The Greenland-Ice-Sheet evolution over the last 24,000 years: insights from model simulations evaluated against ice-extent markers

Tancrède P.M. Leger^{1,2}, Jeremy C. Ely¹, Christopher D. Clark¹, Sarah L. Bradley¹, Rosie E. Archer³, Jiang Zhu⁴

15

Correspondence: Tancrède P. M. Leger (tancrede.leger@unil.ch): personal address: tankleger@gmail.com

Abstract. Continental ice sheets possessretain a long-term memory that is stored within both their their geometry and thermal properties of ice. In Greenland, this causescreates a disequilibrium betweenwith the present-day ice sheet and current climate, as the ice sheet is still adjusting to past changes that occurred over millennial timescales. Data-consistent modelling of the paleo Greenland-Ice-Sheet evolution is thustherefore important for improving model initialisation procedures used in future ice sheet projection experiments. Additionally, openOpen questions also remain regarding the ice sheet's former volume, extent, flux, internal flow dynamics, thermal conditions, and how such properties varied in space since the last glaciation. Here, we conduct a modelling experiment that aims to produce simulations in agreement with empirical data on the Greenland's ice-margin extent and timing of the ice sheet's margin positions over the last 24,000 years. Due to Given large uncertainties in ice sheet model parameters and boundary conditions, we apply a perturbed_parameter ensemble approach and runof 100 ice-sheet-wide simulations at 5 x 5 km horizontal resolution using the Parallel Ice Sheet Model. Our simulations are, forced by paleo-climate and ocean simulations offrom the isotope-enabled Community Earth System Model. Using quantitative model-data comparison and the newly developeda new Greenland-wide reconstruction of former ice margin retreat (PaleoGrIS 1.0), we scoredscore each simulation's fit across Greenland from 24,000 years ago until to 1850 AD. The resulting ensemble and best-scoring simulations provide insights related to into the dynamics, causesdrivers, and spatial heterogeneities of the local LGM, Late-glacial, and Holocene evolution of the Greenland Ice Sheet. We for For instance, we find that between 16 and 14 thousand years ago, the ice sheet lost most of its ice grounded on the continental shelf. This marine-sector demiseretreat, associated with mass loss rates up to seven times greater mass loss rates than observed todaytoday's, was predominantly eausedlikely mainly driven by ocean warming, while air temperatures possiblylikely remained too cold to generate surface melt. We specifically also detail and showcase results from our model-data comparison procedures, including regional heterogeneities in model data fit and the sensitivity of model data agreement scores to certain parameter configurations, that will likely which should prove useful for others working

Formatted: Font: +Body (Calibri), 11 pt

Formatted: Font: +Body (Calibri), 11 pt

¹ School of Geography and Planning, University of Sheffield, Sheffield, S10 2TN, UK

² Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

³ Department of Geography and Environmental Sciences, Northumbria University, Newcastle, UK

Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA

onfuture paleo-ice-sheet modelling experimentsstudies. Finally, we report—on the remaining model-data misfits in ice extent, here found to be largest in northern, northeastern, and central-eastern Greenland, and discuss possible causes for suchthis spatial heterogeneity in model-data agreement.

Formatted: Font: 11 pt, Not Bold

Formatted: Left

1 Introduction

70

Due to anthropogenic climate change, the Greenland Ice Sheet (GrIS) is losing mass at an increasing rate and is now a major contributor to global mean sea level rise (Meredith et al., 2019). Its future contribution remains uncertain, however, and with projections show importants howing large discrepancies between models/studies, with, most estimations ranging between ~70 and ~190 mm of sea level rise eontribution by the yearby 2100 under the RCP 8.5 / SSP5-85-emission scenarios (Aschwanden et al., 2019; The IMBIE Team., 2019; Goelzer et al., 2020; Edwards et al., 2021). Reducing uncertainties in GrIS projections is crucial not only erucial for estimating future sea level rise and Greenland-wide environmental changes, but also for anticipating future globalbroader climate change, in partimpacts, partly due to the ice-sheet's impactinfluence on ocean circulation and the potential slowdown of the Atlantic Meridional Overturning Circulation (AMOC) following increasing from increased freshwater releases release (Yu et al., 2016; Martin et al., 2022; Sinet et al., 2023). A major source of uncertainty in future ice sheet projections relates to the model initialisation procedures, i.e. the 'spinup' required to obtainset an appropriate initial state, i.e. the model 'spinup' (Rogozhina et al., 2011; Seroussi et al., 2019). This is a challenge mainlychallenging because ice sheets are not in equilibrium with the contemporary climate but are instead still affected by past climate changes that occurred over thousands of years (Oerlemans et al., 1998; Yan et al., 2013; Calov et al., 2015; Yang et al., 2022). While paleo spinups are more appropriate to capture this ice-sheet memory, they generally fail at representing the present-day ice sheet conditions as accurately as inversion data-assimilation schemes used in and equilibrium spinups (Goelzer et al., 2017), partly due in part to the greater uncertainties in paleo forcings, model parameterisations, and boundary conditions in the paleo realm (Aschwanden et al., 2013). Hence, there is a need to reduce such uncertainties by producing ensembles of higher-resolution paleo model simulations that are quantitatively scored against empirical reconstructions of past GrIS evolution. Although rare, such investigations may help obtain more appropriate initialisation procedures that better capture the ice-sheet's long-term memory while accurately modelling its present-day state (Pittard et al., 2022).

Numerous open-research questions remain regarding the past behaviour of the GrIS between the global Last Glacial Maximum (LGM), which occurred ~25 - 21 thousand years before present (kyr BP), and the present-day. For instance, the maximum GrIS volume during the last glaciation remains debated and differs, differing by a factor of up to 2.5 between modelling studies (e.g. Lecavalier et al., 2014; Bradley et al., 2018; Quiquet et al., 2021; Yang et al., 2022). The maximum GrIS extent, while though empirically constrained empirically

Formatted: Font: +Body (Calibri), 11 pt

Formatted: French (Switzerland)

Formatted: Font: Italic

in eertainsome regions (e.g., Ó Cofaigh et al., 2013)), remains, is still unknown in numerous locationsmany areas due to the difficulty of necessing and obtainingcollecting offshore geomorphological and geochronological constraints on ice retreat, making existingleaving data of this nature somewhat sparse (Funder et al., 2011; Sinclair et al., 2016; Leger et al., 2024). The timing, magnitude and rates of ice margin retreat and mass loss experienced during the last deglaciation, while essential to contextualise present-day mass loss losses, are also poorly known and challenging to determine empirically. The constrained. Similarly, the magnitude of ice margin retreat behind-its present-day margins in response to the Holocene Thermal Maximum (HTM: ~10-5 kyr BP), a warmer period often used as an analogue for expected future warming in the coming decades, also, remains undetermined (Briner et al., 2021). A final further rationale for 3D modelling of the former GrIS is that numerousmany characteristics of the past ice sheet, impacting former climate, ocean conditions, landscape evolution, biodiversity, and human history, are highly challenging (difficult, if not impossible), to constrain with reconstruct from field data alone. This is for instance the case for paleoincludes past changes in ice-sheet discharge, velocity, ice temperature, calving fluxes, mass balance, basal conditions, and their spatio-temporal variations variability.

80

100

105

110

Addressing some of the above these knowledge gaps, and while providing a present-day GrIS state that contains retains the appropriate long-term memory of past climate changes, requires: i) to forceforcing a three-dimensional and thermo-mechanical ice-sheet model with a paleoclimate reconstruction, and ii) to produceproducing paleo GrIS model simulations that agree (within error) with the available empirical data on former ice-sheet geometry and behaviour, while keeping the model remaining physically consistent and respectingfully mass conservation, conserving. Combining these requirements is a major challenge and has yet to be achieved. To this day, few Few studies modelling the GrIS evolution since the LGM have applied a quantitative model-_data comparison scheme to constrain a set of simulations usingwith geological field observations (e.g. Huybrechts, 2002; Lecavalier et al., 2014; Born & Robinson, 2021). Of those Those that did, the empirical datasets used were mainly used relative sea-level indicators, ice-core-derived thinning curves (Vinther et al., 2009), and englacial stratigraphic isochrones (Born & Robinson, 2021; Rieckh et al., 2024). The paleo sea-level community, in particular, has pioneered the production of Greenland-wide datasets (e.g. Gowan, 2023) reconstructing the magnitude and rate of relative sea level drop during the Lateglacial and early-to-mid Holocene, when deglacial retreat caused the Greenland peripheral lithosphere to rebound. Such records have been used to assess GrIS-wide simulations by comparing modelled versus against empirical uplift rates and relative sea level change (e.g. Simpson et al., 2009). However, relative sea-level indicators and other previously used datasets are indirect proxies of former ice-sheet geometry, and do not provide a robust constraint on the grounded ice margin position and shape of the former grounded GrIS margin retreat through time. With relative sea level-based comparisons, moreover Using such records, the quality of model-data fit is also heavily dependent on parameterisations of the Earth and glacial isostatic adjustment (GIA) models. On the other handln contrast, moraine ridges, glacial erratic boulders, trimlines, till units, and other ice-contact landforms/deposits are directly deposited and/or exposed at the ice-sheet

Formatted: Font color: Black

terminal or lateral margins. When dated, such recordsthey provide a more direct meanevidence of reconstructing former ice-sheet extent and thickness through time. The recent production and release of the PaleoGrIS 1.0 database and ice-extent isochrone reconstruction provides, for the first time, such a dataset at the GrIS-wide scale (Leger et al., 2024). Thus, despite remaining uncertainties due to from the spatially and temporally heterogeneous nature of field observations, we now have the opportunity to compare numerical model outputs simulations against a different, arguably more detailed and direct reconstruction of former grounded ice extent, and thus of former ice sheet geometry.

We present a perturbed parameter ensemble of 100 simulations using the Parallel Ice Sheet model (PISM: Winkelmann et al., 2011) forced by transient paleoclimate and ocean simulations of from the isotope-enabled Community Earth System Model (iCESM: Brady et al., 2019). The ice sheet Our simulations model the entire GrIS betweenfrom 24 kyr BP andto 1850 AD at a5 x 5 km horizontal resolution of 5 x 5 km which, for such long_timescales and large_simulation numbers, is unprecedented. Each_ensemble simulation is quantitatively scored against i) empirical data on the maximum ice-sheet size and extent of the ice sheet (local LGM(ILGM extent), ii) the PaleoGrIS 1.0 reconstruction of ice-margin retreat during the last deglaciation (Leger et al., 2024), and iii) the present-day GrIS extent. Unlike several previous paleo GrIS modelling experiments of similar design (e.g. Simpson et al., 2009; Lecavalier et al., 2014), empirical data is here not used to force the model or as a constraint during simulations. Instead, model-data fit is quantified assessed after the simulation is complete completion to ensure simulations remain consistent consistency with ice-flow physics (within model approximations) and mass conservation (e.g. Ely et al., 2024). The results of our Our ensemble, as well as results, including best-fit simulations, provide numerousoffer new insights into the LGM-to-present evolution of the ice sheet and present interestinghighlight heterogeneities in model-data fit. We report and discuss present these findings along withand our experiment methodology below.

2 Methods

115

120

125

130

135

140

145

2.1 The ice-sheet model setup

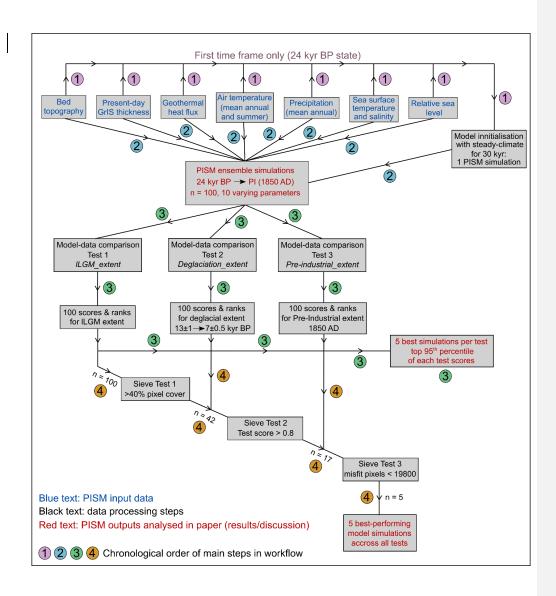
To model the last 24 kyrs of GrIS evolution, we use PISM version 2.0.5, an open-source, three-dimensional and thermo-mechanical model used widely to simulate ice-sheet systems (Winkelmann et al., 2011; Aschwanden et al., 2016; Albrecht et al., 2020; Clark et al., 2022; Ely et al., 2024; Khroulev & The PISM authors, 2020). Our overall approach is to run an ensemble of 100 PISM simulations over the entire Greenland Ice Sheet (GrIS) at 5 x 5 km horizontal resolution (Fig. 1), from 24 kyr BP to the Pre-Industrial era (PI: 1850 AD). Within the ensemble, we vary 10 key model parameters (Table 1). Each ensemble

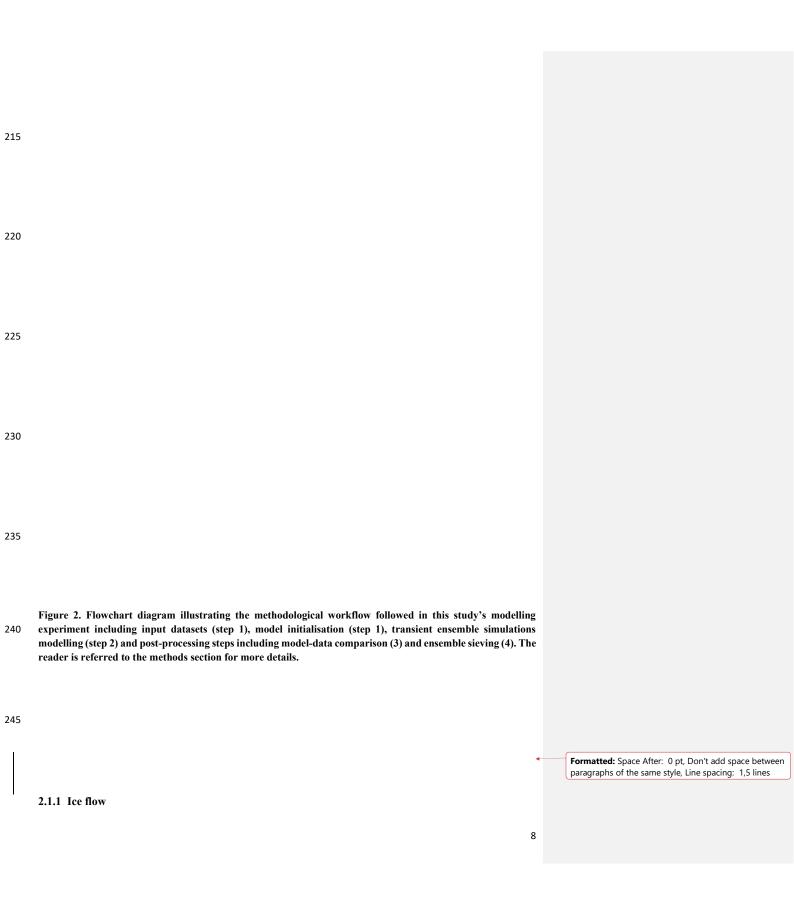
simulation is secret against empirical data on the timing of ice extent using PaleoGriss 1.0 (Loger et al., 2024) and model-data comparison procedures (e.g. ATAT 1.1; Ely et al., 2019), enabling us to isolate best-fit simulations. Together with the full ensemble, these are analysed further to provide quantitative results presented and discussed in sections 3 and 4 (Fig. 2). In the Methods sections below, we describe our model setup and input data used as forcings to the spin-up and transient simulations. For a full description of PISM and its capabilities, the reader is referred to the complete manual (https://www.py.).

Section of PISM authors, 2020).

Bed topography (m a.s.l.)

Formatted: Font: 11 pt


Figure 1. Time-independent and two-dimensional forcing fields used as inputs for present-day bed elevation (panel a), ice thickness (panel b; Morlighem et al., 2017; Millan et al., 2022), and geothermal heat flux (panel c; Martos et al., 2018). Bed elevation (panel a) is estimated by merging several products. Topography under the contemporary GrIS is from BedMachine v4 (Morlighem et al., 2017; spatial resolution: 150 m). For terrestrial


Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Font: Bold

regions with no GrIS cover, we use the ALOS World 3D 30 m Digital Elevation Model (DEM; Tadono et al., 2014). Present-day periphery ice is removed using thickness estimates from Millan et al. (2022). For other regions (ice-free ocean and other landmasses), we use the 15 arc-second resolution General Bathymetric Chart of the Oceans (GEBCO Bathymetric Compilation Group 2022, 2022). These datasets are resampled (to 5 x 5 km) using cubic convolution (Keys, 1981).

Formatted: Font: Bold
Formatted: Font: Bold

Formatted: Font: Bold
Formatted: Font: Bold

255

260

265

270

275

To model ice flow, PISM uses a hybrid stress balance scheme that combines the Shallow Ice Approximation (SIA) and the Shallow Shelf Approximation (SSA) (Bueler and Brown, 2009). PISM also features an enthalpy-based and three-dimensional formulation of thermodynamics enabling to model polythermal ice and basal melt (Aschwanden et al., 2012). For ice rheology ($\dot{\epsilon}$), we use the default Glen-Paterson-Budd-Lliboutry-Duval flow law,

$$\dot{\epsilon}_{i,j} = E - A(T,\omega) \tau_e^{n-1} \tau_{i,j} , \qquad (1)$$

where n is the flow-law exponent, E a flow enhancement factor, A the Arrhenius factor (ice softness) determined by the liquid water content, ω , and ice temperature, T, while τ and τ_e represent the deviatoric and effective stresses, respectively (Aschwanden et al., 2012). In our ensemble, we vary E uniformly for both the SIA and SSA (see section 2.3) and keep n=3 as default.

2.1.2 Boundary conditions

The ice-bed interface

We use the slip law of Zoet and Iverson (2020), which considers both mechanisms of glacier sliding over rigid beds and subglacial till deformation with minimal parameterisation and no required knowledge of the bed type. In PISM, this law is formulated as

$$\tau_b = -\tau_c \frac{u}{(|u| + u_t)^q |u|^{1-q}} , \qquad (2)$$

where τ_b is the basal shear stress, τ_c the basal yield stress, \boldsymbol{u} the slip velocity and u_t the threshold velocity at which shear stress equals the Coulomb shear strength of the till. In our simulations, u_t is kept constant at 50 m yr⁻¹ (Khroulev and The PISM authors, 2020; Zoet and Iverson, 2020) while q varies between simulations (see section 2.3). We account for space- and time-dependent basal yield stress, τ_c , controlled by-1), firstly, a simple hydrology model (Tulaczyk et al., 2000) which determines the effective pressure, N_{till} , from the till-pore water content obtained by storing basal melt locally up to a threshold (here set to 2 m); and 2)). With this simplified parameterisation, water is not conserved as water reaching above the threshold is lost permanently. The basal water thickness in the till layer, W_{till} , is computed from the basal melt rate, m_{ba} obtained from the

enthalpy, as follows:

$$\frac{\partial W_{till}}{\partial t} = \frac{m_b}{\rho_{til}} - C_{dr},\tag{3}$$

where C_{dr} is a simple decay rate parameter and ρ_w is the density of fresh water. Secondly, τ_c is also controlled by the till friction angle, ϕ , *i.e.* the frictional strength of basal till materials (Cuffey and Paterson, 2010).

$$\tau_c = \tan(\phi) N_{till} . \tag{34}$$

By assuming basal materials in valley troughs are generally weaker than towards mountain tops, we parameterise ϕ as a piece-wise linear function of bed elevation, b, (after Aschwanden et al., 2013; 2016; Huybrechts and de Wolde, 1999)

$$\phi(x,y) = \begin{cases} \phi_{min}, & b(x,y) \leq b_{min}, \\ \phi_{min} + (b(x,y) - b_{min})M, & b_{min} < b(x,y) < b_{max}, \\ \phi_{max}, & b_{max} \leq b(x,y), \end{cases}$$
(45)

where $M = (\phi_{max} - \phi_{min}) / (b_{max} - b_{min})$. We set upper and lower elevation thresholds (b_{min}, b_{max}) to -400 and 500 m a.s.l., respectively, while ϕ thresholds (ϕ_{min}, ϕ_{max}) are simulation-dependent (Table 1, see section 2.3). This PISM parameterisation was shown to produce flow velocities consistent with observations for major GrIS glaciers (Aschwanden et al., 2016).

Bed elevation is estimated obtained by merging several products including topographies from BedMachine v4 (Morlighem et al., 2017), the ALOS World 3D 30 m Digital Elevation Model (DEM; Tadono et al., 2014), and the General Bathymetric Chart of the Oceans (GEBCO Bathymetric Compilation Group 2022, 2022). The reader is referred to Figure 1 for more details regarding these data. To avoid modelling large non-Greenlandic ice bodies, Iceland and Baffin Island are manually-removed (Fig. 1). Modelling We however include the Innuitian Ice Sheet (IIS) together as it coalesced with the GrIS is important as the two ice sheets coalesced—(Jennings et al., 2011) and thus the two ice sheets dynamically interacted impacted each other (Bradley et al., 2018). We thus include Modern icecaps on Ellesmere Island in our domain, with local modern icecaps are removed using present day ice thickness estimates from Millan et al. (2022). Finally, we use a two-dimensional and time-independent geothermal heat flux data from Martos et al. (2018) (Fig. 1). This dataset ranges from 0.049 to 0.073 W m⁻², and is consistent with a plume track (the Iceland hotspot) that crossed Greenland from NW to SE. We run PISM at the horizontal resolution of 5 x 5 km (grid size: 620 x 620), with 101 vertical ice layers using quadratic concentration towards the base.

Formatted: Font color: Auto

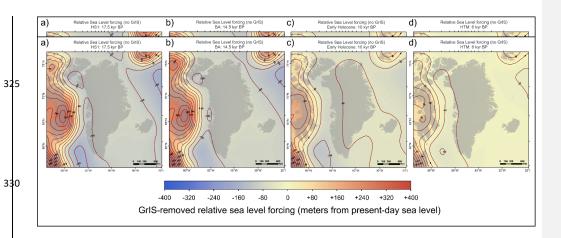
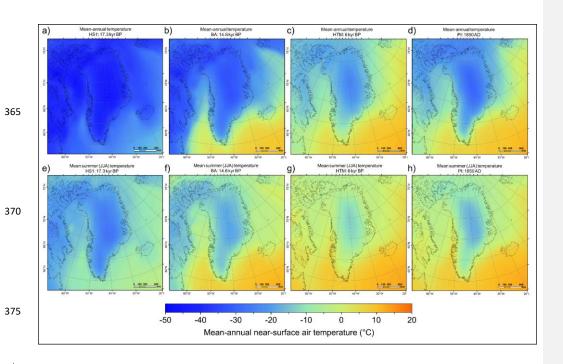



Figure 3. GrIS-removed (non-local components) relative sea-level forcing data for four different time slices and given as input to our transient ensemble simulations. These snapshots show the relative sea-level prior to adding the GrIS-specific contribution to GIA-induced relative sea-level change during our transient ensemble simulations (see methods section). Positive offset values (red) indicate isostatic bed depression relative to present and thus higher relative sea-levels than today, while negative offset values (blue) indicate isostatic bed uplift relative to present (e.g. on a peripheral bulge) and thus lower relative sea-levels than today. Snapshots are shown for the the HS 1 cooling event (panel a), the BA warming event (panel b; 14.5 kyr BP), the early Holocene (panel c; 10 kyr BP), and the HTM warming event (panel d; 6 kyr BP). All model input data fields are reprojected to EPSG:3413 and resampled to a 5 x 5 km resolution using cubic convolution.

