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Abstract.

The ocean acts as a carbon sink, absorbing carbon from the atmosphere and resulting in
substantial uptake of anthropogenic CO- emissions. As biological processes in the oceans such as
net primary production (NPP) contribute significantly to this sink, understanding how they will
shift in response to increasing atmospheric CO3 is necessary to project future ocean carbon
storage capacity. Macronutrient and micronutrient resource limitation within the oceans regulates
NPP, and while some micronutrients such as zinc (Zn) are present at very low concentrations,
their ability to limit NPP has remained unclear. Zn is a key micronutrient used by phytoplankton
for a multitude of metabolic functions, yet there have been few observations of its influence on
natural oceanic phytoplankton populations. In this study, we observed Zn limitation of growth in
the natural phytoplankton community of Terra Nova Bay, Antarctica, in addition to primary iron
(Fe) limitation. Shipboard incubation experiments amended with Zn and Fe resulted in
significantly higher chlorophyll a content and dissolved inorganic carbon drawdown compared
to Fe addition alone. Zn and Fe stress response proteins detected in incubation and
environmental biomass provided independent verification of algal co-stress for these
micronutrients. We consider total biomass and low surface ocean pCO> as potential drivers of
environmental Zn stress. This study definitively establishes that Zn limitation can occur in the
modern oceans, opening up new possibility space in our understanding of nutrient regulation of
NPP through geologic time, and we consider the future of oceanic Zn limitation in the face of

climate change.

1 Introduction



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Primary productivity in the oceans is a key component of the global carbon cycle and is
largely controlled by the availability of nitrogen (N), phosphorus (P), and iron (Fe). Yet there is
increasing evidence that other micronutrients such as zinc (Zn), cobalt (Co), and vitamin Bi2 can
also influence phytoplankton productivity, often as secondary limiting nutrients after N, P, or Fe
are added (Moore et al. 2013; Browning and Moore 2023). Zn can be particularly scarce in the
photic zone (Bruland 1980; Jakuba et al. 2012) where total dissolved Zn (dZnr) can be below 0.2
nM in seawater due to biological uptake and complexation by organic ligands (Bruland 1989;
Lohan et al. 2002; Baars and Croot 2011; Middag et al. 2019), which further lowers Zn
bioavailability (Sunda and Huntsman 2000; Saito et al. 2008; Lhospice et al. 2017). Marine
eukaryotic algae and copiotrophic bacteria possess a large metabolic demand for Zn that is on
par with that of Fe (Sunda and Huntsman 2000; Mazzotta et al. 2021).

Vertical profiles of dZn in the Southern Ocean have been measured previously. Zn has

not historically been considered as a limiting micronutrient in the Southern Ocean due to the

upwelling of nutrient-rich waters that bring dZn to nanomolar concentrations only a couple

hundred meters below the surface. Yet nutrient-like profiles of dZn are evident throughout this

region, with surface depletion due to biological uptake decreasing this large inventory in the

upper water column (Fitzwater et al. 2000; Coale et al. 2005; Baars and Croot 2011; Sieber et al.

2020; Kell et al. 2024). . . Additionally, both model-

based estimates (Roshan et al. 2018) and direct field measurements (Kell et al. 2024) of Zn

uptake in this region have demonstrated a substantial biological demand for Zn in surface waters

leading to significant dZn drawdown. This is consistent with and genomic and laboratory studies

indicating an elevated Zn demand in polar phytoplankton (Twining and Baines 2013; Ye et al.

2022).
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-Despite the scarcity of bioavailable Zn in the surface ocean and its high cellular demand,
relatively few experimental studies have examined the ability of Zn addition to stimulate natural
phytoplankton communities (Supplementary Table 1). These results have been variable with
findings that include negative results (Scharek et al. 1997; Coale et al. 2003; Ellwood 2004),
slight Zn stimulatory results (Crawford et al. 2003b), a “very small increase” relative to controls
in an unreplicated experiment (Coale et al. 2003), Zn stimulation within Fe and Si uptake
experiments (Franck et al. 2003), Zn primary and secondary limitation in the North Pacific in an
unreplicated experiment (Jakuba et al. 2012), secondary Zn limitation after primary Si limitation
in the Costa Rica Dome (Dreux Chappell et al. 2016), and enhanced Zn uptake rates under low
pCO2 (Xu et al. 2012). Whether due to the early negative results, the few positive findings, or the

practical constraints of co-limitation studies in the field that limit the number of micronutrients

that can be tested,

produetivity; it is our experience that there is currently no broad community recognition that zinc
limitation is a process that could affect primary productivity in any region of the oceans, leaving
the original ‘zinc hypothesis’ unresolved (Morel et al. 1994).

