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Abstract. Quantification of environmental controls on ecosystem photosynthesis is essential to understand the impacts of

climate change and extreme events on the carbon cycle and the provisioning of ecosystem services. Machine learning models

have become popular for simulating ecosystem terrestrial photosynthesis because of their predictive skill, but often do not

consider temporal dependencies in the data, even though process understanding suggests that these should exist. Here, we

investigate how models that account for temporal structure impact the prediction of ecosystem photosynthesis. Using time-5

series measurements of ecosystem fluxes paired with measurements of meteorological variables from a network of globally

distributed sites (N = 104) and remotely sensed vegetation indices, we train three different models to predict ecosystem gross

primary production (GPP): a mechanistic, theory-based photosynthesis model, a memoryless multilayer perceptron (MLP) and

a recurrent neural network (Long Short-Term Memory, LSTM). Through comparisons of patterns in model error, we assess

the ability of these models to predict GPP across a wide diversity of ecosystems and climates, and to account for temporal10

dependencies, with a focus on effects by low rooting zone moisture and freezing air temperatures. While both deep learning

models outperform the mechanistic model, we find their overall performance is similar, with an R2 of 0.79 spatial out-of-sample

predictions for both models. Overall, model skill is consistently good across moist sites with strong seasonality. During periods

affected by temporal patterns such as drought and frost, the LSTM shows lower model error than the MLP as well as an LSTM

with shuffled input, showing that there is an advantage from learned temporal dependencies. Generalisation patterns reveal15

that the LSTM tends to be more successful than the (time-agnostic) MLP in simulating GPP in dry environments. However, a

large variability in model skill across relatively dry sites remained. This was not resolved by the inclusion of additional earth

observation data, although this improved overall model performance. Insufficient information on the exposure and response

to water stress and related effects on GPP appear to be dominant sources of error for modelling ecosystem fluxes across the

globe. With the increasing frequency of hydroclimatic extreme events, effects of water limitation are expected to become more20

prevalent, which calls for models that better represent its impact on ecosystem function.
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1 Introduction

Photosynthesis plays a major role in the global carbon cycle and drives important ecosystem functions (Beer et al., 2010).

Ecosystem-level gross CO2 uptake through photosynthesis is referred to as gross primary production (GPP) and varies in

response to the environment. Understanding its variations across space and time as well as its dependencies on environmental25

conditions is key for predicting changes and feedbacks in the terrestrial biosphere (Booth et al., 2012).

GPP variations are driven by multiple, simultaneously varying environmental factors and the physiological and structural

responses of plants to these conditions. Solar radiation supplies the energy for photosynthesis and acts as a dominant driver of

GPP, depending on light absorption (Monteith, 1972). Temperature, light and water availability trigger phenological changes

and regulate seasonal cycles of active leaf surface area and therefore seasonal changes in light absorption. Air temperature30

affects leaf temperatures, which in turn govern enzymatic rates and photosynthesis (Berry and Bjorkman, 1980; Kattge and

Knorr, 2007; Kumarathunge et al., 2019; Bernacchi et al., 2003). Low moisture availability across the rooting zone, in com-

bination with a high vapour pressure of air at the leaf surface, determines the effects of water stress and can lead to GPP

reductions (Stocker et al., 2018; Novick et al., 2016).

Continuous GPP estimates can be obtained from eddy covariance measurements of ecosystem gas exchange (Baldocchi,35

2020) and capture surface-atmosphere exchange fluxes, integrated over a radius on the order of a kilometre around the site of

measurement (Chu et al., 2021). These measurements, paired with observations of meteorological variables and soil conditions,

are made available through different networks and initiatives (e.g., AmeriFlux, ICOS, OzFlux). The combination of data from

multiple regional networks has led to large datasets with standardized processing of eddy covariance measurements from a large

number of sites (Pastorello et al., 2020; Hufkens and Stocker, 2025; Abramowitz et al., 2024). The availability of large datasets40

of GPP along with their environmental covariates, and paired with remotely sensed variables, has made machine learning (ML)

a widely used approach for predicting spatio-temporal variations of ecosystem-atmosphere exchange fluxes (Kang et al., 2023;

Gaber et al., 2024; Tramontana et al., 2016; Montero et al., 2024; Papale et al., 2015; Yang et al., 2007; Jung et al., 2011; Joiner

and Yoshida, 2020; Zheng et al., 2020).

Process understanding and empirical patterns of GPP dynamics suggest that there should be temporal dependencies in data45

of GPP and its predictors. Temporal dependencies arise as a result of several processes. Low soil moisture can reduce GPP

(Stocker et al., 2018) and reflects the history of precipitation, radiation, and leaf phenology over the preceding weeks to months.

Plant hydraulic processes induce a temporal hysteresis effect over the course of diurnal cycles (Tuzet et al., 2003). Physiological

changes are caused, e.g., by the seasonal acclimation of the photosynthetic apparatus to varying levels of radiation inputs and

temperature (Kumarathunge et al., 2019; Luo and Keenan, 2020; Liu et al., 2024b; Berry and Bjorkman, 1980). Ecosystems50

in cold climates have been found to delay springtime photosynthesis resumption early in the season through photoprotective

processes, despite high levels of solar radiation (Luo et al., 2023, henceforth referred to as "cold acclimation"). Stress by

extreme environmental conditions can cause delayed and long-lasting effects, such as impaired transpiration and reduced CO2

assimilation (Barber and Andersson, 1992; Reichstein et al., 2013; McDowell et al., 2022; Bastos et al., 2020; Yu et al., 2022).
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Several published machine learning models for GPP treat values of GPP time series as independent and identically distributed55

observations and therefore do not account for temporal dependencies (Nelson et al., 2024; Kang et al., 2023; Tramontana et al.,

2016; Gaber et al., 2024). This limitation may be relieved by temporal aggregation to daily-monthly time scales and by pairing

data with additional, remotely sensed observations that capture phenological changes and variations in the amount of active,

light-intercepting foliage area (Baldocchi, 2018). However, additional physiological changes that affect the efficiency of light

utilization for CO2 assimilation at the leaf level are more challenging to capture by remotely sensed reflectance data (Ryu et al.,60

2019; Stocker et al., 2018). As a consequence, substantial unexplained GPP variation is expected to remain at the seasonal and

diurnal time scales.

A potential solution for this problem is the use of time-aware machine learning algorithms that can learn non-stationary rela-

tionships and temporal dependencies. Such algorithms have been introduced for modelling GPP and related fluxes (Nakagawa

et al., 2023; Besnard et al., 2019; Kraft et al., 2024; Montero et al., 2024). Montero et al. (2024) compared the performance of65

three recurrent architectures for GPP modelling and evaluated them on GPP extremes. Besnard et al. (2019) evaluated a Long

Short-Term Memory (LSTM) network to study net ecosystem CO2 exchange. Kraft et al. (2024) assessed sequential models for

global upscaling of evapotranspiration. Nakagawa et al. (2023) introduced a temporal fusion transformer for global upscaling

of GPP. In these previous studies, the impact of using such an architecture for modelling known temporal effects was either not

evaluated or inconclusive.70

In contrast to ML models, mechanistic GPP models, such as the P-model (Stocker et al., 2020), embody process under-

standing and provide a theory-based prediction that accounts for these known temporal dependencies. The foundation in plant

physiology may also help these models to generalise more robustly, as the underlying relations remain valid when extrapolating

to new conditions not seen in the training data. The price to pay is that these models lack the flexibility to pick up any patterns

that were not anticipated during their design, whereas the high representation power of ML models gives them the ability to75

uncover and respect such patterns.