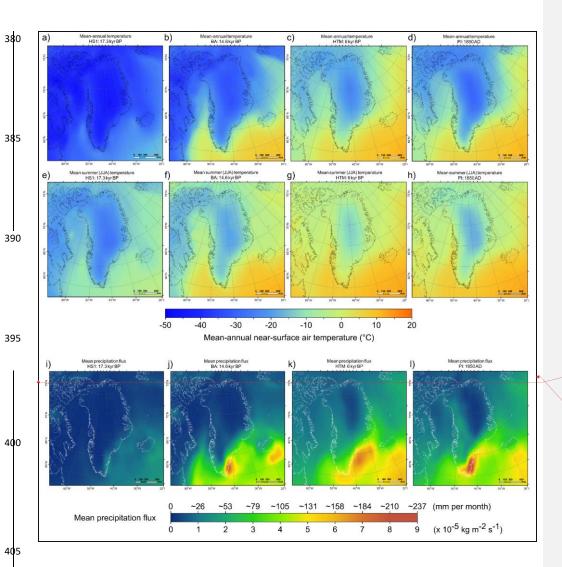


Figure 4. Two-dimensional fields of reference height-mean-annual surface air temperature (panels a-d) and), mean-summer surface air temperature (JJA mean; panels e-h) temperature), and mean annual precipitation flux (panels i-l) data used as input in our modelling experiment, derived from iCESM transient and equilibrium time slice simulations (see methods section), and shown as snapshots for the HS 1 cooling event (panels a, e, i), the BA warming event (panels b, f, i), the HTM warming event (panels c, g, k), and the PI (1850 AD; panels d, h, l). All climate input data fields are re-projected to EPSG:3413 and resampled to a 5 x 5 km resolution using cubic convolution.

415

Formatted: Font: +Headings CS (Times New Roman), 11 pt, Bold, Not Italic

Formatted: Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: Multiple 1,15 li

425

430

435

445

450

The ice-atmosphere interface

To compute Surface Mass Balance (SMB) from two dimensional fields of time-dependent reference heightsurface air temperature and precipitation (see section 2.1.3), we use PISM's default Positive-Degree-Day (PDD) model (Calov and Greve, 2005; Ritz, 1997). Precipitation when temperature is above 2 °C and under 0 °C is interpreted as rain and snow, respectively, with a linear transition between. Temperature and precipitation fields used to force the SMB are further described in section 2.1.3. The fraction of surface melt that refreezes is set to 60% (EISMINT-Greenland value; Ritz, 1997). Spatio-temporal variations in the standard deviation, σ , of daily temperature variability influences SMB (Arnold and MacKay, 1964). We parameterise σ to be a linear function of reference heightsurface air temperature T (and indirectly, of ice surface elevation)

 $\sigma = aT + b. \tag{56}$

We assign b a value of 1.66 (after Seguinot and Rogozhina, 2014) and vary a as part of our ensemble (see section 2.3).

The ice-ocean interface

For floating sectors of the modelled GrIS, sub-shelf melt is obtained by computing basal melt rate and temperature from thermodynamics in a boundary layer at the ice shelf base (Hellmer et al., 1998; Holland and Jenkins, 1999). This model, which does not consider sub-shelf circulation, uses three equations describing: 1) the energy flux balance, 2) the salt flux balance, and 3) the pressure- and salinity-dependent freezing point in the boundary layer. This sub-shelf melt parameterisation thus requires time-dependent two-dimensional fields of potential temperature and practical salinity (see section 2.1.3.). More details can be found in Hellmer et al. (1998) and Holland and Jenkins (1999). Calving was likely a predominant ablation mechanism during the local LGM [LGM] (~21-15 kyr BP) and throughout the Late-Glacial, when the GrIS

Formatted: Font color: Black

was mostly marine-terminating (Funder et al., 2011a). Although physical calving processes remain poorly understood, we here model it following similar PISM parameterisations as Albrecht et al. (2020) and Pittard et al. (2022). Firstly, floating ice at the calving front thinner than a given threshold is automatically calved (see section 2.3). Secondly, we use the strain-rate-based eigen calving law (Albrecht and Levermann, 2014; Levermann et al., 2012) to determine the average calving rate, c, based on the horizontal strain rate, $\dot{\epsilon}_{\pm}$, derived from SSA-velocities, and a constant, K, integrating ice material properties at the calving front

$$c = K \dot{\epsilon}_{+} \dot{\epsilon}_{-}, \qquad (67)$$

$$\dot{\epsilon}_{\pm} > 0.$$

We assign K a value of 5 x 10^{17} m s⁻¹ (after Albrecht et al., 2020; Pittard et al., 2022). While a von Mises stress - type calving law may be more appropriate for fjord-terminating glaciers (*e.g.* Aschwanden et al., 2019), the GrIS expanded over continental shelves and was entirely marine-terminating during the local LGM|LGM, thus forming wide ice shelves comparable to Antarctica today (Jennings et al., 2017). As the ice sheet was in this configuration for more than half our simulated timeframe, we rely on the eigen calving law throughout our simulations. Following Albrecht et al. (2020), we further restrict ice-shelf extent by calving ice when bathymetry exceeds 2 km, with the exception of Baffin Bay.

The grounding line location is determined by computing a floatation criterion (Khroulev and The PISM authors, 2020). This criterion depends on water depth, defined as the vertical distance between the geoid and the solid earth surface (Mitrovica and Milne, 2003). Around Greenland, and for theour timeframe of interest (24-0 kyr BP), spatio-temporal variations in water depth result from changes in the global mean sea level and GIA-induced deformation of the solid earth (Rovere et al., 2016). The latter can result from variations in GrIS mass (local sources), and the influence of the neighbouring Laurentide Ice Sheet (LIS) and IIS, responsible for spatially and temporally variable sea level around Greenland (non-local sources)(Bradley et al., 2018). During and following glaciations, non-local contributions can be significant, as Greenland is located on the eastern peripheral forebulge generated by the LIS (Simpson et al., 2009; Lecavalier et al., 2014) (Fig. 3). Here, we account for this interplay and We thus combine at each time step the non-local relative sea level signal calculated from an offline GIA model with the local GrIS-driven signal, enabling to compute the final water depth and resulting floatation criterion (Fig. 3).

For the local GrIS signal, we use PISM's Lingle-Clark-type viscoelastic deformation model (Lingle and Clark, 1985; Bueler et al., 2007). We use default lithosphere flexural rigidity and mantle density values of 5 x 10²⁴ N m⁻¹ and 3300 kg m⁻³, respectively. For mantle (half-space) viscosity, we use a value of 5 x 10²⁰ Pa s⁻¹, consistent with Lambeck et al. (2017). To calculate the non-local sea level changechanges across the region of interestour domain, we run an offline GIA model. This model was run at a resolution of 512° and solves the generalized sea level equation (Mitrovica & Milne, 2003; Kendall et al., 2005) accounting for sea

14 12 10 Time (kyr BP)

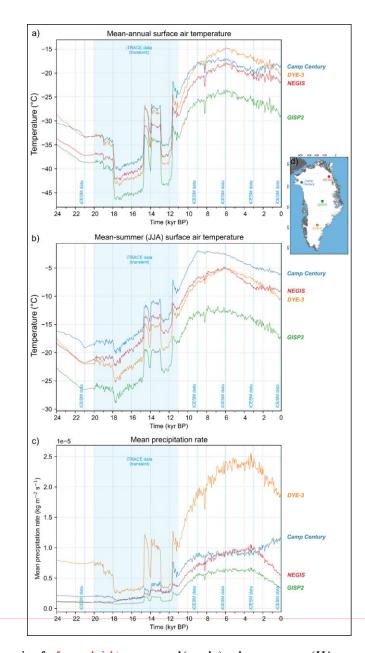
10

8

6

495

500


505

-30

24

22

20 18 16 Formatted: Font: Times New Roman

515

520

530

535

Figure 5. Time series of reference height mean-annual (panel a) and mean-summer (JJA-mean; panel b) surface air temperature data used as forcing in our ensemble simulations, at 4 different locations of the ice sheet (shown on inset: panel ed). Transparent blue bands highlight time windows covered by iCESM climate data. In between these data points, forcing fields are approximated using a spatially-variable glacial index scheme (see methods section).

Formatted: Font: +Headings CS (Times New Roman), 11 pt, Bold

Formatted: Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: single

Formatted: Justified, Line spacing: Multiple 1,15 li

2.1.3 Atmospheric and oceanic forcings

Air temperature and precipitation

545

550

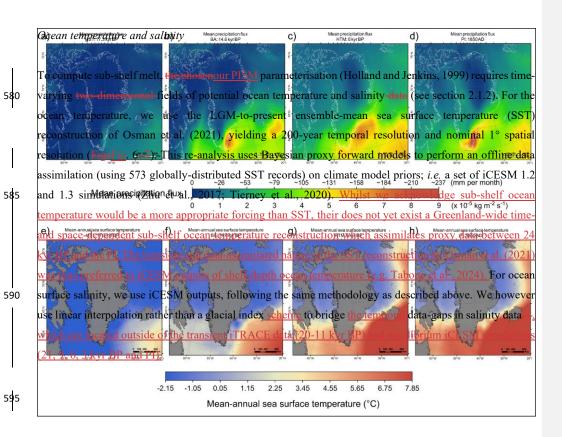
555

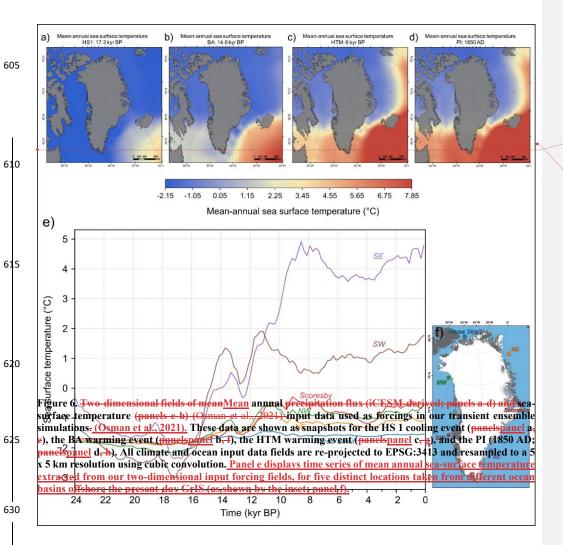
560

565

570

575


SMB is forced with two dimensional and time-dependent fields of reference heightsurface air temperature and total precipitation (Figs. 4-87). We use pre-existing simulations from iCESM (Brady et al., 2019) versions 1.2 and 1.3, run globally at a horizontal resolution of 1.9° in- x 2.5° (latitude and 2.5° inx longitude) for the atmosphere and a nominal 1° for the oceans. We use simulations ran with full forcing simulations, i.e. including ice sheet (from ICE-6G: Peltier et al., 2015), orbital (Berger, 1978), greenhouse gases (Lüthi et al., 2008) and meltwater forcings. Between 20 and 11 kyr BP, we use datamonthly-resolution output from the iTRACE experiment, ran with iCESM 1.3 (He et al., 2021a, b). Thanks to an improved climate model, higher resolution, and the addition of water isotopes, iTRACE simulates a climate over Greenland that is more data-consistent (He et al., 2021a) than the former CESM simulation of the last deglaciation TRACE-21 (Liu et al., 2009). Additionally, we use output from five equilibrium time-slice simulations ran at 21 kyr BP and PI (1850 AD) (iCESM 1.3), and at 9, 6, and 3 kyr BP (iCESM 1.2)-), and at the PI (1850 AD, iCESM 1.3) (Fig. 4).


To create continuous forcing over remaining data gaps in time, we useapply a glacial index approach (Niu et al., 2019; Clark et al., 2022) and linearly scale our climate fields proportionally to variations in independent climate reconstructions (Fig. 5). in a space-dependent manner i.e. building a glacial index for each individual grid cell (Fig. 5). Between 24 and 21 kyr BP, we use surface air temperature and δ^{18} O reconstructions of Osman et al. (2021) to scale variations in temperature and precipitation fields, respectively. For data gaps between 21 kyr BP and the PI (e.g. 11 - 9 kyr BP), we use the seasonally-resolved Greenland-wide temperature and precipitation reconstruction of Buizert et al. (2018) as glacial index. Between 24 and 21 kyr BP, we use surface air temperature and δ^{18} O reconstructions of Osman et al. (2021) to scale variations in temperature and precipitation fields, respectively. The results are time dependent, two dimensional fields of mean annual and mean summer (JJA) reference height air temperature and mean precipitation rate, continuous between 24 kyr BP and PI (Fig. 4 8). From mean annual and mean summer temperatures, our SMB scheme reads a cosine yearly cycle generating an idealised seasonality signal.

As a result, we produce time-dependent, two-dimensional fields of mean annual and mean summer (JJA) surface air temperature and precipitation rate, continuous between 24 kyr BP and PI (Fig. 4-7). From mean annual and summer temperatures, our SMB model reads a cosine yearly cycle to generate a seasonality signal.

Formatted: Font: +Headings CS (Times New Roman), 11 pt, Bold

Formatted: Justified, Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: Multiple 1.15 li

Formatted: Font: +Headings CS (Times New Roman), 11 pt

Formatted: Justified, Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: single

2.2 Model initialisation procedure

635

645

650

655

660

665

670

For model initialisation, we simulate a GrIS in balance with boundary conditions at 24 kyr BP, i.e. the starting year of our transient simulations, chosen to be significantly earlier (up to (~9 kyr) than the local LGM|LGM (17.5-15 kyr BP; Lecavalier et al., 2014). To do so, we'We use present-day GrIS thickness (see section 2.1.2 Fig. 1b) and run a 30 kyr-long simulation using parameterisations described above. Ensemble, fixing ensemble-varying parameters are set to their mid-range values (Table 1). After 30 kyr-of simulation with a static climate (from 24 kyr BP), modelled surface and basal ice velocities are stable across the domain, while mass flux rates in glacierised areas are near zero. Basal mass flux for grounded and sub-shelf ice as well as surface melt, accumulation and runoff rates all reach steady state. The spun-up grounded GrIS area reaches 2.27 10⁶ km², while grounded-ice volume approximates 8.22 m sea-level-equivalent (SLE), ~0.8 m above theits present-day GrIS volume (7.42 ± 0.05 m SLE; Morlighem et al., 2017). In this study, grounded GrIS volume calculations (in m SLE) exclude ice under floatation, computed (using the PISM-derived timedependent floatation criterion. The calculation also excludes), the ISS, periphery peripheral glaciers and icecaps, and any ice thinner than 10 m (after Albrecht et al., 2020). We use ice density, sea waterseawater density, and static ocean surface area values of 910 kg m⁻³, 1027 kg m⁻³, and 3.618 x 10⁸ km² (Menard and Smith, 1966), respectively. This spun up GrIS is used as the initial condition for all ensemble transient simulations. initial condition for all ensemble transient simulations. The 30 kyr equilibrium spinup limited us computationally to this single initial state at 24 kyr BP with ensemble-varying parameters fixed to midrange values. Although adjusting parameters in subsequent transient runs can generate instabilities in the first simulation years, equilibrium with parameterisations is likely reached within the first centuries and should not significantly affect the modelled lLGM or deglacial dynamics.

2.3 Ensemble design

Numerical ice-sheet modelling is governed by a plethora of parameters, many of which are poorly constrained by physical processes or empirical data. Uncertainties associated with from subjective parameter configurations are large, and generally greater in paleo simulations, due to a lack of observational data (Tarasov et al., 2012). To minimise biases in parameter choices and to assess model-data fit (see section 2.4)

using a wide range of parameter configurations, we perturbate an ensemble of 100 simulations with 10 varying parameters (Table 1). We use the Latin hypercube sampling technique (Iman, 2008; Stein, 1987) with the maximin criterion (van Dam et al., 2007) to ensure homogeneous sampling of the high-dimensionality parameter space, while minimising potential redundancies. The 10 ensemble-varying parameters were drawn from five main groups:

675

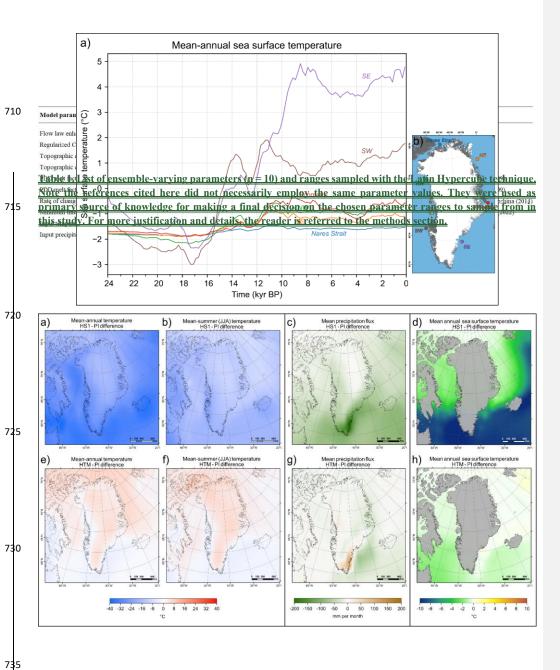
680

685

690

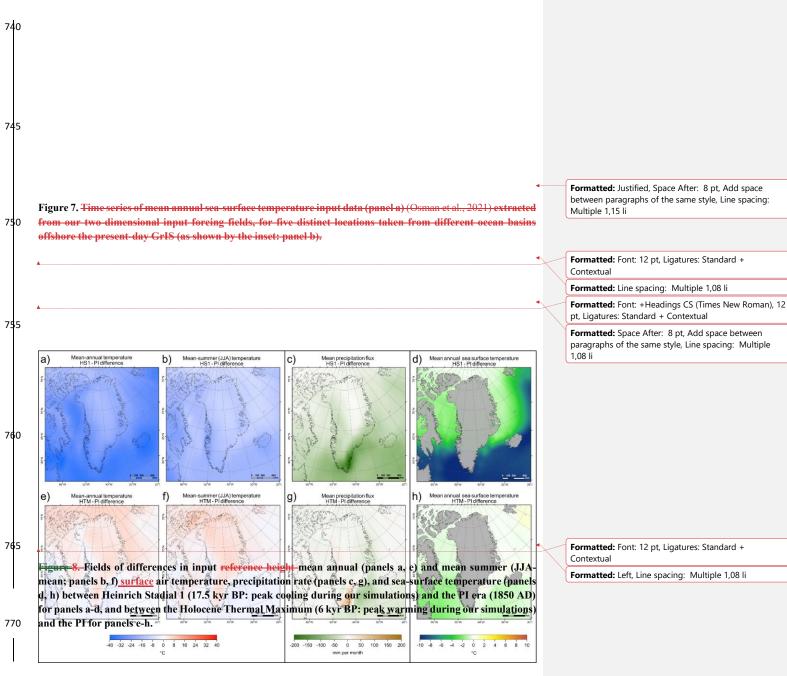
695

700


-Ice dynamics: we alter the flow law (Eq. 1) enhancement factor (E) uniformly for both the SIA and SSA using a range (0.5 - 3) bracketing the value E = 1.25 found to produce best fit with contemporary GrIS flow speeds (Aschwanden et al., 2016). We vary the sliding law exponent q (Eq. 3) between 0.01 and 1, permitting to continuously alter the dependency of basal shear stress on sliding velocity from nearly purely-plastic to linear.

-Basal yield stress: to alter the impact of bed elevation (and bed strength) on basal yield stress between simulations, we vary ϕ_{min} and ϕ_{max} (Eq. 4) between 4 - 15° and 20 - 45°, respectively, which bracket values obtained by Aschwanden et al. (2016) for present-day GrIS hindcasting.

-SMB: Based on present-day GrIS surface melt, PDD snow and ice melt factors vary between 2 - 5 and 5 - 12 mm we d⁻¹ °C⁻¹, respectively (Braithwaite, 1995; Fausto et al., 2009; Aschwanden et al., 2019). We also vary coefficient a in Eq. 5 between -0.25 and -0.1, thus modifying the impact of temperature change on the standard deviation of daily temperature variability (σ), following the relationship established by Seguinot and Rogozhina (2014).


-Calving: preliminary testing revealed that varying the minimum thickness threshold of ice shelf fronts had a greater impact on modelled GrIS extent than modifying the eigen calving law constant, *K* (Eq. 6). The thickness threshold was thus retained as an ensemble parameter and is varied between 25 and 200 m, based on observations (Motyka et al., 2011; Morlighem et al., 2014).

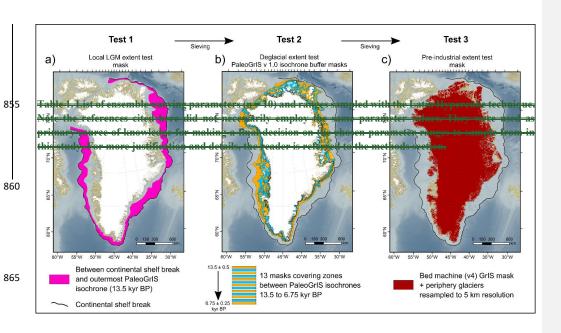
-Climate forcing: paleo-climate data from earth-system models can have biases, for instance due to their own paleo-ice-sheet forcings displaying inaccurate geometries (Buizert et al., 2014; Erb et al., 2022; He et al., 2021a). To account for potential biasesthese, we apply variations in input perturbations to climate fields using space-independent temperature and precipitation offsets as ensemble-varying parameters (Table 1). Based on surface air temperature variability over Greenland (1 stdev) in Osman et al. (2021)'s ensemble, we vary temperature fields by -3.5 to +3.5 °C (Table 1). Furthermore, preliminary reliminary simulations showed a high sensitivity of modelled GrIS extent and volume to precipitation changes. We thus vary precipitation between simulations and chooseusing a wide range of offsets, *i.e.* between 20 and 200 % input precipitation.

Formatted: Font: +Headings CS (Times New Roman), 11

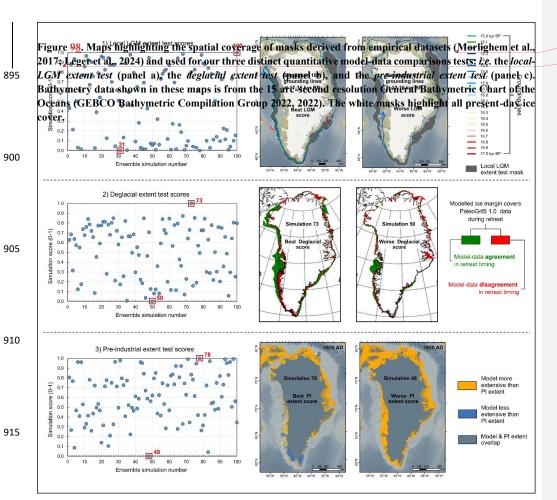
Formatted: Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: single

2.4 Model-data comparison scheme

Isolating ensemble best-fit ensemble simulations requires a quantitative assessment of model-data agreement with data on past GrIS behaviour. Here, each ensemble simulation is scored based onusing three chronologically-distinct tests, described below. Prior to conducting these tests, floating ice, Before testing, we remove the IIS, and ice thinner than 10 m, and modelled peripheral iceeaps and glaciers are removed from modelled ice-thickness fields. Because former GrIS ice-shelf extent is poorly constrained, and empirical datasets used here only constrain grounded GrIS extent, we also exclude floating ice (post-simulation) and restrict all ice-extent analyses to grounded ice for the remainder of the study. Modelled ice shelf extent at selected time periods is nonetheless shown in Figures 22 and 23.


