the AKs. The AK from 310 

ANNI-NH3-v4 product, often exhibits magnitudes exceeding unity at altitudes corresponding to the LMDZ-INCA NH3 sub-

columns peak altitudes. This results in larger modelled NH3 total column values when using the AK.   

 

Figure 1: An example illustrating the convolution of LMDZ-INCA NH3 vertical profiles with the IASI ANNI-NH3-v4 

averaging kernel (AK) to calculate the convolved LMDZ-INCA modelled NH3 total column  (𝛀𝒎𝒐𝒅). The LMDZ-INCA 315 

original NH3 mole fraction vertical profile (in ppb) at 79 model levels (represented by the orange dashed line on the secondary 

x-axis on top) and the AK from individual IASI NH3 pixels (represented by the blue dashed line on the primary x-axis on 

bottom) within a model grid cell centered at (25.5, 87.6) in India on three dates: (a) 24 February 2019, (b) 30 March 2019, and 

(c) 28 October 2019, and the corresponding NH3 sub-columns (in molecules cm-2) (secondary x-axis on top) from the NH3 

vertical profiles simulated by LMDZ-INCA in this grid-cell interpolated on the vertical levels of assumed NH3 profile in IASI 320 

retrievals (shown in red), and the convolved LMDZ-INCA sub-column profiles with the AK (displayed in green). The values 

of 𝛀𝒎𝒐𝒅 with and without using the AK (in molecules cm-2) are also presented on the respective sub-plots for each day.  

At a given hourly output of the model simulations with the IASI observations from morning overpass around 09:30 LST, we 

derive a corresponding LMDZ-INCA NH3 profile for each individual IASI NH3 pixel within a model grid cell that contains 

the center of this pixel, and derive the convolved LMDZ-INCA modelled NH3 total column by applying the corresponding 325 
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AK. Since IASI resolution is much finer than that of LMDZ-INCA, this process yields several convolved modeled NH3 total 

columns for a single model grid cell. We then average these resulting observed (Ω𝑜𝑏𝑠) and corresponding AK-convolved 

modelled NH3 total columns (Ω𝑚𝑜𝑑) at the model spatial resolution (1.27° × 2.5°) for a proper comparison at the coarsest 

resolution between the two products. We exclude the grids of the averaged NH3 total columns from the analysis if there are 

fewer than four high-quality IASI pixels within a model spatial grid or if the grid-cell average of observations is negative due 330 

to some negative IASI NH3 total column retrievals.  

2.4 Inversion of the global NH3 emission from IASI observations 

We use the finite difference mass-balance (FDMB) inversion approach (Cooper et al., 2017; Lamsal et al., 2011) for the global 

inversion of NH3 emissions using NH3 total columns from LMDZ-INCA model simulations and IASI NH3 observations. The 

inversion approach assumes that the short lifetime of NH3 of a few hours to a day in the atmosphere, limits its horizontal 335 

transport on coarse grids, and implicitly conducts local analysis, deriving local surface emissions (in a given model horizontal 

grid cell) based on local observations (corresponding the same model horizontal grid cell), even though relying on full 4D (3D 

in space, 1D in time) simulations with LMDZ-INCA. The FDMB inversion approach relies on the estimation of the local 

sensitivities (β) of the simulations of NH3 total columns to change in the local NH3 emission, addressing non-linear chemistry 

affects from the model simulations. It derives NH3 emission estimates at each grid cell by scaling a prior NH3 emission (here 340 

based on the anthropogenic emissions from the CEDS inventory), considering the local sensitivity of NH3 simulations to 

changes in emission and the relative difference between the observed and modelled NH3 total columns. Our objective is a daily 

estimate of 10-day running mean global anthropogenic NH3 emissions over land. However, with only satellite NH3 

observations, it is challenging to distinguish between anthropogenic and natural sources. Therefore, our approach focuses 

solely on grid-cells and days where and when the prior NH3 emission inventory indicates that the emissions are dominated by 345 

the anthropogenic sources, and where and when we have retained grid-cell averages of IASI NH3 observations (see section 

2.3). We use the daily combined anthropogenic NH3 emissions from CEDS and fire emissions from the GFED4 inventories, 

which are derived from monthly data and uniformly distributed at the hourly scale within each day in the LMDZ-INCA 

simulations, as a priori emissions (Ea) in the inversions. We select the grid cells with dominating anthropogenic NH3 emissions 

by identifying those where a ratio of anthropogenic NH3 emissions to total NH3 emissions (including anthropogenic, biogenic 350 

and fire NH3 emissions) is greater than 0.6. This selection of dominant anthropogenic emissions slightly alters their spatial 

distribution over the years from 2019 onward due to variations in fire emissions across different years. We compute a 10-day 

running average at each grid cell of the modelled and observed NH3 total columns and of the a priori emissions to smooth out 

the daily fluctuations in observed NH3 total columns and to increase the sample size and spatial coverage of the daily flux 

estimates. Following Cooper et al., (2017) and Lamsal et al., (2011), for a given day and over each model horizontal grid-cell, 355 

the satellite-constrained NH3 emission estimates (EIASI) using the observed IASI NH3 total columns (Ωobs), and the modelled 

LMDZ-INCA columns convolved with the AKs (Ωmod) corresponding to a priori NH3 emission (Ea) used in the model 

simulations are calculated as: 

  𝐸IASI =  𝐸𝑎 (1 +  𝛽
Ω𝑜𝑏𝑠− Ω𝑚𝑜𝑑

Ω𝑚𝑜𝑑
)   (2) 

where a unitless scaling factor β accounts for the local sensitivity of the modelled NH3 total columns (∆Ωmod/Ωmod) to 360 

perturbations of the a priori NH3 emissions (∆Ea/Ea), and is defined as: 

 𝛽 =  
Δ𝐸𝑎 E𝑎⁄

ΔΩ𝑚𝑜𝑑 Ω𝑚𝑜𝑑⁄
     (3) 

We perform two LMDZ-INCA model simulations for each year: one using the prior emissions, with the anthropogenic NH3 

emissions from the CEDS bottom-up inventory for the year 2019 which updated for subsequent years based on the trend of 

previous years NH3 emissions (see section 2.2), and another with a 40% reduction in the CEDS anthropogenic NH3 emissions 365 

to derive β. We applied some filters on β, on the observed and/or the modelled NH3 total columns, and/or on the bottom-up 
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emissions to select the grids corresponding to the dominating anthropogenic emissions, and to avoid negative or extreme 

unrealistic estimates of the NH3 emissions from the inversions. We select grids over land only for (i) 0 ≤ β ≤ 10, (ii) 

𝛽
Ω𝑜𝑏𝑠− Ω𝑚𝑜𝑑

Ω𝑚𝑜𝑑
≥  −1, (iii) Ωmod and Ωobs > 1 × 1015 molecules cm-2. Figure S1 in supporting information shows an example 

of the distribution of monthly mean values of β for July 2019. The values of β are less than 1.5 over most of the major NH3 370 

emitted land regions worldwide.   

Satellite data gaps, and some filters applied on observations and different variables in the FDMB inversion approach to focus 

on model grid cells dominated by anthropogenic NH3 emissions, result in numerous grids or days where NH3 emissions could 

not be derived directly from the IASI NH3 observations. Therefore, the derivation of national or regional budgets of 

anthropogenic emissions at daily (10-day scale) to monthly and annual scale from the satellite observations requires a proper 375 

gap-filling of grid cell or days for which the inversion protocol does not yield emission estimates. To fill these gaps in IASI-

constrained NH3 emissions, we use a rather conservative approach utilizing IASI-constrained NH3 emissions and the 

corresponding a priori CEDS anthropogenic NH3 emissions used in the inversions. The gap-filling is performed over some 

specific regions. In order to gap-fill the daily-unconstrained NH3 emissions, we compute a daily scaling factor as a ratio 

between the IASI-constrained and the corresponding CEDS anthropogenic NH3 emissions integrated over a specific region. 380 

The missing emissions in that selected region are gap-filled by multiplying in each corresponding grid-cell the CEDS NH3 

emissions with these scaling factors. For a given day, when the spatial coverage of the IASI-constrained anthropogenic NH3 

emissions is less than 60% in a specific region due to a poor satellite coverage and due to other data filtering to apply the 

FDMB inversion approach, we apply some constraints on the scaling factor to prevent spurious gap-filled emissions. If the 

IASI-constrained emissions coverage is less than 10%, we directly use the prior CEDS NH3 emissions. For coverage between 385 

10% and 40%, we cap the scaling factor at 1.25, and for coverage between 40% and 60%, we cap it at 1.5. For the gap-filling, 

we use 10 continental regions (illustrated in Figure S2) over the main land worldwide defined by Ge et al. (2022) based on 58 

IPCC reference regions representing consistent regional climate features described in Iturbide et al. (2020). Ge et al. (2022) 

used the nine regions (except the “rest of the world” region) to access global and regional budgets and fluxes of atmospheric 

reactive N and S gases and aerosols. The fraction of the IASI-constrained and the gap-filled NH3 emissions per season across 390 

six regions for each year from 2019 to 2022 in Figure S3 shows that the gap filling of emissions over most of the regions is 

mostly higher during winter season and minimum during spring. However, in some regions such as India and Africa, the 

percentage of the gap-filled emissions to the total seasonal emissions is higher in summer compared to other seasons due to 

relatively smaller numbers of satellite observations, caused by higher cloud coverage during the monsoon season. The overall 

percentage of the gap-filled NH3 emissions to the total emissions over worldwide is maximum (up to ~28%) during winter and 395 

minimum (up to ~11%) during spring season and it ranges from ~16%-19% during summer and autumn (Figure S3). However, 

since the attribution of the NH3 emissions in winter season to the total annual emissions is smaller compared to other seasons, 

the total gap-filled emissions in winter are still lower than in other seasons (Figure S4). 