While the P-model only uses a single greenness index derived from remote sensing, previous work on flux modelling has

shown that additional remotely sensed variables can be informative (Nelson et al., 2024; Kraft et al., 2024). The signal from

thermal remote sensing may reflect changes in photosynthesis that are driven by physiological responses and stomatal regula-

tion, affecting transpiration and therefore surface energy partitioning and surface heating. Therefore, land surface temperature80

(LST) may be useful information for GPP prediction. Common mechanistic and light use efficiency models don’t consider this

information as additional forcing. Furthermore, the full information of surface reflectance in all available individual bands may

contain additional information about GPP changes as pigments deployed under stress conditions or the leaf water content can

affect surface reflectance beyond what commonly used single greenness-based indices reflect (Ceccato et al., 2001; Gamon

et al., 2016).85

In this study, we evaluate the use of an LSTM (Hochreiter and Schmidhuber, 1997) as a predictor of GPP. LSTMs have been

shown to be successful at tasks where memory effects across a range of temporal scales are involved, such as sea surface tem-

perature prediction (Zhang et al., 2017), rainfall-runoff modelling (Kratzert et al., 2018) and canopy greenness modelling (Liu

et al., 2024a). To contrast the recurrent and purely data-driven design, we compare against a standard, non-recurrent multilayer
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perceptron (MLP), an LSTM with permuted input, as well as to the process-based P-model. The P-model serves as a bench-90

mark with known treatment of temporal effects. We compare these models based on model performance and generalisation

capabilities. To investigate the ability of the LSTM to account for temporal dependencies, we assess seasonal patterns of cold

acclimation and water limitation effects in dry conditions. Additionally, we analyse spatial patterns of model generalisability

(spatial out-of-sample performance) with respect to different environmental factors.

In addition to the standard set of predictors, we include LST and multiple bands of surface reflectance. To aid the models in95

simulating temporal dependencies, we also provide additional features related to soil water availability. In view of the known

influence of root zone moisture on GPP (Stocker et al., 2018) and the inability of the MLP to account for the precipitation

and radiation history (and thus implicitly for the evolution of root zone moisture), we test if its performance improves when

(simulated) soil moisture is provided as a complementary predictor. Providing observation-derived soil moisture or a general

index of water availability as an additional predictor is a common approach taken also for other memoryless GPP models100

(Nelson et al., 2024; Kang et al., 2023; Tramontana et al., 2016; Gaber et al., 2024). While the LSTM is expected to be able to

learn the effects of soil moisture limitation, we also test whether it benefits from an Earth-observation derived estimate of root

zone water storage capacity (Stocker et al., 2023) as additional time-invariant context.

2 Materials and methods

2.1 Data105

We sourced daily GPP data from a collection of eddy covariance flux sites gathered from the PLUMBER2 framework (Ukkola

et al., 2022), which includes sites from OzFlux (Isaac et al., 2017), FLUXNET2015 (Pastorello et al., 2020) and LaThuile; as

well as AmeriFlux, ICOS Warm Winter 2020 (Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre, 2022) and

ICOS Drought 2018 (Drought 2018 Team and ICOS Ecosystem Thematic Centre, 2020). Site selection was performed through

several steps. Sites located in cropland or wetland ecosystems were excluded. For each site, we only included full calendar110

years of data. Some years of data were excluded due to evident inconsistencies found by visual inspection. We selected sites

with at least five consecutive years of high-quality, gap-free data. GPP data were included if at least 50% of all half-hourly

measurements were of good quality (either measured or gap-filled with high confidence).

We used GPP estimates generated by the nighttime partitioning method (GPP_NT_VUT_REF; Reichstein et al., 2005). Half-

hourly GPP estimates were aggregated to obtain daily GPP values. In addition to GPP, meteorological variables were obtained,115

which were measured directly at the flux sites. We used the following meteorological variables: air temperature (TA_F_MDS),

daytime air temperature (TA_DAY_F_MDS), shortwave incoming radiation (SW_IN_F_MDS), longwave incoming radiation

(LW_IN_F_MDS), daytime vapour pressure deficit (VPD_DAY_F_MDS), air pressure (PA_F), precipitation (P_F) and wind

speed (WS_F). Observations that were either missing or had insufficient quality (<50% measured or gap-filled half-hourly mea-

surements with high confidence) were gap-filled with linear interpolation for air temperature, respectively k-nearest neighbour120

imputation per site. This only affected around 10% of all predictor values.
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Figure 1. Site locations and their moisture indices. For each category, the quantised moisture index values and number of sites are given in

brackets.

Along with local site-level measurements, we used remotely sensed estimates of the fraction of absorbed photosyntheti-

cally active radiation (fAPAR), extracted from the MODIS FPAR MCD15A2H Collection 6.1 product (Myneni et al., 2021).

fAPAR captures variations in phenology and represents the amount of solar radiation absorbed by the canopy and usable for

photosynthesis. fAPAR data were extracted for the pixel (500×500m2 area) that contains the flux measurement site and for the125

eight pixels immediately surrounding it. The nine values where combined through a weighted average, using as weights the

inverse of their variance as per the data product. The fAPAR sequences were gap-filled based on the mean seasonal cycle, then

smoothed and interpolated to the time resolution of the flux data with a LOESS spline.

We retrieved additional pre-processed remote sensing variables from the MODIS instruments through the FluxnetEO dataset

(Walther et al., 2022). We included the first seven reflectance bands (RED, NIR, BLUE, GREEN, SWIR1, SWIR2, SWIR3)130

as well as daytime and nighttime land surface temperature (LST) at a viewing zenith angle of 0◦ (LST_TERRA_Day_VZA0,

LST_TERRA_Night_VZA0).

The collection of flux sites was further filtered to include only sites with data available from the FluxnetEO dataset. This

process resulted in a collection of 104 sites (Figure 1) with a total of 1020 site-years of data. Detailed site information is given

in Appendix A. The selected sites cover a wide range of environmental factors, in particular aridity (Figure 1 and Figure D1).135

To measure aridity, we calculated the moisture index (MI) for each site as total P/PET, where P is the precipitation measured

at the site and PET is the potential evapotranspiration following Priestley-Taylor (Priestley and Taylor, 1972), as implemented

in the SPLASH ecosystem water balance model (Davis et al., 2017). The root zone water holding capacity for each site was

sourced from Stocker et al. (2023).

2.2 Models140

We have implemented two deep learning models to evaluate different architectures for the prediction task. To account for

temporal dependencies, we used a Long Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997). The
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network included LSTM cells with layer normalization, known to stabilize hidden dynamics and reduce training time (Ba

et al., 2016). The number of layers and hidden dimension of the network were tuned as hyperparameters on validation data.

The LSTM layers were followed by a variable number of linear layers with GELU activations (Hendrycks and Gimpel, 2023)145

that each halve the dimension until reaching a size of 16 neurons.

To isolate the impact of recurrence, we implemented a second neural network model without any memory mechanism,

namely a standard multilayer perceptron (MLP). Its architecture is identical to keeping only the linear layers of the LSTM.

The hidden dimension of the first layer was tuned as a hyperparameter. The architectural similarity means that the difference

between predictions of the two networks is a good indication for the influence of information from past time steps. Hyperpa-150

rameters were tuned separately to ensure both variants reach their best performance. We also evaluated a version of the LSTM

where we permute the temporal ordering (LSTMperm). This model has the same architecture and capacity but it cannot rely

on memory as the temporal patterns are eliminated from the input data. This version serves as an additional evaluation that

disentangles the influence of the memory of the LSTM from other model properties such as the overall capacity.

The third model was the P-model, a mechanistic, theory-based representation of ecosystem-level photosynthesis acclimation155

and GPP (Stocker et al., 2020; Wang et al., 2017; Prentice et al., 2014). It builds on the widely used Farquhar-von Caemmmerer-

Berry (FvCB) model for leaf-level C3 photosynthesis (Farquhar et al., 1980). The FvCB model is combined with an optimal

balancing of the costs of carbon assimilation and transpiration (Prentice et al., 2014). Furthermore, the P-model implements the

coordination hypothesis, which states that photosynthesis is balanced at the intersection of light and Rubisco-limited assimila-

tion rates during average daytime conditions (Maire et al., 2012). Based on these relations, the P-model predicts photosynthesis160

acclimation parameters to describe the processes that determine the light use efficiency (LUE). GPP is then modelled as the

product of LUE and absorbed photosynthetically active radiation (APAR), which in turn is taken to be the product of the pho-

tosynthetic photon flux density (PPFD) and fAPAR. The forcings for the P-model correspond to the input data of the LSTM

and the MLP. We used the FULL model setup as described in Stocker et al. (2020), which includes an empirical soil moisture

stress function and temperature dependency of the intrinsic quantum yield. These two components were calibrated to the data165

with an optimization of four parameters through minimising the root mean squared error with the generalised simulated anneal-

ing algorithm, as implemented in the GenSA R package (Xiang et al., 2013). The P-model is implemented in the R package

rsofun (Stocker et al., 2024).