-The local-LGM extent test; assesses; This test evaluates the fit between simulations and grounded GrIS extent during the local LGM, reached between - LGM (~21 and ~_15 kyr BP, depending on regions (region; e.g. Funder et al., 2011; Ó Cofaigh et al., 2013; Hogan et al., 2016; Jennings et al., 2017; Ó Cofaigh et al., 2013; Sbarra et al., 2022). AsBecause the GrIS was then fully marine-terminating, data constraining its past ice-extent are rare and challenging to obtain and rare (Sbarra et al., 2022a). Given this uncertainty, we producedefine a conservative local LGM extent LGM mask coveringspanning the area between the outermost PaleoGrIS 1.0 isochrone (~14-13 kyr BP) (Leger et al., 2024), reconstructing GrISwhich reconstructs margins following initial deglaciation, and the continental shelf break, a likely maximum extent constraintlimit (Fig. 9). Due to numerous 8). Given dating challenges in dating the GrIS's local LGM (Jennings et al., 2017), no chronology is considered in this test, rather only absolute extent. For each simulation, we compute the percentage of mask pixels covered by modelled grounded ice at any point in time. These percentages are, then normalised normalise these values to compute produce a 0-1 score per simulation (0-1) (Fig. 109). High-scoring simulations model an reconstruct a more extensive grounded GrIS, covering more larger parts of the mid- to outer continental shelves, thus reconstructing yielding a more accurate local LGMILGM geometry (Fig. 109).

-The deglaciation extent test; assesses the simulations' ability to fit; This test evaluates simulations against an empirical reconstruction of GrIS retreat during the last deglaciation (~15 - 5 kyr BP). To do so, weWe use ATAT v1.1 (Ely et al., 2019) to score simulations against the PaleoGrIS 1.0 isochrone reconstruction (Leger et al., 2024), which spansspanning 13 ± 1 kyr BP to 7 ± 0.5 kyr BP. We use the 'isochrone buffer' product, a mask-based version of the margin reconstruction designed suited for comparison models with >1 km-resolution models (see Fig. 15 in Leger et al., 2024). Here, three Three ATAT output statistics are equally weighted in into a final normalised 0-1 score (0-1):: i) the percentage of pixels from PaleoGrIS 1.0 buffers buffer pixels covered by modelled grounded ice; (periphery glaciers removed), ii) the percentage of these pixels that agreematching within chronological error, and iii) the Root-Mean Squared Error in retreat timing for the latter (see Table 4 in Ely et al., 2019). Consequently, this: Table 4). This test assesses thus evaluates whether modelled GrIS margins retreat overacross the correct regions; and at both the correct time and rate (Figs. 8, 9, 10).


The Pre-Industrial extent test; assesses the simulations' ability to reproduce: This test evaluates simulations against the PI (1850 AD) GrIS extent. To do so, weWe compute the difference in grounded ice extent between the present-day GrIS (BedMachine v4 re-sampled to 5 km, periphery glaciers removed) and our simulations' last each simulation's final frame (1850 AD), WhileAlthough these two products represent GrIS-states at times differingdiffer by ~150 years, we consider this difference to be assume the offset is negligible given our relative to the 24 kyr-long simulations—simulation length and the 5 x 5-km spatial uncertainty inherent toof both products, which likely exceeds the offset between the two extents. We thus integrate the number of true extent difference. We then count pixels over which modelledwhere simulated PI grounded GrIS margins are bothice is either more andor less extensive than the present-day margin (Figs. 8, 9, 10). The total number of misfit pixelspixel count is then normalised to produce into a final relative 0-1 score (0 - 1).

To isolate overall best-fit simulations, we followapply a chronologically-ordered sieving approach and sequentially remove simulations that do not meet threshold valuesthresholds at each test. Starting with Simulations first pass the local-LGM extent test, only simulations with if mask pixel-cover percentages coverage exceeds >40% are retained.%. Of thosethese, only simulations yielding normalized scoresruns scoring >0.8 (out of 1) at the deglaciation extent test are retained. Of thosethese, only simulations presenting a total number of with <19800 misfit pixels <19800 at the Pre-Industrial extent test are retained. These thresholds were selected set such that 60 - 70% of simulations are removed by each sieve while keeping retaining five overall best-fit simulations runs (upper 95th percentile of model data comparison scores). This sequential sieving strategy enables us to avoid retaining avoids selecting simulations which may model that fit the most recent ice sheet state more accurately (i.e. present-day GrIS) state well but for the wrong reasons, e.g. when their previous achieve it through unrealistic paleo-evolution strongly disagrees with empirical data.

Formatted: Font: +Body (Calibri), 11 pt

Model parameter (PISM parameter name)	Range	Unit	Source
Flow law enhancement factor (sia_e and ssa_e)	[0.5 - 3]	n/a	Aschwanden (2016)
Regularized Coulomb sliding law exponent (q)	[0.01 - 1]	n/a	Zoet and Iverson (2020)
Topographic control on Yield Stress: lower ϕ treshold (ϕ_{min})	[4 - 15]	angle degree	Aschwanden (2016)
Topographic control on Yield Stress: upper ϕ treshold (ϕ_{max})	[20 - 45]	angle degree	Aschwanden (2016)
PDD melt factor for ice (surface.pdd.factor_ice)	[5 - 12]	mm we .d-1 .°C-1	Braithwaite (1995); Fausto et al. (2009)
PDD melt factor for snow (surface.pdd.factor_snow)	[2 - 5]	mm we .d-1 .°C-1	Braithwaite (1995); Fausto et al. (2009)
Rate of change in Stdev of daily temperature variability as function of elevation (param_a)	[-0.250.1]	n/a	ERA 40 re-analysis: Seguinot & Rogozhina (2014)
Minimum thickness of terminal floating ice shelf (thickness_calving_threshold)	[25 - 200]	m	Albrecht et al . (2021); Pittard et al . (2022)
Input temperature forcing: Temperature scalar offset $(delta_T)$	[-3.5 - 3.5]	°C	Osman et al. (2021)
Input precipitation forcing: % precipitation scaling (frac P)	[0.2 - 2.0]	scalar multiplier	Initial sensitivity tests

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Figure 409. Ensemble simulation scores at our three model-data comparison tests (local-LGM extent test, deglacial extent, and PI extent test) and example results illustrated for both the best-scoring and worse-scoring ensemble simulations, at each test. Note that for the PI-extent test, the 2D mask used as empirical data and described in this figure as the "PI extent" is the grounded ice extent of the present-day GrIS mask from BedMachine v4 (Morlighem et al., 2017) re-sampled to 5 km resolution, with periphery glaciers removed. While the true PI and present-day extents represent GrIS states that differ by \sim 150 years, we here consider this difference to be negligible given our 24 kyr-long simulations and the 5 x 5 km spatial uncertainty inherent to both products. That uncertainty, once propagated, likely exceeds the extent offset between the two states. Bathymetry and topography data shown in these maps are from the 15 arc-second resolution General Bathymetric Chart of the Oceans (GEBCO Bathymetric Compilation Group 2022, 2022).

3 Insights oninto past Greenland-Ice-Sheet history

3.1 Modelled Greenland Ice Sheet during the local LGM

3.1.1 Ensemble-wide trends

935

940

945

950

955

960

965

970

All ensemble simulations (n=100) model an increase (of up to ~23%) in grounded GrIS extent between the global LGM (*i.e.* 24 - 21 kyr BP) and the GrIS wide local LGMILGM, here modelled between 17.5 and 16 kyr BP (Fig. 110). This is consistent with the timing of maximum GrIS volume and extent in other recent modelling studies (*e.g.* 16.5 kyr BP in Lecavalier et al., 2014; 17 - 17.5 kyr BP in Yang et al., 2022). Here, modelled GrIS maximum expansion is synchronous with the Heinrich Stadial 1 (HS1: ~18 - 14.7 kyr BP: He et al., 2021) cooling event. In our prescribed climate forcing (iCESM-derived), HS1 is associated with decreases in mean annual air temperatures of between 5 °C and 7 °C over the GrIS (Figs. 4, 5), and reductions in sea surface temperatures of up to 1 °C in ocean basins surrounding Greenland (Figs. 6, 7). In nearly all ensemble simulations, HS1 cooling forces modelled surface accumulation rates to increase between 24 and

16 kyr BP (by up to 200% for certain simulations) and causes reduced sub-shelf melt (by up to 350%), between 18 and 16 kyr BP (Fig. +211).

3.1.2 Insights from local LGM best-fit simulations

975

980

985

990

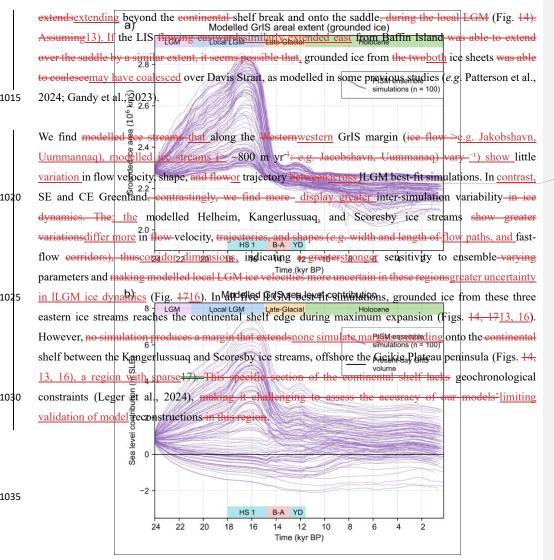
995

1000

1010

In this section, we refer to 'ILGM best-fit simulations' as the five best-scoring ensemble simulations at the *local-LGM extent* test (Figs. 12, 13, 14, 15-17-16).

Grounded GrIS extent during local LGM|LGM


Our ILGM best-fit simulations yield maximum total-grounded GrIS areas that range between 2.80 and 2.85 million km² (excluding the IIS) (Fig. 13), an extent 12), ~1.65 times greater than the present-day ice sheetarea (1.71 million km²; Morlighem et al., 2017). For these simulations, agreement Agreement with empirical data on the local LGM ice LGM extent is relatively good. Our ILGM best fit: our simulations are 4 ± 0.7% and 10 ± 0.6% less extensive than the minimum and maximum ILGM GrIS extents reconstructed by thein PaleoGrIS 1.0 database for the local LGM, respectively (Leger et al., 2024) (Figs. 14, 17). The remaining 13, 16). Remaining misfits areoccur mainly located in NE Greenland, where no ensemble simulation produces grounded ice reaching extending to the mid-to-outer continental shelf during the local LGM (Figs. 1413, 16, 17, 18), contrary to recent empirical datacvidence (e.g. Hansen et al., 2022; Davies et al., 2022; Roberts et al., 2024). Indeed, these; Ó Cofaigh et al., 2025). These studies suggest local LGM indicate grounded ice margins reached between ~100 and ~200 km further East farther east than in our most extensive simulations. This implies suggests the true local LGM [LGM] (~17 - 16.5 kyr BP) areal extent of the grounded GrIS area was likely eloser to 2.9 - 3.1 million km², consistent with the Huy3 model (Lecavalier et al., 2014).

Along the Western GrIS margin, from offshore Uummannarsuaq in the South (Cape Farewell) to offshore Kangaarasuk in the North (Cape Atholl), all ILGM best-fit simulations (and a large proportionmuch of ourthe ensemble) model a grounded GrIS-margin that reaches reaching the continental shelf edge during the local LGMILGM (Figs. 13, 14, 15, 1716). This is consistent agrees with empirical constraints on the Westernwestern GrIS local LGM extent (e.g. Ó Cofaigh et al., 2013; Rinterknecht et al., 2014; Sbarra et al., 2022). Therefore, whereby both empirical data and modelling studies increasingly suggest the grounded GrIS likely reached the continental shelf edge along its entire Westernwestern margin-during the local LGM. Furthermore, our Our ILGM best-fit simulations also produce extensive ice shelves extending across Baffin Bay during that time. As the LGM LIS was also contributing significant contributed major ice flux into Baffin Bay from the West around that timewest (Dalton et al., 2023), it seems possible for Baffin Bay to be plausible the bay was fully covered by ice shelves during the local LGM, between 18 and 16 kyr BP. We also note that towards Toward the relatively shallow Davis strait saddle (500 - 600 m below present-day sea level) Davis strait saddle;), offshore CW Greenland, four out of five ILGM best-fit simulations model grounded ice that

Formatted: Font: 12 pt
Formatted: Font: 12 pt

Formatted: French (Switzerland)

Formatted: English (United Kingdom)

Formatted: Font: Times New Roman

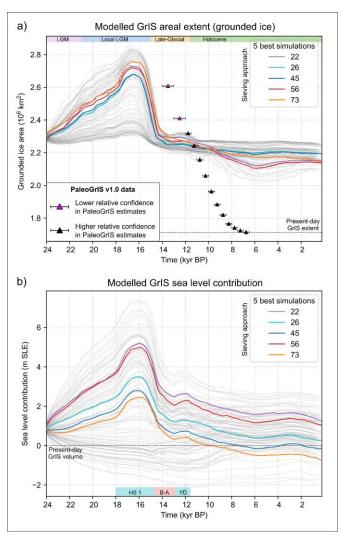


Figure 1410. Modelled grounded ice area (panel a) and ice volume (panel b) for the 100 transient PISM ensemble simulations of the GrIS (light grey time series) from 24 kyr BP to the PI era (1850 AD). Here, the modelled grounded GrIS volume (in m SLE) is expressed in 'sea level contribution' by subtracting the estimated present-day GrIS volume from our results (7.42 m SLE; Morlighem et al., 2017). GrIS volume calculations moreover exclude ice under floatation computed using the PISM-derived time-dependent floatation criterion. The calculation also excludes the Innuitian ice sheet (IIS), periphery glaciers and icecaps, and any ice thinner than 10 m (after Albrecht et al., 2020). We use ice density, sea water density, and static ocean surface area values of 910 kg m⁻³, 1027 kg m⁻³, and 3.618 x 10⁸ km², respectively. The five overall best-fit simulations (which pass all sieves) are highlighted with thicker coloured time series. The PaleoGrIS v1.0 isochrones data reconstructing the GrIS's former grounded ice extent are shown with triangle symbols on panel a (Leger et al., 2024). Note the GrIS-wide model-data misfit in ice extent apparent here can be misleading as it is spatially heterogeneous and heavily influenced by a few regions concentrating most of the misfit (i.e. NO, NE, and CE Greenland): see Fig. 17. Note the five overall best-fit simulations highlighted here, while passing all sieves, are not the best-scoring simulations at each individual model-data comparison test (see Fig. 12), but rather they score better than other simulations when combining all tests. For instance, their volume during the ILGM (panel

Formatted: Font: Bold

Formatted: Font: Bold

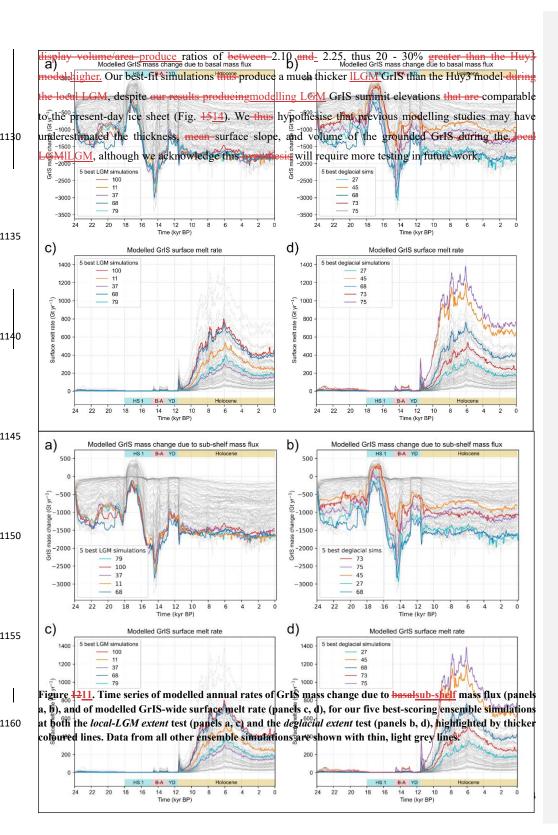
b: ~16 kyr BP) is lower and less realistic than values of best-scoring simulations at the *local-LGM extent* test (see Fig. 12d).

GrIS volume and thickness during the local LGM | LGM

1095

1100

1105


1115

1120

1125

ILGM best-fit simulations produce yield maximum grounded GrIS volumes (ice above floatation, excluding the IIS and peripheral glaciers) that are between 6 and 6 - 7.5 m SLE greater than the present day volumetoday (~7.42 m, Morlighem et al., 2017) (Fig. 13d]2d). These ILGM volumes are distinctly higher thanvalues exceed most previous estimates from the literature, generally comprised between 2 and 5.5 m SLE (Bradley et al., 2018; Yang et al., 2022; Simpson et al., 2009; Clark and Mix, 2002; Huybrechts, 2002; Niu et al., 2019; Fleming & Lambeck, 2004; Quiquet et al., 2021; Buizert et al., 2018; Tabone et al., 2018; Khan et al., 2016) (Fig. 4918). We however note that published volume estimates display an increasing trend in time, with more recent studies more often reporting values between 4 and 5.5 m SLE. Moreover, reported GrIS LGM volume estimates Reported volumes are negatively correlated with also inversely related to model resolution (power regression R² = 0.5), suggesting models using a with higher-resolution grid tendmodels tending to produce a thicker GrIS during the local LGM (Fig. 19). All previous 18). Previous ensemble studies producing an ensemble of GrIS-LGM-to-present model-GrIS simulations with model-data comparison (Simpson et al., 2009; Lecavalier et al., 2014; Simpson et al., 2009) used substantiallymuch coarser grid resolutionsgrids (15-20 km) than this study (vs. our 5 km). Of these Past modelling studies, moreover, few also rarely include floating ice shelves in their models, which are known to often provide awhose buttressing effect leading to reduces ice-flux lowering and thus increases in grounded ice-sheet thickness (Pritchard et al., 2012). Each of these studies also use different climate/ocean forcings and ice flow approximations, and those nudging the model to a specific ice extent may use different data-informed ILGM masks. Together, these differences may help explain the higher volumes obtained in our results. Moreover,

It can also be challenging to directly compare previously reported GrIS LGM volume estimates as different methods are used to compute this number (Albrecht et al., 2020). Various studiesStudies use different present-day GrIS volume estimates, ice and ocean water densities, global ocean areas, and do not always exclude floating ice nor ice under floatation using a time-dependent varying relative sea-level-output. However, we believe our workflow follows a method close to that of Lecavalier et al. (2014) when reporting the modelled local LGM volumes of the Huy3 model (in m SLE). Computing the That model's ratio of modelled GrIS wide grounded ieeGrIS volume (in 10¹⁵ m³ unit) to areal extent (in 10¹² m² unit) reveals that, during the local LGM|LGM| (~16.5 kyr BP), the Huy3 model features a ratio of is ~1.73 (see Fig. 15 in Lecavalier et al., 2014). In comparison, our five overall best-fit simulations (which pass all sieves)

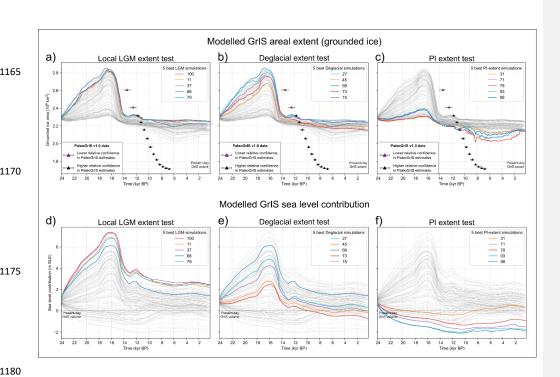
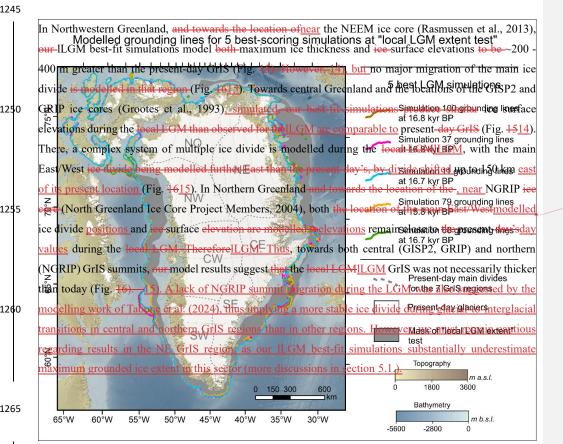


Figure 4312. Modelled grounded ice area (panels a-c) and volume (in m SLE, expressed as sea level contribution; panels d-f) for the 100 ensemble simulations (light grey time series). The five best-scoring simulations at each of our three model-data comparison tests are highlighted by thicker coloured time series: panels a, d for the local-LGM extent test, panels b, e for the deglacial extent test, and panels c, f for the PI extent test. Data from the PaleoGrIS v1.0 isochrone reconstruction of GrIS former grounded ice extent (Leger et al., 2024) are shown with triangle symbols. Note the GrIS-wide model-data misfit in ice extent apparent here can be misleading as it is spatially heterogeneous and heavily influenced by a few regions concentrating most of the misfit (i.e. NO, NE, and CE Greenland): see Fig. 2217.

Formatted: Font: Bold


In our ILGM best-fit simulations, maximum GrIS volume is associated with spatially-heterogeneous magnitudes of GIA-induced bed subsidence during the local LGM (Supplementary Fig. 1). Highest modelled bed The largest subsidence values reach, reaching ~500 m below the present-day topography, and consistently occur systematically towards in CW Greenland, around the Disko Bay and Sisimiut. Three additional regions. Three secondary regions of high GIA induced bed of pronounced subsidence (~400 m) are also modelled, reaching values of 400 m below the present day bed. These are located in CE Greenland (the inner Scoresby Sund region), upper NE Greenland (The Danmark Fjord region), and central Ellesmere Island (Supplementary Fig. 1). The resulting pattern of total glacial—isostatic loading (non-local and local components combined) during the local LGM is LGM broadly consistent agrees with previous modelling efforts focusing on GIA signals and model data comparison using calibrated against relative sea level indicators (e.g. Simpson et al., 2009; Lecavalier et al., 2014; Bradley et al., 2018).