3 Results  

We present the results from LMDZ-INCA model comparisons with satellite NH3 observations and inversions of NH3 emissions 400 

at both global and regional scales over land areas. For regional analysis, we select six major NH3 source regions: India, China, 

Africa, Europe, North America, and South America (Figure S5). We present and discuss our results across various temporal 

scales, ranging from daily to monthly, seasonal, and annual.  

3.1 Model and satellite comparison of NH3 total columns  

We start by comparing the LMDZ-INCA model simulated NH3 total columns driven by the prior emissions and convolved 405 

with the AKs against the IASI NH3 observations, with first a worldwide overview, and then some focuses on regions over the 

land. In addition to assessing global and regional mean comparisons between the modeled and the observed IASI NH3 columns, 
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we also calculate the Pearson’s correlation coefficient (r) and Root Mean Square Error (RMSE) between the annual or monthly 

mean simulated and observed values at the model grid level, as part of our comparative analysis (shown on Figures 2&3 for 

2019 and Figures S6 for all years from 2019 to 2022).  410 

 

Figure 2: The spatial distributions of the annual mean NH3 total columns (in molecules cm-2) for the year 2019 (a) from the 

IASI ANNI-NH3-v4 observations (𝛀𝒐𝒃𝒔), (b) from LMDZ-INCA model simulated columns after applying the averaging kernel 

(𝛀𝒎𝒐𝒅), and (c) the difference (𝛀𝒎𝒐𝒅 −  𝛀𝒐𝒃𝒔) between them. The last column (d) show the scatter density plots between these 

annual means observed IASI and the corresponding LMDZ-INCA model NH3 columns across all model grid-cells worldwide 415 

over the land. In the scatter plots, the solid black line represents the one-to-one line, while the dashed red line represents the 

regression line.       

Figures 2 compares the annual mean modelled LMDZ-INCA NH3 columns (Ω𝑚𝑜𝑑) with the observed IASI NH3 column 

retrievals (Ω𝑜𝑏𝑠) re-gridded on the LMDZ-INCA model grid (1.27° × 2.5°) worldwide over land for the year 2019 (Figure S6 

for all four years from 2019 to 2022). It shows that the annual mean worldwide spatial distributions of the modelled NH3 420 

columns are approximately similar to that of the IASI NH3 retrievals and there is a good spatial correlation (r = 0.71) between 

them. However, the IASI NH3 observations indicate higher NH3 abundance compared to the LMDZ-INCA simulations across 

most of the regions worldwide, except over the south Asia and Eastern Siberia regions (Figure 1). We observe an overall 

underestimation of the global annual mean LMDZ-INCA NH3 columns Ω𝑚𝑜𝑑  (mean: 0.33×1016 molecules cm-2) compared 

with the observed IASI retrievals Ω𝑜𝑏𝑠 (mean: 0.54×1016 molecules cm-2). The RMSE between the annual mean gridded Ω𝑚𝑜𝑑  425 

and Ω𝑜𝑏𝑠worldwide is 0.52×1016 molecules cm-2.   

Emphasizing on the regional analysis, in Figure 3, we found that the modelled NH3 total columns are lower than the IASI NH3 

observations over most of the selected regions, except over the Indian region (also south East Asia, not shown but see Figure 

2), and also over a region in Eastern Siberia, where the model shows an overestimation of the observations (not shown but see 

Figures 2). The annual regional mean of monthly Ω𝑚𝑜𝑑  over China, Africa, Europe, South America, and North America 430 

regions are respectively ~4%, ~52%, ~53%, ~58%, and ~70% smaller compared to Ω𝑜𝑏𝑠 (Figure 2). However, over the Indian 

region, the annual regional mean of Ω𝑚𝑜𝑑  is ~44% larger than Ω𝑜𝑏𝑠. The monthly regional mean timeseries of the IASI NH3 

observations in Figure 3 show that the NH3 columnar abundance over most of the regions are higher during spring and/or 

summer months compared to the winter. These elevated NH3 columns observed during spring and/or summer months 

compared to winter months can be attributed to increased agricultural activities, particularly the prominent use of N-fertilizers 435 

in crops during warmer seasons. High NH3 concentrations are also influenced by temperature, as warmer temperatures can 

enhance NH3 volatilization from soils and agricultural surfaces (Sutton et al., 2013). This synergistic effect of agricultural 

practices and temperature contributes to the seasonal variation in NH3 emissions, with higher concentrations during spring 

and/or summer months. 
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 440 

Figure 3: The monthly regional mean timeseries of the observed IASI NH3 total columns (𝛀𝒐𝒃𝒔), the corresponding LMDZ-

INCA modelled columns (𝛀𝒎𝒐𝒅) (primary y-axis), and monthly anthropogenic (CEDS) and fire (GFED4) NH3 emissions 

(secondary y-axis) from bottom-up inventories used in the model simulations for the year 2019 for different selected regions 

(a) India, (b) China, (c) Africa, (d) Europe, (e) South America, and (f) North America (first column). The second column in 

each subfigure show the scatter density plots between the monthly mean gridded observed IASI and the corresponding 445 

modelled NH3 total columns. In the scatter plot, the solid black lines represent the one-to-one line, while the dashed red lines 

represent the regression line.   

The monthly mean modelled NH3 columns in Figure 3 mostly follow the seasonal variation of the IASI observations over the 

South American and African regions, and over the European region up to some extent. However, for other remaining regions, 

especially over the Indian, Chinese, and the Middle East (not shown) regions, the seasonality of the modelled NH3 columns 450 

largely deviates from the observations and we see a large scatter between the monthly mean gridded modelled and observed 

NH3 columns (Figures 3(a) and (b)). Over the Indian region, the model shows two main peaks with the highest peak in May 

following a secondary smaller peak in September; whereas, the IASI observations show the highest peak in July and a smaller 

one in April (Figure 3(a1)). The high NH3 loading from the IASI observations over the Indian region from June to August with 

a maximum peak in July and a secondary much smaller peak in April (Figure 3(a1)), is consistent with the cropping cycle 455 

(Kuttippurath et al., 2020), high usage of the N-fertilizers, and high temperature during these monsoon and summer months in 

the Indo-Gangetic Plain (IGP) region spanning the banks of the Indus and Ganges Rivers and their tributaries (Beale et al., 

2022). However, as mentioned before, the variation and two distinct peaks in the modelled NH3 columns is similar to the 

variation and peaks in the anthropogenic NH3 emissions used in the model simulations (Figure 3). Similarly, over the Chinese 

region, the observed NH3 columns show highest peak in July which is not captured by the simulations that shows the maximum 460 

peak in May, followed by a small peak in September. In these regions, because of differences of seasonal variations between 

the modelled and observed NH3 columns, we see weak spatial correlations between the monthly mean observed and modelled 

gridded NH3 columns (Figure 3) that are smaller than in other regions like Africa, South America, and Europe, where the 

seasonality in both modeled and observed NH3 total columns is roughly similar. 