2.3 Experimental setup

We assessed the three models for their ability to handle temporal dependencies and their ability to generalise to new sites with170

different environmental conditions.

Global model. We first evaluate each model in a spatial cross-validation setup, which measures performance at sites that

were not seen during model training (where "training" of the P-model means calibration). For the spatial cross-validation, we

assigned each site to one of five folds, stratified based on the per-site mean air temperature and the moisture index to achieve a

similar distribution of climate types in all folds. In turn, four folds served as training data to fit the model weights and tune the175

hyperparameters, then GPP predictions were produced for the test sites in the fifth, held-out fold.
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Site-specific model. To separate changes in environmental conditions (which can be covered by the global model) from

potential variations of the functional relationships between different sites (which cannot be represented by a single set of model

parameters), we also fit separate per-site models and evaluate them with a temporal cross-validation. In that setup, the temporal

sequences of predictors and GPP at every individual site are split into years, setting the start of the year to the coldest month for180

sites in temperate, continental and polar climates, and to the wettest month for tropical and arid sites (following the Köppen-

Geiger climate code). Cross-validation then proceeds by holding out every year in turn, and fitting the model on the remaining

years.

In both setups, the models are trained on chunks of 128 days, whereas testing was performed on the full sequences (i.e.,

all data of a site in the spatial cross-validation setup, respectively individual years in the temporal cross-validation setup). The185

training chunks were created per site, with a random start date of the initial chunk within the first 96 days and a sliding window

with regular overlap of 32 days. The features were standardized using the mean and standard deviation of the training folds.

Models were trained by minimising the mean squared error with the Adam optimizer (Kingma and Ba, 2017). Training was

performed for a maximum 50 iterations and stopped after 10 iterations without improvement in the validation loss. To limit

overfitting, an L2 penalty was applied on the parameter updates, and dropout (Hinton et al., 2012) was used after each LSTM190

layer except for the last layer. The learning rate was adaptively reduced when the loss no longer improved for several iterations.

The batch size, the weight of the L2 penalty, the dropout rate, the initial learning rate, the patience before reducing the learning

rate as well as the reduction factor were all tuned in an inner cross-validation loop within each data fold. In the spatial cross-

validation setup, a 3-fold inner cross-validation was performed within each of the 5 data folds. The sites were distributed based

on mean air temperature and moisture index to ensure equal representation of climate types across folds. The hyperparameters195

were tuned using random sampling of 20 configurations. In the temporal cross-validation setup, hyperparameters were tuned

for each held-out test year based on the remaining years of data for each site. A cross-validation with 5 randomly chosen held-

out validation years was performed. In this setup, the hyperparameters were tuned using random sampling of 40 configurations.

In both setups, the configuration with the lowest average validation RMSE across the held-out folds was selected. The set of

options for each hyperparameter is listed in Table 1. After hyperparameter tuning, models were trained on the full data folds200

with the chosen hyperparameter configurations, with 20% of the sites used as validation data for early stopping of the training.

GPP predictions were evaluated using the squared Pearson’s correlation coefficient (R2) and root mean squared error

(RMSE). In addition to assessing the daily predictions, we aggregated predictions and observations to different scales. We

calculated the mean seasonal cycle by averaging over all years observed at a site to obtain a mean value per day of the year.

Predictions and observations were also temporally aggregated to site-level means. Moreover we calculated daily anomalies,205

defined as deviations between the daily values from the mean seasonal cycle; as well as yearly anomalies, defined as deviations

between a site’s annual mean values and its global, multi-year mean.

The site-specific models were evaluated for test years that start at the wettest or coldest month. For days before the first day

of the first such month, no predictions where made. When comparing the site-specific model and the global model at the site

level, we therefore filter the predictions of the global model to comprise the exact same test days as the site-specific model.210
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When evaluating the P-model, the same spatial cross-validation was used as for the machine learning models, with the model

parameters calibrated separately for each fold (Stocker et al., 2024).

We investigated the ability of the models to capture two different, well-known temporal effects. To test how well soil moisture

effects are reproduced, we looked at the (absolute) percentage error of the model predictions as the potential cumulative

water deficit (PCWD) increases. PCWD was calculated from the flux data as the cumulative difference between potential215

evapotranspiration (PET) and precipitation (Stocker, 2021). PET was estimated based on Priestley-Taylor (Priestley and Taylor,

1972), as implemented in the SPLASH ecosystem water balance model (Davis et al., 2017). Values were pooled from all sites

and all test days per PCWD interval, with intervals chosen such that they have at least 100 data points. We evaluated the

temporal effect from soil moisture from a different angle through an analysis of model bias during drought events identified

from the full dataset. Drought events were collected through the identification of sites and days where light use efficiency was220

reduced for at least 3 days (Stocker et al., 2018). All events were aligned at the onset. The bias was calculated as the difference

between model predictions and observations and aggregated per day for the period between 10 days before the start of each

event and up until 100 days after the start of each event. The bias values were normalised by subtracting each value by the

median value during the window covering between 1 and 10 days before each event.

Second, we evaluated the models’ ability to reproduce cold acclimation effects. We selected four sites that have been found225

to have a reduced light use efficiency and thus a delayed increase in GPP at the start of the growing season (DE-Hai, US-Ha1,

US-MMS, US-PFa). Prediction errors at these sites were contrasted with those at four sites that did not exhibit any GPP delay

(BE-Vie, FI-Hyy, NL-Loo, RU-Fyo), based on the findings of Luo et al. (2023). For the two groups of sites, we aggregated and

compared predictions per day of the year with different models.

For the global LSTM model, we compared site-level performance across various environmental conditions: moisture in-230

dex (P/PET), Köppen-Geiger climate zone (Beck et al., 2018), and IGBP vegetation type (International Geosphere-Biosphere

Programme). To further investigate the generalisation of the models across sites, we compared site-level performance be-

tween the global model and the site-specific model, by computing the relative difference ∆R2 =R2
global −R2

site and the ratio

rRMSE = RMSEglobal/RMSEsite.

We evaluated two different sets of predictor variables. The standard set included the site-level meteorological measurements235

as well as fAPAR. The expanded set included LST variables and the MODIS reflectance bands. The model evaluations with

this expanded set are denoted by a + after the model name. We compared this setup to the standard predictor set in terms

of overall performance. Separately to the standard setups, we fed additional predictors to the feature set of the deep learning

models. For the MLP, we added soil moisture. Due to the limited quality of measured soil moisture at many flux sites, we used

modelled soil moisture from the SPLASH water balance model (Davis et al., 2017). For the LSTM, we added the root zone240

water storage capacity, extracted from the global map of Stocker et al. (2023).

Finally, we evaluated a Temporal Convolutional Network (Bai et al., 2018) and an LSTM with attention layer (Vaswani

et al., 2017) as two alternative sequence models (Appendix C). We compared their overall performance as well as their event

response performance to the LSTM.

The details of the data, models and experimental setup are summarised in Table B1, Table B2 and Table B3.245
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LSTM and MLP

Hidden dimension 64, 128, 256, 512

Learning rate 10−2, 5× 10−3, 10−3, 5× 10−4

Scheduler patience 2, 3, 5

Scheduler factor 0.1, 0.5

Weight decay (λ) 10−3, 10−4, 10−5, 0

Batch size 64, 128, 256

LSTM-only

Dropout 0, 0.1, 0.2, 0.3, 0.4

Number of layers 1, 2, 3, 4, 5

Table 1. Hyperparameter search space for the LSTM and MLP models.