LGM ice geometry at the locations of ice cores

In Southern Greenland, and following modelled flowlines from the location of the DYE-3 ice core, ILGM best-fit simulations produce a notably different ice-sheet geometry during the local LGMILGM than today (Fig. 1514). Modelled ice surface elevations are greater by ~300 – 500 m at the local summit are ~300 - 500 m higher than present, despite increasedgreater isostatic loading and ~400 m of bed subsidence (of ~400 m) relative to today. In this region, maximum. Maximum modelled ice thickness in this region is thus modelled to be ~700 - 900 m greater during the local LGM than is estimated for the present-day GrIS (Morlighem et al., 2017a). Furthermore, towards Toward DYE-3, our ILGM best-fit simulations also suggest a notable shiftwestward migration of the main East/West ice divide, here modelled to be located further West than the present day's by approximately 100 km by ~100 km relative to today (Figs. 15, 16). Such a14, 15). If confirmed, such glacial-interglacial ice-divide migration, if further validated, couldshifts would have

implications for the DYE-3 ice core record (Dansgaard et al., 1982), which may not have remained as close to the local-GrIS summitdivide as previously thought during Quaternary glacial maxima as previously thought. Instead, ice from the drill site may have been located further East and welleast within the Helheim glacier catchment during glacial maxima, where higher flow velocities and stronger layer deformation could produce induce irregularities in the ice core profile and complicate chronological interpretations interpretation (Rasmussen et al., 2023).

1240

Formatted: Font: +Body (Calibri), 11 pt, Ligatures: None

Modelled grounding lines for 5 best-scoring simulations at "local LGM extent test" 5 best LGM simulations Simulation 100 grounding lines at 16.8 kyr BP 75°N Simulation 37 grounding lines at 16.8 kyr BP NO NE Simulation 11 grounding lines at 16.7 kyr BP NW Simulation 79 grounding lines at 15.8 kyr BP N.02 Simulation 68 grounding lines at 16.7 kyr BP CW Present-day main divides 65°N for the 7 GrIS regions SE Present-day glaciers Mask of "local LGM extent" Figure 1413. Modelled grounding lines during the GrIS-wide local LGM (finaximum ice extent, whose tighing is simulation-dependent) for the five best-scoring simulations at the local-LGM extent test. Our division scheme of the GrIS in seven major catchments/regions, used and referred to throughout the text for interreg<mark>ional co</mark>mparisons, is shown with dashed grey lines. Bathymetry and topography data shown in this map are from the 15 arc-second resolution General Bathymetric Chart of the Oceans (GEBCO Bathymetric Compilation Group 2022, 2022). The white mask highlights all present-day ice cover the shown is a superior of the Oceans (GEBCO) and the superior of the Oceans (GEBCO) and the superior of the Oceans (GEBCO) are superior of the Oceans (GEBCO). 60°W 55°W 50°W 45°W 40°W 35°W m b.s.l. -5600

Formatted: Font: +Headings CS (Times New Roman), 11 pt, Bold, Ligatures: None

Formatted: Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: single

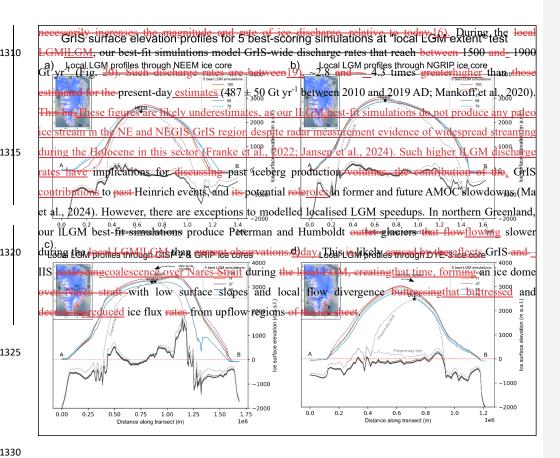
GrIS discharge during the local LGM | LGM

1270

1275

1280

1285


1290

1295

1300

1305

Our ILGM best-fit simulations produce a faster-flowing GrIS during the <u>local LGM|LGM</u> than today. In these <u>simulations</u>, the <u>glaciated_runs</u>, areas covered by ice streams (>800 m yr⁻¹ surface velocities: Bennett, 2003) are <u>between 6.8 and_ 10.7</u> times greater during the <u>local LGM</u>, <u>relative to today|LGM than at present</u> (Joughin et al., 2018a) (Fig. <u>17)</u>. Such an increase in flow velocities combined with the greater ice extent

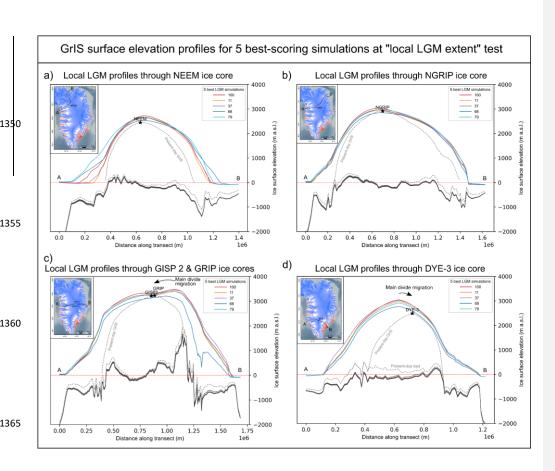


Figure 4514. Modelled ice surface and bed elevations during the local LGM extracted across four different transects for our five best-scoring simulations at the local-LGM extent test (thicker coloured lines), and for the present-day GrIS (dashed grey lines). The four transects were drawn following modelled ice flow lines while ensuring to cross the NEEM (panel a), NGRIP (panel b), GISP 2 and GRIP (panel c), and the DYE-3 (panel d) ice core locations, as shown by the black lines in the inset maps.

1395

1410

1415

1420

3.2.1 Ensemble-wide trends

Following the local LGM/LGM, nearly all ensemble simulations produce rapid-and, high-magnitude retreat of GrIS margins between 16 and 14 kyr BP, during the late HS1 and the Bølling-Allerød warming event (B-A; ~14.7-12.9 kyr BP; He et al., 2021) (Fig. 1410). Depending on regions, this suddenabrupt warming is associated with increases inraises mean annual and mean summer air temperatures of betweenby 5 and 12 °C in our forcing data (Fig. 5), while our input) and sea surface temperatures increase by between 0.2 and 3.8 °C (Fig. 7). For 6) in our forcing data. In simulations that model an expansion of the grounded where the GrIS everadvanced onto continental shelves between 24 and 16 kyr BP, subsequent retreat during the B-A causes a near complete deglaciation of continental shelf covers. During the late HS1 and B. A warming (16-14 kyr BP), weWe find nearly no modelled surface melt across any simulations, during the late HS1, B-A warming (16 - 14 kyr BP), and until ~12 kyr BP (Fig. 12). Modelled 11). Instead, modelled margin retreat and mass losses between 16 and 14 kyr BP are instead associated with more negative (up to tenfold) basalsubshelf mass fluxes, caused driven by ocean warming increasing sub-shelf melt rates (Fig. 1211). A ~30% decrease in modelled ice accumulation rates during that time also plays a smaller role. These mechanisms lead to substantial ice sheet thinning of up to 800 m in 2 kyr during that period (Supplementary Fig. 2). Our Consistent with Tabone et al. (2018), our ensemble thus suggests that during the late HS1 and B-A warming, between 16 and 14 kyr BP, ocean forcing likely eaused the drove rapid GrIS to retreat rapidly and lose mostnear-total loss of its glaciated continental-shelf areascover, despite air temperatures remaining too cold to produce any surface melt (Fig. 1211).

3.2 Modelled Greenland Ice Sheet during the Late-Glacial ast deglaciation

At the ice-sheet scale, ensemble simulations produce little or no GrIS margin re-advance during the Younger Dryas stadial (YD: ~12.9 - 11.7 kyr BP). ForIn the few simulations that demonstrate someruns where grounded marginmargins do re-advance during the YD, they recover less than ~3% of the area lost during deglaciation just prior (~16 - 14 kyr BP). TowardsIn the north Atlantic region, the YD was a high-magnitude but relatively short-lived (~1.2 kyr) cooling event, with our input climate forcing data suggesting mean annual temperatures over the GrIS decreasing by ~7 °C₇ relative to 13 kyr BP (Fig. 5). In our simulations, the modelled GrIS is likely still adjusting to the substantialmajor mass and extent loss experienced just prior, during the preceding B-A warming. We find that despite Despite large parameter and climate perturbations between simulations (Table 1), the this post B-A inertia and memory from the B-A warming phase combined with the relatively short-lived nature duration of the YD event prevented any simulation from producing prevents substantial margin re-advances in most regions. Modelled GrIS volume, however,

Formatted: Font: +Body (Calibri), 11 pt, Ligatures: None

Formatted: Font: +Body (Calibri), 11 pt, Ligatures: None

responds more dynamically to YD cooling than extent, with some simulations recovering up to 8% of the mass loss experienced just prior (lost between 16 -and 13 kyr BP) (Figs. 11, 1310, 12). During the YD, these simulations display highly spatially heterogeneous variations in ice-thickness changes: with some thickening of up to ~200 m mainly modelled in CE and Southern GrIS regions, while other regions display eontinuedareas continue thinning (Supplementary Fig. 2). NeverthelessOverall, despite the high magnitude ofstrong cooling, our ensemble suggests large re advances of GrIS margins margin re-advances during the YD arewere unlikely and would have required a more sustained cooling event forcing. This finding is onsistentaligns with athe general lack of geomorphological andor geochronological evidence for GrIS Main GrIS ice divides: 5 best-scoring simulations at "local LGM extent test" vs present-day hargin readvances re-advances during the YD (Leger et al., 2024), and confirms that highlights the teee sheet following millennial-scale warming and retreat-can eduland peripheral icecaps and glacie 5sbesble@iMoslimuslationia due to ice volumes and extentextents, were found to be more sensitive and to he more sensitive and the heart of th during the YD (e.g. Larsen et al., 2016; Biette et al., 2020). Simulation 37 ice divides 15°N at 16.8 kyr BP Simulation 11 ice divides at 16.7 kyr BP Simulation 79 ice divides at 15.8 kyr BP Simulation 68 ice divides N.02 at 16.7 kyr BP Present-day ice divides 0.59 Present-day glaciers Topography m a.s.l. 1800 3600 N.09 Bathymetry 600 | km 150 300 m b.s.l. -5600 -2800

45°W

40°W

35°W

30°W

50°W

1430

1435

60°W

55°W

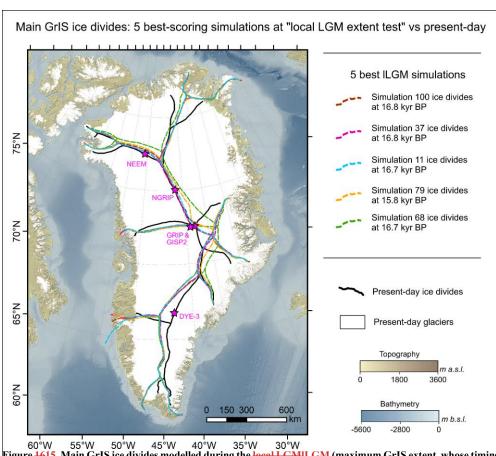


Figure 1615. Main GrIS ice divides modelled during the local-LGMLGM (maximum GrIS extent, whose timing is simulation-dependent) for our five best-scoring ensemble simulations at the local-LGM extent test (dashed coloured lines). These are compared against the present-day GrIS main ice divides (continuous black line) extracted from surface ice velocity observations (Joughin et al., 2018). The locations of main Greenland ice cores discussed in this study are highlighted by the pink stars. Note the potent offset between the location of the DYE-3 ice core and modelled ice divides during the local-LGMILGM (more details in section 3.1.2.). Bathymetry and topography data shown in this map are from the 15 arc-second resolution General Bathymetric Chart of the Oceans (GEBCO Bathymetric Compilation Group 2022, 2022).

Formatted: Font: Bold

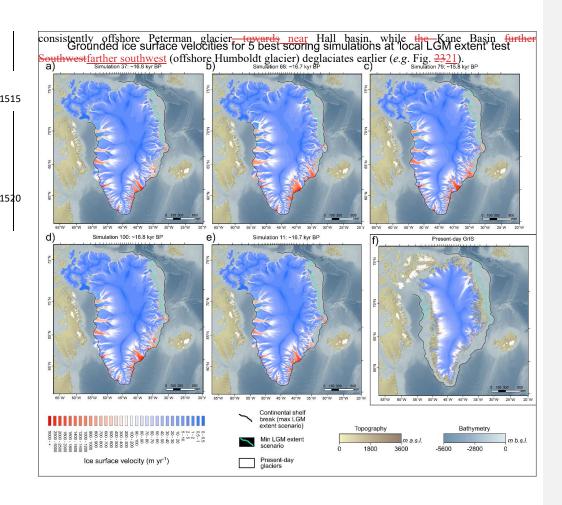
3.2.2 Insights from deglacial best-fit simulations

In this section, we refer to our 'deglacial best-fit simulations' as the five best-scoring ensemble simulations at the *Deglacial extent* test (Figs. 10, 139, 12).

1480

1490

1500


1505

1510

Deglacial best-fit simulations produce spatially heterogeneous mass-change patterns of mass change during the last deglaciation (16 - 8 kyr BP) (Supplementary Fig. 2). For instance, during During the YD stadial (1314 - 12 kyr BP), only small peripheral regions of CE, SE, and SW Greenland experiencegain mass gain, while other regions of the modelled ice sheet experience either sectors show no mass change, or instead mass loss. During peak B-A warming (16 - 14 kyr BP), we find-modelled mass loss is most prominent pronounced in NW, CW, SW, and SE Greenland (Supplementary Fig. 2). At the ice-sheet scale, our-deglacial best-fit simulations generate maximum mass loss rates during the late HS1 and B-A warming periods (16-- 14 kyr BP) that reach maximum values of between reaching ~500 and ~ 1400 Gt yr⁻¹, equivalent to between ~ (~1 and - 3 mm SLE yr⁻¹, at around 14.5 kyr BP) (Fig. 21). Comparatively, between 2003 and 2020 AD20). By comparison, the GrIS islost an estimated to have lost 200 to 300 Gt yr⁻¹, equivalent to approximately (0.57 mm SLE yr⁻¹) between 2003 and 2020 AD (Simonsen et al., 2021). Therefore, our deglacial best fit simulations model between 2.5 and 7 times greater mass loss rates Thus, during peak deglaciation (~14.5 kyr BP), best-fit simulations model 2.5 - 7 times greater mass loss rates than is estimated for the last two decadespresent estimates (Fig. 21). Such mechanisms lead 20). This leads to substantial ice-sheet thinning between 16 and 14 kyr BP in these simulations, especially-pronounced over the CW GrIS (Supplementary Fig. 2). During this event, moreover, the modelled rates of 2), and causes maximum areal-extent loss reach maximum values rates of between 300 and 450 km² yr¹ (Supplementary Fig. 3). We note that these These modelled area loss rates during peak B-A warming, here mostly related, primarily linked to ocean-forcing, notably exceed the near constant rate of 170 ± 27 km² yr⁻¹ estimated by from the landform derived PaleoGrIS 1.0 reconstruction for the ~14 - 8.5 kyr BP period (Leger et al., 2024). This may suggests that grounded GrIS retreat rates during peak B-A warming were greaterwas faster than during the YD-to-early Holocene transition, the period covered by most data compiled in PaleoGrIS 1.0, when a higher proportion larger fraction of the deglaciating GrIS was land-terminating.

Including Ellesmere Island in our model domain enables to potentially reconstruct and better understand the important mechanisms allows reconstruction of coalescence during advance and the subsequent unzipping of the GreenlandGrIS and Innuitian ice sheets IIS over Nares Strait, during deglaciation. Here, we find that some of our Some deglacial best-fit simulations (e.g. simulation 73) do capture this behaviour (Fig. 2321). In these simulations, the majority of runs, most grounded ice over Nares Strait is deglaciated deglaciates between 10 and 8 kyr BP, approximately in line broadly consistent with geochronological empirical evidence (Jennings et al., 2011) (Fig. 21). For 23). We note that for simulations successfully modelling—the full grounded-ice unzipping of the two ice sheets, final separation (although modelled too late) occurs

Formatted: Font: Times New Roman

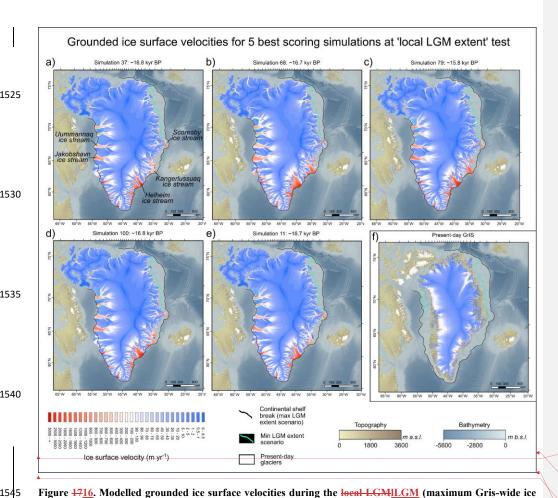


Figure 1716. Modelled grounded ice surface velocities during the local LGMILGM (maximum Gris-wide ice extent, whose timing is simulation-dependent) for our five best-scoring ensemble simulations at the local-LGM extent test (panels a-e), compared with observed present-day GrIS ice surface velocities (panel f; Joughin et al., 2018). Bathymetry and topography data shown in this map are from the 15 arc-second resolution General Bathymetric Chart of the Oceans (GEBCO Bathymetric Compilation Group 2022, 2022).

Formatted: Font: +Headings CS (Times New Roman), 11 pt, Ligatures: None

Formatted: Left, Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: single

Formatted: Font: Bold
Formatted: Justified

Formatted: Font: Bold

3.3 Modelled Greenland Ice Sheet during the Holocene

3.3.1 Ensemble-wide trends

1555

1560

1565

1570

1575

1580

1585

The majority of ourMost ensemble simulations produce a minimum in GrIS areal extent during the mid-Holocene, between _(6 and _ 5 kyr BP, prior to), before modelling margin re-advances duringin the late-Holocene and Neoglacial periods _(5 kyr BP - 1850 AD). This is consistentaligns with empirical reconstructions of Holocene GrIS margin evolution (Funder et al., 2011; Sinclair et al., 2016; Leger et al., 2024). The modelled mid-Holocene minimum in grounded GrIS extent occurs in response to the Holocene Thermal Maximum (HTM), characterised bywith mean annual and mean-summer surface air temperatures that were over the GrIS up to 7—5 - 7 °C warmer relative tothan at the PI era _(1850 AD), over the GrIS _()(Figs. 4, 5). In our climate forcing, the HTM occurs towardspeaks at ~6 kyr BP for mean annual air temperatures; and between ~9 and __6 kyr BP for mean summer temperatures _(JJA mean); depending on the region. In agreementConsistent with findings of the PaleoGrIS 1.0 reconstruction, our simulations thus capture a degree of produce ice-sheet inertia causing the ice extent response to lag thewarming cessation of warming and ice-thickness adjustment by a few centuries, and up to a millennium; during the early-to-mid Holocene. Furthermore, we find all ensemble simulations model a notable increase in ice-sheet volume increase during the late Holocene (3-2 kyr BP) and produce widespread thinning during the neoglacial period (Fig. 11); Neoglacial, thus fellowing reflecting trends opposite trends relative to ice extent. (Fig. 10).

During most of the Holocene, between _{8} kyr BP and_ 1850 AD_{5}, all ensemble simulations produce GrIS mass-change rates that remainremaining below 100 Gt yr-1, despite important variations in climate and SMB parameters between simulationsruns (Fig. 20). Thesc_21). Such rates remain beloware lower than present-day estimated mass_loss rates_estimates of 200 - 300 Gt yr-1 (2003 - 2020 period_AD; Simonsen et al., 2021). This observation is coherent_result agrees with other GrIS modelling and reconstruction efforts_reconstructions suggesting the speed of_contemporary and future GrIS mass loss is_rates are likely unprecedented throughoutover much of the Holocene (Briner et al., 2020). Similarly_for_, our ensemble suggests that present_day GrIS_wide ice discharge rates, our ensemble suggests the estimated present_day rate of_(487 ± 50 Gt yr-1_(: Mankoff et al., 2020) is_are likely unprecedented forover the past five thousand years_millennia (Fig. 20)-19).

Formatted: Font: Times New Roman

Formatted: Font: Bold

3.3.2 Insights from Pre-Industrial best-fit simulations

In this section, we refer to our 'PI best-fit simulations' as the five best-scoring ensemble simulations at the *PI extent* test (Figs. 10, 139, 12).

We find that PI best-fit simulations (e.g. simulation 31) tend to produce a closer fit with the youngest PaleoGrIS 1.0 isochrones (during the mid-Holocene), relative to better than other ensemble simulations runs (Fig. 1312). They model both a pronounced minimum in grounded GrIS extent at ~5 kyr BP₃ and a notable margin re-advance between ~5 kyr BP and the PI (1850 AD). During the Holocene minimum-in ice extent, our PI best-fit, these simulations model some retreat behind the present-day GrIS margin, as is suggested by margins, consistent with empirical evidence (e.g. LarsenBriner et al., 2014)2011; 2015), but only. However, this is exclusively the case in SE and SW Greenland regions. No GrIS. North of 68 °N, no retreat behind present-day margins is modelled north of 68 °N, with the exception of the except for Humboldt glacier front (Supplementary Fig. 4). In all other GrIS regions, the Elsewhere, modelled ice sheet margin remains close to -margins remain near or more extensive than -the-present-day marginmargins throughout the mid-to-late-Holocene, between (5 kyr BP and 1850 AD. It is worth noting that ensemble simulations). Simulations with the lowest areal extent during the HTM (e.g. simulation 78; Fig. 13e12c) produce up to ~100 km of retreat behind the present-day GrlS marging in southernmost Greenland (north of Narsarsuaq), prior tobefore re-advancing and reachingto present-day margins by the end of the simulation (extents by 1850 AD). Although this result may well be an overestimation and should be interpreted with caution, our modelling suggests such a retreat magnitude of retreat behind present-day margins (~100 km) in response to the HTM cannot be fully ruled out, in certain regions. This behaviour is correlated to, and likely caused by, PI best-fit simulations presenting both positive (>+1.5°C) and negative (<40% of original) temperature and precipitation offsets, respectively (Fig. 24).

1590

1600

1605

1610

1615

1620

Within our PI best-fit simulations, simulation 31 yields a better match in best reproduces present-day ice thickness (Morlighem et al., 2017a) and ice surface velocity (Joughin et al., 2018) with the present day GrIS (Supplementary Figs. 5, 6). The remaining four best-fit simulations underestimate PI GrIS volume (Fig. 13). Nonetheless,12). Even in simulation 31, PI-ice thickness is still-underestimated towardsin the GrIS interior (by up to ~600 m); and overestimated towardsat the ice sheet's margins. We find our simulations produce lower, whilst modelled ice surface velocities at the PI are generally lower than present-day observations in most regions (Joughin et al., 2018). This is likely caused by the due to underestimated PI-GrIS thickness towards its interior, resulting in lowerwhich reduces ice surface slopes and thus underestimated driving stresses (Supplementary Figs. 5, 6, 1211). The most notable examples are NEGIS and Jacobshavn Isbrae, where the present-day GrIS is flowingflows more than 200 m yr⁻¹ faster than simulation 31 during the PI. Therefore, our PI best-fit simulations fail atto reproducing the particular dynamics of NEGIS. In SE Greenland, however, there seems to be a higher concentration of regions where simulation 31 produces faster-flowing ice insteadin several regions (by more than 200 m yr⁻¹). Interestingly, that is also the case for the terminus of Humboldt glacier (Supplementary Fig. 6).