Figure 3 also shows the seasonal cycles in the regional anthropogenic (CEDS) and fire (GFED4) emissions from the global 465 

emission inventories used in the model simulations. Over some regions like South America, North America, and Africa, fire 

NH3 emission has visible contribution to this seasonal variation in total emissions; whereas, over India, China, and European 

regions, this attribution is very small (Figure 3). It shows that the seasonality in the modelled NH3 total columns mostly varies 
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with the seasonality in the combined anthropogenic and fire NH3 emissions over these regions (Figure 3). Therefore, the 

seasonality differences between the model and observations over some regions are mostly due to different seasonality 470 

embedded in the prior NH3 emissions used for the model simulations (Figure 3). The model comparison analysis for other 

years from 2020 to 2022 shows a similar behavior of the modelled and observed NH3 columns. Notably, the seasonality of 

anthropogenic NH3 emissions in the CEDS inventory is mainly derived according to the European agricultural practices based 

on the ECLIPSE v5 model, which leads to NH3 emission peaks mostly in May and September corresponding to the fertilizers 

application before planting and after harvesting the crops (Beale et al., 2022). However, this seasonal variation of the NH3 475 

emissions in CEDS may not be accurately reflecting the diverse agricultural practices in other regions like India, China, and 

the Middle East (Figure 3) (Beale et al., 2022; Chen et al., 2023a; Kuttippurath et al., 2020). This is clearly evident from large 

difference in the seasonal variations between the IASI NH3 observations and LMDZ-INCA model over these regions, as model 

is dominatingly driven by the CEDS anthropogenic NH3 emissions in these regions (Figure 3). This dependency on European 

seasonality in CEDS inventory NH3 emissions for other major agricultural NH3 emission regions with diverse agricultural 480 

practices, like India and China, require for region-specific data to improve the accuracy of emission inventories. For some 

regions like the South America, Africa, and North America the observed IASI NH3 total columns show high values during 

specific periods, which mainly attributes to heightened NH3 loading resulting from biomass burning from wildfires in these 

regions. The underestimation and/or distinct seasonality of the modelled NH3 columns compared to the observed IASI NH3 

retrievals over different regions indicate biases and/or differential seasonality in the prior NH3 emissions from the inventories 485 

over these regions. 

Previous validation studies of earlier IASI ANNI NH3 retrieval products (e.g., with version 3) showed relatively good 

agreement with in situ and FTIR measurements (Guo et al., 2021; Wang et al., 2020). Although, the IASI-ANNI-NH3-v4 

product introduces important improvements compared to the earlier versions and expects minimal biases, a comprehensive 

validation of this version has not yet been conducted and such a validation is anticipated in upcoming studies (Clarisse et al., 490 

2023). Therefore, the bias between IASI NH3 columns and LMDZ-INCA model simulations mainly reflect an underestimation 

of agricultural NH3 emissions in the prior inventory, as well as a misrepresentation of their seasonal variation. However, we 

cannot fully rule out remaining retrieval uncertainties in the absence of comprehensive validation of this version of the IASI 

NH3 retrievals.  

3.2 Evaluation of the estimated NH3 emissions derived from inversions with the IASI NH3 observations  495 

In order to validate our atmospheric inversion approach (more specifically, to validate the linear approximation of the 

atmospheric chemistry model based on a single perturbed emission simulation) and strengthen our confidence in the NH3 

emission estimates, we have conducted a LMDZ-INCA model simulation using the IASI-constrained NH3 emission estimates 

derived from our global inversions for the year 2019 and compared the simulated NH3 total columns with the IASI NH3 total 

column observations. At the annual scale globally, the spatial correlation coefficient (r) between the yearly mean model-500 

simulated NH3 total columns and IASI observations improve from 0.71 (using prior emissions) to 0.90 (using IASI-constrained 

NH3 emissions), while the RMSE decreases by ~29% from 0.52 × 1016 molec. cm-2 to 0.37 × 1016 molec. cm-2. Similarly, at 

the monthly scale globally, the r value and RMSE between the model simulations with IASI-constrained NH3 emissions and 

the IASI observations improve from 0.51 (using prior emissions) to 0.83 (using IASI-constrained NH3 emissions), while the 

RMSE decreases by ~34% from 0.88 × 1016 molec. cm-2 to 0.58 × 1016 molec. cm-2.  505 

At the monthly scale and across major regions, including India, China, Africa, Europe, South America, and North America, 

the spatial correlation coefficients (r) and RMSE between the model simulations with estimated NH3 emissions from inversions 

and the IASI observations are respectively much higher and smaller than when the simulations are based on the prior CEDS 

anthropogenic NH3 emissions (Figure 4). The spatial correlation coefficient (r) between the IASI-constrained NH3 emissions’ 

model simulations of the NH3 total columns and the IASI NH3 observations exceeds ~0.8 in most of the regions at the monthly 510 
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scale for this year 2019 of validation analysis (Figure 4). In one of the major NH3 emitted regions, India, at the monthly scale, 

the spatial correlation increases from 0.40 to 0.86 and RMSE reduce by ~50% from 3.83 × 1016 molec. cm-2 to 1.91 × 1016 

molec. cm-2 (Figure 4). Similarly, over another major NH3 emission region, China, at the monthly scale, the spatial correlation 

increases from 0.40 to 0.79 and RMSE reduce by ~27% from 1.19 × 1016 molec. cm-2 to 0.87 × 1016 molec. cm-2 (Figure 4). It 

demonstrates the general improvement brought at different spatiotemporal scales by the update of the emission estimates from 515 

our inversions, and thus the internal consistency of our global inversion framework despite the rather simple linearization of 

the chemistry-transport underlying it. This improvement of the fit to the IASI NH3 observations is a strong indication of the 

robustness of our inversion-based estimate of the global NH3 emissions.  

 

Figure 4:  Comparison of the monthly averages of the IASI NH3 column observations (Ωobs) to the corresponding averages of 520 

these observations with two simulations of LMDZ-INCA (Ωmod) using the IASI-constrained NH3 emission estimates derived 

from our global inversions and using the prior CEDS NH3 emissions over different regions for the year 2019. Each panel 

shows the correlation coefficient (r) and root mean square error (RMSE) between modeled (from both prior and IASI-

constrained NH3 emissions from inversions) and observed IASI NH3 columns. The black line denotes the one-to-one line.  
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3.3 IASI-constrained NH3 emissions  525 

In the subsequent subsections, we present and discuss the gap-filled global daily (10-day scale) NH3 emission estimates 

integrated on different temporal and spatial scales. Over the four-year period of our emission estimates, we present global and 

regional annual budgets, including the mean emissions over this period, with the range defining minimum and maximum 

annual emissions, as well as the variation of the regional estimates at different temporal scales ranging from daily (10-day 

scale) to monthly, seasonal, and annual.     530 

3.3.1 Global annual NH3 emissions  

The spatial distribution of the IASI-constrained annual NH3 emissions averaged over the four-year period (2019-2022) in 

Figure 5 (Figure S7 for each year from 2019 to 2022) clearly reveals the main hotspots of the high anthropogenic NH3 

emissions over the globe on land areas. Figure 5 shows that this four-years averaged annual IASI-constrained NH3 emissions 

has a similar spatial distribution to the prior CEDS anthropogenic NH3 emissions. However, over most of the major NH3 535 

emitting regions over the globe and over land areas, the IASI-constrained NH3 emissions are higher compared to the prior 

CEDS emissions (Figure 5). It shows that the South and the East Asian regions are the highest anthropogenic NH3 emitting 

regions over the globe.      

 

Figure 5: Spatial distribution of the four-year (2019-2022) averaged annual NH3 emissions, showing (a) the prior CEDS 540 

anthropogenic NH3 emissions, and (b) IASI-constrained estimated NH3 emissions from our global atmospheric inversions.  

Figure 6 presents the global annual IASI-constrained NH3 emissions and its comparison with the prior CEDS anthropogenic 

NH3 emissions for all the four years from 2019 to 2022. The slight differences in the prior CEDS emissions over the four years 

is mainly due to the different coverages of the dominating anthropogenic NH3 emissions based on the CEDS anthropogenic 

and GFED’s fire emissions (see section 2.4) and also some differences in the natural soil NH3 emissions over the years. For 545 

each year, the IASI-constrained NH3 emissions are higher than the prior CEDS emissions. The average of global annual NH3 

emission estimates over the four years period is ~97 (93.8-99.9) Tg yr-1, which is ~61% (55%-65%) higher than the prior 

CEDS anthropogenic NH3 emissions. The global annual NH3 emission estimates show an increasing trend from the year 2019 

to 2021 (Figure 6). However, NH3 emission estimates for 2022 (~96 Tg yr-1) are lower than those for 2020 and 2021; however, 

still higher than those for 2019 (~94 Tg yr-1).    550 
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Figure 6: Global annual NH3 emissions for each year from 2019 to 2022, showing the prior CEDS anthropogenic NH3 

emissions (orange), and IASI-constrained (red) NH3 emissions from inversions.  

