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Abstract. 24 

 The ocean acts as a carbon sink, absorbing carbon from the atmosphere and resulting in 25 

substantial uptake of anthropogenic CO2 emissions. As biological processes in the oceans such as 26 

net primary production (NPP) contribute significantly to this sink, understanding how they will 27 

shift in response to increasing atmospheric CO2 is necessary to project future ocean carbon 28 

storage capacity. Macronutrient and micronutrient resource limitation within the oceans regulates 29 

NPP, and while some micronutrients such as zinc (Zn) are present at very low concentrations, 30 

their ability to limit NPP has remained unclear. Zn is a key micronutrient used by phytoplankton 31 

for a multitude of metabolic functions, yet there have been few observations of its influence on 32 

natural oceanic phytoplankton populations. In this study, we observed Zn limitation of growth in 33 

the natural phytoplankton community of Terra Nova Bay, Antarctica, in addition to primary iron 34 

(Fe) limitation. Shipboard incubation experiments amended with Zn and Fe resulted in 35 

significantly higher chlorophyll a content and dissolved inorganic carbon drawdown compared 36 

to Fe addition alone. Zn and Fe stress response proteins detected in incubation and 37 

environmental biomass provided independent verification of algal co-stress for these 38 

micronutrients. We consider total biomass and low surface ocean pCO2 as potential drivers of 39 

environmental Zn stress. This study definitively establishes that Zn limitation can occur in the 40 

modern oceans, opening up new possibility space in our understanding of nutrient regulation of 41 

NPP through geologic time, and we consider the future of oceanic Zn limitation in the face of 42 

climate change.  43 

 44 

1 Introduction 45 
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Primary productivity in the oceans is a key component of the global carbon cycle and is 46 

largely controlled by the availability of nitrogen (N), phosphorus (P), and iron (Fe). Yet there is 47 

increasing evidence that other micronutrients such as zinc (Zn), cobalt (Co), and vitamin B12 can 48 

also influence phytoplankton productivity, often as secondary limiting nutrients after N, P, or Fe 49 

are added (Moore et al. 2013; Browning and Moore 2023). Zn can be particularly scarce in the 50 

photic zone (Bruland 1980; Jakuba et al. 2012) where total dissolved Zn (dZnT) can be below 0.2 51 

nM in seawater due to biological uptake and complexation by organic ligands (Bruland 1989; 52 

Lohan et al. 2002; Baars and Croot 2011; Middag et al. 2019), which further lowers Zn 53 

bioavailability (Sunda and Huntsman 2000; Saito et al. 2008; Lhospice et al. 2017). Marine 54 

eukaryotic algae and copiotrophic bacteria possess a large metabolic demand for Zn that is on 55 

par with that of Fe (Sunda and Huntsman 2000; Mazzotta et al. 2021). 56 

Vertical profiles of dZn in the Southern Ocean have been measured previously. Zn has 57 

not historically been considered as a limiting micronutrient in the Southern Ocean due to the 58 

upwelling of nutrient-rich waters that bring dZn to nanomolar concentrations only a couple 59 

hundred meters below the surface. Yet nutrient-like profiles of dZn are evident throughout this 60 

region, with surface depletion due to biological uptake decreasing this large inventory in the 61 

upper water column (Fitzwater et al. 2000; Coale et al. 2005; Baars and Croot 2011; Sieber et al. 62 

2020; Kell et al. 2024). .. Additionally, both model-based estimates (Roshan et al. 2018) and 63 

direct field measurements (Kell et al. 2024) of Zn uptake in this region have demonstrated a 64 

substantial biological demand for Zn in surface waters, leading to significant dZn drawdown. 65 

This is consistent with and genomic and laboratory studies indicating an elevated Zn demand in 66 

polar phytoplankton (Twining and Baines 2013; Ye et al. 2022).  67 
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Despite the scarcity of bioavailable Zn in the surface ocean and its high cellular demand, 68 

relatively few experimental studies have examined the ability of Zn addition to stimulate natural 69 

phytoplankton communities (Supplementary Table 1). These results have been variable with 70 

findings that include negative results (Scharek et al. 1997; Coale et al. 2003; Ellwood 2004), 71 

slight Zn stimulatory results (Crawford et al. 2003b), a “very small increase” relative to controls 72 

in an unreplicated experiment (Coale et al. 2003), Zn stimulation within Fe and Si uptake 73 

experiments (Franck et al. 2003), Zn primary and secondary limitation in the North Pacific in an 74 

unreplicated experiment (Jakuba et al. 2012), secondary Zn limitation after primary Si limitation 75 

in the Costa Rica Dome (Dreux Chappell et al. 2016), and enhanced Zn uptake rates under low 76 

pCO2 (Xu et al. 2012). Whether due to the early negative results, the few positive findings, or the 77 

practical constraints of co-limitation studies in the field that limit the number of micronutrients 78 

that can be tested, it is our experience that there is currently no broad community recognition that 79 

zinc limitation is a process that could affect primary productivity in any region of the oceans, 80 

leaving the original ‘zinc hypothesis’ unresolved (Morel et al. 1994). 81 

In contrast, laboratory studies have unequivocally demonstrated that marine 82 

phytoplankton can easily be Zn-limited in culture, and that Zn stress is exacerbated by low CO2 83 

due to an inability to synthesize the metalloenzyme carbonic anhydrase and resultant carbon co-84 

limitation (Morel et al. 1994; Buitenhuis et al. 2003; Sunda and Huntsman 2005). In this study, 85 

we reconcile these perspectives with a comprehensive, multipronged study of the natural 86 

phytoplankton assemblage in Terra Nova Bay (TNB), Antarctica, documenting evidence of Fe 87 

and Zn stress in a low pCO2 coastal environment.  88 

2 Results 89 

2.1 Biogeochemical characterization of Terra Nova Bay 90 
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Twenty-six stations within Terra Nova Bay (TNB) were temporally sampledover the 91 

course of one month (January 9 – February 18, 2018) during the 2017-2018 CICLOPS 92 

expedition (Fig. 1a; Supplementary Table 2) to concurrently characterize the natural 93 

progression of the phytoplankton bloom and biogeochemical changes in the water column (Kell 94 

et al. 2024). These stations were spatially distinct (each unique station was sampled once), but 95 

given that all stations were in relatively close proximity to each other within TNB (within a 52 96 

km radius), we have combined all TNB station data to create a temporal analysis of the region. 97 

Surface waters within TNB had low (~200 μatm) seawater pCO2 (Fig. 1b) which 98 

contrasted with measurements >400 μatm further from the study site (Fig. 1c). A large 99 

phytoplankton bloom was present as indicated by high (> 3000 ng L-1) chlorophyll fluorescence 100 

concentrations in January that waned into February (Fig. 1d). This observation of high 101 

productivity is characteristic of Antarctic polynya environments, which are recurring regions of 102 

open water surrounded by sea ice (Arrigo et al. 2012). This phytoplankton community initially 103 

consisted of a mixed assemblage of both diatoms as indicated by fucoxanthin (fuco, Fig. 1e) and 104 

the haptophyte Phaeocystis as verified by shipboard microscopy and as indicated by 19’-105 

hexanoyloxyfucoxanthin (19’-hex, Fig. 1f). Surface fucoxanthin concentrations >200 ng L-1 106 

were observed at the late TNB stations (Fig. 1e) while 19’-hex decreased to ~20 ng L-1 (Fig. 1f), 107 

indicating that the stations sampled in late February were dominated by diatoms rather than 108 

Phaeocystis. This was consistent with historical observations of phytoplankton succession 109 

patterns in TNB (DiTullio and Smith 1996; Smith et al. 2006; Mangoni et al. 2019). 110 

Additionally, we observed pronounced depletion of total dissolved Zn in surface waters across 111 

all TNB stations, with an average concentration of 0.82 ± 0.47 nM at 10 m (Fig. 1g). Notably, as 112 
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the bloom progressed, this depletion extended progressively deeper into the water column (Fig. 113 

1g), indicative of strong Zn uptake and export from the euphotic zone.  114 

 115 

Total Zn uptake (ρZn, measured concurrently using a stable isotope tracer method) (Kell 116 

et al. 2024) was highest in the shallow euphotic zone in early January and waned into February 117 

(Fig. 1h), following trends seen in chlorophyll fluorescence (Fig. 1d) and 19’-hex (Fig. 1f). This 118 

ρZn trend was consistent with laboratory studies demonstrating the substantial Zn requirements 119 

of both diatoms and Phaeocystis antarctica (Saito and Goepfert 2008; Kellogg et al. 2020). 120 

Across all TNB stations, total dissolved Fe (dFeT) in the upper 50 m remained below 1 nM (Fig. 121 

1i) as observed previously in this region (Fitzwater et al. 2000). In the Ross Sea, dissolved iron 122 