Formatted: Font color: Black

Formatted: Font color: Black

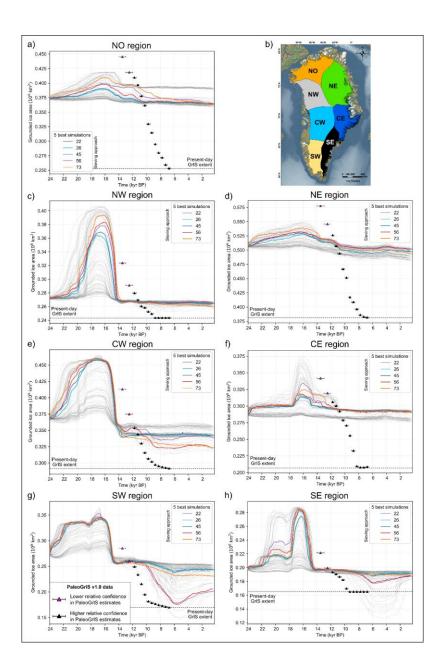


Figure 1817. Time series of modelled grounded GrIS extent for our five overall best-fit simulations (which pass all sieves, highlighted by thicker coloured lines) for each of the seven main GrIS regions (panels a, c-h) whose locations are shown by the inset map on panel b. Data from the PaleoGrIS 1.0 ice-extent reconstruction (Leger et al., 2024) are shown with triangle symbols. Data from all other ensemble simulations are shown with thin, light grey lines.

Formatted: Font: Bold

4 Insights from model-data comparison

1665

1670

1675

1680

1685

1690

1695

4.1 Model agreement with empirical data

When compared against the PaleoGrIS 1.0 ice extent reconstruction (Leger et al., 2024), all ensemble simulations underestimate the magnitude of grounded GrIS retreat during the last deglaciation, withmissing at least 30% (~0.5 million km²) of the ice-sheet-wide retreat signal missing (Figs. 13, 2210, 12). While more consistent with the PaleoGrIS 1.0 reconstruction during the late HS1 and B-A warming events (16 - 14 kyr BP), both-modelled retreat rates and magnitudes of modelled margin retreat are remain too low during the early-to-mid Holocene (12-8 kyr BP). This remaining These model-data misfit is apparent in misfits occur across all ensemble simulations despite our parameter and climate perturbations (Fig. 13, 22Figs. 10, 12). In all simulations addition, the onset of modelled GrIS retreat also occurs ~2 kyr earlier than is suggested by PaleoGrIS 1.0, with an offset of nearly 2 kyr (Fig. 2210). However, the 14 - 12 kyr BP PaleoGrIS 1.0 isochrones are characterised limited by significant data scarcity and timing uncertainties associated with offshore samples, whose radiocarbon dating is challengedcomplicated by high-latitude marine reservoir effects (Leger et al., 2024). The Thus, time ranges and error ranges of oldest Paleo GrIS 1.0 isochrones should thus be interpreted with caution. Alternatively, as our results show the onset of modelled GrIS retreat during late HS1 and B-A is primarily controlled by sub-shelf melting (see section 3.2.1.), this offset in retreat timing may also reflect uncertainties and biases in the SST reconstruction (Osman et al., 2021; Figs. 6) used as ocean temperature forcing (see section 5.1. for more discussion).

When analysing model-data agreement at the regional scale, however, we find that model misfits with the PaleoGrIS 1.0 reconstruction are spatially heterogeneous (Figs. 18, 23, 2417, 21, 22). Overall best-fit

simulations (which pass all sieves) generally display aggree better fit with the PaleoGrIS 1.0 reconstruction during both the local LGM|LGM| extent and the Lateglacial-to-mid-Holocene deglaciation in NW, CW, SW, SE Greenland, and towards the Kangerlussaq outlet glacier sub-region (CE Greenland-south of Scoresby Sund), relative to other regions (Fig. 18). In17). Even in these better-fitting regions, our areas, best-fit simulations still-underestimate the reconstructed magnitudes of grounded GrIS retreat magnitudes, but often Review of previously-published GrIS LGM volume (in m SLE) by less than 50 km. There are some smaller Smaller-scale exceptions such asoccur in the Number of GrIS retreat magnitudes. Sisimiut regions, where the ice-extent misfit is closer to misfits reach 70 - 90 km, depending on the simulation and time steeperiod analysed (Figs. 23 6 Model r In 50, NE, and CE Greenland (north of 70 °N-only), we find larger model-data misfits in Orto margin extent and retreat rates (Fig. 17). 18). While Although simulations passing all sieves display a good fit with PacoGrtS isochrones well during the 12 - 11 kyr BP interval in these regions, they underestimate both grounded ice extent during at the local LGM, ILGM and retreat rates and magnitudes (1919) the Late-Glacial and early-to-mid Holocene periods (Figs. 18, 23, 124, 7, 21, 22). In J.C. Christensen Land and Knud Rasmussen Land (NO Greenland, >80 °N), for instance, overallexample, best-fit simulations model grounded margins that are typically around 2000 km too extensive. The Scoresby Sunt of system (CE 2000 2005 2020 2020 2020 2020 Greenland, 70°N) is the region displaying shows the greatest extent misfit, with an underestimation funderestimated margin retreat that is closer to ~230 km, at maximum. Me underestimation Underestimation also remains relatively high (between -(~90 and --_160 km) along the entire NE Greenland coast, with the exception of except for the Nioghalv fjerdsbrae ('79N glacier') and Zachariæ Isstrøm glaciers, where our modelled grounded iee margins fit the agree well with PaleoGrIS 1.0 isochrones well throughoutthrough the early-to-mid Holocene (~11-6.5 kyr BP) (Figs. 23, 2421, 22).

1700

1705

1710

1715

1720

1730

1735

Figure 1918. Review of previously modelled and/or reported GrIS volumes during the local LGM|LGM| (in m SLE, expressed as 'sea level contribution'), and compared against this study's estimates. An increasing trend of reported values through time can be observed, along with a negative correlation between model horizontal grid resolution and reported modelled LGM volumes.

1740

1755

1765

1770

Table 2: Ensemble-varying parameter values for the five overall best-fit simulations (which pass all sieves).

Although we exclusively use data on formeronly grounded ice extent data for model-data comparison and simulation-scoring, our results can also be compared against different other empirical datasets—used in previous studies. For instance, we here compare modelled surface ice elevation change between 8 kyr BP and 1850 AD at the location of four Greenland ice corescore sites (GRIP, NGRIP, DYE-3, and Camp Century) against the winth of the location of four Greenland ice corescore sites (GRIP, NGRIP, DYE-3, and Camp Century) against the winth of the location of four Greenland ice corescore sites (GRIP, NGRIP, DYE-3, and Camp Century) against the winth of the location of four Greenland ice corescore sites (GRIP, NGRIP, DYE-3, and Camp Century) against the location of four Greenland ice corescore sites (GRIP, NGRIP, DYE-3, and Camp Century) against the location of location of location is the location of location in the location of location is the location of location in the location of location is the location of location in the location of location is the location of location in the location of location is location in the location of location in the location of location is location in the location of location in the location of location in location in the location of location in location

Formatted: Font: +Headings CS (Times New Roman), 11 pt, Bold, Ligatures: None

Formatted: Left, Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: single

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Figure 2019. Time series of modelled GrIS mass change due to ice discharge for our five best-scoring ensemble simulations at both the local-LGM extent test (panel a) and the deglacial extent test (panel b), highlighted by thicker coloured lines, and compared with an estimated present-day GrIS ice discharge rate (Mankoff et al., 2020). Data from all other ensemble simulations are shown with thin, light grey lines. 4.2 No perfect ensemble simulation

Our model-data comparison scheme generates ayields different listsets of five best-fit simulations for each of ourthe three tests, suggestingindicating no single simulation consistently matches empirical data better

1815

1820

1825

1830

1835

1840

than others throughout across the full modelled timeframe (24 - 0 kyr BP), period and across all GrIS regions. (Fig. 1312). Instead, specific ensemble simulations need to runs must be selected and analysed to address research questions regarding certainon particular time periods and/or certain—Greenland regions. Consequently, producing a high-resolution (≤ 5 km) simulation of the LGM-to-present GrIS evolutions imulation that remains both consistent with physics and that shows good and in spatially/temporally homogeneous agreement with a detailed empirical dataset reconstruction such as PaleoGrIS 1.0_7 remains a major challenge.

More specifically, we find that deglacial extent and local-LGM extent test scores are positively correlated (Supplementary Fig. 9). Thus, simulations showing a Simulations that better relative match with data during the local LGM|LGM tend to also generate afit better fit during the deglaciation, mostly because as continental shelves need tomust first be ice-covered in order to deglaciate subsequently deglaciate (Fig. 109). However, both the deglacial extent and local-LGM extent test scores are negatively correlated with PI extent test scores. Ensemble: simulations vielding higher scoresperforming well during the local LGMILGM and deglaciation tend to score werse at reproducing reproduce the PI GrIS extent less accurately, with a few exceptions (Supplementary Fig. 9). This is eaused by a large proportion of occurs because many simulations not successfully producing anyfail to produce significant GrIS advance nor retreat prior tobefore the Holocene, but-instead remaining eloser tonear the present-day GrIS-extent throughout the simulation (Fig. 1312), and thus scoring betterhigher at the PI extent test. This finding highlights the importance of applying a-chronologically-ordered sieving of an ensemble usingacross multiple model-data comparison tests when isolating best-fit simulations. Indeed, this ordering of sieves helps to avoid prevents overrating a simulation that produces a better PI (or present-day) ice-sheet state, but for the wrong reasons. More generally, this result-highlights that a-model initialisation initialisations successfully reproducing the present-day GrIS PI geometry is geometries are not guaranteed to be an ideal initial statestates for forward modelling, as such parameterisation they may not necessarily capture the transient longer-term ice-sheet behaviour, inertia, and memory inherited from the last glaciation and subsequent retreat.

4.3 Are certain parameter values better than others?

1850

1855

1860

1865

1870

1875

1880

We here analysed ensemble-varying parameter values (n = 10) for the five best-scoring simulations at each of our three model-data comparisons tests (Figs. $\frac{10, 269, 24}{2}$, Table 1), and find the following:

Three out of 10 ensemble-varying parameters, *i.e.* the precipitation offset, the air temperature offset, and the flow law enhancement factor (Table 1), present someshow clustering in best-fit parameter values. For these three parameters, meaning specific values may lead toyield better model-data fit (Table 2, Fig. 2624). Here, a 'cluster' is defined as when parameter values of the five best-scoring simulations at each test (Table 2) eover a range that isspan less than 50% of the original sampled parameter range (Table 1). For two ensemble-

Formatted: Font: Italic

Formatted: Font: +Body (Calibri), 11 pt, Ligatures: None

varying parameters, i.e. the precipitation offset and the flow law enhancement factor, values leading to better model-data fit appear to be test-specific and thus time-dependent. Parameter clusters suggest, for For instance, that flow law enhancement factors lower than 1 may lead to better relative-model-data fit in GrIS extent during the local LGM (Table 2, Fig. 26). This may imply that better model data fit during 24), suggesting maximum expansion requires to model is better captured when modelling a GrIS with harder, less deformable, and more viscous ice (or with lower impurity contents); than is modelled withby default flow law constants (E=1, n=3). Parameter clusters moreover However, this may also represent a compensating adjustment from our modelled ice temperatures, which are warmer (thus possibly resulting in too soft ice) and produce more widespread warm-based conditions over greater proportions of the GrIS than most other GrIS models (e.g. Tabone et al., 2024; MacGregor et al., 2022) and this across all best-fit simulations (e.g. Supplementary Figs. 7, 8). Parameter clusters further suggest that better model data fit may require between requires 1.3 to 2 times higher precipitation during the local LGMILGM and deglacial periods, and instead between but 2 to 5 times lower precipitation during the PI (1850 AD), than is obtained with compared to our default climate forcing (Table 1, Figs. 6, 8, 264, 5, 7, 24). However, we acknowledge that due to complex parameter interactions, and the simplicity of our SMB parameterisation (PDD), these such trends may not necessarily help detect biases in indicate input climate biases but may instead hide more impactful misrepresentations of ice dynamics and/or boundary conditions, thus precluding any definitive interpretations linked to individual model parameters.

1885

1890

1895

1900

1905

1910

1915

1920

For seven out of 10 ensemble-varying parameters (impacting affecting SMB, yield stress, sliding, or calving), no best-fit clusters could bewere identified, suggesting indicating that better model-data fit can be achieved occur with highly variable parameter values covering more than spanning >50% of the sampled ranges (Tables 1, 2, Fig. 2624). This result either suggests that: i) these seven parameters may not significantly strongly impact the transient evolution of grounded GrIS extent; and/or ii) the various interactions between these seven parameters them may be more impactful than individual parameter perturbations; or iii) identifying detecting best-fit clusters for some of these seven parameters may require a larger-than-100-simulation ensemble and a more comprehensive broader exploration of the parameter space. This result justifies These findings support the use of an ensemble approachapproaches when attempting to match a paleo-GrIS model reconstruction simulations with empirical data, as we find highly variable diverse parameter configurations can generate still yield relatively bettergood model-data fit.

Formatted: Justified

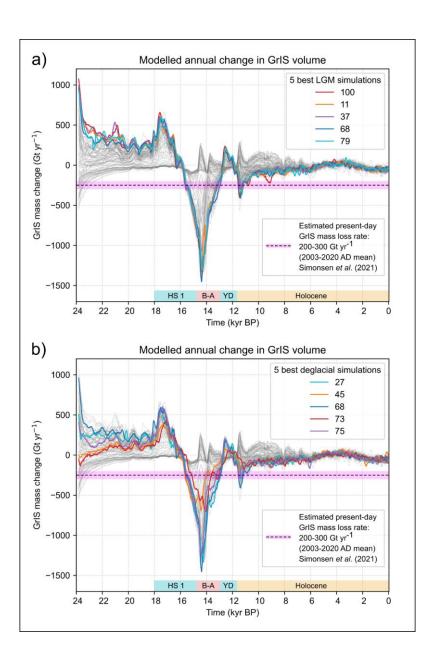


Figure 2+20. Time series of modelled annual rates of GrIS mass change for our five best-scoring ensemble simulations at both the *local-LGM extent* test (panel a) and the *deglacial extent* test (panel b) highlighted by thicker coloured lines. The time series are compared against an estimate of present-day GrIS mass loss rate (2003-2020 AD mean; Simonsen et al., 2021). Data from all other ensemble simulations are shown with thin, light grey lines.

5 Remaining misfits: possible causes

1960

1965

1970

1975

1980

1985

1995

As mentioned above (see section 4.1.), we find-model-data misfits in grounded ice extent display strong inter-regional heterogeneities, and are larger in the NO, NE, and CE Greenland regions (Figs. 18, 23, 2417, 21, 22). Additionally, we find ensemble simulations passing all sieves (see Methods section) present the most dynamic ice-extent responses in ice extent through time. They display both higher and lower grounded GrIS extents than ensemble-mean values during the local LGMILGM and mid-Holocene periods, respectively (Fig. 2210). This may suggest that suggests remaining model data misfits are related to our model simulations not capturing eertain—mechanisms that would enable shorter response times to changes in—boundary conditions condition changes and produce higher-amplitude transitional advance and retreat phases. In the following sections, we discuss and hypothesise in more detail the possible mechanisms leading to remaining misfits by dividing them into: 1) Misfitsi) misfits in GrIS advance during the local LGMILGM; and 2) Misfitsii) misfits in GrIS retreat during the Late-Glacial and Holocene periods.

5.1 Underestimated LGM advance in NE and NO Greenland

Along the NE Greenland coast (81-71°N), our simulations underestimate the magnitude of grounded ice advance during the local LGM|LGM| (~17.5-16 kyr BP) (Figs. 10, 149, 13, 16, 17, 18). Empirical investigations). Investigations producing new geomorphological and geochronological reconstructions of GrIS thinning histories (e.g. Roberts et al., 2024)) and offshore ice extent (e.g. Arndt et al., 2017; Davies et al., 2022; Hansen et al., 2022) suggest that local LGM|LGM| grounded GrIS margins reached between ~100 and ~200 km further Eastcast than is modelled by our best-scoringfit simulations (Figs. 14, 1713, 16).

A possible cause of These model-data misfit during the local LGM may be related to our model initialisation (spinup) procedure reaching a steady-state that does not produce an extensive and/or thick enough GrIS at 24 kyr BP (i.e. the starting time of our transient simulations). This could be due to an inappropriate model parameterisation (e.g. SMB), or to biases in our static input atmospheric or oceanic forcings at 24 kyr BP (see section 2.2.). In the NO and NE regions, the GrIS may require a longer cooling

period than the 7.5 kyrs modelled in transient ensemble simulations (between 24 and 16.5 kyr BP) to fully re-adjust to the new parameterisation and switch from a margin location provided by the unique initial state (here close to the present-day GrIS margin) to a margin that needs to reach the mide to-outer continental shelf. If this is the case, a bias in our model initialisation at 24 kyr BP may be responsible for the underestimated grounded ice advance during the 1 GMILOM in NO and NE Greenland. PaleoGrIS v1.0 data Lower relative confidence in PaleoGrIS estimates Higher relative confidence in PaleoGrIS estimates 14 12 1 Time (kyr BP) b) Modelled GrIS sea level contribution 5 best simulations Sieving approach Sea level contribution (m SLE) Present-day GrIS volume

Time (kyr BP)

Figure 22: Modelled grounded ice area (panel a) and volume (panel b; in m SLE, expressed as sea level contribution) for the 100 ensemble simulations (light grey time series), with the five overall best fit simulations (which pass all sieves) highlighted with thicker coloured time series. The PaleoGrIS v1.0 isochrones data reconstructing the GrIS's former grounded ice extent are shown with triangle symbols on panel a (Leger et al., 2024). Note the GrIS wide model data misfit in ice extent apparent here can be misleading as it is spatially heterogeneous and heavily influenced by a few regions concentrating most of the misfit (i.e. NO, NE, and CE Greenland): see Fig. 18. Note the five overall best-fit simulations highlighted here, while passing all sieves, are not the best-scoring simulations at each individual model-data comparison test (see Fig. 13), but rather they score better than other simulations when combining all tests. For instance, their volume during the local LGM (panel b: 16 kyr BP) is lower and less realistic than values of best scoring simulations at the local LGM extent test (see Fig. 13d).

2035

2040

2045

2050

2055

2060

2065

2070

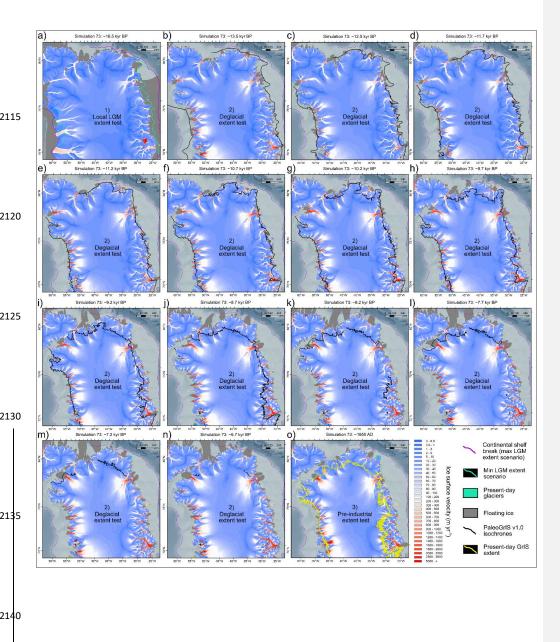
Another potential source of model data misfit could be biases in our input climate forcing causing either too low precipitation rates, or too high sea-surface temperatures (SST) across NO and NE Greenland. We do not expect biases in input air temperature forcing to have a meaningful impact at this stage, as despite our conservative ensemble parameter perturbations, we find no PDD-derived surface melt is produced until 12 kyr BP, thus several millennia after the local LGMILGM and initial deglaciation, due to mean annual and summer temperatures remaining below <0°C (Figs. 4, 5). We note that during HS1 cooling, input meanannual SST drops to lower minimum values (-2 to -3 °C) offshore SE and SW Greenland than offshore NE Greenland (-1.5 to -2 °C) (FigsFig. 6, 7), which may highlight a possible reflect an overestimation of our seasurface temperature forcing (from Osman et al., 2021) in NE Greenland during the local LGMILGM. This 0.5- - 2°C drop in SST at around 18-17 kyr BP, which occurs in response to HS1, is a key driver of modelled GrIS expansion during the local LGM/LGM, as it is associated with sharp reductions in GrIS-wide sub-shelf melt rates and thus basal mass loss rates (Fig. 1211). A small underestimation in HS1 sea-surface cooling offshore NE Greenland; in the order of 1- - 2°C for instance, may be enough to deter the modelled GrIS margins from advancing extensively. This hypothesis may also be reinforced by the general lack of spatial coverage of SST proxy records used in the data-assimilation scheme of Osman et al. (2021) north of 65°N, offshore Greenland coasts. Biases may also be introduced by result from our interpolation scheme used for resampling from the nominal 1° horizontal resolution of the original data (Osman et al., 2021), equivalent to a ~20 x 27 km grid offshore NE Greenland, to our 5 x 5 km model grid. This highlights that our experiment may beis limited by a lack of variation in SST input fields between ensemble simulations. A future experiment using an ensemble-varying parameter introducing spatial and temporal perturbations to the input ocean forcing may help test this hypothesis and possibly increase model-data fit.