3.3.2 Regional NH3 emissions and seasonal variation 

Figure 7 illustrates the daily (at 10-day scale) variation of estimated NH3 emissions for four years from 2019 to 2022 over the 555 

six specific regions, India, China, Africa, Europe, North America, and South America (defined in Figure S5) which have the 

major anthropogenic ammonia emissions. In this figure, the prior CEDS anthropogenic NH3 emissions of the year 2019 over 

the globe and over the land areas are almost the same in magnitudes and seasonal variation across the four years (Figure 6) 

and thus, the representation is shown only for the year 2019. Figure 8 shows the spatial distributions of the four-year averaged 

annual IASI-constrained NH3 emissions and the prior CEDS emissions over the six regions. The budgets of regional annual 560 

estimated and prior NH3 emissions over the four years period for these selected regions are presented in Figure 9. 

The Indian and Chinese regions in the South and the East Asia are the major anthropogenic ammonia emitting regions in the 

world, with a majority of emissions originating from large crop-specific agriculture activities, including the use of synthetic 

fertilizers, manure, and emissions from soils and livestock. Over the Indian region, the highest NH3 emission is from the Indo-

Gangetic Plain region, which is attributed to the intensive agriculture practices (Figure 8(a)). The average annual NH3 emission 565 

estimates for the four-year period over the Indian region is ~15.0 (14.4-15.4) Tg yr-1 which is ~7% (~2%-10%) higher than the 

prior CEDS anthropogenic NH3 emissions (~14.1 Tg yr-1). The annual estimates over the Indian region show a slowly 

decreasing trend over the four-year period (Figure 9(a)). Notably, the seasonal variation of the estimated NH3 emissions across 

all the four years is similar to each other; however, it is always different from the prior CEDS NH3 emissions (Figure 7(a)). 

The seasonal variation in NH3 emissions across different regions in the CEDS inventory dataset is rather coarse (Beaudor et 570 

al., 2023) and mostly based on the European practices of agricultural activities (Beale et al., 2022). The CEDS NH3 emissions 

show two peaks in May and September, whereas, the estimates show the main peak in July and August and some small peaks 



 

17 

 

from January to April for each inversion year. The high NH3 emission estimates over the Indian region in July-August with a 

peak in July is consistent with the cropping cycle (dominatingly rice cultivation followed by corn), high usage of N-fertilizers, 

and high temperature during these monsoon and summer months in the Indo Gangetic Plain region. The high estimates in the 575 

winter and spring months can be attributed to the usage of N-fertilizers during the winter and spring crops seasons, particularly 

from the dominating wheat cultivation. Biomass burning is also a small contributing source of the NH3 emissions in this region 

with the majority of fires resulting from crop-residue and stubble burning in the spring and autumn before replanting. 

Therefore, there should not be a significant problem of attribution between the anthropogenic and biomass burning emissions 

here.  580 

The majority of IASI-constrained and the prior CEDS anthropogenic NH3 emissions over the Chinese region are confined to 

the East China region (Figure 8(b)). The four-year average of inverted annual NH3 emission over the Chinese region is ~23.4 

(22.3-24.9) Tg yr-1 (Figure 9(b)). This averaged IASI-constrained NH3 emission is ~62% (~54%-72%) higher than the prior 

CEDS emissions (~14.5 Tg yr-1) used in the inversions. For this region, we see an increasing trend in the estimated ammonia 

emissions from 2019 to 2021 (Figure 9(b)). The annual NH3 emission estimate for 2022 (23.2 Tg yr-1) is lower than those for 585 

maximum in 2021 (~24.9 Tg yr-1), comparable to those in 2020 (~23.3 Tg yr-1); however, it remains higher than those for 2019 

(~22.3 Tg yr-1) (Figure 9(b)). A majority of the ammonia emissions in this region originate from the crop-specific agriculture 

activities, more specifically the applications of synthetic fertilizer and livestock manure in different crop cultivations (Xu et 

al., 2018). The daily (at 10-day scale) variation of the NH3 emissions in Figure 7(b) shows a strong seasonality in the estimates 

across all the years over this region. The seasonality in the emission estimates across all the years is different from the prior 590 

CEDS NH3 emissions used in the inversions. We observe mainly two high peaks in the estimates in spring (March-April) and 

in summer’s June-July months, whereas the CEDS emissions show two peaks in May and September. The NH3 emission 

estimates also show a small third peak in October for inversion years from 2020 to 2022, except for 2019. The strong 

seasonality in the emission estimates in this region agrees well with the crop cycle when wheat cultivation dominates in spring 

and rice cultivation in the summer months (Xu et al., 2018)    595 

As discussed before in section 3.1, seasonality in the CEDS inventory NH3 emissions for most of the regions is mostly based 

European agricultural practices, corresponding to the fertilizers application before planting and after harvests (Beale et al., 

2022). This does not accurately capture the NH3 emissions in regions like China, India and the Middle East, where agriculture 

practices differ significantly (Beale et al., 2022; Chen et al., 2023a; Kuttippurath et al., 2020). Whereas, our inversion estimates 

based on the satellite data shows more realistic seasonality of NH3 emissions across different regions, closely aligning with 600 

their respective crop and agriculture cycles.  

South America, Africa, and North America regions are fire-dominated regions, particularly during the dry season when 

wildfires are prevalent (Figure S8) (Chen et al., 2023b). The biomass burning from the wildfires plays a significant role in 

contributing to the total ammonia emissions in these regions. When fire emissions attribution in the prior emissions used for 

inversion is inaccurate, the dominated anthropogenic emission grids are misrepresented. In contrast, IASI NH3 observations 605 

will indicate high NH3 emissions over these grid cells due to biomass burning. The recent release of the 5th version of the 

Global Fire Emissions Database (GFED5) indicates a 61% increase in global burned area compared to GFED4 (Chen et al., 

2023b). This increase may result in anthropogenic NH3 grids from the inversions corresponding to biomass burning grids, 

consequently revealing heightened anthropogenic dominated NH3 emission estimates over these regions due to non-local 

contribution from transport from neighboring biomass burning dominating grids. Biomass burning generates NH3 advection 610 

at higher altitudes which also breaks our assumption of weak lateral transport in FDMB inversion approach, which may 

attribute to large errors in the emission estimates over these regions.   
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Figure 7: Daily (at 10-day scale) variation of the total estimated and the prior CEDS anthropogenic NH3 emissions for the 615 

four years from 2019 to 2022 integrated over each selected region, (a) India, (b) China, (c) Africa, (d) Europe, (e) South 

America, and (f) North America.  

For South American and African regions, our inversions respectively provide ~11.1 (~9.8-12.3) Tg yr-1 (Figure 8(e)) and ~14.4 

(~13.8-14.6) Tg yr-1 (Figure 9(c)) of the annual NH3 emissions averaged over the four-year period. These averaged annual 

estimates for these regions exceed the prior CEDS emissions by approximately 2.1 and 2 times, respectively. Our estimates 620 

show a clear increasing trend in annual NH3 emission over the Africa (Figure 9(c)). However, a decreasing trend of annual 

NH3 emissions from 2020 to 2022 is observed over the South American region (Figure 9(e)). For the South American region, 

we observe a high peak in the estimated emissions during September to October months in each year and this peak in the year 

2020 is much higher than that from other years (Figure 7(e)). In fact, the peak in 2021 is higher than the one from the estimates 

in 2019 and 2022. The seasonality of the estimates over the South American region is similar to the prior CEDS anthropogenic 625 

NH3 emissions (Figure 7(e)). There was a high increase in number of fires in 2020 compared to other years in this region 

(Figure S8 (a)), which can also be observed from an enhanced observed NH3 loading from IASI observations over this region 

in these years (Figure S6). The highest peak in the estimated NH3 emissions in 2020 is mainly because of the contribution from 

these relatively higher number of fire occurrences in this year. For the African region, the prior CEDS shows almost a flat 
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seasonality relative to the estimates with a small peak in May; whereas, the estimates show at least two clear peaks in February-630 

March and in July-August (Figure 7(c)). The NH3 emissions over this region remain high during other seasons also (Figure 

7(c)). Although we exclude grids dominated by the biomass burning emissions based on the GFED4 bottom-up inventory in 

our inversions, mitigating its influence on the inversion estimates is challenging. This is due to the complexity arising from 

the fact that bottom-up NH3 emissions lack the most updated information on fire occurrences, and the transport from biomass 

burning areas can extend to other regions, which is not accounted for in our inversion approach (Chen et al., 2023b).  635 

 

Figure 8: Spatial distribution of the total annual NH3 emissions averaged over the four years period (2019-2022) across six 

regions (a) India, (b) China, (c) Africa, (d) Europe, (e) North America, and (f) South America, showing bottom-up prior CEDS 

emissions (first column), IASI-constrained estimated emissions (EIASI) using the IASI NH3 observations (𝛀𝒐𝒃𝒔).  