3 Results

3.1 Overall performance

Overall, we found that both machine learning models in the global setting (i.e., a single, fixed model trained on multiple sites)

predict GPP more accurately than the process-based P-model (Table 2). Furthermore, the model variants with the additional re-

mote sensing variables (+ version) performed better than the models with only the standard predictor set. For daily predictions,250

the R2 calculated from pooled data of all sites was 0.79 for both the LSTM+ and the MLP+, compared to 0.64 for the P-model.

The RMSE was 22.5% lower for the LSTM+ than for the P-model. Both the LSTM+ and MLP+ modelled the seasonal cycle

well, with R2 values of 0.88. The P-model achieved an R2 of 0.78 for modelling the mean seasonal cycle. The prediction of

anomalies was more challenging for all three evaluated models. The LSTM+ achieved an R2 of 0.28 for daily anomalies and

R2 of 0.1 for annual anomalies. While the differences in both R2 and RMSE were minimal between the LSTM+ and MLP+,255

the P-model was outperformed in both aspects.

Model performance varied substantially between sites (Figure 2). For 94 (out of 104) sites the LSTM+ reached a higher R2

value than the P-model. The LSTM+ also outperformed the MLP+ at slightly more than half of the sites. While the LSTM+

clearly outperformed the LSTM in terms of overall metrics, the performance didn’t improve at every site. At 68 out of 104 sites,

the LSTM+ outperformed the LSTM. In further analyses, we focus on the + versions of each model, as the overall performance260

evaluation indicates that they are better predictors of GPP.

More salient differences between the models were observed when inspecting the predicted mean seasonal cycles within

different climate zones (Figure 3). The deep learning models were better at predicting the timing of early spring GPP increase

in several climates (Köppen-Geiger codes Dfb, Dfc, Cfa). They also outperformed the P-model in desert and semi-arid climates.
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Metric Aggregation LSTM LSTM+ LSTMperm LSTMperm+ MLP MLP+ P-model

R2 Daily 0.75 0.79 0.74 0.77 0.75 0.79 0.64

Seasonal 0.84 0.88 0.83 0.87 0.84 0.88 0.78

Spatial 0.73 0.81 0.73 0.77 0.73 0.82 0.61

Daily anom. 0.26 0.28 0.25 0.26 0.26 0.27 0.2

Annual anom. 0.1 0.1 0.14 0.1 0.12 0.12 0.05

RMSE Daily 1.92 1.79 1.96 1.85 1.92 1.77 2.32

Seasonal 1.37 1.2 1.4 1.26 1.39 1.17 1.65

Spatial 0.89 0.74 0.89 0.82 0.89 0.71 1.06

Daily anom. 1.37 1.35 1.39 1.39 1.37 1.37 1.64

Annual anom. 0.44 0.44 0.42 0.44 0.42 0.43 0.46

Table 2. Performance metrics (R2 and RMSE) of the global model at different aggregation levels. Metrics are calculated from pooled data

of all sites. “Daily” evaluates daily predictions and observations. “Seasonal” aggregates by day of year per site. “Spatial” uses site means.

“Daily anom.” is the deviation from each site’s mean seasonal cycle. “Annual anom.” is the deviation of the annual mean from the multi-year

mean per site. The best values per row are printed in bold.

Figure 2. Comparison of the LSTM+ against the P-model (a), against the MLP+ (b), and against the LSTM (c). R2 of predicted versus

observed values of daily GPP per site from the global cross-validation is shown for the LSTM+ along the y-axis and the P-model/MLP/LSTM

along the x-axis. The dotted line indicates equal performance.

3.2 Temporal patterns in model error265

From the overall performance metrics, it appeared that the LSTM+ is not clearly better than the MLP+, despite its ability to learn

temporal patterns. However, the improved performance of the LSTM+ compared to the LSTMperm+ indicates that temporal
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Figure 3. Mean seasonal cycle of GPP and model predictions by climate zone and hemisphere. Predictions from the global cross-validation

for the LSTM+, LSTMperm+, MLP+ and P-model are compared against GPP observations. Climate zone boundaries are from Beck et al.

(2018).

dependencies were learned. Targeted evaluations of temporal patterns give a clearer insight into the differences between the

MLP+, the LSTMperm+ and the LSTM+.

The LSTM+ showed different error characteristics than the P-model at high values of PCWD. While relative errors increased270

with higher PCWD for the P-model, they stayed relatively constant for the LSTM+ (Figure 4a.) For all pooled data, the four

models showed similar error distributions at lower levels of PCWD, again the errors of the P-model increased at higher PCWD

values, whereas they did not for the LSTM+, LSTMperm+ and the MLP+.
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Figure 4. Error distribution across different amounts of cumulative water deficit (PCWD, quantized into 100mm bins). Bins with less than

100 samples are not shown. Predictions are by the global models. Lines denote the median values, shaded regions lie between the lower

(25%) and upper (75%) quartiles. (a) all data pooled. (b) Evergreen sites, including Evergreen Needleleaf Forest and Evergreen Broadleaf

Forest. (c) Non-evergreen sites, including all other vegetation types (Deciduous Forests, Shrublands, Savannas and Grassland).

Separating the analysis of model errors versus PCWD by vegetation type revealed differences at higher PCWD values

(Figure 4b.). For evergreen forests, relative errors increased for the P-model, the MLP+ and the LSTMperm+ from a PCWD275

of 800mm, but also decreased again. The relative errors increased less for the LSTM+ than for the other models. For non-

evergreen forests, both the LSTM+ and the MLP+ showed lower relative error than the P-model above a PCWD of 1000mm.

The comparison between sites with and without cold acclimation (delayed GPP) revealed clear differences w.r.t. the predicted

seasonal cycles (Figure 5) of the different models and the seasonal cycle of model bias. For sites without a delay in springtime

GPP increase, the LSTM+ performed best during spring and summer. For sites with cold acclimation, the deep learning models280

capture the delay better than the P-model. The LSTM+ predicts the evolution of GPP best during springtime, although that

edge is mostly after the start of spring, whereas some bias remains at the onset of GPP increase as well as during summer.

The event analysis (Figure 6) showed that the deep learning models predicted the drought response equally well during the

first 20 days after an event. The LSTM+ predicted the response best from 20 days after the start of a drought event.

Evaluations of the alternative sequence models (Appendix C) showed that while the TCN+ performed better at 60 out of 109285

sites (Figure C1), no difference was found between models in terms of their performance during drought events (Figure C2),

supporting the further evaluation of the LSTM+ for temporal patterns.

3.3 Spatial patterns in model performance

The observed error patterns suggest a qualitatively different behaviour of machine learning models, especially the LSTM+,

during conditions where temporal effects are known to occur. To investigate this further at the site level, we plot model perfor-290

mance per site against relevant site characteristics (Figure 7).
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Figure 5. Mean seasonal cycle of GPP and model predictions of the LSTM+, LSTMperm, MLP+ and P-model for four sites with delayed GPP

(a) and four sites without delayed GPP (b), as well as mean bias per day of the year for sites with delayed GPP (c) and non-delayed GPP (d).

The bias is calculated as the difference between model predictions and observations.

The LSTM+ performed best for relatively moist sites. Across sites with moisture index P/PET ≥ 0.75 the median R2 is

0.82, whereas it was only 0.65 for more arid sites (MI <0.75). The (normalised) RMSE follows a similar pattern, with a median

value of 0.62 for sites with MI <0.75, compared to 0.44 for moist sites (Figure D2).

We found only a single site with poor predictions and a high moisture index, conditions at that site are likely not adequately295

represented since it is one of the few very moist evergreen sites in the dataset. All other sites with low performance (R2 < 0.5)

have a moisture index below 0.75. The opposite is not true: the R2 varies greatly among the drier sites, not all sites with low

moisture index exhibit poor performance.
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Figure 6. The model bias per day before and after the start of drought events. The bias is calculated as the difference between model

predictions and observations. The bias is normalised with respect to the median value during the 1 to 10 days before each event onset.