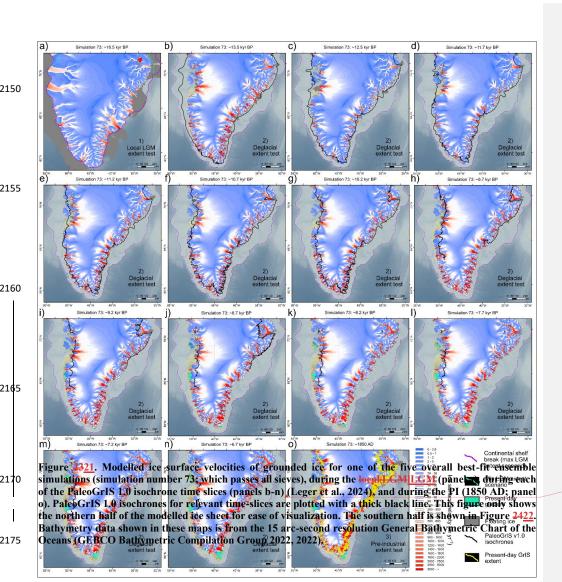
Our simulations may also underestimate grounded ice extent in the NO and NE due to too low accumulation rates, largely controlled by our input precipitation forcing. Throughout these regions, iCESM-derived forcing suggests precipitation rates below 20 mm per month during HS1 (Fig. 6). We note that although Although

iTRACE represents an improvement from the former CESM-derived transient global simulation of the last deglaciation (TRACE-21, Liu et al., 2009), it may still be subject to CESM biases that can sometimes could misrepresent present-day and former precipitation rates over certain GrIS regions (van Kampenhout et al., 2020; Lofverstrom et al., 2020). In the case of NO and NE Greenland, input precipitation biases in the iTRACE simulation can also originate from global ice-sheet reconstruction used as forcing within iCESM (ICE-6G: Peltier et al., 2015), which may provide slightly incorrect geometries in these regions, impacting the modelled climate used here as input (e.g. Bouttes et al., 2023). More specifically, the ICE-6G reconstruction does not produce a GrIS that extends much beyond the present-day Greenland coastlines, which likely introduces regional biases in CESM simulations due to missing GrIS-atmosphere feedbacks between the ice sheet and the earth system (Bradley et al., 2024). Although we use an ensemble-varying parameter introducing precipitation perturbations of up to +200% (Table 1), such an increasethis is not spacedependent and may still be too low over NE Greenland. This may be suggested shown by our ILGM best-fit simulations all displaying precipitation offset values that are clustered towards the upper parameter-range threshold, between 1.8 and 2.0 (Fig. 2624). Thus, better model-data scores at the local-LGM extent test could potentially be achieved with precipitation offset values above +200%. We compared our precipitation forcings with the paleoclimate data assimilation reconstruction of Badgeley et al. (2020), who extended ice-core derived climate reconstructions across Greenland using TRACE-21 (Liu et al., 2009), and also made comparisons with raw data from TraCE-21ka and Buizert et al. (2018)'s reconstruction. This analysis suggests notably lower precipitation rates in our iTRACE-derived climate forcing during HS1, and this in numerous regions across Greenland (Fig. 25b).

Alternatively, our ensemble may be too small to fully explore the full impacts of our climate correction parameters on grounded GrIS extent evolution. As a test, we conducted an additional simulation using default (mid-range) values for all ensemble-varying parameters excluding the precipitation scalar offset (Table 1), here set to 2.0 (+200% precipitation rate). This test simulation successfully produces an extensive HS1 advance of the grounded GrIS margin offshore NE Greenland, reaching a mid-shelf position. This modelled local LGM[LGM] advance is more extensive than any of our ensemble simulations, and suggests aour 100 simulation_member ensemble is too small todid not explore the parameter-space region that modelsproduces this preferable GrIS behaviour specific model response. Therefore, although computationally unfeasible here, running a larger ensemble while keeping perturbed parameter ranges identical to our setup may likelyalready produce simulations yielding a better model-data fitsfit in ice extent; during the local_LGM.lLGM. Alternatively, future experiments running several ensemble waves (e.g. Lecavalier and Tarasov, 2025), with a first ensemble exclusively focused on more widely exploring different climate and ocean forcings with different perturbations schemes, may achieve more data-consistent GrIS LGM-to-present simulations.

2110


2075


2080

2085

2090

2095

Formatted: Font: Bold

AD; Formatted: Font: Bold

Figure 2422. Modelled ice surface velocities of grounded ice for one of the five overall best-fit ensemble simulations (simulation number 73; which passes all sieves), during the local LCMILGM (panel a), during each of the PaleoGrIS 1.0 isochrone time slices (panels b-n) (Leger et al., 2024), and during the PI era (1850 AD; panel o). PaleoGrIS 1.0 isochrones for relevant time-slices are plotted with a thick black line. This figure only shows the southern half of the ice sheet for ease of visualization. The northern half is shown in Figure 2521. Bathymetry data shown in these maps is from the 15 arc-second resolution General Bathymetric Chart of the Oceans (GEBCO Bathymetric Compilation Group 2022, 2022).

5.2 Underestimated deglacial retreat

2190

2195

2200

2205

2215

2220

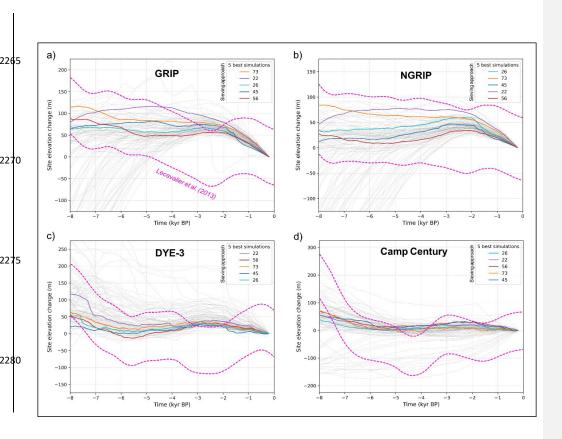
We note that the CE and NE GrIS regions, where the greatest-model-data misfits with PaleoGrIS 1.0 are found largest (Figs. 18, 23, 24), also 17, 21, 22), present the highest concentration of high elevations and steep topographies relief (1500 - 3000 m a.s.l.) in Greenland (Morlighem et al., 2017). We hypothesise that coarse model resolution may be a factor contributing to the higher relative ice extent misfits observed in these regions during the Late Glacial and Holocene deglaciation. Indeed, a large portion of the Eastern Greenland

features the steepest and highest mountain ranges of the continent, stretching from 67 ographic setting leads to the highest concentration of deglaciated and relatively long (>100 km) steep topographies, and steep-sided fjords in Greenland ((Swift et al., 2008) ar, Kangerluk Kejser Franz Joseph Fig: According to geochronological reconstructions, the retreat of GrIS outlet glaci Leger et al., 2024). However, the majority of this retreat is missing in our ensemble simulations. esolution ma**ក្រកុ<u>e</u>i3**be fine ទីកាំ២បីខ្លារីរួកម៉ែ capture ម៉ាខ complexity**can ទី បិទិការបក្**ខាក កទឹកម៉ារីរួកម៉ោរីរួកម៉ា network of over deepened fjstds and of these regions. By drawing dation profiles across one the region's main fjords 5 km resolution, we find that even towards one of the (-20 km) fjords in NE Greenland (Kangerluk Kejser Franz Joseph, 73.2°N; 23.2°W), we find to one of the widest NE Greenland floods (-20 km), formerly acting as the main topogr for the Waltershausen Glacier, the topography is heavily flattened at 5 km resolution ((Supplementary Fig. 27): Peross the profile, summit 3). Summit elevations of ford side mountains are underestimated by 30 50%, and average slope along the a cross-fjord transect is 40% and 35% lower than for f using 150 m and 1 km resolution grids, respectively (Fig. 27). Thus, at 5 x 5 km resolution. Time (kyr BP) resolved topography (e.g. see Supplementary Fig. 13). In such rough topographies, a finer model resolution (e.g. 1 x 1 km or lower) would likely lead to both higher ice flux rates within narrow valleys, due to higher to deeper fjords enabling more water ingress as modelled tidewater glaciers retreat. Both mechanisms, unlikely to be captured at 5 x 5 km, would tegether likely enhance modelled GrIS thinning and retreat rates 2025). This was in part shown by Aschwanden et al. (2016) who, using PISM, found that better matched observed flow velocities of main present-day GrIS outlet glaciers (e.g. Nuussuup Sermia, Sermeq Kujalleq) were better matched using resolutions of 600 and 1500 m, relative to 3600 and 4500 m, with the latter causing underestimations of maximum flow velocities to be underestimated by factors argue its negative impact on we hypothesise that coarse model resolution may contribute to our higher relative ice-extent model-data fit is likely to be greater in CE and NE Greenland, NE regions during the last deglaciation.

2235

2240

2250


2260

Formatted: Font: +Headings CS (Times New Roman)

Formatted: Font: +Headings CS (Times New Roman)

Formatted: Font color: Auto

Formatted: Font: Times New Roman, Font color: Black

2310

2315

2320

2325

2330

2335

Figure $\frac{2523}{25}$. Comparison between ice elevation change modelled by our five overall best-fit simulations (which pass all sieves; thicker coloured lines) and the 1σ uncertainty band of the Holocene thinning curves (dashed pink lines), derived from ice core δ ¹⁸O records. Holocene thinning curves were produced by Lecavalier et al. (2013), improving from Vinther et al. (2009) following an elevation correction for thickness changes at the Agassiz and Renland ice caps. Data from all other ensemble simulations from this study are shown with thin, light grey lines.

Larger model-data misfits in the magnitude and rates of GrIS retreat during the Late-Glacial and early-tomid Holocene in NO, NE, and CE Greenland couldare also belikely associated with biases in our input climate forcing, including possible underestimations of sea-surface and atmospheric warming (~14 - 6 kyr BP). As mentioned above, biases in iTRACE-derived climate are possible, especially towards the margins of the former GrIS. For instance, an overestimation of the ice thickness and extent reconstruction used as forcing within iCESM (ICE-6G: Peltier et al., 2015) during the last deglaciation in NO, NE, and CE Greenland, would lead to unrealistically high albedo feedbacks impeding the atmospheric warming required to model appropriate GrIS thinning and retreat rates. Our experiment features an ensemble-varying temperature offset parameter (Table 1) with maximum space-independent warming of up to +3.5 °C, along with ensemble-varying snow and ice PDD melt factors that can reach 5 and 12 mm w.e. d⁻¹ °C⁻¹, respectively. However, if significant with important input climate biases exist in the regions of concern, these perturbations may still underestimate the resulting surface melt during deglaciation-(see Fig. 25a,c). We note that a cold temperature bias during the Late-Glacial and early-to-mid Holocene is not supported by comparison against the climate reconstruction (and its associated uncertainty range) of Badgelev et al. (2020), which instead suggests that our forcing produce relatively warm mean annual temperature anomalies towards the GrIS summit and NO, NE, and CE GrlS regions, between 15 and 5 kyr BP (Fig. 25c). On the other hand, this comparison reveals that our iTRACE and iCESM - derived climate forcing results in significantly higher (up Formatted: Font: 11 pt, Bold, Not Italic, Ligatures: None

Formatted: Space After: 8 pt, Line spacing: Multiple

1,15 li

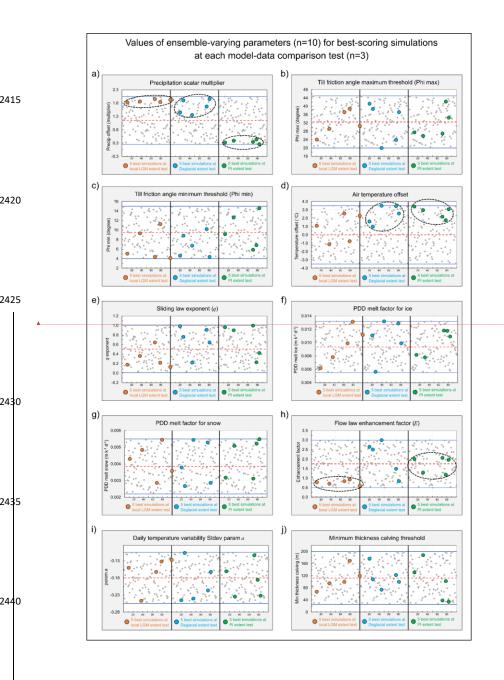
Formatted: Font: 11 pt, Not Italic, Ligatures: None

Formatted: Font: Bold

Formatted: Font: Bold

to ~100%) precipitation rates during the entire Holocene towards the GrIS summit and its vicinity, than is obtained in ice-core-data-informed reconstructions from Badgeley et al. (2020) and Buizert et al. (2018) (Fig. 25d). Although the HTM has been shown to likely be associated with higher-than-present precipitations (e.g. Downs et al., 2020), and although our experiment features an ensemble-varying precipitation offset scheme with possible reductions down to 20% input precipitations, this potential positive bias may be responsible for too high Holocene precipitation in many of our ensemble simulations, thus impeding GrIS retreat in certain regions and causing ice extent overestimations during the modelled deglaciation but also during the PI (Fig. 25d). Moreover, it is worth noting that CESM has been shown to also overestimate (by <20%) present-day snowfall precipitations over the GrIS relative to observations which my also explain our overestimations in ice extent during the PI (e.g. Lenaerts et al., 2020; Fig. 5 therein).

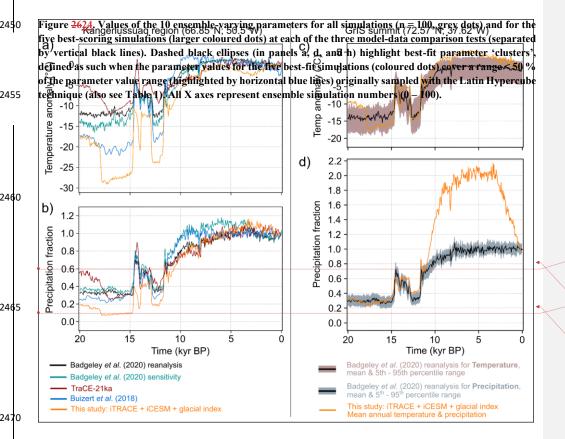
Alternatively, our ensemble (n=100) may be too small to explore the full impact of these temperature and PDD melt parameter perturbations on modelled GrIS retreat during deglaciation. Furthermore, our SMB parameterisation, based on on a simple PDD scheme (Calov and Greve, 2005), does not capture certain ablation mechanisms such as sublimation and wind-driven snow layer erosion, nor does it fully capture the elevation feedback between the modelled ice-sheet surface and climate forcing. These missing mechanisms may be important to model deglacial GrIS thinning and retreat accurately at high latitudes (>75°N), where mean summer air temperatures during the HTM remained close to or below 0°C (at least in our forcing data) (Fig. 5) (Plach et al., 2019). Alternatively, the underestimated modelled GrIS retreat in NO, NE, and CE Greenland could be associated with a lower-than-needed ocean temperature increase during the last deglaciation (Osman et al., 2021; Figs. 6-8, 7) offshore the present-day GrIS. Importantly, we also We note that our ice-ocean interaction model does not consider multiple ocean layers, which are important when poorly mixed sub-surface layers of higher temperatures increase sub-shelf melt at depth and towards the grounding line (Lloyd et al., 2023). It also does not consider a seasonal cycle of ocean water temperature change as forcing, which may be important to model the necessary magnitude of deglacial sub-shelf melt in these regions. -We also note that, for instance, TrACE-21ka-derived shelf-depth ocean forcing used in Tabone et al. (2024; Fig. S3 therein) reaches above 0°C (up to 2°C) towards the NE Greenland outer shelf, between 13 and 8 kyr BP, whilst our SST forcing does not produce values above -1°C in that region and timeframe.


2350

2355

2360

Today, up to \sim 16% of the GrIS is thought to be drained by NEGIS (Hvidberg et al., 2020), a singular ice stream that can prove challenging to model accurately (Smith-Johnsen et al., 2020). In our best-fit ensemble simulations, some ice streaming is modelled towards-and-upflow from both Nioghalvfjerdsbrae (79N glacier) and Zachariae Isstrom glaciers, throughout the full simulation timespan (e.g. Figs. $\frac{17,2316,21}{1000}$). However, a comparison between our best-fit simulations at the PI extent test and observed present-day GrIS surface velocities (Joughin et al., 2018b) reveals that our model underestimates GrIS flow speeds towards NEGIS (Supplementary Fig. 6). Our simulations do not capture its singular shape featuring a relatively narrow (<100 km) and long (>500 km) band of relatively high (> 50 m yr⁻¹) surface velocities nearly reaching the ice-


sheet's central East/West divide (Supplementary Fig. 6). Although uncertainties remain regarding the timing of last NEGIS activation into its present-day configuration, recent evidence suggests it was active during much of the Holocene (Franke et al., 2022)-in its present form ~2000 years ago (Franke et al., 2022; Jansen et al., 2024), whilst the modelling study of Tabone et al. (2024) suggests that NEGIS may be up to 8000 years old. Due to its significant impact on ice flux of the entire NE GrIS region, modelling an accurate NEGIS configuration throughout the Late-Glacial and Holocene periods would produce higher regional-mean discharge and thinning rates. Over millennial timescales, this may help model greater and more data-consistent GrIS margin retreat rates during deglaciation. Therefore, it is possible This is supported by the results of Tabone et al. (2024) which suggest that an early-Holocene activation of a present-like NEGIS, achieved through highly targeted parameterization of low basal friction along the ice stream, is crucial to drive deglacial ice thinning over the central and northern GrIS. Therefore, it is likely that not fully reproducing NEGIS may contribute to increasing model-data misfits in NE Greenland relative to other GrIS regions, where ice streams are generally less challenging to model accurately.

Formatted: Font: 11 pt, Ligatures: None

Formatted: Justified, Space After: 8 pt, Line spacing:

Multiple 1,15 li

Formatted: Font: 12 pt, Ligatures: Standard + Contextual

Formatted: Line spacing: Multiple 1,08 li

Formatted: Font: +Headings CS (Times New Roman), 12 pt, Ligatures: Standard + Contextual

Formatted: Space After: 8 pt, Add space between paragraphs of the same style, Line spacing: Multiple 1,08 li

Formatted: Font: 12 pt, Ligatures: Standard + Contextual

Formatted: Left, Line spacing: Multiple 1,08 li

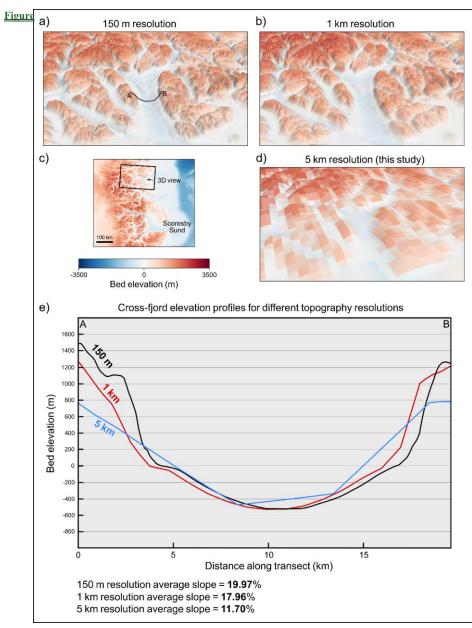


Figure 27. Three dimensional views (panels a, b, and d) of bed topography (BedMachine v4 merged with GEBCO data) and cross elevation profiles (panel e) along a transect drawn across the Kangerluk Kejser Franz Joseph fjord (73.2°N; 23.2°W; black line in panel a). Elevation profiles are shown for three different grid resolutions (5 km, 1 km, and 150 m). While average slopes over such a terrain decreases by 10% between 150 m and 1 km resolution grids, it decreases by around 40% between 150 m and 5 km resolution grid, 5 km being the model resolution of this study. For more details regarding the bed topography used in this modelling study, the reader is referred to Figure 1 and its caption. 25. Comparisons between our input mean annual temperature and precipitation forcings (orange time series) with the climate reconstructions of Badgeley et al. (2020), Buizert et al. (2018), and raw TraCE-21ka data (Liu et al., 2009). More specifically, these panels present the same data

as shown in Figures 8 and 13 in Badgeley et al. (2020). Note that precipitation fractions and temperature anomalies are here expressed with reference to the mean of 1850–2000 AD for all datasets except this study's input climate data (orange), instead expressed with reference to the mean of 1750-1850 AD, caused by our most recent iCESM simulation being 1850 AD.

6 Conclusions

2530

2535

2540

2550

In this study, we conducted a perturbed-parameter ensemble of 100 PISM simulations of the entire Greenland-Ice-Sheet evolution from 24,000 years ago to the pre-industrial era (1850 AD) at a spatial resolution of 5 x 5 km. Each-model simulation was quantitatively scored against ice-sheet-wide empirical data of former grounded ice extent and its timing. We here summarize the main results and findings from this model-data comparison experiment.

-The maximum grounded Greenland Ice Sheet extent, *i.e.* the local LGMILGM, likely occurred between 17.5 and 16 kyr BP, during Heinrich Stadial 1. At that time, the grounded ice sheet reached an area of between 2.9 and 3.1 million km². During full glaciation, grounded ice likely reached the continental shelf break along the entire Western, Southern, and Southeastern Greenland coasts.

-Our results suggest that between the <u>local LGMILGM</u> and today, the global mean sea level rise contribution of the Greenland Ice Sheet is between 6 and 7.5 meters, a number <u>substantially</u> higher than previous estimates (see section 3.1.2.). During the <u>local LGMILGM</u>, the ice sheet was not necessarily thicker (nor higher-elevated) than today at its summits, towards the GISP2, GRIP, and NGRIP ice core <u>locationssites</u>. Contrastingly, in Southern and Northwestern Greenland (DYE-3 and NEEM ice cores), the ice sheet was likely up to ~1 km thicker than today, with an ice surface up to ~500 m higher in elevation, thus causing ice divide migrations between full glacial and interglacial periods. These migrations may have important implications for the chronological interpretation of the DYE-3 ice core. During maximum extent, the ice sheet was also flowing faster and was able to discharge up to 5.1 times more ice than today, thus contributing substantially more iceberg and freshwater delivery to the north Atlantic basin than today.

Formatted: Font: +Headings CS (Times New Roman), 12 pt

Formatted: Left, Line spacing: Multiple 1,08 li

Formatted: Font: Times New Roman, 11 pt

Formatted: Justified, Space After: 8 pt, Line spacing: Multiple 1,15 li

-The Greenland Ice Sheet likely retreated rapidly and extensively during the late Heinrich-stadial 1 and Bølling–Allerød warming events, between 16 and 14 kyr BP. During that time, the grounded ice sheet lost the majority of its continental shelf cover. This rapid demise was predominantly likely mainly caused by ocean warming and increased sub-shelf melt, while air temperatures likely remained too cold to generate significant surface melt. During this phase of rapid retreat, the ice sheet may have experienced up to 7 times greater mass loss rates than are currently estimated for the present-day.

-At the Greenland Ice Sheet scale, margin stabilization and readvances during the Younger Dryas cooling event were likely limited and of low magnitude, as opposed to peripheryperipheral glaciers which demonstrated a more dynamic response. We hypothesise this was caused by strong ice-sheet inertia and geometrical/thermal ice memory feedbacks associated with the potent deglaciation experienced just prior, during Bølling–Allerød warming.

-The Greenland Ice Sheet likely reached a minimum in ice extent between 6 and 5 kyr BP, and thus lagged the cessation of Holocene Thermal Maximum warming by a few centuries, and up to a millennium, prior to experiencing late-Holocene and Neoglacial readvance. During the mid-Holocene, our simulations produce up to \sim 100 km of margin retreat behind the present-day Greenland Ice Sheet, but only south of 68 °N.

-While best-fit simulations present agre in reasonable agreement with the PaleoGrIS 1.0 grounded ice-extent reconstruction in Northwestern, Central-western, Southwestern, and Southeastern Greenland regions, we find larger model-data misfits remain in the Northern, Northeastern, and Central-eastern regions. There, the magnitudes and rates of modelled LGM advance and deglacial retreat are both underestimated, when compared to empirical data. Our results suggest This suggests these regions are significantly more challenging to model accurately. We hypothesise these misfits are possibly related to multiple causes including biases from: surface mass balance and ice-ocean interaction parameterisations, input climate and ocean forcings, model resolution due to rougher local topographies, model initialisation, and the difficulty to reproduce the Northeast Greenland Ice Stream.