We estimate ~12.4 (11.6-13.4) Tg yr-1 four-year averaged annual NH3 emissions over the North American region which is 640 

approximately 2.2 times higher than the prior CEDS anthropogenic NH3 emissions (Figure 9(f)). Our inversion estimates show 

an increasing trend of annual NH3 emissions from 2019 to 2021 over this region, but 2022 estimates are smaller than those 

from 2020 and 2021 and comparable to the 2019 emissions (Figure 9(f)). The estimates show a strong seasonality with peak 

emissions in April-May across all the years (Figure 7(f)). For the years 2020 to 2022, especially for 2020 and 2021, we 

observed a secondary peak during August and September which is less visible in 2019 emissions. The high secondary peak in 645 

2020 and 2021, may result from an increased biomass burning due to more wildfires in these years compared to 2019. Similar 

to the South American and African regions, in North American region also, the impact of biomass burning from fires from 

some regions may contribute to the higher ammonia emissions (Figure S8(c)). In fact, the highest peak in the estimated 

emissions in 2020 in this region corresponds to an extreme cluster of wildfire events known as the "August Complex Fire" in 

2020. This event originated as 38 separate fires started by lightning strikes on August 16-17, 2020, in the western U.S., leading 650 

to the first "gigafire" event in modern history in California (Campbell et al., 2022; Makkaroon et al., 2023). Campbell et al. 

(2022) showed that this 2020 "gigafire" contributed up to 83% of the total nitrogen emissions in the western U.S. However, 
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based on GFED4 inventory fire emissions, our inversion could not filter out the grids dominated by these wildfire emissions 

during such events in this region. 

Over the European region, hotspot regions with high anthropogenic NH3 emissions are well detected for our inversion estimates 655 

(Figure 8(d)). The four-year averaged of annual NH3 emission estimates over this region is estimated as ~7.9 (7.7-8.2) Tg yr-1 

(Figure 9(d)). The estimated annual emissions over this region in 2020 are higher than in the other remaining inversion years; 

however, the estimates still remain approximately comparable across these years (Figure 9(d)). Our emission estimates over 

the European region are ~72% higher compared to the prior CEDS anthropogenic NH3 emissions. The estimates show a strong 

seasonality across all the years, with high emissions from March to May with a peak in April (Figure 7(d)). This seasonality 660 

in the estimates differs from the prior CEDS anthropogenic NH3 emissions which show a high peak in May and a smaller one 

in September (Figure 7(d)). The strong seasonality in the emission estimates agrees well with the crop cycle over the European 

region when the main cultivation activities dominate in the spring and summer seasons.     

Other than these selected regions, we also briefly analyzed regional estimates over the Middle East region, a comparatively 

smaller ammonia emitting region (Figure S9). A recent study by Osipov et al. (2022) based on ship-borne measurements 665 

around the Arabian Peninsula and modelling showed that NH3 emissions over the Middle East region are significantly 

underestimated, potentially by a factor exceeding 15 from EDGAR inventory emission used in their model simulations. While 

natural sources of ammonia play a negligible role in this region, the vast majority of emissions arise from industrial and 

agricultural activities. Over the Middle East region, our average annual anthropogenic estimate of ~4.4 Tg yr-1 (~4.4-4.5 Tg 

yr-1) is approximately 49% higher than the prior CEDS emissions (~3.0 Tg yr-1). The annual NH3 emissions in these regions 670 

remained almost the same over the four-year period (Figure S9(c)). The estimated NH3 emissions show strong seasonality with 

a high peak in May-April and a second peak in July-August across all the four years, whereas, the prior CEDS anthropogenic 

NH3 emissions show two peaks in May and September (Figure S9(b)).  

4 Discussion 

4.1 Comparison with bottom-up inventories and other NH3 emissions estimates  675 

We compare in this section our IASI-inverted NH3 emission estimates with other global and regional bottom-up inventories, 

as well as with other available NH3 emissions inversion estimates reported in the recent literature. We use two global bottom-

up NH3 emission inventories (i) CAMS-GLOB-ANT v6.2 (developed by combining the CEDSv2 emissions trends and 

temporal profiles from CAMS-GLOB-TEMPO and EDGAR v6 historical monthly NH3 emission data up to 2018) 0.1°×0.1° 

monthly dataset (Granier et al., 2019; Soulie et al., 2023) from 2019 to 2022, and (ii) the process-based agricultural and natural 680 

soil NH3 emissions from the Calculation of AMmonia Emissions in ORCHIDEE (CAMEO) model at 1.27°×2.5° horizontal 

and monthly temporal resolutions (Beaudor et al., 2023). CAMEO simulates NH3 sources from the agricultural sector, from 

livestock manure management (including animal housing and manure storage to grazing) to synthetic and organic nitrogen 

application to soil. Since CAMEO emissions are not only limited to cultivated / livestock areas and are dynamically dependent 

on environmental conditions and atmospheric deposition, emissions from natural ecosystems are also exploited in this study. 685 

For these inter-comparisons, we re-gridded the global NH3 emissions from the bottom-up inventories on the grids (1.27°×2.5°) 

of our estimated emissions. We also sub-sampled the monthly emissions from the bottom-up inventories on the common grids 

corresponding to the IASI-constrained monthly NH3 emissions derived from the daily (at 10-day scale) estimates. Note that 

CAMEO additionally includes natural soil NH3 emissions; whereas, CAMS emissions do not include it and provide only 

anthropogenic NH3 emissions.   690 
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Figure 9: The regional annual NH3 emissions spanning from 2019 to 2022 over the six regions over the land areas, derived 

from the IASI-constrained daily global estimates, the prior CEDS inventory anthropogenic NH3 emissions, and two 

independent global bottom-up inventories CAMS (anthropogenic NH3 emissions) and CAMEO (combined agriculture and 

natural soil NH3 emissions). The CAMEO NH3 emissions is for its last available year, 2014 selected on the common grids of 695 

each year’s estimates.    

The four-year (2019-2022) averaged of the global annual anthropogenic NH3 emissions from CAMS bottom-up inventory 

(~52.5 Tg yr-1), subsampled on the common grids where IASI-constrained monthly emissions are available, are lower than the 

prior CEDS anthropogenic NH3 emissions (~60.5 Tg yr-1); whereas, global annual NH3 emission from CAMEO from combined 

agricultural and natural soil sectors (~71.1 Tg yr-1) are higher than those from both CEDS and CAMS. Therefore, we have 700 

even larger relative difference between the estimated and the CAMS emissions than the relative difference between the 

estimated and CEDS emissions (Figure 9). However, this relative difference between the estimated and CAMEO’s combined 

agriculture and natural soil NH3 emissions are smaller compared to the relative difference between the estimated and CEDS. 

The four-year averaged global annual NH3 emissions from the inversions are ~1.8 times higher than CAMS anthropogenic 

NH3 emissions and ~1.4 times higher than CAMEO combined agriculture and natural soil NH3 emissions. Figure 9 shows a 705 

comparison between the IASI-inverted annual emissions and corresponding CAMS and CAMEO emissions over six regions 
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(and over the Middle in Figure S9) and across four years, revealing consistently higher IASI-constrained emissions compared 

to these global bottom-up inventories.    

We also compare our estimates with the recent global NH3 inversion emission estimates by Luo et al. (2022) based on a 

previous version of IASI NH3 observations from 2008 to 2018, with the recent estimates from Dammers et al. (2022) derived 710 

using the CrIS observations from 2013 to 2020, and with some other regional inversion estimates. Luo et al. (2022) estimated 

global annual NH3 emissions at ~78 (70-92) Tg yr-1 averaged over a period from 2008 to 2018, and Dammers et al. (2022) 

over a period from 2013 to 2020 had 216.6±66.2 Tg yr-1 (for all detected source locations) and 74.1±17.7 Tg yr-1 (for inventory 

identified source locations). Our averaged global annual NH3 emissions estimates of ~97 (94-100) Tg yr-1 from 2019 to 2022 

are ~25% higher compared to the average total estimates (~78 Tg yr-1) from Luo et al. (2022). This can partly be explained by 715 

the fact that the IASI version 4 NH3 column values used in this study are also about 10-20% higher than the earlier version 3 

(Clarisse et al., 2023) used by Luo et al. (2022) due to a reduction of the retrieval biases. This also has to be explained by the 

use of a different inversion approach, of a different chemistry transport model, and application of AKs from IASI NH3 

observations to model simulated NH3 columns in this study. Our estimates align more closely with the upper range (~92 Tg 

yr-1) of their emission estimates obtained by setting a 200% perturbation to the modelled atmospheric NH3 lifetime in their 720 

inversions. It should be noted that Luo et al. (2022) corrected their NH3 emissions over the Indian and the East China regions 

during 2013 to 2018, which were impacted by the rapid changes in SO2 emissions and concentrations in these regions, 

especially rapidly decrease of SO2 emissions over China. A decrease in SO2 emissions leads to an increase in NH3 

concentrations/columns in the troposphere because lower SO2 levels reduce the formation of ammonium sulfate aerosols, 

leaving more free ammonia in the atmosphere, which increases its concentration in the air (Luo et al., 2022). This correction 725 

in Luo et al. (2022) leads to a small increase in NH3 emissions over the Indian region. However, a substantial reduction of ~7-

8 Tg for the year 2018 is observed over the East China region. Without any correction for SO2 trends, our estimates (for 2019) 

are closer to their estimates for the year 2018. In contrast, our average total global estimate of ~97 (93.8-99.9) Tg yr-1 for the 

period 2019-2022 is ~2.2 times smaller than the 216.6±66.2 Tg yr-1 total from the sum of all detected source estimates from 

Dammers et al. (2022). Additionally, our four-year averaged estimates are ~31% higher when comparing with their estimates 730 

(74.1±17.7 Tg yr-1) corresponding to the sources in CAMS-GLOB-ANT v4.2 inventory emissions above the detection limit of 

their satellite-constrained emissions. 