Shaded areas mark the area between the 33% and 66% quartiles.

All sites with low R2 (<0.5) belonged to desert and semi-arid (BWh, BWk, BSh, BSk), Mediterranean (Csa, Csb) and hot

and warm temperate (Cfa, Cfb) climates. In terms of normalised RMSE, predictions are especially poor in cold semi-arid300

climates (BSk). Also sites in polar climates (ET) performed relatively poorly, followed by other desert and semi-arid climates.

Among vegetation types, the LSTM+ works best for sites with deciduous broadleaf forest vegetation, with an average

R2 of 0.84. Sites with inaccurate predictions (R2 < 0.5) are spread across most vegetation types, with the exception of closed

shrublands and deciduous broadleaf forest. The vegetation types with the lowest overall performance are evergreen broadleaved

forests and open shrublands.305

3.4 Generalisation across space

The ability of the global LSTM+ to generalise across space varies across different values of the moisture index, vegetation

types, and climate zones (Figure 8). For most sites, we observe a positive rRMSE, meaning that the global model is less

accurate than the site-specific ones. On the other hand, ∆R2 exhibits a less clear dependence on the moisture index, vegetation

types, and climate zones.310

The LSTM+ appears to show worse generalisability (more negative ∆R2 and rRMSE further above 1) at relatively arid sites

(MI<0.75), compared to more moist sites. For relatively arid sites, site-specific models mostly have a lower RMSE than the

global one (5 out of 40 sites, or 12.5%), whereas the advantage is less pronounced for moist sites (21 out of 64, or 33%).

Out of the 13 sites with a considerable drop in performance of the global model compared to the site-specific model (poor

generalisability of the model to those sites, ∆R2 <−0.1), 11 have a MI of less than 0.75. Out of those 11 sites, 4 are classified315

as a hot summer Mediterranean climate (Csa) and 6 as a semi-arid climate (BSh, BSk). For the Mediterranean, desert, and
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Figure 7. Performance as R2 (a) and normalised RMSE (b) of the LSTM+ (global model) per site against different site characteristics. Section

(a) and (b) each show comparisons of model performance against different site characteristics: moisture index, vegetation type and climate

zone. The plots on the left show model performance per site against the moisture index. The plots on the right show model performance per

site for different categories of vegetation type and climate zone, as well as box plots summarising the performance in each category. GRA:

grassland, SAV: savanna, EBF: evergreen broadleaf forest, WSA: woody savanna, MF: mixed forest, CSH: closed shrubland, ENF: evergreen

needleleaf forest, DBF: deciduous broadleaf forest, OSH: open shrubland.

semi-arid climates, generalisation capabilities vary substantially, with the global model outperforming the site-specific one in

some sites but not in others.
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Figure 8. Patterns in the LSTM+’s ability to generalise, measured by ∆R2 (a) and rRMSE (b). Positive ∆R2 values and rRMSE values <1

mean the global model performs better than the site-specific one. Section (a) and (b) each show comparisons of model performance against

different site characteristics: moisture index, vegetation type and climate zone. The plots on the left show generalisation ability per site

against the moisture index. The plots on the right show generalisation ability per site for different categories of vegetation type and climate

zone, as well as box plots summarising the performance in each category.GRA: grassland, SAV: savanna, EBF: evergreen broadleaf forest,

WSA: woody savanna, MF: mixed forest, CSH: closed shrubland, ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, OSH:

open shrubland.

In terms of generalisation, there are no clear overall differences between the LSTM+ and the MLP+ (Figure 9). However, a

pattern emerges w.r.t. aridity: sites for which the global LSTM+ model performed better than the MLP+ have a mean moisture320

index of 0.85, while sites for which the opposite was found (global MLP+ model better than global LSTM+ model) have a

mean MI of 1.11.
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Figure 9. Per-site comparison of ∆R2 LSTM+ vs. MLP+. Colours encode the moisture index. The number of sites on either side of the

diagonal and their mean moisture index are displayed in the corners. At the top we show the significance of the difference in MI, as per the

two-sided Mann-Whitney U-test.

3.5 Performance with additional features

Based on the observed temporal error patterns in response to water deficit, we tested whether the memoryless MLP+ would

benefit from soil moisture as an added predictor (Figure 10). Including soil moisture information from the SPLASH water325

balance model led to a minimal difference in overall performance. There is a trend that adding soil moisture improves the

MLP+ prediction at drier sites (mean MI 0.93), but leads to a small performance loss at moist sites (mean MI 1.10).

We also tested the LSTM+ with the estimated root zone water holding capacity as additional (time-invariant) predictor

(Figure 10). While this led to minimal overall differences, the performance improved at both very moist and very dry sites.

4 Discussion330

4.1 Key insights

We have compared different model types for predicting GPP from a shared set of predictors. To summarise, the following key

results were obtained:

– The neural networks (LSTM and MLP) are better GPP predictors than the mechanistic model (P-model) (Table 2, Fig-

ure 2, Figure 3).335
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Figure 10. Impact of complementary input features (soil moisture for the MLP+, water holding capacity for the LSTM+). (a) to (c) show the

R2 and (d) to (f) show the RMSE. (a) and (d) compare the MLP+ with soil moisture to the MLP+. (b) and (e) compare the LSTM+ to the

MLP+ with soil moisture. (c) and (f) compare the LSTM+ with water holding capacity to the LSTM+. Each dot represents the performance

for one site. The number of sites on either side of the diagonal and their mean moisture index are displayed in the corners. At the top we

show the significance of the observed differences, as per the two-sided Mann-Whitney U-test.

– The LSTM improves GPP prediction compared to the LSTMperm (and MLP) under temporal stress patterns by leveraging

learned memory (Figure 4, Figure 5, Figure 6).

– When averaged across conditions, the LSTM is not clearly better than the MLP (Table 2). However, the LSTM shows

advantages under drought conditions (Figure 4, Figure 6, Figure 9). This can be mitigated to some extent by providing a

simple soil moisture index (Figure 10).340

– With added earth observation variables, there is a clear improvement in model performance (Table 2, Figure 2). However,

there is still a large variability in model performance in dry conditions (Figure 7, Figure 8).

In the following, we discuss these insights in more detail.

4.2 Neural networks are skilled GPP simulators

An initial conclusion from our experiments is that neural network models have higher predictive skill than the theory-based345

P-model, across all levels of aggregation (Table 2). The main advantage of neural models is their capacity to represent complex
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functional dependencies, including effects that may not have been anticipated when deriving a model from plant physiological

theory. Importantly, the neural networks predict GPP more accurately at unseen test sites. In other words, learning does not

overfit the specific data streams at the training sites but discovers transferable patterns that are valid across space, and thus

implicitly across environmental gradients. We attribute this robustness to the diversity of sites in our dataset, and to careful350

(fully automatic and data-driven) hyperparameter tuning.

In contrast to the deep learning models (LSTM+ and MLP+), the P-model implements rigid functional dependencies derived

from a simplified depiction of the underlying processes (e.g., the big-leaf representation of canopy light absorption and a

schematic, empirical treatment of water stress effects). The model has only few parameters to calibrate to the data (in our

case four). On the one hand, so few degrees of freedom deprive the model of the ability to adapt to small but persistent effects355

present in the data; making it less accurate. On the other hand, they prevent it from going too far astray in the face of unexpected

inputs.

Considering overall evaluations across all sites and dates, the two neural models perform equally well. However, the advan-

tage of the LSTM+ over the other models was clear under certain conditions that we expected from the outset to underlie tem-

poral structure in the data - water stress (Figure 4) and frost/cold acclimation (Figure 5). Under these conditions, the LSTM+360

outperforms both the MLP+ and also the mechanistic model. This indicates a lack of current mechanistic understanding of

processes affecting GPP under these conditions.