-No single ensemble simulation could achieve a better relative score at all three chronologically-distinct model-data comparison tests. Instead, we find different simulations, and thus different parameter configurations, are needed to better match empirical data in certain Greenland regions or during certain millennial-scale events (e.g. the early-Holocene). Thus, producing a physically-sound 3D model simulation that is data-consistent across all Greenland regions since the last glaciation, which would enable to accurately capture the ice-sheet's memory from this key period of environmental change, is still a major challenge. To achieve this, future work may need to employ larger ensembles, more appropriate parameterisations of

boundary conditions, data assimilation to reduce bias accumulations, higher resolution modelling, and more time- and space-dependent parameter and paleoclimate perturbations.

Code and data availability.

2590

2595

2605

2610

2615

2620

The open-access source code for PISM can be accessed and downloaded from https://github.com/pism/pism. The code specific to the PISM version used in this study, version 2.0.5, can be accessed from https://doi.org/10.5281/zenodo.7199611.

All input data formatted for PISM (NetCDF file formats), along with shell scripts required to run each ensemble simulation (n=100), which together enable to reproduce the simulations presented in this study, as well as model output data and videos for the five overall best-fit simulations (which pass all sieves), are available for download from the following Zenodo repository: https://doi.org/10.5281/zenodo.15222968

Supplement.

The supplement related to this article is available online at:

Author contributions.

JCE and TPML conceived and guided the study. Input from SLB and CDC contributed to the design of the modelling investigation. TPML prepared the input data products and conducted the modelling on High Performance Computer clusters with technical help from JCE and REA. SLB conducted the glacial-isostatic-adjustment model and earth model simulations required to produce the non-local relative-sea-level forcing input data. JCE conducted the installation of PISM on the University of Sheffield High Performance Computing clusters. JZ provided access to- and support in interpreting- the iCESM data used as input climate forcing, with technical help from SLB. TPML conducted the post-modelling data processing and quantitative model-data comparisons, with feedback from CDC and JCE, and TPML conducted all subsequent

Formatted: Font: +Body (Calibri), 11 pt, Ligatures: None

quantitative analyses. TPML wrote the manuscript, with feedback from JCE and SLB primarily, and other co-authors for subsequent drafts. TPML produced all maps, figures, and tables.

Competing interests.

2625

2630

2635

2640

2645

2650

The contact author has declared that none of the authors have any competing interests.

Acknowledgements.

We wish to thank all individuals who contributed support, ideas, and insightful discussions to this investigation including Joshua Cuzzone Guillaume Jouvet, Jason Briner, and members of the PALGLAC team including Christiaan R. Diemont, Anna L. C. Hughes, Stephen J. Livingstone, Remy L. J. Veness, Frances E. G. Butcher, Helen E. Dulfer, and Benjamin M. Boyes. We thank the University of Sheffield Research and Innovation team in IT Services for their work and vital support in using the University High Performance Computing clusters for all computation. Finally, we are grateful to Dr. Joshua Cuzzone and an anonymous reviewer for accepting to review this manuscript which greatly improved its quality.

Financial support.

This study benefited from the PALGLAC team of researchers with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme to Christopher D. Clark (Grant Agreement No. 787263), and which employed Tancrède P. M. Leger, Sarah L. Bradley, and Rosie E. Archer. The CESM project is supported primarily by the U.S. National Science Foundation (NSF). This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. Tancrède P. M. Leger has also received support from the Swiss National Science Foundation, through a grant (RECONCILE: project number: 213077) awarded to Guillaume Jouvet. Jeremy C. Ely has received support from a NERC independent fellowship award (grant no. NE/R014574/1).

Formatted: Font: Times New Roman, 12 pt, Ligatures: Standard + Contextual

Formatted: Font: Bold

Formatted: Justified, Space After: 0 pt

Formatted: Justified

Formatted: Font: Times New Roman, 12 pt

Formatted: Line spacing: 1,5 lines

Formatted: Font: 14 pt, Not Bold

2665

2670

2675

2680

2685

2690

References.

Albrecht, T. and Levermann, A.: Spontaneous ice-front retreat caused by disintegration of adjacent ice shelf in Antarctica, Earth Planet Sci Lett, 393, 26–30, https://doi.org/10.1016/j.epsl.2014.02.034, 2014.

Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)-Part 1: Boundary conditions and climatic forcing, Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020, 2020.

Arndt, J. E., Jokat, W., and Dorschel, B.: The last glaciation and deglaciation of the Northeast Greenland continental shelf revealed by hydro-acoustic data, Quat Sci Rev, 160, 45–56, https://doi.org/10.1016/j.quascirev.2017.01.018, 2017

Arnold, K. C. and MacKay, D. K.: Different methods of calculating mean daily temperatures, their effects on degree-day totals in the high Arctic and their significance to glaciology, Geogr Bull, 21, 123–129, 1964.

Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy formulation for glaciers and ice sheets, Journal of Glaciology, 58, 441–457, https://doi.org/10.3189/2012JoG11J088, 2012.

Aschwanden, A., Aðalgeirsdóttir, G., and Khroulev, C.: Hindcasting to measure ice sheet model sensitivity to initial states, Cryosphere, 7, 1083–1093, https://doi.org/10.5194/tc-7-1083-2013, 2013.

Aschwanden, A., Fahnestock, M. A., and Truffer, M.: Complex Greenland outlet glacier flow captured, Nat Commun, 7, 10524, https://doi.org/10.1038/ncomms10524, 2016.

Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Abbas Khan, S.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Sci Adv, 5, https://doi.org/10.1126/sciadv.aav9396, 2019.

Badgeley, J. A., Steig, E. J., Hakim, G. J., and Fudge, T. J.: Greenland temperature and precipitation over the last 20 000 years using data assimilation, Climate of the Past, 16, 1325–1346, https://doi.org/10.5194/cp-16-1325-2020, 2020.

Bennett, M. R.: Ice streams as the arteries of an ice sheet: their mechanics, stability and significance, Earth Sci Rev, 61, 309–339, https://doi.org/10.1016/S0012-8252(02)00130-7, 2003.

2695

2700

2705

2710

2715

2720

2725

2730

2735

Bennike, O., Björck, S., Böcher, J., Hansen, L., Heinemeier, J., and Wohlfarth, B.: Early Holocene plant and animal remains from North east Greenland, J Biogeogr, 26, 667–677, https://doi.org/10.1046/j.1365-2699.1999.t01

Berger, AndréL.: Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, J Atmos Sci, 35, 2362–2367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.

Biette, M., Jomelli, V., Chenet, M., Braucher, R., Rinterknecht, V., and Lane, T.: Mountain glacier fluctuations during the Lateglacial and Holocene on Clavering Island (northeastern Greenland) from 10Be moraine dating, Boreas, 49, 873–885, https://doi.org/10.1111/bor.12460, 2020.

Born, A. and Robinson, A.: Modeling the Greenland englacial stratigraphy, Cryosphere, 15, 4539–4556, https://doi.org/10.5194/tc-15-4539-2021, 2021.

Bouttes, N., Lhardy, F., Quiquet, A., Paillard, D., Goosse, H., and Roche, D. M.: Deglacial climate changes as forced by different ice sheet reconstructions, Climate of the Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, 2023.

Bradley, S. L., Reerink, T. J., Van De Wal, R. S. W., and Helsen, M. M.: Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model, Climate of the Past, 14, 619–635, https://doi.org/10.5194/cp-14-619-2018, 2018.

Bradley, S. L., Sellevold, R., Petrini, M., Vizcaino, M., Georgiou, S., Zhu, J., Otto-Bliesner, B. L., and Lofverstrom, M.: Surface mass balance and climate of the Last Glacial Maximum Northern Hemisphere ice sheets: simulations with CESM2.1, Climate of the Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, 2024.

Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B. L., Tabor, C., Tomas, R., Wong, T., Zhang, J., and Zhu, J.: The Connected Isotopic Water Cycle in the Community Earth System Model Version 1, J Adv Model Earth Syst, 11, 2547–2566, https://doi.org/10.1029/2019MS001663, 2019.

Braithwaite, R. J.: Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling, Journal of Glaciology, 41, 153–160, https://doi.org/10.1017/S0022143000017846, 1995.

Briner, J., Schaefer, J., Young, N., Keisling, B., Anandakrishnan, S., Kuhl, T., Boeckmann, G., MacGregor, J., Deconto, R., Morlighem, M., Winckler, G., and Walcott, C.: Introducing GreenDrill: Retrieving sub-glacial bedrock cores in North Greenland to test ice sheet response to interglacial warmth (and supporting your research?), in: AGU Fall Meeting Abstracts, C31A-07, 2021.

Briner, J. P., Kaufman, D. S., Bennike, O., and Kosnik, M. A.: Amino acid ratios in reworked marine bivalve shells constrain Greenland Ice Sheet history during the holocene, Geology, 42, 75–78, https://doi.org/10.1130/G34843.1, 2014.

Briner, J. P., Cuzzone, J. K., Badgeley, J. A., Young, N. E., Steig, E. J., Morlighem, M., Schlegel, N. J., Hakim, G. J., Schaefer, J. M., Johnson, J. V., Lesnek, A. J., Thomas, E. K., Allan, E., Bennike, O., Cluett, A. A., Csatho, B., de Vernal, A., Downs, J., Larour, E., and Nowicki, S.: Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century, Nature, 586, 70–74, https://doi.org/10.1038/s41586-020-2742-6, 2020.

Bueler, E. and Brown, J.: Shallow shelf approximation as a "sliding law" in a thermomechanically coupled ice sheet model, J Geophys Res Earth Surf, 114, 1–21, https://doi.org/10.1029/2008JF001179, 2009.

Bueler, E., Lingle, C. S., and Brown, J.: Fast computation of a viscoelastic deformable Earth model for ice-sheet simulations, Ann Glaciol, 46, 97–105, https://doi.org/10.3189/172756407782871567, 2007.

Formatted: Font: Times New Roman, 12 pt, Ligatures: Standard + Contextual

- Buizert, C., Gkinis, V., Severinghaus, J. P., He, F., Lecavalier, B. S., Kindler, P., Leuenberger, M., Carlson, A. E., Vinther, B., Masson-Delmotte, V., White, J. W. C., Liu, Z., Otto-Bliesner, B., and Brook, E. J.: Greenland temperature response to climate forcing during the last deglaciation, Science (1979), 345, 1177–1180, https://doi.org/10.1126/science.1254961, 2014.
- Buizert, C., Keisling, B. A., Box, J. E., He, F., Carlson, A. E., Sinclair, G., and DeConto, R. M.: Greenland-Wide Seasonal Temperatures During the Last Deglaciation, Geophys Res Lett, 45, 1905–1914, https://doi.org/10.1002/2017GL075601, 2018.
- Calov, R. and Greve, R.: A semi-analytical solution for the positive degree-day model with stochastic temperature variations, Journal of Glaciology, 51, 173–175, https://doi.org/10.3189/172756505781829601, 2005.
- Calov, R., Robinson, A., Perrette, M., and Ganopolski, A.: Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization, Cryosphere, 9, 179–196, https://doi.org/10.5194/tc-9-179-2015, 2015.
- Clark, C. D., Ely, J. C., Hindmarsh, R. C. A., Bradley, S., Ignéczi, A., Fabel, D., Ó Cofaigh, C., Chiverrell, R. C., Scourse, J., Benetti, S., Bradwell, T., Evans, D. J. A., Roberts, D. H., Burke, M., Callard, S. L., Medialdea, A., Saher, M., Small, D., Smedley, R. K., Gasson, E., Gregoire, L., Gandy, N., Hughes, A. L. C., Ballantyne, C., Bateman, M. D., Bigg, G. R., Doole, J., Dove, D., Duller, G. A. T., Jenkins, G. T. H., Livingstone, S. L., McCarron, S., Moreton, S., Pollard, D., Praeg, D., Sejrup, H. P., Van Landeghem, K. J. J., and Wilson, P.: Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction, Boreas, 51, 699–758, https://doi.org/10.1111/bor.12594, 2022.
- Clark, P. U. and Mix, A. C.: Ice sheets and sea level of the Last Glacial Maximum, Quat Sci Rev, 21, 1–7, https://doi.org/10.1016/S0277-3791(01)00118-4, 2002.
 - Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Academic Press, 2010.

2745

2750

2755

2760

2765

2770

- Dalton, A. S., Dulfer, H. E., Margold, M., Heyman, J., Clague, J. J., Froese, D. G., Gauthier, M. S., Hughes, A. L. C., Jennings, C. E., Norris, S. L., and Stoker, B. J.: Deglaciation of the north American ice sheet complex in calendar years based on a comprehensive database of chronological data: NADI-1, Quat Sci Rev, 321, 108345, https://doi.org/10.1016/j.quascirev.2023.108345, 2023.
- van Dam, E. R., Husslage, B., den Hertog, D., and Melissen, H.: Maximin Latin Hypercube Designs in Two Dimensions, Oper Res, 55, 158–169, https://doi.org/10.1287/opre.1060.0317, 2007.
- Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S. F., Kristinsdottir, P. M., and Reeh, N.: A New Greenland Deep Ice Core, Science (1979), 218, 1273–1277, https://doi.org/10.1126/science.218.4579.1273, 1083
- Davies, J., Mathiasen, A. M., Kristiansen, K., Hansen, K. E., Wacker, L., Alstrup, A. K. O., Munk, O. L., Pearce, C., and Seidenkrantz, M.-S.: Linkages between ocean circulation and the Northeast Greenland Ice Stream in the Early Holocene, Quat Sci Rev, 286, 107530, https://doi.org/10.1016/j.quascirev.2022.107530, 2022a.
- Davies, J., Mathiasen, A. M., Kristiansen, K., Hansen, K. E., Wacker, L., Alstrup, A. K. O., Munk, O. L., Pearce, C., and Seidenkrantz, M.-S.: Linkages between ocean circulation and the Northeast Greenland Ice Stream in the Early Holocene, Quat Sci Rev, 286, 107530, https://doi.org/10.1016/j.quascirev.2022.107530, 2022b.
- Downs, J., Johnson, J., Briner, J., Young, N., Lesnek, A., and Cuzzone, J.: Western Greenland ice sheet retreat history reveals elevated precipitation during the Holocene thermal maximum, Cryosphere, 14, 1121–1137, https://doi.org/10.5194/tc-14-1121-2020, 2020.
- Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C. M., Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H., Payne, A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T., Anderson, B., Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov, R., Chambers, C., Champollion, N., Choi, Y., Cullather, R., Cuzzone, J., Dumas, C., Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A.,

- Huss, M., Huybrechts, P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P., Le clec'h, S., Lee, V., Leguy, G. R., Little, C. M., Lowry, D. P., Malles, J.-H., Martin, D. F., Maussion, F., Morlighem, M., O'Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A., Shafer, C., Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo, F., Sun, S., Tarasov, L., Trusel, L. D., Van Breedam, J., van de Wal, R., van den Broeke, M., Winkelmann, R., Zekollari, H., Zhao, C., Zhang, T., and Zwinger, T.: Projected land ice contributions to twenty-first-century sea level rise, Nature, 593, 74–82, https://doi.org/10.1038/s41586-021-03302-y, 2021.
- Ely, J. C., Clark, C. D., Small, D., and Hindmarsh, R. C. A.: ATAT 1.1, the Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data, Geosci Model Dev, 12, 933–953, https://doi.org/10.5194/gmd-12-933-2019, 2019.

2790

2795

2800

2805

2810

2815

2820

- Ely, J. C., Clark, C. D., Bradley, S. L., Gregoire, L., Gandy, N., Gasson, E., Veness, R. L. J., and Archer, R.: Behavioural tendencies of the last British–Irish Ice Sheet revealed by data–model comparison, J Quat Sci, 39, 839–871, https://doi.org/10.1002/jqs.3628, 2024.
- Erb, M. P., Mckay, N. P., Steiger, N., Dee, S., Hancock, C., Ivanovic, R. F., Gregoire, L. J., and Valdes, P.: Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation, Climate of the Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, 2022.
- Fausto, R. S., Ahlstrøm, A. P., Van As, D., Bøggild, C. E., and Johnsen, S. J.: A new present-day temperature parameterization for Greenland, Journal of Glaciology, 55, 95–105, https://doi.org/10.3189/002214309788608985, 2009.
- Fleming, K. and Lambeck, K.: Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models, Quat Sci Rev, 23, 1053–1077, https://doi.org/10.1016/j.quascirev.2003.11.001, 2004.
- Franke, S., Bons, P. D., Westhoff, J., Weikusat, I., Binder, T., Streng, K., Steinhage, D., Helm, V., Eisen, O., Paden, J. D., Eagles, G., and Jansen, D.: Holocene ice-stream shutdown and drainage basin reconfiguration in northeast Greenland, Nat Geosci, 15, 995–1001, https://doi.org/10.1038/s41561-022-01082-2, 2022.
- Funder, S., Kjeldsen, K. K., Kjær, K. H., and Ó Cofaigh, C.: The Greenland Ice Sheet During the Past 300,000 Years: A Review, in: Developments in Quaternary Science, vol. 15, 699–713, https://doi.org/10.1016/B978-0-444-53447-7.00050-7, 2011a.
- Funder, S., Kjeldsen, K. K., Kjær, K. H., and Ó Cofaigh, C.: The Greenland Ice Sheet During the Past 300,000 Years: A Review, in: Developments in Quaternary Science, vol. 15, 699–713, https://doi.org/10.1016/B978-0-444-53447-7.00050-7, 2011b.
- Gandy, N., Astfalck, L. C., Gregoire, L. J., Ivanovic, R. F., Patterson, V. L., Sherriff-Tadano, S., Smith, R. S., Williamson, D., and Rigby, R.: De-Tuning Albedo Parameters in a Coupled Climate Ice Sheet Model to Simulate the North American Ice Sheet at the Last Glacial Maximum, J Geophys Res Earth Surf, 128, https://doi.org/10.1029/2023JF007250, 2023.
- GEBCO Bathymetric Compilation Group 2022: The GEBCO_2022 Grid a continuous terrain model of the global oceans and land, 2022.
- Goelzer, H., Robinson, A., Seroussi, H., and van de Wal, R. S. W.: Recent Progress in Greenland Ice Sheet Modelling, Curr Clim Change Rep, 3, 291–302, https://doi.org/10.1007/s40641-017-0073-y, 2017.
- Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le Clec'H, S., Lee, V., Leguy, G., Little, C., Lowry, D., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N. J., Slater, D. A., Smith, R., Straneo, F., Tarasov, L., Van De Wal, R., and Van Den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6, Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020. 2020.

- Gowan, E. J.: Paleo sea-level indicators and proxies from Greenland in the GAPSLIP database and comparison with modelled sea level from the PaleoMIST ice-sheet reconstruction, GEUS Bulletin, 53, 1–17, https://doi.org/10.34194/geusb.v53.8355, 2023.
- Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J.: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, https://doi.org/10.1038/366552a0, 1993.

2835

2840

2845

2850

2855

2860

- Håkansson, L., Briner, J., Alexanderson, H., Aldahan, A., and Possnert, G.: 10Be ages from central east Greenland constrain the extent of the Greenland ice sheet during the Last Glacial Maximum, Quat Sci Rev, 26, 2316–2321, https://doi.org/10.1016/j.quascirev.2007.08.001, 2007.
- He, C., Liu, Z., Otto-Bliesner, B. L., Brady, E. C., Zhu, C., Tomas, R., Buizert, C., and Severinghaus, J. P.: Abrupt Heinrich Stadial 1 cooling missing in Greenland oxygen isotopes, Sci Adv, 7, 1007–1023, https://doi.org/10.1126/sciadv.abh1007, 2021a.
- He, C., Liu, Z., Otto-Bliesner, B. L., Brady, E. C., Zhu, C., Tomas, R., Clark, P. U., Zhu, J., Jahn, A., Gu, S., Zhang, J., Nusbaumer, J., Noone, D., Cheng, H., Wang, Y., Yan, M., and Bao, Y.: Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation, Sci Adv, 7, 1–12, https://doi.org/10.1126/sciadv.abe2611, 2021b.
- Hellmer, H., Jacobs, S. S., and Jenkins, A.: Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea, in: American Geophysical Union, 1998.
- Hogan, K. A., Ó Cofaigh, C., Jennings, A. E., Dowdeswell, J. A., and Hiemstra, J. F.: Deglaciation of a major palaeo-ice stream in Disko Trough, West Greenland, Quat Sci Rev, 147, 5–26, https://doi.org/10.1016/j.quascirev.2016.01.018, 2016.
- Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice—Ocean Interactions at the Base of an Ice Shelf, J Phys Oceanogr, 29, 1787–1800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999.
- Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles, Quat Sci Rev, 21, 203–231, https://doi.org/10.1016/S0277-3791(01)00082-8, 2002.
- Huybrechts, P. and de Wolde, J.: The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming, J Clim, 12, 2169–2188, https://doi.org/10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2, 1999.
- Hvidberg, C. S., Grinsted, A., Dahl-Jensen, D., Khan, S. A., Kusk, A., Andersen, J. K., Neckel, N., Solgaard, A., Karlsson, N. B., Kjær, H. A., and Vallelonga, P.: Surface velocity of the Northeast Greenland Ice Stream (NEGIS): assessment of interior velocities derived from satellite data by GPS, Cryosphere, 14, 3487–3502, https://doi.org/10.5194/tc-14-3487-2020, 2020.
- Iman, R. L.: Latin Hypercube Sampling, in: Encyclopedia of Quantitative Risk Analysis and Assessment, Wiley, https://doi.org/10.1002/9780470061596.risk0299, 2008.
- Jansen, D., Franke, S., Bauer, C. C., Binder, T., Dahl-Jensen, D., Eichler, J., Eisen, O., Hu, Y., Kerch, J., Llorens, M.-G., Miller, H., Neckel, N., Paden, J., de Riese, T., Sachau, T., Stoll, N., Weikusat, I., Wilhelms, F., Zhang, Y., and Bons, P. D.: Shear margins in upper half of Northeast Greenland Ice Stream were established two millennia ago, Nat Commun, 15, 1193, https://doi.org/10.1038/s41467-024-45021-8, 2024.
- Jennings, A. E., Sheldon, C., Cronin, T. M., Francus, P., Stoner, J., and Andrews, J.: The holocene history of nares strait: transition from Glacial Bay to Arctic- Atlantic Throughflow, Oceanography, 24, 26–41, https://doi.org/10.5670/oceanog.2011.52, 2011.
- Jennings, A. E., Andrews, J. T., Ó Cofaigh, C., Onge, G. S., Sheldon, C., Belt, S. T., Cabedo-Sanz, P., and Hillaire-Marcel, C.: Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene, Earth Planet Sci Lett, 472, 1–13, https://doi.org/10.1016/j.epsl.2017.05.007, 2017.
- Joughin, I., Smith, B., Howat, I., and Scambos, T.: MEaSUREs Greenland Ice Sheet Velocity Map from InSAR Data, Version 2, 2018a.

Joughin, I., Smith, B., Howat, I., and Scambos, T.: MEaSUREs Greenland Ice Sheet Velocity Map from InSAR Data, Version 2, 2018b.