(dFe) has previously been demonstrated to be the primary limiting nutrient for phytoplankton 123 

growth (Martin et al. 1990; Coale et al. 2003; Sedwick et al. 2011). 124 

 125 

2.2 Biogeochemical characterization of the incubation study site 126 

Within TNB station, station 27 (referred to as the “experimental site” herein) was chosen 127 

for the multifactor shipboard incubation experiment (Fig. 1a,b; red star). This site harbored a 128 

coastal bloom and was biologically and chemically characterized as having high in situ 129 

chlorophyll a levels (maximum of 3259 ng L-1 at 30 m; Fig. 1j) and was comprised of diatoms as 130 

indicated by fucoxanthin and Phaeocystis as indicated by 19’-hex (Fig. 1k). A decrease in 131 

surface total dissolved inorganic carbon (DICT; 2181 μmol kg-1 at 15 m compared to the deep 132 

water (200-1065 m) average of 2224 ± 2.1 μmol kg-1, Fig. 1l) was also observed. Within the 133 

water column, dZn demonstrated a pronounced decrease from 5.1 nM at 50 m to 0.9 nM at 10 m, 134 

representing an 82% decrease (and a 76% decrease comparing the minimum dZnT value at 10 m 135 
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to the average deepwater (210 – 1000 m) concentration of 3.9 nM ± 0.4; Fig. 1m), consistent 136 

with prior observations of surface dZn depletion in this region (Fitzwater et al. 2000).  137 

Observations of rapid Zn uptake (46 pmol L-1 d-1 at 10 m) at the experimental site (Fig. 138 

1n) likely contributed to this surface depletion, as Zn uptake rates of this magnitude are of the 139 

appropriate scale to induce the multi-nanomolar surface water depletion during the austral spring 140 

and summer season (Kell et al. 2024). Consistent with high macronutrient abundance in this 141 

region, surface macronutrient concentrations  were partially depleted at the experimental site 142 

with 64%, 46%, and 29% decreases in nitrate+nitrite (N+N), phosphate (P), and silicate (Si), 143 

respectively, comparing 10 m and average deep water (200 – 1000 m) values (Fig. 1o).  144 

 145 

2.3 Evidence for Zn stimulation of phytoplankton: experimental site shipboard incubations 146 

A multifactor incubation experiment was conducted using surface waters collected at the 147 

experimental site by trace metal clean fish sampler (7 m) fed into a shipboard cleanroom to 148 

examine controls on net primary productivity, with triplicate treatments of Zn amended (+Zn; 2 149 

nM as ZnCl2), Fe amended (+Fe; 1 nM as FeCl2), and Fe and Zn amended (+Fe+Zn) incubations, 150 

in addition to unamended controls. Addition of Fe alone (+Fe) resulted in significantly higher chl 151 

a content compared to controls (p = 9.5e-5) after six days (T6) (Fig. 2a), demonstrating primary 152 

Fe limitation as observed previously in the Ross Sea (Martin et al. 1990; Mangoni et al. 153 

2019).However, addition of Zn alone (+Zn) also resulted in significantly higher chl a content 154 

compared to the controls (p = 0.011), implying that a subset of the incubated phytoplankton 155 

population benefitted from the addition of Zn alone, without additional Fe (Fig. 2a). This 156 

observation is consistent with independent co-limitation (Saito et al. 2008), where two nutrients 157 

(such as Fe and Zn) each independently limit different subpopulations or processes, and adding 158 
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either nutrient alone yields a response. The combined addition of +Fe+Zn resulted in the highest 159 

average chl a content among all treatments at T6, with 4.5 ± 0.21 μg L-1 compared to 3.9 ± 0.35 160 

μg L-1 and 2.8 ± 0.15 μg L-1 achieved by +Fe and +Zn alone, respectively, demonstrating 161 

additive co-limitation between Zn and Fe (Sperfeld et al. 2016). The Zn stock solution was 162 

analyzed to confirm these results were not caused by inadvertent Fe contamination (see 163 

Methods). Significant differences in seawater chemistry were also observed within these 164 

incubations over time, with larger decreases in DICT in all metal treatments compared to the 165 

control (-12.7 μmol kg-1 for +Fe (p = 5.3e-6), -8.2 μmol kg-1for +Zn (p = 5e-5), and -18.5 μmol 166 

kg-1 for +Fe+Zn (p = 2.2e-16); Fig. 2b). The decrease in DICT observed with +Fe+Zn was 167 

significantly larger than that achieved with +Fe alone (p = 4.4e-3; Fig. 2b). Statistically 168 

significant differences in measured parameters among treatments are summarized in 169 

Supplementary Table 3.  170 

Further consistent with the observed Zn stimulation of biomass in the incubations, the 171 

largest decreases in macronutrient (P and N+N) concentrations in these incubations at T6 were 172 

observed in the +Fe+Zn treatment (Supplementary Figure 1a,b), as was the largest increase in 173 

particulate organic carbon (POC; Supplementary Figure 1c). POC collected from the +Zn and 174 

+Fe+Zn incubations was characterized by larger C:N atomic ratios (5.9 and 6.2, respectively) 175 

compared to the +Fe and T6 control (5.2 and 5.3; Supplementary Figure 1d). Significantly 176 

higher bacterial abundances in both +Fe (p = 9.1e-4) and +Fe+Zn (p = 6.3e-4) treatments relative 177 

to the T6 control (Supplementary Figure 1e) indicated the alleviation of bacterial Fe limitation, 178 

consistent with prior reports (Obernosterer et al. 2015; Fourquez et al. 2020; Sun et al. 2021).  179 

At the conclusion of the incubation experiments, biomass was collected by serial 180 

filtration through 5 mm and 0.2 mm filters, and the 0.2-5 µm fraction was extracted for 181 
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proteomic analysis  (see Methods) and analyzed for biomarkers of Zn and Fe stress. We detected 182 

both algal Fe- and Zn-stress proteins, which provided an independent line of evidence 183 

corroborating the results described above (Fig. 2c). This included the detection of the Zn/Co 184 

responsive protein ZCRP-A (a putative Zn chaperone) (Kellogg et al. 2022a) as a biomarker of 185 

Zn stress as well as the iron starvation-induced proteins ISIP1A, ISIP2A and ISIP3 (ISIPs) as 186 

biomarkers of Fe stress (Supplementary Table 4). The ISIPs represent a group of unrelated 187 

proteins that are upregulated under Fe limitation in various algal species. ISIP1 proteins are 188 

responsible for endocytosis of siderophore-bound iron, ISIP2 proteins are involved in Fe3+ 189 

uptake, and ISIP3 has been suggested to act as an Fe storage protein (Allen et al. 2008; Behnke 190 

and LaRoche 2020). RUBISCO abundance within each treatment is shown in Fig. 2c as a proxy 191 

for the potential phytoplankton production. Within the T6 incubation biomass, there was an 192 

increased abundance of ISIPs in the control and +Zn treatment, and a decrease in ISIP protein 193 

abundance within the +Fe and +Fe+Zn treatments, consistent with primary Fe limitation and the 194 

expected response to Fe addition (Fig. 2c). ISIPs were taxonomically assigned to diatoms, 195 

Phaeocystis, and dinoflagellates (Fig. 2d). The strongest expression of ZCRP-A protein was 196 

detected in the +Fe treatment (Fig. 2c,d) indicative of Fe addition driving the community 197 

towards increased Zn stress. Notably, ZCRP-A was still detected in the +Fe+Zn treatment (Fig. 198 

2c,d), implying that the added Zn was unable to completely satiate Zn demand as phytoplankton 199 

biomass increased (as indicated by the increase in chl a at T6, Fig. 2a), despite added Zn (2 nM) 200 

being double that of added Fe (1 nM). Sequence analysis of the contigs identified as ZCRP-A 201 

homologs in these incubations revealed that all contigs contained one or more canonical 202 

conserved motifs found in COG0523 family proteins such as ZCRP-A (Supplementary Figure 203 

2). Coupled with evidence from prior laboratory studies (Kellogg et al. 2022a), this provides 204 
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further support for the role of ZCRP-A in responding to Zn scarcity. ZCRP-A proteins were 205 

taxonomically assigned to chlorophytes, dinoflagellates, and Phaeocystis, with the detection of 206 

Phaeocystis ZCRP-A only in the +Fe treatment (Fig. 2d). The detection of ZCRP-A attributed to 207 

Phaeocystis, but the nondetection of ZCRP-A attributed to diatoms  implies that either ample 208 

diatom biomass was not captured on the analyzed filters due to being filtered out by the >5mm 209 

pre-filter, or that diatoms present in these incubations (as indicated by diatom RUBISCO; Fig. 210 

2d) were outcompeting Phaeocystis for Zn. Our observations of Fe and Zn biomarkers shifting in 211 

abundance in response to their respective metal treatment provides independent evidence for 212 

Zn/Fe co-limitation.  213 

 214 

2.4 Taxonomic characterization of incubation results 215 

To characterize the phytoplankton species responding to metal amendment, we measured 216 

phytoplankton pigments within the shipboard incubations over time, which revealed a diverse 217 

taxonomic response to metal amendments. Measured pigments included fucoxanthin (fuco), 19'-218 

hexanoyloxyfucoxanthin (19'-hex), prasinoxanthin (prasino), chlorophyll b (chl b), and 219 

chlorophyll c3 (chl c3). Fuco is produced by both diatoms and by Phaeocystis under certain 220 

conditions, while 19'-hex and chl c3 are indicative of Phaeocystis in the Southern Ocean 221 

(DiTullio et al. 2007). Fuco:19'-hex ratios significantly increased in the +Fe (p = 4.2e-4) and 222 