In order to compare our regional NH3 emissions, derived from the global inversion estimates, with those of Luo et al. (2022), 

we re-gridded their final inversion year (2018) estimates to match the spatial resolution (1.27°×2.5°) of our estimated NH3 

emissions. Subsequently, we integrate both the emission estimates over the identical grids on common selected regions’ 735 

domains over the land and compare their final inversion year’s (2018) NH3 emissions with our nearest first inversion year 

(2019) estimates. For comparison with Dammers et al. (2022), their regional estimates for all detected source locations are 

consistently higher than our estimates. Therefore, in the subsequent comparison analysis, we compare our estimates only with 

their regional reported estimates corresponding to the sources with inventory emissions above the detection limit of their 

satellite-derived emissions. This comparison is consistent as our estimates also required information on the prior CEDS NH3 740 

emissions and for the missing sources with zero emissions in bottom-up inventory, our inversion will not detect any new 

emission sources. Over the Indian region, our annual estimates of 2019 (~15.4 Tg yr-1) are closer to the estimates of 2018 

(~13.1 Tg yr-1) from Luo et al. (2022), representing a marginal ~18% increase. Our estimates over the China region of 2019 

(22.3 Tg yr-1) are much higher (~73%) compared to Luo et al. (2022) SO2 trend corrected NH3 emissions (~13 Tg yr-1); 

however, these are closer to their estimates without correction. Recently, Liu et al. (2022) estimated 21.6 Tg NH3 yr-1 (≡ 17.77 745 

Tg N yr-1) annual emissions over China for the year 2019 using satellite data and our estimates (22.3 Tg yr-1) for the same year 

are comparable to these inversion estimates. Dammers et al. (2022) reported ~35 Tg yr-1 averaged NH3 emissions for the Asia 

region and our combined four-year averaged estimate of ~43 Tg yr-1 from India, China, and the Middle East regions is ~23% 
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higher than their estimate. Our estimates for Africa (~13.8 Tg yr-1), South America (~9.8 Tg yr-1), and the Middle East (~4.4 

Tg yr-1) regions for 2019 agree well with Luo et al. (2022) estimates (11.1 Tg yr-1, 10.5 Tg yr-1, and 4.1 Tg yr-1, respectively) 750 

of 2018 within ~24%, ~6%, and ~6%, respectively. For the South American region, our annual estimate of ~9.8 Tg yr-1 for 

2019 agrees well with the estimate of 9.1 Tg yr-1 from Dammers et al. (2022). Our estimates (11.6 Tg yr-1) for 2019 over the 

North American region are ~55% higher than ~7.5 Tg yr-1 from Luo et al. (2022); however, they are comparable to the total 

estimates of 12.2 Tg yr-1 from Dammers et al. (2022). Recently, Sahoo et al. (2024) constructed a high-resolution gridded (0.1° 

× 0.1°) emission inventory of NH3 emissions over India for 2022 by including 24 regional major and minor anthropogenic 755 

sources. They estimated 10.54 Tg yr-1 of NH3 emissions in 2022, which are closer to the CAMS anthropogenic NH3 emissions, 

while our inversion estimates of 14.4 Tg yr-1 NH3 emissions for the same year are ~36% higher than their estimates (Figure 

9(b)). However, in this comparison analysis over the Indian region, our selected domain is larger, encompassing most of South 

Asia, compared to the India-only domain considered in Sahoo et al. (2024).    

Over the European region, our annual NH3 estimate (~7.7 Tg yr-1) for 2019 is ~91% higher compared to ~4.1 Tg yr-1 from Luo 760 

et al. (2022) for 2018. However, our four-year averaged annual estimates (~7.9 Tg yr-1) are ~29% smaller than ~11.1 Tg yr-1 

from the estimates of Dammers et al. (2022). The European Union (EU) emission inventory report (EEA Report No 4/2023, 

2023) reported comparatively lower NH3 emissions for EU 27-member states as 3.5 Tg yr-1, 3.4 Tg yr-1 and 3.3 Tg yr-1 for 

2019, 2020, and 2021, respectively, which are much lower compared to our estimates for these years. Also, some other recent 

top-down inversion studies, such as (Tichý et al., 2023) have obtained a similar order of the magnitude of the emissions (4.3 765 

Tg yr-1 and 4.0 Tg yr-1 for 2019 and 2020, respectively) using the CrIS satellite observations as from Luo et al. (2022) (4.1 Tg 

yr-1 for 2018) or from (EEA Report No 4/2023, 2023). However, our estimates are comparable to the NH3 emissions derived 

from a recent regional atmospheric inversion over Europe at 0.2°×0.2° horizontal and monthly temporal resolutions over a 

three year period from 2020 to 2022, derived within the EU project Sentinel EO-based Emission and Deposition Service 

(SEEDS) (https://www.seedsproject.eu/data/monthly-nh3-emissions) (Ding et al., 2020, 2024). In this regional atmospheric 770 

inversion, NH3 emissions over Europe were derived by DECSO (Daily Emissions Constrained by Satellite Observations) v6.2 

algorithm, developed to derive emissions of short-lived species based on an extended Kalman Filter approach and using CrIS 

(NOAA-20) observations (Ding et al., 2020, 2024). Our annual NH3 emission estimates integrated over the common European 

domain [10°W-30° E, 35°N-55° N] of their inversions, amounting to 8.8 Tg yr-1, 8.4 Tg yr-1, 8.4 Tg yr-1 for three years 2020, 

2021, and 2022, respectively, are in good agreement (within ~1-8%) with 8.2 Tg yr-1, 8.4 Tg yr-1, and 8.6 Tg yr-1 derived for 775 

the same years in SEEDS NH3 emission inversions. SEEDS NH3 emission estimates over Europe indicate an increasing trend 

of ~0.2 Tg yr-1 over a three-year period from 2020 to 2022. In contrast, our inversion estimates show a peak in 2020, with 

comparatively slightly lower values in the subsequent years (Figure 9(d)).  

This comparison analysis show that our inversion estimates of NH3 emissions integrated at global or regional spatial scales are 

within the range of other previous inversion estimates derived based on different satellite observations and different inversion 780 

approaches. When comparing our IASI-based inversion estimates with some of those derived from CrIS observations, the 

differences in satellite overpass times (IASI ~09:30 LST, CrIS ~13:30 LST) could also lead to differences in retrieved NH3 

due to the potentially strong and quite uncertain diurnal variability in NH3 emissions and atmospheric concentrations and 

retrieval approaches. However, in the current setup of our model (LMDZ-INCA), the anthropogenic NH3 emissions are derived 

from a 1-month resolution inventory which is uniformly distributed in time at the hourly resolution, without incorporating 785 

diurnal cycles. This lack of diurnal variations in the input prior emissions could indeed enhance the discrepancies between 

IASI- and CrIS-based emission estimates. In a study by (Dammers et al., 2019), they utilized both IASI and CrIS satellites 

observations to estimate NH3 emissions, lifetimes, and plume widths from major agricultural and industrial point sources. 

Their findings indicate that CrIS-derived emission estimates are, on average, slightly higher than those obtained from IASI-A 

and IASI-B observations. However, these differences remain within the overall uncertainty range of the estimates. The 790 

https://www.seedsproject.eu/data/monthly-nh3-emissions
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differences in the emissions from CrIS and IASI could be due to the bias between the satellite NH3 retrievals, as well as the 

potential influence of the different overpass times of these satellites in combination with the strong diurnal cycles of the 

emissions. Overall, our estimates, as well as these other inversion estimates, are higher compared to the NH3 emissions from 

different global or regional bottom-up inventories, which tend to support the assumption that there is a general underestimation 

of the emissions in the inventories. The bottom-up inventories do not accurately capture the seasonality of NH3 emissions in 795 

relation to the agricultural and crops activity cycles in some regions like India, China and the Middle East. In contrast, our 

inversion estimates demonstrate a seasonality that is consistent with the crops and agriculture cycles in these regions.   