2870

2875

2880

2885

2890

2895

2900

2905

2910

Katrine Elnegaard Hansen, Lorenzen, J., Davies, J., Wacker, L., Pearce, C., and Seidenkrantz, M.-S.: Deglacial to Mid Holocene environmental conditions on the northeastern Greenland shelf, western Fram Strait, Quat Sci Rev, 293, 107704, https://doi.org/10.1016/j.quascirev.2022.107704, 2022a.

Katrine Elnegaard Hansen, Lorenzen, J., Davies, J., Wacker, L., Pearce, C., and Seidenkrantz, M.-S.: Deglacial to Mid Holocene environmental conditions on the northeastern Greenland shelf, western Fram Strait, Quat Sci Rev, 293, 107704, https://doi.org/10.1016/j.quascirev.2022.107704, 2022b.

Kendall, R. A., Mitrovica, J. X., and Milne, G. A.: On post-glacial sea level - II. Numerical formulation and comparative results on spherically symmetric models, Geophys J Int, 161, 679–706, https://doi.org/10.1111/j.1365-246X.2005.02553.x, 2005.

Keys, R.: Cubic convolution interpolation for digital image processing, IEEE Trans Acoust, 29, 1153–1160, https://doi.org/10.1109/TASSP.1981.1163711, 1981.

Khan, S. A., Sasgen, I., Bevis, M., van Dam, T., Bamber, J. L., Wahr, J., Willis, M., Kjær, K. H., Wouters, B., Helm, V., Csatho, B., Fleming, K., Bjørk, A. A., Aschwanden, A., Knudsen, P., and Munneke, P. K.: Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet, Sci Adv, 2, https://doi.org/10.1126/sciadv.1600931, 2016.

Khroulev, C. and The PISM authors: PISM, a Parallel Ice Sheet Model v1.2: User's Manual., 2020.

Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, Proceedings of the National Academy of Sciences, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.

Lambeck, K., Purcell, A., and Zhao, S.: The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses, Quat Sci Rev, 158, 172–210, https://doi.org/10.1016/j.quascirev.2016.11.033, 2017.

Larsen, N. K., <u>Kjær, K. H., Olsen, J., Funder, S., Kjeldsen, K. K., and Nørgaard-Pedersen, N.: Restricted impact of Holocene climate variations on the southern Greenland Ice Sheet, Quat Sci Rev, 30, 3171–3180, https://doi.org/10.1016/j.quascirev.2011.07.022, 2011.</u>

Larsen, N. K., Kjær, K. H., Lecavalier, B., Bjørk, A. A., Colding, S., Huybrechts, P., Jakobsen, K. E., Kjeldsen, K. K., Knudsen, K. L., Odgaard, B. V., and Olsen, J.: The response of the southern Greenland ice sheet to the Holocene thermal maximum, Geology, 43, 291–294, https://doi.org/10.1130/G36476.1, 2015.

<u>Larsen, N. K.,</u> Funder, S., Linge, H., Möller, P., Schomacker, A., Fabel, D., Xu, S., and Kjær, K. H.: A Younger Dryas readvance of local glaciers in north Greenland, Quat Sci Rev, 147, 47–58, https://doi.org/10.1016/j.quascirev.2015.10.036, 2016.

Larsen, N. K., Søndergaard, A. S., Levy, L. B., Olsen, J., Strunk, A., Bjørk, A. A., and Skov, D.: Contrasting modes of deglaciation between fjords and inter-fjord areas in eastern North Greenland, Boreas, 49, 903–917, https://doi.org/10.1111/bor.12475, 2020.

Lecavalier, B. S. and Tarasov, L.: A history-matching analysis of the Antarctic Ice Sheet since the Last Interglacial — Part 1: Ice sheet evolution, Cryosphere, 19, 919–953, https://doi.org/10.5194/tc-19-919-2025, 2025.

<u>Lecavalier, B. S.</u>, Milne, G. A., Vinther, B. M., Fisher, D. A., Dyke, A. S., and Simpson, M. J. R.: Revised estimates of Greenland ice sheet thinning histories based on ice-core records, Quat Sci Rev, 63, 73–82, https://doi.org/10.1016/j.quascirev.2012.11.030, 2013.

Lecavalier, B. S., Milne, G. A., Simpson, M. J. R., Wake, L., Huybrechts, P., Tarasov, L., Kjeldsen, K. K., Funder, S., Long, A. J., Woodroffe, S., Dyke, A. S., and Larsen, N. K.: A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent, Quat Sci Rev, 102, 54–84, https://doi.org/10.1016/j.quascirev.2014.07.018, 2014.

- Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L., Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke, A. S.: High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution, Proceedings of the National Academy of Sciences, 114, 5952–5957, https://doi.org/10.1073/pnas.1616287114, 2017.
- Leger, T. P. M., Clark, C. D., Huynh, C., Jones, S., Ely, J. C., Bradley, S. L., Diemont, C., and Hughes, A. L. C.: A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0, Climate of the Past, 20, 701–755, https://doi.org/10.5194/cp-20-701-2024, 2024.

2920

2925

2930

2935

2945

2950

- Leger, T. P. M., Jouvet, G., Kamleitner, S., Mey, J., Herman, F., Finley, B. D., Ivy-Ochs, S., Vieli, A., Henz, A., and Nussbaumer, S. U.: A data-consistent model of the last glaciation in the Alps achieved with physics-driven Al, Nat Commun, 16, 848, https://doi.org/10.1038/s41467-025-56168-3, 2025.
- Lenaerts, J. T. M., Camron, M. D., Wyburn-Powell, C. R., and Kay, J. E.: Present-day and future Greenland Ice Sheet precipitation frequency from CloudSat observations and the Community Earth System Model, Cryosphere, 14, 2253–2265, https://doi.org/10.5194/tc-14-2253-2020, 2020.
- Levermann, A., Albrecht, T., Winkelmann, R., Martin, M. A., Haseloff, M., and Joughin, I.: Kinematic first-order calving law implies potential for abrupt ice-shelf retreat, Cryosphere, 6, 273–286, https://doi.org/10.5194/tc-6-273-2012, 2012.
- Lingle, C. S. and Clark, J. A.: A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream, J Geophys Res Oceans, 90, 1100–1114, https://doi.org/10.1029/JC090iC01p01100, 1985.
- Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming, Science (1979), 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
- Lloyd, J. M., Ribeiro, S., Weckström, K., Callard, L., Ó Cofaigh, C., Leng, M. J., Gulliver, P., and Roberts, D. H.: Iceocean interactions at the Northeast Greenland Ice stream (NEGIS) over the past 11,000 years, Quat Sci Rev, 308, 108068, https://doi.org/10.1016/j.quascirev.2023.108068, 2023.
- Lofverstrom, M., Fyke, J. G., Thayer-Calder, K., Muntjewerf, L., Vizcaino, M., Sacks, W. J., Lipscomb, W. H., Otto-Bliesner, B. L., and Bradley, S. L.: An Efficient Ice Sheet/Earth System Model Spin-up Procedure for CESM2-CISM2: Description, Evaluation, and Broader Applicability, J Adv Model Earth Syst, 12, https://doi.org/10.1029/2019MS001984, 2020.
 - Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F.: High-resolution carbon dioxide concentration record 650,000–800,000 years before present, Nature, 453, 379–382, https://doi.org/10.1038/nature06949, 2008.
 - Ma, Q., Shi, X., Scholz, P., Sidorenko, D., Lohmann, G., and Ionita, M.: Revisiting climate impacts of an AMOC slowdown: dependence on freshwater locations in the North Atlantic, Sci Adv, 10, 3243, https://doi.org/10.1126/sciadv.adr3243, 2024.
 - MacGregor, J. A., Chu, W., Colgan, W. T., Fahnestock, M. A., Felikson, D., Karlsson, N. B., Nowicki, S. M. J., and Studinger, M.: GBaTSv2: a revised synthesis of the likely basal thermal state of the Greenland Ice Sheet, Cryosphere, 16, 3033–3049, https://doi.org/10.5194/tc-16-3033-2022, 2022.
 - Mankoff, K. D., Solgaard, A., Colgan, W., Ahlstrøm, A. P., Khan, S. A., and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through March 2020, Earth Syst Sci Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020, 2020.
 - Marienfeld, P.: Faziesvariationen glazialmariner Sedimente im Scoresby Sund, Ost Grönland, Zentralblatt für Geologie und Paläontologie, 1, 1739–1749, 1990.

Martin, T., Biastoch, A., Lohmann, G., Mikolajewicz, U., and Wang, X.: On Timescales and Reversibility of the Ocean's Response to Enhanced Greenland Ice Sheet Melting in Comprehensive Climate Models, Geophys Res Lett, 49, https://doi.org/10.1029/2021GL097114, 2022.

Martos, Y. M., Jordan, T. A., Catalán, M., Jordan, T. M., Bamber, J. L., and Vaughan, D. G.: Geothermal Heat Flux Reveals the Iceland Hotspot Track Underneath Greenland, Geophys Res Lett, 45, 8214–8222, https://doi.org/10.1029/2018GL078289, 2018.

Menard, H. W. and Smith, S. M.: Hypsometry of ocean basin provinces, J Geophys Res, 71, 4305–4325, https://doi.org/10.1029/JZ071i018p04305, 1966.

2960

2965

2970

2975

2980

2985

2990

2995

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 203–320 pp., 2019.

Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Ice velocity and thickness of the world's glaciers, Nat Geosci, 15, https://doi.org/10.1038/s41561-021-00885-z, 2022.

Mitrovica, J. X. and Milne, G. A.: On post-glacial sea level: I. General theory, Geophys J Int, 154, 253–267, https://doi.org/10.1046/j.1365-246X.2003.01942.x, 2003.

Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.: Deeply incised submarine glacial valleys beneath the Greenland ice sheet, Nat Geosci, 7, 418–422, https://doi.org/10.1038/ngeo2167, 2014.

Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation, Geophys Res Lett, 44, 11,051-11,061, https://doi.org/10.1002/2017GL074954, 2017a.

Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation, Geophys Res Lett, 44, 11,051-11,061, https://doi.org/10.1002/2017GL074954, 2017b.

Motyka, R. J., Truffer, M., Fahnestock, M., Mortensen, J., Rysgaard, S., and Howat, I.: Submarine melting of the 1985 Jakobshavn Isbrae floating tongue and the triggering of the current retreat, J Geophys Res Earth Surf, 116, n/a-n/a, https://doi.org/10.1029/2009JF001632, 2011.

NIU, L., LOHMANN, G., HINCK, S., GOWAN, E. J., and KREBS-KANZOW, U.: The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial cycle using PMIP3 models, Journal of Glaciology, 65, 645–661, https://doi.org/10.1017/jog.2019.42, 2019.

NorthGRIPMembers, Andersen, K. K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P. E., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Flückiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grønvold, K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggaard-Andersen, M.-L., Steffensen, J.-P. P., Stocker, T., Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M., Tison, J.-L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., White, J. W. C., and Siggard-Andersen, M.-L.: High-resolution record of Northern Hemisphere climate extending into the last interglacial period., Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.

Ó Cofaigh, C., Dowdeswell, J. A., Jennings, A. E., Hogan, K. A., Kilfeather, A., Hiemstra, J. F., Noormets, R., Evans, J., McCarthy, D. J., Andrews, J. T., Lloyd, J. M., and Moros, M.: An extensive and dynamic ice sheet on the west greenland shelf during the last glacial cycle, Geology, 41, 219–222, https://doi.org/10.1130/G33759.1, 2013a2013.

Ó Cofaigh, C., <u>Lloyd, J. M., Callard, S. Dowdeswell, J. A., Jennings, A. E., HoganL., Gebhardt, C., Streuff, K. T., Dorschel, B., SmithA., Kilfeather, A., Hiemstra, J. A., Lane, T. F., Noormets, P., Jamieson, S. S. R., Evans, J., McCarthyKanzow, T., and Roberts, D. J., Andrews, J. T., Lloyd, J. M., and Moros, M.: An extensive and dynamic ice sheet on the west greenland shelf-H.: Shelf-edge glaciation offshore of northeast Greenland during the last glacial cycle, Geology, 41, 219–222 maximum and timing of initial ice-sheet retreat, Quat Sci Rev, 359, 109326, https://doi.org/10.1130/G33759.1, 2013b1016/j.quascirev.2025.109326, 2025.</u>

Oerlemans, J., Anderson, B., Hubbard, A., Huybrechts, P., Jóhannesson, T., Knap, W. H., Schmeits, M., Stroeven, A. P., van de Wal, R. S. W., Wallinga, J., and Zuo, Z.: Modelling the response of glaciers to climate warming, Clim Dyn, 14, 267–274, https://doi.org/10.1007/s003820050222, 1998.

Osman, M. B., Tierney, J. E., Zhu, J., Tardif, R., Hakim, G. J., King, J., and Poulsen, C. J.: Globally resolved surface temperatures since the Last Glacial Maximum, Nature, 599, 239–244, https://doi.org/10.1038/s41586-021-03984-4, 2021.

Patterson, V. L., Gregoire, L. J., Ivanovic, R. F., Gandy, N., Owen, J., Smith, R. S., Pollard, O. G., Astfalck, L. C., and Valdes, P. J.: Contrasting the Penultimate Glacial Maximum and the Last Glacial Maximum (140 and 21 ka) using coupled climate—ice sheet modelling, Climate of the Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024, 2024.

Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, J Geophys Res Solid Earth, 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.

Pittard, M. L., Whitehouse, P. L., Bentley, M. J., and Small, D.: An ensemble of Antarctic deglacial simulations constrained by geological observations, Quat Sci Rev, 298, 107800,

https://doi.org/10.1016/j.quascirev.2022.107800, 2022.

3005

3010

3015

3020

3025

3030

3035

3040

3045

Plach, A., Nisancioglu, K. H., Langebroek, P. M., Born, A., and Le clec'h, S.: Eemian Greenland ice sheet simulated with a higher-order model shows strong sensitivity to surface mass balance forcing, Cryosphere, 13, 2133–2148, https://doi.org/10.5194/tc-13-2133-2019, 2019.

Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968, 2012.

Quiquet, A., Roche, D. M., Dumas, C., Bouttes, N., and Lhardy, F.: Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model, Climate of the Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, 2021.

Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Climate of the Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, 2013.

Rasmussen, S. O., Dahl-Jensen, D., Fischer, H., Fuhrer, K., Hansen, S. B., Hansson, M., Hvidberg, C. S., Jonsell, U., Kipfstuhl, S., Ruth, U., Schwander, J., Siggaard-Andersen, M.-L., Sinnl, G., Steffensen, J. P., Svensson, A. M., and Vinther, B. M.: Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21), Earth Syst Sci Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, 2023.

Rieckh, T., Born, A., Robinson, A., Law, R., and Gülle, G.: Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing, Geosci Model Dev, 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024, 2024.

Rinterknecht, V., Jomelli, V., Brunstein, D., Favier, V., Masson-Delmotte, V., Bourlès, D., Leanni, L., and Schläppy, R.: Unstable ice stream in Greenland during the Younger Dryas cold event, Geology, 42, 759–762, https://doi.org/10.1130/G35929.1, 2014.

Ritz, C.: EISMINT Intercomparison Experiment: Comparison of existing Greenland models., Laboratoire de Glaciologie et de Géophysique de l'Environnement, Saint Martin d'Hères, France, 1997.

3050

3055

3060

3065

3070

3075

3080

3085

Roberts, D. H., Lane, T. P., Jones, R. S., Bentley, M. J., Darvill, C. M., Rodes, A., Smith, J. A., Jamieson, S. S. R., Rea, B. R., Fabel, D., Gheorghiu, D., Davidson, A., Cofaigh, C. Ó., Lloyd, J. M., Callard, S. L., and Humbert, A.: The deglacial history of 79N glacier and the Northeast Greenland Ice Stream, Quat Sci Rev, 336, 108770, https://doi.org/10.1016/j.quascirev.2024.108770, 2024a2024.

Roberts, D. H., Lane, T.-P., Jones, R. S., Bentley, M. J., Darvill, C. M., Rodes, A., Smith, J. A., Jamieson, S. S. R., Rea, B. R., Fabel, D., Gheorghiu, D., Davidson, A., Cofaigh, C. Ó., Lloyd, J. M., Callard, S.-L., and Humbert, A.: The deglacial history of 79N glacier and the Northeast Greenland Ice Stream, Quat Sci Rev, 336, 108770, https://doi.org/10.1016/j.quascirev.2024.108770, 2024b.

Rogozhina, I., Martinec, Z., Hagedoorn, J. M., Thomas, M., and Fleming, K.: On the long-term memory of the Greenland ice sheet, J Geophys Res Earth Surf, 116, 1–16, https://doi.org/10.1029/2010JF001787, 2011.

Rovere, A., Stocchi, P., and Vacchi, M.: Eustatic and Relative Sea Level Changes, Curr Clim Change Rep, 2, 221–231, https://doi.org/10.1007/s40641-016-0045-7, 2016.

Sbarra, C. M., Briner, J. P., Graham, B. L., Poinar, K., Thomas, E. K., and Young, N. E.: Evidence for a more extensive Greenland Ice Sheet in southwestern Greenland during the Last Glacial Maximum, Geosphere, 18, 1316–1329, https://doi.org/10.1130/GES02432.1, 2022a.

Sbarra, C. M., Briner, J. P., Graham, B. L., Poinar, K., Thomas, E. K., and Young, N. E.: Evidence for a more extensive Greenland Ice Sheet in southwestern Greenland during the Last Glacial Maximum, Geosphere, 18, 1316–1329, https://doi.org/10.1130/GES02432.1, 2022b.

Seguinot, J. and Rogozhina, I.: Daily temperature variability predetermined by thermal conditions over ice-sheet surfaces, Journal of Glaciology, 60, 603–605, https://doi.org/10.3189/2014J0G14J036, 2014.

Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J., Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D., Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A., Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N. J., Shepherd, A., Sun, S., Sutter, J., Van Breedam, J., Van De Wal, R. S. W., Winkelmann, R., and Zhang, T.: InitMIP-Antarctica: An ice sheet model initialization experiment of ISMIP6, Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, 2019.

Simonsen, S. B., Barletta, V. R., Colgan, W. T., and Sørensen, L. S.: Greenland Ice Sheet Mass Balance (1992–2020) From Calibrated Radar Altimetry, Geophys Res Lett, 48, 1–10, https://doi.org/10.1029/2020GL091216, 2021.

Simpson, M. J. R., Milne, G. A., Huybrechts, P., and Long, A. J.: Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent, Quat Sci Rev, 28, 1631–1657, https://doi.org/10.1016/j.quascirev.2009.03.004, 2009.

Sinclair, G., Carlson, A. E., Mix, A. C., Lecavalier, B. S., Milne, G., Mathias, A., Buizert, C., and DeConto, R.: Diachronous retreat of the Greenland ice sheet during the last deglaciation, Quat Sci Rev, 145, 243–258, https://doi.org/10.1016/j.quascirev.2016.05.040, 2016.

Sinet, S., von der Heydt, A. S., and Dijkstra, H. A.: AMOC Stabilization Under the Interaction With Tipping Polar Ice Sheets, Geophys Res Lett, 50, https://doi.org/10.1029/2022GL100305, 2023.

Smith-Johnsen, S., de Fleurian, B., Schlegel, N., Seroussi, H., and Nisancioglu, K.: Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream, Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020, 2020.

Søndergaard, A. S., Larsen, N. K., Steinemann, O., Olsen, J., Funder, S., Egholm, D. L., and Kjær, K. H.: Glacial history of Inglefield Land, north Greenland from combined in situ 10Be and 14C exposure dating, Climate of the Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, 2020.

3090

3095

3100

3105

3110

3115

3120

3125

- Stein, M.: Large Sample Properties of Simulations Using Latin Hypercube Sampling, Technometrics, 29, 143–151, https://doi.org/10.1080/00401706.1987.10488205, 1987.
- Swift, D. A., Persano, C., Stuart, F. M., Gallagher, K., and Whitham, A.: A reassessment of the role of ice sheet glaciation in the long-term evolution of the East Greenland fjord region, Geomorphology, 97, 109–125, https://doi.org/10.1016/j.geomorph.2007.02.048, 2008.
- Tabone, I., Blasco, J., Robinson, A., Alvarez-Solas, J., and Montoya, M.: The sensitivity of the Greenland Ice Sheet to glacial—interglacial oceanic forcing, Climate of the Past, 14, 455–472, https://doi.org/10.5194/cp-14-455-2018, 2018.
- Tabone, I., Robinson, A., Montoya, M., and Alvarez-Solas, J.: Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream, Nat Commun, 15, 6434, https://doi.org/10.1038/s41467-024-50772-5, 2024.
- Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.: Precise Global DEM Generation by ALOS PRISM, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II–4, 71–76, https://doi.org/10.5194/isprsannals-II-4-71-2014, 2014.
- Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W. R.: A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling, Earth Planet Sci Lett, 315–316, 30–40, https://doi.org/10.1016/j.epsl.2011.09.010, 2012.
- The IMBIE Team: Mass balance of the Greenland Ice Sheet from 1992 to 2018, Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2019.
- Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584, 569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020.
- Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice Stream B, west Antarctica: 2. Undrained plastic bed model, J Geophys Res Solid Earth, 105, 483–494, https://doi.org/10.1029/1999JB900328, 2000.
- van Kampenhout, L., Lenaerts, J. T. M., Lipscomb, W. H., Lhermitte, S., Noël, B., Vizcaíno, M., Sacks, W. J., and van den Broeke, M. R.: Present-Day Greenland Ice Sheet Climate and Surface Mass Balance in CESM2, J Geophys Res Earth Surf, 125, https://doi.org/10.1029/2019JF005318, 2020.
- Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen, S. J., Fisher, D. A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen, K. K., Blunier, T., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M.: Holocene thinning of the Greenland ice sheet, Nature, 461, 385–388, https://doi.org/10.1038/nature08355, 2009.
- Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) Part 1: Model description, Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011.
- Yan, Q., Zhang, Z., Gao, Y., Wang, H., and Johannessen, O. M.: Sensitivity of the modeled present-day Greenland Ice Sheet to climatic forcing and spin-up methods and its influence on future sea level projections, J Geophys Res Earth Surf, 118, 2174–2189, https://doi.org/10.1002/jgrf.20156, 2013.
- Yang, H., Krebs-Kanzow, U., Kleiner, T., Sidorenko, D., Rodehacke, C. B., Shi, X., Gierz, P., Niu, L., Gowan, E. J., Hinck, S., Liu, X., Stap, L. B., and Lohmann, G.: Impact of paleoclimate on present and future evolution of the Greenland Ice Sheet, PLoS One, 17, 1–21, https://doi.org/10.1371/journal.pone.0259816, 2022.
- Yu, L., Gao, Y., and Otterå, O. H.: The sensitivity of the Atlantic meridional overturning circulation to enhanced freshwater discharge along the entire, eastern and western coast of Greenland, Clim Dyn, 46, 1351–1369, https://doi.org/10.1007/s00382-015-2651-9, 2016.

Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas, R., Nusbaumer, J., Wong, T., Jahn, A., and Tabor, C.: Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model, Geophys Res Lett, 44, 6984–6992, https://doi.org/10.1002/2017GL073406, 2017.

Zoet, L. K. and Iverson, N. R.: A slip law for glaciers on deformable beds, Science (1979), 368, 76–78, https://doi.org/10.1126/science.aaz1183, 2020.