+Fe+Zn treatments (p = 2.7e-3) (Supplementary Figure 3a) due to no significant change in 223 

fuco (Supplementary Figure 3b) and decreased 19'-hex (Supplementary Figure 3c) relative to 224 

the T6 control. Phaeocystis contributions to total fuco concentrations are typically minimal at the 225 

low Fe levels of the Ross Sea, though Phaeocystis can revert to making fuco rather than 19'-hex 226 

when released from Fe limitation (DiTullio et al. 2007), as was evident in these incubations by 227 
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decreased 19'-hex:chl c3 ratios within the +Fe and +Fe+Zn treatments (Supplementary Figure 228 

3d). Phaeocystis therefore likely contributed to total fuco by responding to Fe addition. Notably, 229 

significant decreases in both fuco:chl a and 19'-hex:chl a (Supplementary Figure 3e,f) in all 230 

treatments compared to the T6 control indicated that other phytoplankton groups contributed to 231 

chl a (Fig. 2a) without contributing fuco nor 19'hex. Increases in chl b (Supplementary Figure 232 

3g) and prasinoxanthin (Supplementary Figure 3h) suggest that small green algae such as 233 

chlorophytes and prasinophytes also responded to +Fe and +Zn independently, consistent with 234 

the detection of chlorophyte ZCRP-A in these incubations (Fig. 2d). Photosynthetic efficiency of 235 

photosystem II (Fv/Fm) significantly increased with +Fe (p = 0.011) and with +Fe+Zn (p = 236 

0.0036) at T4 (day 4) compared to T4 controls, but did not significantly increase with +Zn alone, 237 

implying Fv/Fm may not be useful as a diagnostic for Zn stress and that caution should be used 238 

in interpreting its signals universally (Supplementary Figure 3i). No significant difference in 239 

Fv/Fm was observed among treatments at T6. Selective zooplankton grazing on small diatoms 240 

and solitary Phaeocystis cells may have played a role in affecting phytoplankton biomass and the 241 

observed pigment:chl a ratios. For instance, higher ratios of phaeophytin:total phaeopigments 242 

were observed in +Fe and +Zn amended incubations (Supplementary Figure 4) which may 243 

reflect grazing on solitary Phaeocystis cells, as high phaeophytin:total phaeopigments ratios were 244 

previously observed in Phaeocystis dominated waters of the Ross Sea (DiTullio and Smith 245 

1996).  246 

2.5 Detection of Zn- and Fe-stress protein biomarkers in the water column 247 

Metaproteomic and metatranscriptomic analyses of biomass within the water column at 248 

the experimental site provided additional confirmation of the incubation results, as we detected 249 

Zn- and Fe- stress-response proteins present within the water column, which were therefore 250 
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naturally present without influence from incubation conditions. In addition to ISIPs and ZCRP-251 

A, we detected ZCRP-B (a putative membrane-tethered Zn-binding protein) (Kellogg et al. 252 

2022a), Zrt/Irt-like (ZIP)  transporters (which are known to be used by marine phytoplankton for 253 

uptake of Zn2+ and other divalent metal cations (Allen et al. 2008; Milner et al. 2013; Bender et 254 

al. 2018)), and θ (theta) and δ (delta) carbonic anhydrases (CAs). θ-CAs with Zn2+ coordination 255 

sites have been documented in diatoms (Jensen et al. 2020a), including the polar diatom 256 

Chaetoceros neogracile RS19 (Kellogg et al. 2022b), but no studies to date have investigated 257 

enzyme activity nor efficiency with Co2+ or Cd2+. In contrast, δ-CA (i.e, Thalassiosira 258 

weissflogii TWCA1) is known to function with either Co2+ or Zn2+ as a cofactor (Lane and Morel 259 

2000b) conferring metabolic flexibility when Zn2+ is scarce. 260 

Both proteins and transcripts of Zn and Fe stress biomarkers (ZCRP-A and ISIPs) were 261 

observed throughout the water column at the experimental site. RUBISCO, ZCRP-A, and ISIP 262 

protein spectral counts were most abundant at the surface and decreased with depth within the 263 

within the 3μm size fraction (Fig. 3a-c), consistent with the depletion of trace metals in the 264 

photic zone due to high-biomass bloom conditions. ZCRP-A was detected in both 3 and 51 μm 265 

filter pore-size fractions (Fig. 3b) and was predominantly attributed to Phaeocystis and the 266 

diatom genus Chaetoceros in the euphotic zone, and predominantly to Phaeocystis and the 267 

diatom genus Pseudo-nitzschia in the mesopelagic zone (Fig. 3i, Supplementary Figure 5a). 268 

The presence of Phaeocystis below the photic zone is consistent with prior observations of rapid 269 

export of Phaeocystis cells (DiTullio et al. 2000). Throughout the water column, ISIPs were 270 

predominantly attributed to Phaeocystis and to the diatom genera Fragilariopsis, Chaetoceros, 271 

and Pseudo-nitzschia (Fig. 3i, Supplementary Figure 5b). We note that ZCRP-B, a protein also 272 

found to be upregulated in marine diatoms under low Zn/Co and characterized as a putative 273 
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membrane-tethered Zn/Co protein ligand (Kellogg et al. 2022a) was most abundant in the 0.2 μm 274 

fraction throughout the water column (Fig. 3d). As ZCRP-B shares ~30% similarity to the 275 

bacterial ABC-type nickel transporter component NikA, spectral counts within the bacterial 0.2 276 

μm fraction most likely reflect true bacterial NikA. BLAST analysis of all ZCRP-B contigs 277 

confirmed that all ZCRP-B hits across all size fractions corresponded to bacteria (Fig. 3i). 278 

The assignment of the majority of ZCRP-A and ISIP proteins to Phaeocystis in the upper 279 

water column provides additional evidence that Phaeocystis was likely Zn/Fe co-limited at the 280 

study site, consistent with incubation results (Fig. 2d).  281 

ZCRP-A belongs to the phylogenetically complex COG0523 family, with some family 282 

members showing functional divergence (that is, activity using different metal cofactors) among 283 

paralogs (Blaby-Haas and Merchant 2012; Edmonds et al. 2021). Here, we infer a Zn-responsive 284 

function for the identified ZCRP-A contigs based on their homology to T. pseudonana and P. 285 

tricornutum ZCRP-A proteins, which we have previously characterized as Zn-responsive 286 

(Kellogg et al. 2022a). To further support this inference, we used SHOOT (Emms and Kelly 287 

2022) to place each ZCRP-A contig within a phylogenetic context. Of the 21 unique contigs 288 

assigned as ZCRP-A homologs, 19 were confirmed to be T. pseudonana orthologs, while 2 were 289 

assigned as orthologs to the Zn-related COG0523 E. coli proteins YjiA and YeiR, implying a 290 

minor prokaryotic source (Supplementary Table 5). The placement of the majority of these 291 

contigs within diatom clades supports our interpretation that these homologs are Zn-related.  292 

ZIP proteins were almost solely detected in the 51 μm fraction, likely due to the capture 293 

of abundant Phaeocystis colonies and chain-forming diatoms (Fig. 3e; Supplementary Figure 294 

5c). ZIP family transporters are functionally diverse and capable of transporting multiple 295 

divalent metal cations, including both Zn2+ and Fe2+ (Blaby-Haas and Merchant 2012), with 296 
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diatom homologs of ZIP1 known to be upregulated under Fe stress (Lampe et al. 2018). Given 297 

the co-limitation of Fe and Zn at the study site, it is difficult to determine which metal these ZIP 298 

transporters were primarily mediating. 299 

The increased abundance of diatom θ-CA and δ-CA proteins within the water column 300 

(Fig. 3f,g), as well as transcripts for the diatom Cd carbonic anhydrase CDCA, which can 301 

replace Zn2+ with Cd2+ as the catalytic cofactor (Lane and Morel 2000a), in the 3 μm and 51 μm 302 

fractions at 200 m (Fig. 3h) was indicative of a sinking, prior diatom bloom event (Subhas et al. 303 

2019). θ-CA and δ-CA were predominantly taxonomically assigned to the diatom genera 304 

Chaetoceros and Pseudo-nitzschia, respectively, while CDCA transcripts belonged to the diatom 305 

genera Chaetoceros and Corethron (Fig. 3i). The presence of θ-CA, but lack of δ-CA, assigned 306 

to Chaetoceros is consistent with proteomic analysis of the polar diatom Chaetoceros neogracile 307 

RS19 grown in culture under Zn limiting conditions (Kellogg et al. 2022b). 308 

 309 

2.6 Zn:P ratios of the surface seawater at the experimental site 310 

A third independent line of evidence for the nutritional influence of Zn scarcity on TNB 311 

phytoplankton was obtained from in situ cellular stoichiometry. Particulate Zn:P ratios (Zn:P) 312 

analyzed from biomass collected at the surface of this experimental station were consistent with 313 

ratios from Zn-limited culture studies. Particulate Zn:C ratios reported previously in Zn-limiting 314 

culture studies of the diatom Thalassiosira pseudonana (Sunda and Huntsman 2005) were 315 

converted to Zn:P ratios using the Redfield ratio (Redfield 1958) (Supplementary Table 6). We 316 

then compared these ratios and associated growth rates with particulate Zn:P measured within 317 

biomass collected at 10, 25, 50 and 100 m at the experimental site. At each of these surface 318 

depths, Zn:P measured at the experimental site was ~ 2E-4 mol:mol, which, in comparison to 319 
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cultured diatom Zn:P ratios, fell within the range of severely Zn-limited growth rates 320 