4.2 Impact of COVID-19 lockdowns on NH3 emissions  

The strict restrictions imposed during the COVID-19 lockdown periods in the year 2020 across different 

regions/countries/cities around the world observed major changes in anthropogenic activities, atmospheric concentrations, and 800 

emissions of different air pollutant species like NOx and SO2. However, atmospheric NH3 concentration and emissions 

received comparatively less attention compared to NOx or SO2 and only a very few studies analyzed the impact of COVID 

lockdowns on ambient NH3 concentrations. Most of the air pollutants like NOx and SO2 show a decline in their atmospheric 

concentrations and emissions during COVID-19 lockdown periods (Zheng et al., 2021). The decline in NOx and SO2 

concentrations in the atmosphere during the COVID-19 lockdowns leads to reduction of formation of ammonium nitrate and 805 

ammonium sulfate aerosols from atmospheric ammonia, and hence a decrease in the atmospheric sink of NH3. Meanwhile, 

agriculture activities remained mostly unchanged during COVID-19 lockdown periods. These factors along with changes in 

meteorology and atmospheric composition may have impacted ammonia levels in the atmosphere. A recent study by 

Kuttippurath et al. (2024) showed that the global atmospheric ammonia concentration increased anomalously almost 

everywhere around the world during COVID-19 lockdown periods in the year 2020 compared to the previous year 2019. Some 810 

other studies at regional or city scale, e.g., Xu et al. (2022) (China), Viatte et al. (2021) (Paris in France), Lovarelli et al. (2021) 

(Lombardy region in Italy), also reported increase of ammonia concentration in the atmosphere during COVID-19 lockdown 

periods in 2020. Recently, Evangeliou et al. (2024) conducted inversion estimates of NH3 emissions based on satellite 

observations during the COVID-19 lockdowns in Europe and shown that the NH3 emissions decreased by ~9.8% in the first 

half of the 2020 compared to 2016-2019. However, overall atmospheric ammonia levels increased due to reduced chemical 815 

removal from lower SO2 and NOx emissions and the persistence of agricultural activity (Evangeliou et al., 2024). In this study, 

we analysed the changes in estimated daily (at 10-day scale) NH3 emissions from our global inversions during COVID-19 

major lockdowns in 2020 compared to the estimates during the same period in pre-COVID year 2019 over six regions across 

the world.  
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 820 

Figure 10: The timeseries of estimated daily (at 10-day scale) NH3 emissions and total emissions (bar plots) during the 

COVID-19 lockdown periods in the year 2020 and pre-COVID year 2019 over different regions across the world. 

From our atmospheric inversions, we observe that the annual NH3 emissions worldwide and across all the selected six regions 

in the COVID-19 lockdowns year 2020 are higher compared to the pre-COVID year 2019 (Figure 6&9). Lockdown periods 

varied across different regions, countries, and cities. However, following the first lockdown in China in the second last week 825 

of January 2020, majority of the first major lockdowns worldwide were implemented between March and May during that 

year. We defined the lockdown periods in 2020 using the most consistent common dates that aligned with the major lockdowns 

in each region. Figure 10 compares the estimated daily NH3 emissions timeseries and total NH3 emissions during the COVID-

19 lockdown periods in 2020 with the estimated NH3 emissions during the corresponding period in pre-COVID year 2019 

across six regions. Daily (at 10-day scale) variation of the NH3 emission during the lockdown periods in 2020 are mostly 830 

higher compared to those in same period in 2019 (Figure 10). The total NH3 emissions across these regions in 2020 during the 

lockdown periods increased by a minimum ~5% (in China) to a maximum ~37% (in South America) compared to the total 

emissions in this period in 2019 (Figure 10). The total NH3 emissions during the lockdown periods in 2020 compared to 2019 

across India, Africa, North America, and Europe regions increase by ~10%, ~6%, ~9%, and ~16%, respectively.  

The increase in NH3 emissions from our global inversions during the COVID-19 lockdown periods in 2020 across different 835 

regions, compared to the pre-COVID year 2019, raises uncertainty about whether this rise is due to an increase in NH3 emission 

sources or due to the impact of meteorology on NH3 volatilization or due to decrease in the atmospheric sink of NH3 due to 



 

26 

 

decline in NOx and SO2 emissions and concentrations during the lockdowns. However, an increase in NH3 emission sources 

during such these short lockdowns period seems unlikely, as agricultural practices, the primary source of NH3 emissions, 

remained largely unchanged during the lockdowns. This suggests that the observed rise may be more attributable to changes 840 

in atmospheric chemistry or to the impact of meteorology on NH3 volatilization and to the reduction of other species, like SO2 

and NOx emissions, during the lockdowns (Evangeliou et al., 2024). The single species inversion system used in this study 

has a limitation and a source of uncertainty to explain this rise in NH3 emissions. These changes require to study the 

atmospheric chemistry of ammonia in response to variations in NOx and SO2 levels in the atmosphere. A combined multi-

species inversion of NOx, SO2, and NH3 emissions would offer valuable insights into the complex chemical interactions among 845 

these air pollutant species in the atmosphere. 

4.3 Uncertainties and limitations of the present study  

There are several uncertainties and limitations associated with our global daily (at 10-day scale) inversion of the anthropogenic 

NH3 emissions using IASI NH3 observations. Although our estimates are mostly consistent and within the range of other recent 

inversion emissions, our inversion approach and estimates are subject to several uncertainties and limitations. The inversion 850 

approach is directly impacted by the errors associated with the observations from the satellite NH3 retrievals, and from model 

simulations and it does not provide the uncertainty in emission estimates. A few studies (Cooper et al., 2017; Koukouli et al., 

2018) provided some information about the uncertainties in their estimates of other short-lived species like NOx or SO2 using 

basic or FDMB inversion approach, propagating the observation errors. Although, their estimates of uncertainties do not 

provide the full uncertainty budget as they do not account for uncertainties associated with model errors or the specific 855 

modeling approach, an implementing of a similar approach could be considered in future to provide some indication of the 

uncertainties in our inversion estimates. Systematic errors in satellite retrievals, particularly notable at higher latitudes and 

during wintertime, may introduce inconsistencies or lead to an overestimation of emissions. Statistical inverse modelling 

methods (Cao et al., 2020, 2022) account for retrieval errors, but this account is generally focused on the random local and 

instant noise on the retrievals, and these methods are also highly impacted by systematic errors (Cao et al., 2020, 2022).  860 

The FDMB inversion approach employs a linear sensitivity function based on the perturbations of NH3 emissions in LMDZ-

INCA model simulations, which may oversimplify the complex chemical interactions between air pollutants, including NH3, 

in the atmosphere. However, in order to test the impact on the inversion results of the selection of the level of perturbations, 

we have also conducted a sensitivity analysis with a LMDZ-INCA model simulation using a smaller 20% perturbation to the 

prior CEDS anthropogenic NH3 emissions for the year 2019, in contrast to the original 40% perturbation used in our FDMB 865 

inversion setup. The results show that the differences in the resulting budget of the estimated NH3 emissions over 2019 and 

the globe with the application of the FDMB based on these two levels of perturbations are less than 2%, indicating that the 

inversion results are not highly sensitive to the choice of perturbation magnitude within this range. The good fit between the 

model simulations with the inverted NH3 emissions and the IASI NH3 observations (section 3.2) further strengthens the 

confidence in the linearization of the inversion problem based on 40% perturbations to the prior estimate of the emissions. 870 

This sensitivity behavior is similar with that from previous applications of the FDMB method to the inversions of 

anthropogenic NOx emissions, where different perturbation levels (e.g., 5-50%) to the prior emissions resulted in minimal 

changes in the posterior anthropogenic NOx emission estimates at global and regional scales (Cooper et al., 2017; Lamsal et 

al., 2011; Zheng et al., 2020). The use of a 40% perturbation in our NH3 study was motivated by the relatively high uncertainty 

in current NH3 emission inventories, particularly over regions with strong agricultural sources. Nevertheless, our sensitivity 875 

test indicates that this choice (at least within a range of 20-40%) is not a critical parameter of our inversions. 