It should also be noted that the collection of sites used here represents only a limited subset of all relevant environments

on Earth. None of the sites are located in a tropical ever-wet climate and certain conditions and combinations of vegetation

types and species, environments, and plant growth conditions (soil, subsurface hydrology) may not be covered by our spatial365

cross-validation setup. The limited data availability is exacerbated by the fact that seasonal variations in GPP and environ-

mental conditions tend to be very small in the tropics. Hence, it remains unclear whether the learned models extrapolate to

conditions not well represented in our data collection (Ludwig et al., 2023; Meyer and Pebesma, 2022). While it is technically

possible to predict GPP wherever the input predictors are available, such upscaling should be done with caution, and the limited

reliability under particular conditions should be considered. Our results suggest that predictions are least reliable in regions370

with pronounced seasonal or perennial water limitation.

Analysing patterns in prediction error of the different models and model performance of out-of-sample predictions has

revealed several key insights for (data-driven) modelling of terrestrial photosynthesis and its limitations. In the following, we

discuss them in more detail.

4.3 Modelling cumulative and lagged effects on GPP benefits from a recurrent model375

The prediction errors for the MLP+, LSTMperm+ and P-model tended to grow with increasing water deficit, but errors of the

LSTM+ remained smaller for moderate levels of water deficits compared to the other models (Figure 4). Event analysis also

showed that the recurrent architecture helps predict the response in GPP to drought events (Figure 6). The benefit was observed

primarily from 20 days after the start of a drought event. The similarity in prediction errors among models during the start

of drought events and at lower levels of PCWD appears to indicate that the recurrent architecture only benefits the prediction380

19



of GPP at higher levels of water stress. On the other hand, as the LSTM+ was trained with sequences of 128 days, it could

adapt to water limited conditions that build up over a period of up to 4 months. Due to the limited sequence length, longer

periods of water stress were presumably not learned, which may contribute to rising errors towards the high end of cumulative

water deficits and the relatively poor prediction of annual anomalies which may be driven by variable hydroclimatic conditions

across years.385

In this context, we point out that several factors likely degrade the prediction of annual anomalies: Inter-annual variability of

ecosystem fluxes likely reflects effects by specific site histories which are not reflected in the predictor variables (Abramowitz

et al., 2024), from inconsistencies in measurements of fluxes and meteorological covariates across years (e.g., sensor replace-

ments), or by lagged effects of climatic extreme events (Zscheischler et al., 2014). By their nature, such effects are difficult to

learn from example data spanning at most a few decades.390

Adding soil moisture as a predictor to compensate for the MLP+’s lack of memory did not clearly boost overall performance.

This indicates that (simulated) soil moisture does not fully account for the effects of gradually changing water stress, calling

into question a widely used practice (Nelson et al., 2024; Kang et al., 2023; Tramontana et al., 2016; Gaber et al., 2024) and

likely relates to a general challenge in accurately modelling water stress effects, which we discuss in more detail below. Soil

moisture information did, however, improve GPP prediction at relatively arid sites at the cost of a slight drop at moist sites –395

nudging the behaviour of the MLP+ towards that of the LSTM+. We speculate that this trade-off could hint at a dependence

of the functional relationships on aridity. The dependence of GPP on a soil moisture optimum that shifts in response to the

growing season soil moisture (Peng et al., 2024) could also contribute to an advantage of the LSTM+ compared to the MLP+

with the current value of soil moisture.

Conversely, the LSTM+ had a (small) disadvantage in moist regions compared to the MLP+ (Figure 9); while there was no400

obvious relation between the moisture index and the preference for global or site-specific modelling. Taken together, it seems

that the LSTM+ more consistently generalises across different aridity levels than the non-recurrent model. This could be an

indication that the functional relationships it uncovers hold over a wider range of aridity regimes. These patterns are unlikely

to stem from uneven spatial representation, data sampling artifacts or differences in training data length. These were accounted

for by ensuring even representation and sequence length of moist and arid sites (Figure D1) as well as even distribution405

of moisture index values when splitting sites during training. Therefore, we attribute performance gaps to the ability of the

models to account for the ecological complexity under arid conditions.

The LSTM+ also better captured delayed GPP increase in spring due to the cold acclimation effect (Figure 5). Luo et al.

(2023) found that a reduced efficiency of photosynthetic light utilisation during springtime was a consequence of a combination

of low minimum temperatures and high radiation during the weeks and months leading up to and during the start of the growing410

season. A recurrent deep learning model offers a basis for more accurately modelling GPP under such conditions than non-

recurrent architectures. Unresolved challenges remain, though, in the form of a remaining marked bias in the early part of

spring also for the LSTM+.

Overall, we found that the LSTM+ benefits GPP prediction during periods that are affected by temporal patterns. For the

temporal patterns evaluated, the LSTMperm+ and MLP+ behaved similarly, while the LSTM+ showed a performance benefit.415
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Furthermore, the LSTMperm+ had the same model capacity as the LSTM+. Combined, this indicates that the improved predic-

tion of LSTM+ is due to a learned memory, compared to the LSTMperm+ and MLP+ which both only see contemporaneous

predictor variables.

4.4 Unknown effects of water stress are a dominating source of model error

We found that GPP can relatively reliably be predicted across relatively moist, winter-cold sites. For sites with a moisture index420

of 0.75 and above, the mean R2 for spatial out-of-sample predictions was 0.80. This indicates that – at least for the abiotic and

biotic conditions represented in our dataset – GPP can be reliably simulated. Generalised models that spatially upscale yield

relatively reliable results under such conditions with the R2 of spatial out-of-sample tests falling between 0.4 and 0.94.

However, under more arid conditions (MI <0.75) we found very variable performance of a generalised model. Different

factors may cause poor generalisability across sites. Poor data quality with systematic differences of measurement errors across425

sites (Abramowitz et al., 2024), differences in functional relationships between GPP and its predictors across different species

and vegetation types, or insufficient information in predictor variables all may underlie the variable performance of the global

model across sites. Our results suggest that variable model performance is not clearly related to vegetation types (Figure 7).

A tendency of poorer model performance in evergreen vegetation is likely related to limited information in remotely sensed

greenness which is provided as a predictor (fAPAR). A clearer relationship of model performance was found across climate430

zones and across the gradient of the site’s average aridity (Figure 7). Together with our finding of a clear relationship between

the model prediction error and potential cumulative water deficits (Figure 4) and length of drought events (Figure 6), this

suggests that poor model generalisability is linked to variable exposure and response to water stress across sites. Apparently,

the history of precipitation and radiation is not sufficient to accurately model vegetation water stress exposure and responses,

and effects on GPP.435

Two factors are likely to undermine generalisability. First, responses to declining water potentials in the rooting zone are

highly variable across species and linked to plant hydraulic traits and water use strategies. Even within broad classes of vegeta-

tion types, hydraulic relations of different plant species exhibit a wide variety (Choat et al., 2012; Joshi et al., 2022; Anderegg

et al., 2018; Xu et al., 2016; Whitley et al., 2017; Konings and Gentine, 2017). Particularly in dry-adapted ecosystems (e.g.,

savannas and shrublands), contributions of different species to ecosystem-level integrated fluxes may also change over the440

season as a result of species-specific responses of leaf area to dryness (Xu et al., 2016; Whitley et al., 2017). Without related

information provided to models, this complexity and the resulting variability of GPP responses to dryness cannot accurately be

modelled across ecosystems with different species compositions.

Second, the exposure to water stress is highly variable across sites as a result of the surrounding topography and subsurface

hydrology. Giardina et al. (2023) found strong variations of the functional relationship between evapotranspiration and cumu-445

lative water deficits, suggesting strongly variable rooting zone water storage capacities and plant access to groundwater across

sites (Fan et al., 2017). Subsurface hydrology, groundwater influence, and belowground moisture convergence also appear to

lead to large differences in ecosystem water balances at relatively dry sites (Hahm et al., 2019; McCormick et al., 2021). Several

flux measurement sites have been identified as having greater mean annual precipitation than evapotranspiration, suggesting
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subsurface moisture convergence and the influence of groundwater (Abramowitz et al., 2024). Due to the close link between450

evapotranspiration and GPP, these relations affect vegetation activity in general, including GPP. The surrounding topography,

water holding capacity of the soil and weathered bedrock, groundwater table depth and rooting depth are either insufficiently

known or specified from the predictors used for modelling GPP. Thus, related effects on GPP and the associated variability of

water stress exposure cannot accurately be modelled across space. Variable water stress exposure and response affect GPP in

relatively moist and energy-limited sites to a lesser degree than sites with frequent water limitation. Hence, a clear relation of455

model generalisability across aridity (Figure 8) emerges.