(Supplementary Figure 6), again demonstrating the propensity for Zn-limited growth in this 321 

region and corroborating the incubation results.  322 

3 Discussion 323 

Antarctic waters are generally considered to not be prone to Zn limitation, given that high 324 

(> 1nM) dZn concentrations are typically observed in surface Southern Ocean waters (Coale et 325 

al. 2003). However, we observed multiple independent lines of evidence from both the field 326 

incubation experiment (chlorophyll, DIC, Zn and Fe biomarker proteins) and contextual 327 

environmental biogeochemical data of the water column at the incubation site (dZn, Zn uptake 328 

rates, pigments, cellular Zn:P stoichiometry, metaproteomic, and metatranscriptomic analyses) 329 

demonstrating that phytoplankton within Terra Nova Bay of the Ross Sea, Antarctica, were 330 

experiencing Zn and Fe nutritional stress.  331 

Multiple factors could be considered as potential drivers in the creation of Zn-limiting 332 

conditions in the field, including Zn demand imposed by total biomass and the species 333 

comprising this biomass. The phytoplankton bloom observed during this expedition was 334 

comprised primarily of diatoms and Phaeocystis, consistent with previous Ross Sea seasonal 335 

blooms (Smith et al. 2006; Arrigo et al. 2012; Mangoni et al. 2019), and which contributed to the 336 

observed high Zn uptake rates and thus surface Zn depletion (Kell et al. 2024), resulting in 337 

nutrient-like dZn profiles throughout TNB.  338 

Our field observation of Zn limitation was made in an environment characterized by 339 

diminished pCO2, which we consider as a factor potentially driving Zn stress. We observed a 340 

substantial drawdown of surface seawater pCO2 to 221 μatm at the incubation site (a ~45% 341 

decrease compared to offshore waters in the Ross Sea measured during the same time frame; Fig. 342 
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1b). Biology was the driver of this decrease in pCO2, rather than freshwater input from glacial 343 

and sea ice melt. This is evident in the physicochemical data, where over the measured salinity 344 

range (S=33.6-34.8), the effect of simple dilution by freshwater input (DIC=Total Alkalinity=0) 345 

would result in a reduction of pCO2 by only ~8-9 ppm. The signals we observe are much larger 346 

than that, consistent with a large phytoplankton uptake driver. The total alkalinity (TA) also does 347 

not change proportionally with DIC in this region, which is also not consistent with dilution 348 

driving a conservative mixing of TA and DIC. 349 

Laboratory studies have unequivocally demonstrated that marine phytoplankton can 350 

easily be Zn-limited in culture due to their large Zn requirement, and that this effect is 351 

exacerbated at low pCO2 (Morel et al. 1994; Sunda and Huntsman 2005) due to the use of Zn as 352 

a required catalytic cofactor within carbonic anhydrase (CA) metalloenzymes (Sunda and 353 

Huntsman 2005). CAs catalyze the reversible dehydration of HCO3
- to CO2, the substrate 354 

required by the carbon fixing enzyme RUBISCO. As HCO3
- constitutes about 90% of the 355 

dissolved inorganic carbon (DIC) pool in the surface ocean, sufficient CA activity prevents 356 

carbon stress in marine phytoplankton by ensuring adequate CO2 supply to RUBISCO. It has 357 

therefore been hypothesized that the combination of high biomass and resulting low CO2 may 358 

cause severe Zn depletion that may limit algal growth rates due to lack of Zn and thus reduced 359 

CA activity, and thus reduced availability of carbon for photosynthesis (Morel et al. 1994; Sunda 360 

and Huntsman 2005). This Zn-C limitation relationship is referred to as ‘biochemically 361 

dependent co-limitation’, in which the availability of one nutrient is essential for the acquisition 362 

or utilization of another nutrient, especially at low concentrations (Saito et al. 2008). 363 

To explore this in the context of our field observations, using the available quantitative 364 

constraints on Zn and CO2 co-limitation thresholds available from the literature (see Methods), 365 
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we estimated that the threshold for Zn-CO2 limitation in culture synthesized across many alga 366 

occurs at 259 μatm pCO2. We then compared this laboratory-determined Zn/C limitation 367 

threshold estimate to both the in situ 221 μatm pCO2 measured at our field study site, and to the 368 

historical, global trend in surface ocean pCO2 (Fig. 4a,b). Global surface ocean pCO2 levels are 369 

rapidly rising above both the laboratory-estimated 259 μatm pCO2 Zn/C limitation threshold and 370 

our field observation value of 221 μatm (Jiang et al. 2023) (Fig. 4a,b). Though only a fraction of 371 

the modern-day surface ocean is currently at ≤ 250 ppm pCO2 (predominantly comprised of 372 

polar regions; Fig. 4c), this represents a large decrease in oceanic extent compared to only 100 373 

years ago (Fig. 4d). Even though this may move the majority of oceanic regions farther from Zn 374 

and C limitation thresholds, there continue to be highly productive and episodic coastal blooming 375 

events that induce significant pCO2 drawdown (Harrison et al. 2018; Dai et al. 2022). These 376 

coastal regions are increasingly recognized as being disproportionally significant contributors to 377 

global ocean carbon export (with respect to their area), particularly at the high latitudes (Harrison 378 

et al. 2018; Dai et al. 2022), and will hence continue to be prone to Zn stress at low CO2 as we 379 

have observed. Many other coastal regions have been observed to experience depressed CO2 380 

such as the Amundsen Sea (Tortell et al. 2012), Amazon River plume (Valerio et al. 2021), the 381 

west Florida Shelf (Robbins et al. 2018), the East China Sea (Shim et al. 2007), the Northern 382 

Gotland Sea (Schneider and Müller 2018), and Monterey Bay, California (Chavez et al. 2018) to 383 

name a few examples. On the other hand, it is likely that despite rising pCO₂ levels, some coastal 384 

regions will continue to experience episodic or persistent low pCO₂ due to high productivity (as 385 

observed in this study), freshwater inputs, or other regional processes. Though we do not attempt 386 

to model future pCO₂ dynamics in these areas, our results suggest that Zn status may continue to 387 

be an important physiological constraint under low pCO₂ conditions, particularly in productive 388 
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coastal systems. As such, Zn limitation should be considered as part of the broader framework 389 

for understanding carbon cycling in these regions, especially as they play a disproportionate role 390 

in global carbon export. 391 

4 Conclusions 392 

Given the great challenge of conducting Zn manipulation experiments without 393 

contamination, we did not try to manipulate pCO2 as an additional experimental treatment. 394 

Instead, we actively sought out a low pCO2 environment for the study site, building on prior 395 

laboratory studies and a cadmium (Cd) pCO2 field study (Cullen et al. 1999). The interaction of 396 

Zn (and Cd and Co) with CO2 is an important area of future research, particularly in coastal 397 

environments. With the continuing rise in atmospheric and surface ocean pCO2 levels, broader 398 

changes in the biogeochemical cycling of Zn and other bioavailable trace metals will likely occur 399 

within the oceans, influencing NPP and thus total ocean carbon storage capacity. These low 400 

pCO2 conditions environments that routinely occur in numerous coastal environments globally 401 

should be further examined for Zn effects in addition to carbon uptake dynamics in different 402 

temperature environments (Tortell et al. 2008; Dai et al. 2022). While there are elaborate 403 

biochemical capabilities available to many marine algae for dealing with Zn scarcity (Kellogg et 404 

al. 2022a), our results suggest that the geographic extent of possible Zn/C co-limiting 405 

environments may further decrease in the coming decades with rising anthropogenic CO2 406 

emissions. Despite this, the biochemical demand for Zn in marine organisms remains substantial, 407 

with cellular demand rivaling that of Fe. The multitude of metabolic functions requiring Zn, 408 

including but not limited to carbonic anhydrase activity, implies the need for further exploration 409 

of Zn influences on primary productivity in a changing ocean environment.  410 

 411 
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5 Materials and Methods 412 

5.1 Study area and sample collection  413 

 Sample collection occurred during the CICLOPS (Cobalamin and Iron Co-limitation of 414 

Phytoplankton Species) expedition (NBP18-01) aboard the RVIB Nathaniel B. Palmer, 415 

December 11, 2017 – March 3, 2018 in the Amundsen Sea and Ross Sea of the Southern Ocean 416 

(Fig. 1a). Station metadata is provided in Supplementary Table 2. All stations were assumed to 417 

be representative of TNB during this temporal study (as evident in the total dissolved metal, 418 

macronutrient, and chlorophyll a datasets). Water samples for dissolved trace metal analyses 419 

were collected using trace metal sampling protocols described previously (Cutter and Bruland 420 

2012). A trace metal clean rosette suspended on a Kevlar line and equipped with twelve 8L X-421 

Niskin bottles (Ocean Test Equipment) was used to collect seawater at depths ranging from 10 – 422 