Due to the sparseness of daily satellite observations of NH3 total columns, when the number of high-quality observations within 

a grid cell are limited, it amplifies uncertainty in the averaged gridded dataset used in the inversions. Consequently, this may 

lead to an increase in uncertainty in the estimates of daily (at 10-day scale) emissions. As we focus on the inversion of 
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dominated anthropogenic NH3 emissions, exclusion of the emissions from other sectors like natural sources is a big challenge. 880 

This complexity is particularly pronounced in the regions dominated by biomass-burning NH3 emissions from wildfires. The 

local mass-balance inversion approach does not incorporate the transport of ammonia from the non-local biomass-burning 

emissions regions to the local anthropogenic grids, which may lead to an overestimation of the anthropogenic NH3 emissions 

in some regions like South America, North America, and Africa. Furthermore, the conservative gap-filling approach employed 

in this study may introduce some biases and contribute to uncertainties in the final emission estimates.  885 

Although, the local finite difference mass-balance approach applied for the inversion of short-lived species like NH3 in this 

study, which has a typical short atmospheric lifetime of a few hours to a day, is suitable for inversions at a coarse resolution 

(~2°) (Cooper et al., 2017), our model’s spatial resolution’s (1.27° × 2.5°) typical length scale can often be reached by the 

advection of NH3 within its lifetime. The transport to neighboring grids can lead to a spatial “smearing” effect, where emissions 

are dispersed away from their source grid cell, introducing errors in mass balance inversion approaches (Cooper et al., 2017; 890 

Li et al., 2019). This problem of spatial smearing in mass balance inversion approaches is well-documented for short-lived 

species like NOx or NH3 (Cooper et al., 2017; Li et al., 2019). Such smearing can lead, on average, to the under-estimation of 

the regional scale emissions, since the approach overlook the fact that the amplitude of the NH3 signal associated to a given 

area source decreases with the advection downwind (Cooper et al., 2017; Li et al., 2019). For short-lived species like NOx, 

some approaches such as smoothing kernels or iterative FDMB inversion approaches have been used to reduce these errors, 895 

but the latter is computationally intensive, especially for global inversions. An iterative FDMB approach (Cooper et al., 2017; 

Li et al., 2019) can be explored in future to provide a better accuracy in the estimates of NH3 emissions at a feasible 

computational cost to overcome this limitation.   

In our LMDZ-INCA model setup and inversion framework, the CEDS inventory emissions are re-gridded to match the model 

resolution. While this inevitably misses some fine-scale features, our study focuses on the broader regional patterns of NH3 900 

emissions rather than point-source inversions. The inversions at higher resolution, based on high-resolution regional 

inventories (e.g., MEIC, NEI, CAMS-REG, etc.) and high-resolution chemistry transport model simulations can bring more 

robust information of the more localized NH3 sources such as point sources at sub-national scales. However, the above-

mentioned limitation, spatial spearing effect (ignoring the advection across the chemistry transport model grid cells) of the 

FDMB inversion approach would be exacerbated at such a higher resolution. Even using iterative FDMB approach to overcome 905 

this smearing effect at finer resolutions, errors in the derived emission estimates can be amplified (Li et al., 2019). Therefore, 

application of such an inversion approach at the finer resolution may have limitations to accurately estimate the NH3 emissions.    

Note that, an inverse modelling framework including observations of the full reduced nitrogen family (NHx = NH3 + NH4+) 

and relying on tests of sensitivities of NH3 and NH4+ to changes in NH3 emissions could provide a more comprehensive 

constraint on NH3 emissions, given the rapid gas-particle partitioning of NH3 to NH4+ under typical atmospheric conditions. 910 

However, current satellite retrievals such as those from IASI and CrIS are primarily focused on gaseous NH3. The current 

spaceborne instruments have a limited capability to detect particulate-phase NH4+. As a result, the observational constraints 

in our inversion framework are based only on NH3 columns. Nevertheless, the LMDZ-INCA aerosols-chemistry transport 

model used in our inversion framework fully represents these chemical conversions of NH3 to NH4+ and the partitioning and 

deposition processes affecting the entire NHx family. Therefore, the LMDZ-INCA model and, implicitly, our inversion 915 

framework account for the fate of NH3 through its interaction with NH4+ when deriving relationships between the NH3 

emissions and concentrations. 

Over some regions like China and India, the rapid changes in SO2 emissions in the recent years impact the NH3 concentration 

in the atmosphere significantly and thus emissions (Luo et al., 2022). Similarly change in NOx emissions and concentration in 

the atmosphere across different regions alter the formation of ammonium nitrate from ambient ammonia. Therefore, we will 920 
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investigate the potential of simultaneously assimilating NH3, SO2, and NOx satellite observations to constrain the NH3 

emissions in future studies.  

5 Conclusions 

In this study, we present satellite-based atmospheric inversion estimates of the global daily (at 10-day scale) NH3 emissions 

for a period of four years from 2019 to 2022 at 1.27°×2.5° horizontal resolution using the new version 4 of the IASI ANNI-925 

NH3-v4 NH3 observations and the LMDZ-INCA model simulations. We take advantage of the averaging kernel provided in 

the IASI ANNI-NH3-v4 data product to evaluate the LMDZ-INCA model suitability for global inversion of the NH3 emissions. 

The LMDZ-INCA model simulated NH3 total columns using the prior NH3 emissions are underestimated from the IASI NH3 

observations over most of the selected regions, except over the Indian region, and over a region in Eastern Siberia, where 

model shows an overall overestimation from the observations. The simulated NH3 columns from the LMDZ-INCA model 930 

followed the seasonality of the IASI observations over the South American and North American regions, and to some extent, 

over the European region. However, the seasonal variations over the Indian, Chinese, and African regions are inadequately 

represented in the model simulations compared to the IASI observations.      

We use a simple finite difference mass-balance approach for the inversion of global daily (at 10-day scale) NH3 emissions 

using the LMDZ-INCA and IASI NH3 total NH3 columns which uses a sensitivity parameter of NH3 columns to changes in 935 

the local NH3 emissions to address non-linear chemistry affects from the model simulations. By conducting an evaluation 

simulation with the LMDZ-INCA model using IASI-constrained NH3 emission estimates derived from our global atmospheric 

inversions for the year 2019, we demonstrate that the substantial improvements in model agreement with the IASI NH3 

observations compared to those using prior NH3 emissions, across different spatiotemporal scale, strongly validate the 

robustness and internal consistency of our inversion framework, despite its simplified linearization approach. Our inversions 940 

provided an average of ~97 (~94-100) Tg yr-1 global annual NH3 emission over a period of four years from 2019 to 2022. Our 

IASI-constrained NH3 emission estimates are ~61% (~55%-65%) higher than the prior CEDS anthropogenic NH3 emissions 

used in the inversions. A comparison of our inversion estimates with the two independent global bottom-up inventories CAMS 

and CAMEO shows that our estimates are ~1.8 times higher than CAMS anthropogenic NH3 emissions and ~1.4 times higher 

than CAMEO’s combined agricultural and natural soil NH3 emissions. Our global and regional NH3 emission estimates over 945 

India, China, Africa, Europe, South America, North America, and the Middle East regions are mostly within the range of other 

global and regional inversion estimates derived based on the IASI or CrIS satellite NH3 observations. Our simple inversion 

framework lacks the ability to attribute contributions from the sectors like the biomass burning on the estimates of the 

anthropogenic NH3 emissions. Therefore, the estimated NH3 emissions over some regions like South America and Africa 

regions may be overestimated due to dominating biomass burning from wildfires in these regions. Our NH3 emission estimates 950 

over the Europe are ~72% higher compared to the prior CEDS inventory emissions; however, they are consistent with two 

recent inversion estimates. We observed an increasing trend of the NH3 emission over the China and Africa, and a decreasing 

trend over the Indian region over a four-year period from 2019 to 2022. Our estimates of the NH3 emissions show a strong 

seasonal variation over most of the selected regions which are currently poorly known or almost absent in bottom-up 

inventories.  955 

We also analyzed impact of restrictions during COVID-19 lockdown periods in 2020 over different regions across the world 

on the estimated daily (at 10-day scale) NH3 emissions in comparison to the pre-COVID year 2019. Our inversion estimates 

show that the total NH3 emissions across China, India, Africa, North America, Europe, and South American regions during 

the lockdown periods in the year 2020 increased by respectively ~5%, ~10%, ~6%, ~9%, ~16%, and ~37% compared to the 

total emissions in the same periods in 2019. However, this increase in NH3 emissions from our global atmospheric inversions 960 

during the COVID-19 lockdowns, compared to the pre-COVID year 2019, raises a question about whether this rise is due to 

an increase in NH3 emission sources or due to the impact of meteorology on NH3 volatilization or due to decrease in the 
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atmospheric sink of atmospheric NH3 due to decline in NOx and SO2 emissions and ambient concentrations during the 

lockdown periods. However, our inversion system fails to explain this rise in NH3 emissions. Therefore, a more comprehensive 

inversion approach, integrating NOx, SO2, and NH3 simultaneously, would provide deeper insights into the complex chemical 965 

interactions between these pollutants in the atmosphere.  
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