Another factor that contributes to these generalisation challenges is remotely sensed fAPAR, which is a predictor of GPP

and tends to be less accurate in arid regions, where satellite sensors struggle to capture the large spatial heterogeneity at sub-

pixel scales and may be affected by light absorption by non-photosynthetically active tissue (Kannenberg et al., 2024). In

particular, noise due to sparsity, vegetation senescence and soil background lead to a frequent overestimation of fAPAR in arid460

and semiarid regions (Smith et al., 2019). This is exacerbated by the relative lack of ground observations in drylands, needed

for calibration.

We expected that site-specific responses would be more effectively modelled by site-specific models compared to a gener-

alised, global model. However, this was not unanimously the case. While the mean prediction error (RMSE) was generally

lower for site-specific models, these models often predicted a smaller fraction of variation in the data than the global mod-465

els. This was most clearly found for sites for which relatively short time series were available for model training. Hence,

site-specific responses appear to be learnable, given sufficient data. Our interpretation is that R2 measures the ability to ex-

plain the variance in GPP, a task that becomes easier as the model sees more data. Put differently, a site-specific model can

more accurately memorize the mean seasonal cycle of one particular site; but may not learn as well to deduce daily variations

from observed changes in light and meteorology, due to its restricted sample. Indeed, sites where the global model was better470

(positive ∆R2) invariably had relatively short observation periods (Figure 8), which increases the need to learn parts of the

functional relation from other sites.

While the data-driven models showed advantages in certain situations with temporal effects, it is clear that challenges remain.

Even with memory and accessible precipitation history, exposure and responses to water stress is not sufficiently modelled. This

applies to models of GPP in general, including mechanistic models. As outlined above, it is likely that models need additional475

information to simulate GPP reliably at arid sites. Our experiments indicated that addition of commonly used satellite-derived

variables boosts overall model performance without resolving the large variability in model performance across dry sites. This

highlights the need for the inclusion of further information that is relevant for accurate drought response simulations. We expect

that a similar reasoning and potential for model improvement applies also for mechanistic land surface models. The integration

of additional satellite data to inform models for reliable simulations of water stress exposure in land surface models remains a480

largely unsolved task. Typically, land surface models account for water limitation by predicting leaf area index and stomatal

conductance internally. Therefore, unknown exposure to water stress will likely remain a large source of uncertainty in land

surface models. Similarly, mechanistic models like the P-model use fAPAR, but no other remote sensing data due to challenges

in linking them in process representations.
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5 Conclusions485

We have demonstrated that an LSTM – a popular type of recurrent deep neural network – is a powerful model to predict ecosys-

tem GPP from local meteorological observations and remotely sensed fAPAR. Based on a spatial and temporal out-of-sample

evaluation, we find that the model has significantly higher predictive skill than the theory-based P-model and outperforms a

non-recurrent deep learning model under conditions of low root-zone moisture availability and very low temperatures in pre-

ceding weeks. The LSTM reliably simulates GPP dynamics across a range of environmental conditions and vegetation types490

(no agricultural vegetation tested here) at relatively moist sites (MI >0.75).

Through a detailed analysis of error patterns, we find that a recurrent model more accurately captures the GPP response to

longer-term, cumulative impact. In particular, the LSTM adapts better to arid environments affected by water stress, a condition

that builds up over time. Yet, we find that there is still a large variability in model skill across relatively arid sites, even if it

outperforms both the mechanistic P-model and a memoryless neural network. The variability remains even with the inclusion495

of additional earth observation data, although this improves general model performance. This suggests that the model lacks

information on variations in exposure and response to water stress and related effects on GPP. The inclusion of additional

remotely-sensed and temporally varying information (e.g., sun-induced fluorescence (Li et al., 2018), vegetation optical depth

(Konings and Gentine, 2017)) or static information about the topography, average groundwater table depth (Fan et al., 2013),

and subsurface structure (Pelletier et al., 2016) as predictors for the deep learning models bears the potential for reducing500

errors and yielding more reliable GPP simulations in dry environments. As ecosystems are becoming more exposed to water

limitation due to climate change (Denissen et al., 2022; Fu et al., 2024), it remains an important research topic to improve the

predictability of ecosystem fluxes in the context of water stress.

Code and data availability. The code and data used in this study are available in the following GitHub repository: https://github.com/

SamanthaBiegel/gpp-ml. Releases of this repository are archived on Zenodo (Biegel, 2025) The CSV file ’data/fdk_v342_ml.csv’, which505

can be obtained from the repository, contains the dataset that is used as input to the machine learning experiments. The creation of this

dataset can be reproduced with several steps. First, data is obtained from FluxDataKit v3.4.2 (Hufkens and Stocker, 2025), which gathers

publicly accessible flux data from the major networks of eddy covariance sites described in section 2.1. The files from FluxDataKit are then

processed using the script ’src/preprocess_data.py’, which results in the aforementioned CSV file. The data used as forcing for the P-model is

available in a separate file in the repository that is derived from the CSV file and FluxDataKit metadata: ’R/drivers.rds’. Model experiments510

can be run with these two files as input by following the steps for environment preparation and experiment runs as detailed in the documenta-

tion page of the repository (https://github.com/SamanthaBiegel/gpp-ml). Predictions from all model experiments are stored in the directory

’preds/’ and processed with ’figures.ipynb’ to produce the figures presented here.

Appendix A: Site information
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Sitename Period MI Clim. Veg. Evergreen Delayed GPP

AT-Neu 2002-2012 1.34 Dfc GRA False

AU-ASM 2012-2016 0.23 BSh SAV False

AU-Cum 2013-2018 0.60 Cfa EBF True

AU-DaS 2012-2017 0.74 Aw SAV False

AU-GWW 2013-2017 0.23 BWh SAV False

AU-Gin 2012-2017 0.42 Csa WSA False

AU-How 2009-2017 0.92 Aw WSA False

AU-Stp 2011-2016 0.50 BSh GRA False

AU-Tum 2011-2017 0.53 Cfb EBF True

AU-Ync 2012-2016 0.23 BSk GRA False

BE-Bra 2010-2020 1.17 Cfb MF False

BE-Dor 2011-2020 1.07 Cfb GRA False

BE-Maa 2016-2020 1.16 Cfb CSH False

BE-Vie 2000-2020 1.36 Cfb MF False False

CA-Ca1 2000-2009 3.03 Cfb ENF True

CA-Ca2 2001-2010 3.45 Cfb ENF True

CA-Gro 2004-2013 1.16 Dfb MF False

CA-Qfo 2004-2010 1.47 Dfc ENF True

CA-TP1 2009-2013 1.15 Dfb ENF True

CA-TP3 2008-2017 1.35 Dfb ENF True

CA-TPD 2012-2017 0.92 Dfb DBF False

CH-Aws 2015-2020 1.96 ET GRA False

CH-Cha 2010-2020 1.53 Cfb GRA False

CH-Dav 2000-2009 1.20 ET ENF True

CH-Fru 2011-2020 2.47 Cfb GRA False

CH-Lae 2005-2019 1.22 Cfb MF False

CH-Oe1 2003-2008 1.93 Cfb GRA False

CZ-BK1 2004-2019 1.88 Dfb ENF True

CZ-Lnz 2015-2020 0.66 Dfb MF False

CZ-RAJ 2012-2020 0.83 Dfb ENF True

CZ-Stn 2010-2020 0.96 Dfb DBF False

DE-Gri 2005-2019 1.38 Cfb GRA False

DE-Hai 2000-2019 1.22 Cfb DBF False True

DE-HoH 2015-2020 0.66 Cfb DBF False

DE-Obe 2009-2020 1.64 Cfb ENF True

Continued on next page

515
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Sitename Period MI Clim. Veg. Evergreen Delayed GPP