600 m. Niskin bottles were transported to a positive-pressure trace metal clean shipboard van for 423 

filtration upon surfacing. Total fluorescence on the vertical profiles was measured using an ECO 424 

chlorophyll fluorometer (Wet Labs) equipped to the rosette. The rosette also included 425 

instrumentation for measuring conductivity and temperature (Sea-Bird Electronics).  426 

 427 

5.2 Preparation of plasticware 428 

 Polyethylene and polycarbonate sampling and incubation bottles were rigorously cleaned 429 

to remove trace metal contaminants before use. Bottles were rinsed with 18.2 Ω Milli-Q water 430 

(Millipore), soaked for 72h in <1% Citranox detergent, rotated, soaked for an additional 72h, and 431 

then rinsed five times with Milli-Q water. Bottles were then filled with 10% HCl (Baker instar-432 

analyzed) by volume and soaked for a minimum of one week, rotated, and soaked for another 433 
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week. Bottles were then rinsed five times with dilute acid (HCl, pH 2) and stored double-bagged 434 

in plastic zip bags. All cleaning work was conducted in a Class 100 clean room. 435 

 436 

5.3 Underway seawater pCO2 partial pressure 437 

 Surface water pCO2 measurements were conducted aboard the RVIB Nathaniel B. 438 

Palmer using an underway method consisting of an air-water equilibrator and IR CO2 analyzer 439 

developed and operated by the Lamont-Doherty Earth Observatory (LDEO) group (Takahashi et 440 

al. 2020). A complete data report and sensor list are 441 

available: https://service.rvdata.us/data/cruise/NBP1801/doc/NBP1801DATA.pdf (last access: 442 

14 December 2024) (https://www.rvdata.us/, last access: 14 December 2024). 443 

 444 

5.4 TDIC and POC measurements 445 

 Total alkalinity (TA) and dissolved inorganic carbon (DIC) were measured on CTD and 446 

incubations samples in near real-time aboard the NBP. Dissolved inorganic carbon (DIC) and 447 

total alkalinity (TA) samples were collected following previously established protocols (Dickson 448 

et al. 2007). DIC analyses were conducted within ~4 h of collection. We acidified 1.25 mL of 449 

sample using an automated custom-built injection and bubble stripping system coupled to an 450 

infrared gas analyzer (LICOR LI7000) and integrated the infrared absorption signal versus time 451 

for each stripped gas sample to yield a total mass of CO2. Each sample was analyzed in triplicate 452 

or greater. Since microbubbles regularly formed as samples warmed between sample acquisition 453 

and DIC analysis, every integration curve was visually inspected and those curves that exhibited 454 

evidence for bubbles were rejected. Certified reference materials (Dickson CRM batch 169) were 455 

analyzed between every 3 to 4 unknowns. The estimated precision based upon unknowns (>860 456 

https://service.rvdata.us/data/cruise/NBP1801/doc/NBP1801DATA.pdf
https://www.rvdata.us/
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samples run in triplicate) and CRM replicates (n = 738) was ± 2.0 µmol kg−1 (±1 SD). Analyses 457 

for TA on filtered samples were completed within ~12 h of collection by using a potentiometric 458 

titrator (Metrohm 855 Robotic Titrosampler) (DeJong et al. 2015). The estimated precision based 459 

on replicate analyses of CRMs (n = 195) was ± 2.6 µmol kg−1 (±1 SD). 460 

 461 

5.5 Analysis of historical atmospheric and surface ocean pCO2 trends 462 

Decadal surface ocean pCO2 reconstructions  (Jiang et al. 2023) were downloaded, 463 

binned by decade, and plotted using the ‘violinplot’ in MATLAB. Atmospheric pCO2 data was 464 

assembled from the running Mauna Loa record (Keeling et al. 1976), and from measurements 465 

made on Antarctic firn ice (Etheridge et al. 1996). 466 

 467 

5.6 Calculation of Zn-and pCO2 co-limitation of phytoplankton thresholds 468 

There are few experimental measurements of Zn- and pCO2-co-limitation, either in the 469 

lab or in situ. This study documented Zn of a natural phytoplankton assemblage in the field at a 470 

pCO2 of ~220 ppm. In the literature, several models exist to interpret co-limitation (Buitenhuis et 471 

al. 2003; Saito et al. 2008). For this study we chose to use the biochemically dependent co-472 

limitation model for growth rate (μ): 473 

  474 

where Vmax is the maximum growth rate, [CO2(aq)] is the aqueous CO2 concentration of the 475 

growth medium in micromoles per kilogram of seawater, Ks is the half-saturation constant in 476 

micromoles per kilogram of seawater, and φ is a Zn-dependent growth term: 477 
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 478 

Here, the dissolved Zn concentration in the growth medium [dZn] is modified by a Zn-dependent 479 

saturation constant (Ks,Zn). Few studies have enough experimental data to robustly establish a 480 

kinetic relationship between [dZn] and [CO2(aq)], so we compiled several estimates for these 481 

terms from the literature. Diatom growth rates under pCO2 limitation were taken from Riebesell 482 

et al. (1993) (Riebesell et al. 1993). Reported pH and temperature measurements for each 483 

treatment, a total alkalinity of 2300 μmol kg-1, and a salinity of 35 were used to calculate 484 

aqueous CO2 concentrations using CO2SYSv3.2.1.(Sharp et al. 2023). Reported Vmax and Ks for 485 

D. brightwellii, T. punctigera, and R. alata were 1.46, 1.30, and 0.93 d-1, and 1.4, 1.2, and 2.1 486 

μmol kg-1, respectively. Values for coccolithophore growth (Ks = 0.97 μmol kg-1, Vmax = 4.7 d-1) 487 

were taken from Krumhardt et al. (2017) (Krumhardt et al. 2017). A value for Ks,Zn of 300 pmol 488 

L-1 was taken from Buitenhuis et al. (2003). This value is for the coccolithophore E. huxleyii 489 

generated under varying CO2 and Zn conditions, and Zn response growth curves under single 490 

CO2 conditions (ambient) are similar to other diatoms like T. pseudonana (Sunda and Huntsman 491 

1995). The value of 300 pmol L-1 appears high, but is tied to the functional form of the 492 

biochemically co-limitation equation (Buitenhuis et al. 2003; Saito et al. 2008). Based on the 493 

same dataset and different models for co-limitation, Buitenhuis et al. (2003) arrived at Ks,Zn 494 

values of ranging from 38 pmol L-1 to 300 pmol L-1. They calculated Zn-limitation alone, at CO2-495 

replete conditions, of 19 pmol L-1. Thus, the chosen value of Ks,Zn is not a reflection of high Zn 496 

demand but determined by the functionality of biochemical co-limitation by Zn and C.  497 

To calculate φ, a surface ocean Zn concentration of 50 pmol L-1 was assumed (Bruland 498 

1980; Wyatt et al. 2014). While these concentrations reflect total dissolved Zn, the relationship 499 
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between bioavailable free Zn and dZn, especially in the field, remains unclear. Eq. 1 was then 500 

used to calculate effective CO2 concentrations (and thus pCO2 values) at which growth is halved, 501 

or in other words, μ = 0.5Vmax. We note that this calculation is distinct from the CO2 half-502 

saturation constant because of the co-limitation by Zn. The median pCO2 threshold for 50% 503 

growth from the three diatom species was 278 ppm. Including coccolithophores decreases the 504 

median to 259 ppm. These values are slightly higher than the in situ evidence for Zn limitation at 505 

220 ppm presented in the present study. Our results cannot be considered as an upper bound for 506 

Zn-CO2 limitation, but serve as evidence for growth limitation under those specific 507 

environmental conditions.   508 

 509 

5.7 Analyses of total dissolved metals using isotope dilution 510 

 The analysis of total dissolved metals for this expedition has been described previously 511 

(Kell et al. 2024). Briefly, seawater collected shipboard by pressure-filtering X-Niskin bottles 512 

through an acid-washed 142 mm, 0.2 µm polyethersulfone Supor membrane filter (Pall) within 3 513 

hours of rosette recovery using high purity (99.999%) N2 gas and stored at 4⁰C. All sample 514 

collection occurred shipboard within an on-deck trace metal clean van. Samples were acidified to 515 

pH 1.7 with high purity HCl (Optima) within 7 months of collection and were stored acidified at 516 

room temperature for over 1 year prior to analysis. This extended acidification time was used to 517 

counteract any loss of metal due to adsorption to the bottle walls (Jensen et al. 2020b),  518 

Quantification of total dissolved Fe, Mn, Ni, Cu, Zn, and Cd was performed using isotope 519 

dilution. Acidified seawater samples were spiked with a stable isotope spike solution artificially 520 

enriched in 57Fe, 61Ni, 65Cu, 67Zn, and 110Cd (Oak Ridge National Laboratory). Concentrations 521 

and spike ratios were verified by ICP-MS using a multi-element standard curve (SPEX 522 
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CertiPrep). Preconcentration of spiked seawater samples for total dissolved metal analysis was 523 

performed using the automated solid phase extraction system seaFAST-pico (Elemental 524 

Scientific) in offline concentration mode with an initial volume of 15mL and elution volume of 525 

500µL (Rapp et al. 2017; Wuttig et al. 2019). Following preconcentration, multielemental 526 

quantitative analysis was performed using an iCAP-Q inductively coupled plasma-mass 527 

spectrometer (ICP-MS) (Thermo Scientific). Concentrations of Mn, Fe, Ni, Cu, Zn and Cd were 528 

determined using a six-point external standard curve of a multi-element standard (SPEX 529 

CertiPrep), diluted to range from 1-10 ppb in 5% nitric acid. An indium standard (SPEX 530 

CertiPrep) was similarly added to these standard stocks, diluted to range 1-10 ppb. Instrument 531 

injection blanks consisted of 5% nitric acid in Milli-Q. Standard curve R2 values were ≥0.98 for 532 

all metals monitored. Method accuracy and precision were assessed using the 2009 533 

GEOTRACES coastal surface seawater (GSC) standard (n = 8; Supplementary Table 7), which 534 

produced values consistent with consensus results (Kell et al. 2024). 535 

 536 

5.8 Macronutrient, pigment, and Fv/Fm analyses 537 

Seawater for macronutrient (silicate, phosphate, nitrate, and nitrite) analyses were filtered 538 

through 0.2 μm pore-size Supor membrane filters and frozen at sea in acid-washed 60-mL high-539 

density polyethylene bottles until analysis. Macronutrient analyses were conducted by nutrient 540 

autoanalyzer (Technicon Autoanalyzer II) by Joe Jennings at Oregon State University. The 541 

chemotaxonomic distribution of phytoplankton pigments was determined using HPLC as 542 

described previously (DiTullio et al. 2003). Photosynthetic efficiency of photosystem II (Fv/Fm) 543 

was measured using a Phyto PAM phytoplankton analyzer (Walz, Effeltrich, Germany) as 544 

described previously (Schanke et al. 2021). 545 
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5.9 Bacterial abundance 546 

 One ml samples for heterotrophic prokaryotes abundance (HPA) analysis were fixed for 547 

10 min with a mix of paraformaldehyde and glutaraldehyde (1% and 0.05% final concentration, 548 

respectively), frozen in liquid nitrogen and stored at −80°C until analysis. After thawing, 549 

samples were stained with SYBR Green (Invitrogen Milan, Italy) using 10−3 dilution of stock 550 

solution for 15 min at room temperature. Cell concentrations were assessed using a FACSVerse 551 

flow cytometer (BD BioSciences Inc., Franklin Lakes, USA) equipped with a 488 nm Ar laser 552 

and standard set of optical filters. FCS Express software was used for analyzing the data and HP 553 

were discriminated from other particles on the basis of scatter and green fluorescence from 554 

SYBR Green (Balestra et al. 2011). 555 

 556 

5.10 ICP-MS analysis and Zn uptake rates using 67Zn 557 

 67Zn stable isotope uptake experiments were performed to quantify the movement of 558 

dissolved Zn to the particulate phase in units of pmol L-1 d-1 (Kell et al. 2024). Briefly, unfiltered 559 

seawater was collected using the trace metal rosette over a depth range of 10 – 600 m into 560 

250mL trace metal clean polycarbonate bottles. Bottles were spiked with 67Zn such that the total 561 

added (spiked) concentration of Zn was 2 nM. Immediately after spiking, incubation bottles were 562 

sealed, inverted to mix, and transferred to flow-through on-deck incubators for 24hr. Biomass 563 

was collected after 24hr by vacuum filtering each incubation sample at 34.5 kPa (5 psi) onto an 564 

acid-cleaned 3μm pore-size acrylic copolymer Versapore filter (Pall) mounted on an acid-565 

cleaned plastic filtration rig. Sample filters were retrieved from storage at -80°C, removed from 566 

cryovials using plastic acid-washed forceps, and transferred into trace metal clean 15 mL PFA 567 

vials with 4 mL of 5% HNO3 (Optima) containing a 1 ppb Indium (In) internal standard. Filters 568 
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were digested for ~3.5h at 140°C using a HotBlock® heating block (Environmental Express, 569 

USA) before they were removed and discarded. After evaporating the remaining solution to just 570 

dryness, the residue was resuspended in 2 mL of 5% HNO3 (Optima) by light vortexing. Process 571 

blank filters were digested and processed as sample filters were. This experiment was also 572 

carried out using 110Cd as a tracer of Cd uptake in separate incubation bottles (data not shown 573 

here). Digests were analyzed in duplicate by ICP-MS using a Thermo ICAP-Q plasma mass 574 

spectrometer calibrated to a multi-element standard curve (Spex Certiprep) over a range of 1 – 575 

20 ppb. Natural Cd and Zn isotope abundances of the standards were assumed to calculate 576 

concentrations of 110Cd, 111Cd, 114Cd, 67Zn, 66Zn, and 68Zn. Total Zn uptake (pmol L-1 d-1) was 577 

calculated using particulate 67Zn and total water column dZn measurements as described 578 

previously (Cox et al. 2014). The particulate metal measurements captured contributions from 579 

the active transport of metal into cells, nonspecific metal adsorption to cell surfaces, metal 580 

adsorption to non-living particulate organic matter, and metal adsorption to particulate inorganic 581 

matter, though we expect active transport into cells to dominate the measured particulate isotopic 582 

signal due to the high abundance of actively growing autotrophic cells in the photic zone 583 

observed in Southern Ocean during austral summer. Particulate Zn:P measurements were 584 

calculated using particulate Zn measured on Cd-spiked filters and thus do not include any pZn 585 

contribution from Zn tracer addition. Particulate phosphorus concentrations were measured by 586 

ICP-MS simultaneously and were calibrated to a standard curve ranging from 100 to 3200 ppb 587 

using a 1 ppm certified P stock (Alfa Aesar Specpure). All SPEX and P standard curves had R2 588 

values > 0.99. The Zn stock solution used in the incubation experiments was similarly analyzed 589 

by ICP-MS to confirm that the stock was not Fe contaminated— this analysis showed that less 590 

than 2.3 pM (which was near the instrument blank level for this analysis) of iron was added for 591 
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every 2 nM of zinc, far less than needed to stimulate phytoplankton to the extent observed in our 592 

experiments. 593 

 594 

5.11 Shipboard incubation experiments 595 

 Incubation experiments were conducted at station 27 (-74.9870°N, 165.8898°E). Raw 596 

surface seawater was pumped directly into a cleanroom container van, collected into acid-597 

cleaned 50L carboys, and dispensed into acid-washed 1L polycarbonate bottles using a trace 598 

metal sampling system with acid-washed polypropylene tubing and a teflon diaphragm pump. 599 

Incubation bottles were first rinsed with seawater then filled. Seawater was collected at 16:05 600 

UTC. Triplicate incubation bottles were amended with +Fe (1 nM), +Zn (2 nM) and +Fe+Zn, 601 

sealed, and placed into a flow-through on-deck incubator with light screens that shaded the 602 

incubator to 20% percent ambient surface irradiance. Incubations were sampled at 0, 48, 96, and 603 

144 hours (corresponding to T0, T2, T4, and T6 timepoints) for analysis by filtering onto GFF 604 

filters for chlorophyll (all time points, biological triplicates), pigment analyses (T6, biological 605 

triplicates), and proteomic analyses (T6, pooled biological triplicates). Chlorophyll was extracted 606 

immediately, otherwise samples were frozen at -80°C until further analyses, with pigment and 607 

protein samples kept in -80°C freezers, liquid nitrogen dewars, or dry ice coolers at all times 608 

during transport back to the laboratories. All amendments and sampling were conducted in a 609 

positive-pressure, clean room van with laminar flow hoods and plastic sheeting to minimize 610 

trace-metal contamination. 611 

 612 

5.12 Metaproteomic analysis 613 
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 Water column metaproteomic biomass was collected onto 0.2, 3, and 51 µm pore-size 614 

filters (“field filters”) using in-situ battery operated McLane pumps. Half of each field filter was 615 

processed for metaproteomic analysis.  Incubation metaproteomic biomass was serially filtered 616 

through a 5µm pore prefilter followed by a 142mm GFF filter. Three-fourths of each GFF filter 617 

was used for subsequent metaproteomic analysis of the incubations. All filters were frozen at -618 

80°C and stored until laboratory extraction. To extract proteins, filters were placed into 619 

extraction buffer (1% SDS, 0.1M Tris/HCL pH 7.5, 10mM EDTA). 8 mL of buffer was used for 620 

each field filter, and 15 mL of buffer was used for each GFF incubation filter. All reagents were 621 

made with HPLC-grade water. Samples were heated at 95°C for 10 minutes and shaken at room 622 

temperature for 30 minutes. Filters were removed and protein extracts were filtered through 5.0 623 

µm Millex low protein binding filters (Merck Millipore #SLSV025LS). Millex filters were 624 

rinsed with 1 mL of extraction buffer to ensure no loss of protein. Samples were then spun for 30 625 

minutes at 3220 rcf in an Eppendorf 5810 centrifuge. The supernatant was transferred to 626 