DE-RuR 2012-2020 1.52 Cfb GRA False

DE-RuW 2013-2020 1.66 Cfb ENF True

DE-Tha 2000-2019 1.18 Cfb ENF True

DK-Sor 2000-2012 1.75 Cfb DBF False

ES-Abr 2016-2020 0.35 Csa SAV False

ES-Agu 2007-2013 0.28 BSk OSH False

ES-LJu 2006-2015 0.72 Csa OSH False

ES-LM1 2015-2020 0.54 Csa SAV False

ES-LM2 2015-2020 0.51 Csa SAV False

FI-Hyy 2000-2016 1.27 Dfc ENF True False

FI-Let 2010-2020 1.29 Dfb ENF True

FI-Sod 2008-2014 1.74 Dfc ENF True

FI-Var 2016-2020 1.70 Dfc ENF True

FR-Bil 2015-2020 0.99 Cfb ENF True

FR-FBn 2009-2020 0.63 Csa MF False

FR-Fon 2006-2013 0.96 Cfb DBF False

FR-LBr 2003-2008 1.04 Cfb ENF True

FR-Pue 2001-2013 1.00 Csa EBF True

IL-Yat 2012-2020 0.18 BSh ENF True

IT-Col 2007-2014 1.29 Cfa DBF False

IT-Cpz 2001-2007 0.65 Csa EBF True

IT-Lav 2003-2020 1.41 Cfb ENF True

IT-Lsn 2016-2020 1.12 Cfa OSH False

IT-MBo 2004-2012 1.88 Dfb GRA False

IT-Ren 2001-2014 1.27 Dfc ENF True

IT-Ro1 2002-2006 0.84 Csa DBF False

IT-Ro2 2002-2007 0.77 Csa DBF False

IT-Tor 2009-2020 1.94 Dfc GRA False

NL-Loo 2000-2017 1.07 Cfb ENF True False

RU-Fy2 2016-2020 0.96 Dfb ENF True

RU-Fyo 2000-2009 0.93 Dfb ENF True False

SE-Htm 2015-2020 1.30 Cfb ENF True

SE-Nor 2014-2020 0.89 Dfb ENF True

SE-Ros 2015-2020 1.59 Dfc ENF True

US-BZS 2016-2020 0.75 Dfd ENF True

Continued on next page
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Sitename Period MI Clim. Veg. Evergreen Delayed GPP

US-Bar 2005-2017 1.54 Dfb DBF False

US-Blo 2001-2006 1.19 Csb ENF True

US-Fmf 2006-2010 0.51 Csb ENF True

US-GLE 2006-2019 1.73 Dfc ENF True

US-Ha1 2000-2020 0.80 Dfb DBF False True

US-Ho2 2007-2017 1.06 Dfb ENF True

US-ICh 2010-2021 1.60 ET OSH False

US-ICt 2016-2020 1.31 ET OSH False

US-Jo2 2011-2020 0.23 BWk OSH False

US-KFS 2008-2019 0.66 Cfa GRA False

US-KLS 2013-2019 0.42 Cfa GRA False

US-MMS 2000-2020 0.58 Cfa DBF False True

US-MOz 2007-2019 0.86 Cfa DBF False

US-Me2 2005-2010 0.64 Csb ENF True

US-Mpj 2009-2020 0.30 BSk WSA False

US-NR1 2000-2015 0.67 Dfc ENF True

US-PFa 2000-2014 0.52 Dfb MF False True

US-Rms 2015-2019 0.51 BSh CSH False

US-Ro4 2015-2021 1.28 Dfa GRA False

US-Rwf 2015-2019 0.59 BSh CSH False

US-Rws 2015-2019 0.69 BSk OSH False

US-SRG 2009-2014 0.37 BSk GRA False

US-SRM 2005-2014 0.29 BSk WSA False

US-Seg 2007-2021 0.27 BSk GRA False

US-Ses 2008-2021 0.24 BSk OSH False

US-Syv 2002-2006 1.14 Dfb MF False

US-Ton 2002-2014 0.50 Csa WSA False

US-UMB 2000-2014 0.41 Dfb DBF False

US-UMd 2008-2021 1.21 Dfb DBF False

US-Var 2001-2020 0.65 Csa GRA False

US-WCr 2000-2005 1.08 Dfb DBF False

US-Whs 2009-2015 0.26 BSk OSH False

US-Wjs 2008-2021 0.29 BSk SAV False

US-Wkg 2005-2021 0.31 BSk GRA False
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Table B1. Overview of the data sources

Variable Description Source

Main experiments (all models)

GPP Target variable (GPP_NT_VUT_REF) PLUMBER2 (flux sites)

Meteorology TA_F_MDS, TA_DAY_F_MDS, SW_IN_F_MDS,

LW_IN_F_MDS, VPD_DAY_F_MDS, PA_F, P_F,

WS_F

Flux sites

fAPAR Absorbed solar radiation MODIS MCD15A2H (500 m, 8-day)

MODIS reflectance bands + LST RED, NIR, BLUE, GREEN, SWIR1,

SWIR2, SWIR3, LST_TERRA_Day_VZA0,

LST_TERRA_Night_VZA0

FluxnetEO

Additional predictors

Soil moisture Modelled soil water availability SPLASH water balance model

Water holding capacity Root zone storage Stocker et al. (2023)

Site features

Moisture index (MI) P/PET SPLASH model + site precipitation

Vegetation type IGBP International Geosphere-Biosphere Programme

Climate zone Köppen-Geiger climate zone Beck et al. (2018)

Table B2. Overview of the implemented models.

Model Key components Implementation

LSTM LSTM cells with LayerNorm + linear layers (until 16 units) PyTorch

MLP Linear layers only (until 16 units) PyTorch

LSTMperm Same as LSTM, permuted input PyTorch

P-model FvCB photosynthesis, soil moisture stress R (rsofun)

Appendix B: Methods details

Appendix C: Sequence models

We evaluated two additional sequence models using the global model setup.520

Temporal Convolutional Network. We implemented a Temporal Convolutional Network (TCN) following Bai et al. (2018).

Similar to the LSTM, we used GELU activations (Hendrycks and Gimpel, 2023) and LayerNorm (Ba et al., 2016).

LSTM+attention. We also implemented a second version of the LSTM that uses a multi-head (8) attention mechanism

(Vaswani et al., 2017) with two linear layers after the LSTM layer.
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Table B3. Cross-validation and training setups.

Global model (Spatial CV) Site-specific model (Temporal CV)

Data split 5 folds, stratified by mean TA_F_MDS, MI Years per site, started at coldest/wettest month

Inner CV 3-fold (20 configurations) 5 held-out years (40 configurations)

Training size 128 days, 32 days overlap 128 days, 32 days overlap

Early stopping Max 50 epochs, patience 10 Max 50 epochs, patience 10

Evaluation R2, RMSE, bias, % error R2, RMSE, bias, % error

Figure C1. Comparison of the LSTM against the TCN (a) and against the LSTM+attention (b). R2 of predicted versus observed values of

daily GPP per site from the global cross-validation is shown for the LSTM along the y-axis and the TCN/LSTM+attention along the x-axis.

The dotted line indicates equal performance.

Appendix D: Additional figures525
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Figure C2. The model bias per day before and after the start of drought events for three sequence models. The bias is calculated as the

difference between model predictions and observations. The bias is normalised with respect to the median value during the 1 to 10 days

before each event onset. Shaded areas mark the area between the 33% and 66% quartiles.

Figure D1. Number of sites as well as sequence lengths per site for different levels of the moisture index. The number of sites are counted

per bin of width 0.2 of the moisture index.
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Figure D2. The distribution of performance metrics for sites with a moisture index below 0.75, and sites with a moisture index above 0.75.

The individual values as well as box plots are shown.
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