Vivaspin 5K MWCO ultrafiltration columns (Sartorius  #VS0611). Protein extracts were 627 

concentrated to approximately 300 µL, washed with 1 mL of extraction buffer, and transferred to 628 

a 2 mL ethanol-washed microtube (all tubes from this point on are ethanol-washed). Vivaspin 629 

columns were rinsed with small volumes of protein extraction buffer to remove all concentrated 630 

protein and samples were brought up to 400 µL with extraction buffer. Samples were incubated 631 

with 2 µL benzonase nuclease (EMD Millipore 70746-3) for 30 minutes at 37°C. 632 

Extracted proteins were purified from SDS detergent, reduced, alkylated and digested 633 

with trypsin while embedded within a polyacrylamide tube gel, using a modified, previously 634 

published method (Lu and Zhu 2005). A gel premix was made by combining 1 M Tris HCL (pH 635 

7.5) and 40% Bis-acrylamide L 29:1 (Acros Organics) at a ratio of 1:3. The premix (103 µL) was 636 
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combined with 50-100 µg of the extracted protein sample, Tris-EDTA, 7 µL 1% APS and 3 µL 637 

of TEMED (Acros Organics) to a final volume of 200 µL. After 1 hour of polymerization at 638 

room temperature, 200 µL of gel fix solution (50% ETOH, 10% acetic acid in LC/MS grade 639 

water) was added to the top of the gel and incubated at room temperature for 20 minutes. Liquid 640 

was then removed and the tube gel was transferred into a new 1.5 mL microtube containing 1.2 641 

mL of gel fix solution before incubating at room temperature, 350 rpm in a Thermomixer R 642 

(Eppendorf) for 1 h. Gel fix solution was removed and replaced with 1.2 mL of destain solution 643 

(50% MeOH, 10% acetic acid in LC/MS grade water) and incubated at 350 rpm, room 644 

temperature for 2 h. Liquid was removed, gels were cut up into 1 mm cubes and added back to 645 

tubes containing 1 mL of 50:50 acetonitrile:25 mM ammonium bicarbonate (ambic) and 646 

incubated for 1 h, 350 rpm at room temperature. Liquid was removed and replaced with fresh 647 

50:50 acetonitrile:ambic solution and incubated at 16°C, 350 rpm overnight. The above step was 648 

repeated for 1 hour the following morning. Gel pieces were then dehydrated twice in 800 µl of 649 

acetonitrile for 10 min at room temperature and dried for 10 min in a ThermoSavant DNA110 650 

speedvac after removing the solvent. Proteins were reduced in 600 µL of 10 mM DTT, 25 mM 651 

ambic at 56°C, 350 rpm for 1 h. The volume of unabsorbed DTT solution was measured prior to 652 

removal. Gel pieces were washed with 25 mM ambic, and 600 µL of 55 mM iodoacetamide was 653 

added to alkylate proteins at RT, 350 rpm for 1 h. Gel cubes were then washed with 1 mL ambic 654 

for 20 minutes, 350 rpm at RT. Acetonitrile (1mL) dehydrations and speedvac drying were 655 

repeated as described above. Trypsin (Promega #V5280) was added in an appropriate volume of 656 

25 mM ambic to rehydrate and submerse gel pieces at a concentration of 1:20 µg trypsin:protein. 657 

Proteins were digested overnight at 350 rpm, 37°C. Unabsorbed solution was removed and 658 

transferred to a new tube. 50 µl of peptide extraction buffer (50% acetonitrile, 5% formic acid in 659 
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water) was added to gels, incubated for 20 min at RT, then centrifuged at 14,100 x g for 2 min. 660 

The supernatant was collected and combined with the corresponding unabsorbed solution. The 661 

above peptide extraction step was repeated again, combining corresponding supernatants. 662 

Combined digested peptides were centrifuged at 14,100 x g for 20 minutes, supernatants 663 

transferred into a new tube and dehydrated down to approximately 20 µL in the speedvac. Total 664 

digested peptides were quantified (Bio-Rad DC protein assay, Hercules, CA) with BSA as a 665 

standard. Peptides were then diluted in 2% acetonitrile, 0.1% formic acid in LC/MS grade water 666 

to a concentration of 1µg/µL for storage until analysis. All water used in the tube gel digestion 667 

protocol was LC/MS grade, and all plastic microtubes were ethanol rinsed and dried prior to use.  668 

Purified peptides were diluted to 0.1 μg μl−1 and 20 μl (2 μg) was injected onto a Dionex 669 

UltiMate 3000 RSLCnano LC system (Thermo Fisher Scientific) with an additional RSLCnano 670 

pump run in online two-dimensional active modulation mode coupled to a Thermo Fusion Orbitrap 671 

mass spectrometer as described previously (McIlvin and Saito 2021).  672 

 A translated metatranscriptome (see below) was used as a reference protein database and 673 

peptide spectra matches were performed using the SEQUEST algorithm within Proteome 674 

Discoverer v.2.1 (Thermo Fisher Scientific) with a fragment tolerance of 0.6 Da and parent 675 

tolerance of 10 ppm. Identification criteria consisted of a peptide threshold of 95% (false 676 

discovery rate (FDR) = 0.1%) and protein threshold of 99% (1 peptide minimum, FDR = 0.8%) 677 

in Scaffold v.5 (Proteome Software) resulting in 5,387 proteins identified in the incubation 678 

experiment and 27,924 proteins identified in the water column. To avoid double-counting mass 679 

spectra, exclusive spectral counts were used for the downstream proteomic analysis. Exclusive 680 

spectral counts were normalized using the normalized spectral abundance factor (NSAF) 681 

calculation (Zhang et al. 2010) to allow for a comparison of protein abundance across samples 682 
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while remaining consistent with the metatranscriptomic procedure, see Cohen et al. 2021 for 683 

details. Counts associated with redundant ORFs (sharing identical taxonomic and functional 684 

assignments) were summed together. The stand-alone command line application BLAST+ from 685 

the National Center for Biotechnology Information (NCBI) was used to identify proteins of 686 

interest in the metaproteomic data. Metaproteomes were BLAST searched (E = 5e-5) against the 687 

known sequences of proteins of interest acquired from annotated proteomic databases 688 

(Supplementary Table 4) and combined with further annotation data based on contig ID (see 689 

below).  690 

 691 

5.13 Metatranscriptomic analysis 692 

 RNA sequencing was performed using the Illumina HiSeq platform. Transcriptomic 693 

assemblies were generated for biomass collected using McLane pumps filtered through 0.2, 3, 694 

and 51 μm pore-size filters. In order to enrich metatranscriptomic libraries derived from 0.2 μm 695 

filters in prokaryotic transcripts and libraries derived from 3 μm and 51 μm filters in eukaryotic 696 

transcripts, 0.2 μm libraries were generated from total rRNA-depleted mRNA and 3 μm and 51 697 

μm libraries were generated from polyA mRNA. Total RNA was extracted from 0.2 μm, 3 μm, 698 

and 51μm filters using Macherey-Nagel a NucleoMag RNA kit (Macherey-Nagel GmbH & 699 

Co.KG). Cleared lysate was loaded into a 96 deep-well plate and put on an epMotion 5075 TMX 700 

liquid handler to complete the RNA extraction following the Machery-Nagel standard protocol. 701 

For 3 μm and 51 μm samples with total RNA greater than 1 μg, 800 ng of total RNA was used 702 

for preparing poly A libraries with an Illumina Stranded mRNA Prep Ligation kit (Illumina), 703 

following the manufacturer’s protocol. For the 3 μm and 51 μm samples with total RNA less 704 

than 1 μg, 20 ng of total RNA was used as input for the SMART-Seq v4 Ultra Low Input RNA 705 
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kit (Takara Bio USA. Inc), which converts poly(A) RNA to full-length cDNA using a modified 706 

oligo (dT) primer with simultaneous cDNA amplification. The resulting double-stranded cDNA 707 

was then fragmented using a Covaris E210 system with the target size of 300bp. Libraries were 708 

prepared from fragmented double-stranded cDNA using an Illumina Stranded mRNA Prep 709 

Ligation kit (Illumina). For RNA obtained from 0.2 μm filters, ribosomal RNA was removed 710 

using a riboPOOL Seawater Kit (Galen Laboratory Supplies, North Haven, Connecticut, USA). 711 

The riboPOOL Seawater Kit is a customized mixture of Removal Solutions: Pan-Prokaryote 712 

riboPOOL, Pan-Plant riboPOOL and Pan-Mammal in a ratio of 6:1:1. The rRNA-depleted total 713 

RNA was used for cDNA synthesis by Ovation RNA-Seq System V2 (TECAN, Redwood City, 714 

USA). Double stranded cDNA was then prepared for the libraries using an Illumina Stranded 715 

mRNA Prep Ligation kit (Illumina). Ampure XP beads (Beckman Coulter) were used for final 716 

library purification. Library quality was analyzed on a 2200 TapeStation System with an Agilent 717 

High Sensitivity DNA 1000 ScreenTape System (Agilent Technologies, Santa Clara, CA, USA). 718 

Resulting libraries were subjected to paired-end Illumina sequencing via NovaSeq S4.  719 

The input paired-end fastq sequences are trimmed of sequencing adapters, primers and 720 

low quality bases by using either BLASTN (NCBI, v2.2.25) (Altschul et al. 1990) or 721 

trimmomatic, v0.36 (Bolger et al. 2014). The trimmed paired and unpaired sequences were then 722 

depleted of rRNA sequences with riboPicker v0.4.3 (Schmieder et al. 2012). The command-line 723 

program clc_assembler, v5.2.1 (Qiagen) was used to assemble processed sequences into contigs 724 

and ORFs were identified by FragGeneScan, v1.31 (Rho et al. 2010). The trimmed sequences 725 

were mapped to the predicted ORFs using the command-line program clc_mapper, v5.2.1 726 

(Qiagen) to generate mapped raw read counts for each ORF. The raw counts were normalized 727 

initially to RPKM values, to account for variations in inter-sample sequencing depth and the 728 
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ORF sequence length (Mortazavi et al. 2008). The RPKM values were subsequently converted to 729 

TPM (transcripts per million) units for estimation of the relative RNA abundance among samples 730 

(Li and Dewey 2011). The ORFs were annotated for putative function by several programs in 731 

parallel using BLASTP against PhyloDB, hidden Markov models PFAM and TIGRFAM by 732 

HMMER, v3.3.2 (Eddy 2011), KEGG Ortholog HMM by kofamscan, v1.3.0 (Aramaki et al. 733 

2020), and transmembrane HMM by TMHMM (Krogh et al. 2001). Additional annotations were 734 

generated by similarity searches using BLASTP to transporter (PhyloDB), organelle (PhyloDB) 735 

and KOG (Tatusov et al. 2003) databases. The ORFs are assigned to the best taxonomic 736 

species/group as determined by LPI (Lineage Probability Index) analysis (Podell and 737 

Gaasterland 2007). The final list of curated ORFs was generated by removing ORFs with low 738 

mapping coverage (< 50 reads total over all samples) and with no BLAST hits and no known 739 

domains. 740 

 741 

5.14 Statistical analysis and data visualization 742 

 ANOVA and Dunnett tests were performed using MATLAB 2019a. Statistics are 743 

summarized in Supplementary Table 3. Figures were made using matplotlib (version 3.5.0), 744 

Ocean Data View (version 5.5.2), Excel (2019), and RStudio (version 1.3.1093). Color palettes 745 

used in Ocean Data View section plots (https://doi.org/10.5281/zenodo.1243862) are inverse 746 

“roma” for trace metal concentrations, “thermal” for Zn and Cd uptake rates, and “algae” for 747 

chlorophyll fluorescence (Crameri 2023). 748 

 749 

Data Availability 750 

https://doi.org/10.5281/zenodo.1243862
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CICLOPS (NBP18-01) conductivity–temperature–depth (CTD) hydrography data 751 

including pressure, temperature, total dissolved oxygen, conductivity, fluorescence, and beam 752 

transmission (https://doi.org/10.1575/1912/bco-dmo.783911.1) and total dissolved metal, Zn and 753 

Cd uptake rate, macronutrient, and pigment datasets are available through the NSF Biological 754 

and Chemical Oceanography Data Management Office (BCO-DMO) repository 755 

(https://doi.org/10.7284/907753). Underway pCO2 data collected during cruise NBP1801 are 756 

available through R2R at https://doi.org/10.7284/139318. The mass spectrometry global 757 

proteomics data for CICLOPS bottle incubations and water column analyses have been deposited 758 

with the ProteomeXchange Consortium through the PRIDE repository under the project name 759 

“Zinc-iron co-limitation of natural marine phytoplankton assemblages in coastal Antarctica” with 760 

project accession number PXD037056 761 

(https://www.ebi.ac.uk/pride/archive/projects/PXD037056). This data is accessible for review by 762 

using the following login information: username reviewer_pxd037056@ebi.ac.uk, password: 763 

lFdOUoEb. The translated transcriptome used for spectrum to peptide matching has been 764 

deposited in the National Center for Biotechnology Information sequence read archive under 765 

BioProject accession no. PRJNA890306 766 

(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA890306) and RNA-Seq BioSample 767 

accession nos. SAMN31286421-SAMN31286522 768 

(https://www.ncbi.nlm.nih.gov/biosample/?term=SAMN31286421). 769 
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Figures 797 

 798 

 799 

Figure 1. Temporal biogeochemistry of Terra Nova Bay and characterization of the 800 

experimental site at Station 27. (a) Sampling locations over the Ross Sea shelf in Terra Nova 801 

Bay, Antarctica. (b) Location of station 27 (red star) and surrounding seawater pCO2 measured 802 

over a three-day transit northwards represented in color scale. (c) pCO2 measured over time 803 
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within TNB during the three-day transit shown in (b). The vertical red line denotes the pCO2 804 

level at the time of initial seawater collection at station 27. (d) Total chlorophyll fluorescence, 805 

(e) fucoxanthin (fuco), (f) 19' hexanoyloxyfucoxanthin (19'-hex), (g) total dissolved Zn, (h) total 806 

Zn uptake rates, and (i) total dissolved Fe measured in the upper 250 m represented on a color 807 

scale. Station data is presented in order of sampling date, from the earliest (Stn 22, early January) 808 

to the latest (Stn 79, late February). The data gap between January 13-23 occurred when the ship 809 

was unable to sample due to icebreaking duties for the McMurdo Station resupply ship. Stations 810 

indicated in (a) are those where the trace metal rosette (TMR) was deployed; pigment data was 811 

supplemented with additional TNB stations using a CTD (Table S2). Depth profiles of (j) 812 

chlorophyll a, (k) the pigments fuco and 19’hex, (l) total dissolved inorganic carbon (DICT), (m) 813 

total dissolved Zn, (n) total Zn uptake rates, and (o) the macronutrients nitrate+nitrite (N+N), 814 

phosphate (P), and silicate (Si) at the study site. Panels (d),(g),(h) and (i) were originally 815 

presented in Kell et al. (2024) and are reprised here to introduce the environmental context of the 816 

study site. 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 
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 826 

Figure 2. Evidence for Zn co-limitation with Fe in bottle incubations. (a) Chlorophyll a and 827 

(b) total DIC (DICT) at T0 (day 0) and in each treatment at T6 (day 6). Significant differences 828 

among groups were found using one-way ANOVA and post-hoc Dunnett test (*** p < 0.001, ** 829 

p < 0.01, * p < 0.05). Error bars are the standard deviation of biological triplicates (n=3). 830 

Individual data points are overlaid (white circles). (c) Heatmap of row-scaled exclusive protein 831 

spectral counts (normalized total spectra) showing relative protein abundance in each treatment. 832 

The dendrogram shows similarity in spectral abundance among samples based on Euclidean 833 

distance and hierarchical clustering. Color gradients represent low (yellow) to high (blue) protein 834 

expression. Ribulose-1,5-biphosphate carboxylase/oxygenase (RUBISCO), zinc/cobalt 835 

responsive protein A (ZCRP-A), and iron starvation induced proteins (ISIP1, ISIP2A, ISIP3) are 836 

shown. (d) Taxonomies assigned to RUBISCO, ZCRP-A, and ISIP proteins in each treatment at 837 

T6. Counts (normalized total spectra) assigned to each taxa are shown. ISIPs are the combined 838 

spectral counts of ISIP1A, ISIP2A and ISIP3. 839 

 840 
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 841 

Figure 3. Metatranscriptomic and metaproteomic detection of Zn- and Fe-related proteins 842 

of interest at the experimental site. Depth profiles of summed NSAF-normalized protein 843 

spectral counts of (a) RUBISCO, (b) ZCRP-A, (c) iron starvation induced proteins (ISIPs), (d) 844 

ZCRP-B, (e) ZIP, (f) Theta CA, and (g) Delta CA detected from proteomic analysis of each filter 845 

size fraction (0.2, 3 and 51μm). (h) TPM-normalized transcript read counts of CDCA. (i) 846 

Stacked pie charts depicting relative community composition for proteins of interest for euphotic 847 

(< 200 m) and mesopelagic (≥ 200 m) depths. The outer rings show community composition 848 

based on NSAF-normalized protein spectral counts while the inner rings are TPM-normalized 849 

transcript read counts. Protein and transcript counts plotted in (i) were summed across all size 850 

fractions. ISIPs are the combined spectral counts of ISIP1A, ISIP2A and ISIP3. 851 

 852 

 853 

 854 
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 855 

Figure 4. The partial pressure of CO2 (pCO2) and associated phytoplankton responses from 856 

this study and the literature. (a) Pre-industrial and decadal surface ocean pCO2 reconstructions 857 

plotted as violin plots, with a running black line through the median values. The atmospheric 858 

curve is a composite of ice core data (dashed yellow line (Etheridge et al. 1996)) and the Mauna 859 

Loa record (solid yellow line (Keeling et al. 1976)). An estimated thresholds for zinc-limited 860 

growth is plotted as the median of previous laboratory results (259 μatm, dark green line; see 861 

Methods), and is compared to the in situ results of this study (220 μatm, light green line). (b) 862 

Data in (a) plotted as a histogram comparing preindustrial and modern (2010) pCO2 values, with 863 

the same pCO2 levels indicated. (c) Global map of surface ocean pCO2 plotted using 864 

GLODAPv2.2022 data (Lauvset et al. 2022). (b) Percentage of the ocean surface less than 250 865 

μatm pCO2 as a function of time. Surface ocean pCO2 reconstructions taken from Jiang et al. 866 

2023. 867 
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