In contrastjuxtapesitien, laboratory studies have unequivocally demonstrated that marine
phytoplankton can easily be Zn-limited in culture, and that Zn stress is exacerbated by low CO>
due to an inability to synthesize the metalloenzyme carbonic anhydrase and resultant carbon co-
limitation (Morel et al. 1994; Buitenhuis et al. 2003; Sunda and Huntsman 2005). In this study,
we reconcile these perspectives with a comprehensive, multipronged study of the natural
phytoplankton assemblage in Terra Nova Bay (TNB), Antarctica, documenting evidence of Fe
and Zn stress in a low pCOx coastal environment.

2 Results
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2.1 Biogeochemical characterization of Terra Nova Bay

Twenty-six stations within Terra Nova Bay (TNB) were;-Antaretica,-was-temperally

sampled temporally sampled-over the course offer-ever one month (January 9 — February 18,

2018) during the 2017-2018 CICLOPS expedition (Fig. 1a; Supplementary Table 2) to
concurrently characterize the natural progression of the phytoplankton bloom and

biogeochemical changes in the water column (Kell et al. 2024). These stations were spatially

distinct (each unique station was sampled once), but given that all stations were in relatively

close proximity to each other within TNB (within a 52 km radius), we have combined all TNB

station data to create a temporal analysis of the region.

Surface waters within TNB had low (~200 patm) seawater pCO; (Fig. 1b) which
contrasted with measurements >400 patm further from the study site (Fig. 1¢). A large
phytoplankton bloom was present as indicated by high (> 3000 ng L!) chlorophyll fluorescence

concentrations in January that waned into February (Fig. 1d). This observation of high

productivity is; characteristic of Antarctic polynya environments, which are recurring regions of

open water surrounded by sea ice (Arrigo et al. 2012).- This phytoplankton community initially
consisted of a mixed assemblage of both diatoms as indicated by fucoxanthin (fuco, Fig. 1e) and
the haptophyte Phaeocystis as verified by shipboard microscopy and as indicated by 19°-
hexanoyloxyfucoxanthin (19°-hex, Fig. 1f). Surface fucoxanthin concentrations >200 ng L"!
were observed at the late TNB stations (Fig. 1e) while 19°-hex decreased to ~20 ng L*! (Fig. 1f),
indicating that the stations sampled in late February were dominated by diatoms rather than
Phaeocystis. This was consistent with historical observations of phytoplankton succession
patterns in TNB (DiTullio and Smith 1996; Smith et al. 2006; Mangoni et al. 2019).

Additionally, we observed pronounced depletion of total dissolved Zn in surface waters across




115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

all TNB stations, with an average concentration of 0.82 + 0.47 nM at 10 m (Fig. 1g). Notably, as

the bloom progressed, this depletion extended progressively deeper into the water column (Fig.

1g). indicative of strong Zn uptake and export from the euphotic zone.

from-the-euphetie zone-Total Zn uptake (pZn, measured concurrently using a stable isotope

tracer method) (Kell et al. 2024) was highest in the shallow euphotic zone in early January and
waned into February (Fig. 1h), following trends seen in chlorophyll fluorescence (Fig. 1d) and
19’-hex (Fig. 1f). This pZn trend was consistent with laboratory studies demonstrating the
substantial Zn requirements of both diatoms and Phaeocystis antarctica (Saito and Goepfert
2008; Kellogg et al. 2020). Across all TNB stations, total dissolved Fe (dFer) in the upper 50 m
remained below 1 nM (Fig. 1i) as observed previously in this region (Fitzwater et al. 2000). In
the Ross Sea, dissolved iron (dFe) has previously been demonstrated to be the primary limiting

nutrient for phytoplankton growth (Martin et al. 1990; Coale et al. 2003; Sedwick et al. 2011).

2.2 Biogeochemical characterization of the incubation study site

Within TNB station, station 27 (referred to as the “experimental site” herein) was chosen
for the multifactor shipboard incubation experiment (Fig. 1a,b; red star). This site harbored a
coastal bloom and was biologically and chemically characterized as having high in situ

chlorophyll a levels (maximum of 3259 ng L'! at 30 m; Fig. 1j) and was comprised of diatoms as
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indicated by fucoxanthin and Phaeocystis as indicated by 19°-hex (Fig. 1k). A decrease in
surface total dissolved inorganic carbon (DICt; 2181 pmol kg™ at 15 m compared to the deep
water (200-1065 m) average of 2224 £ 2.1 umol kg™!, Fig. 11) was also observed. Within the
water column, dZn demonstrated a pronounced decrease from 5.1 nM at 50 m to 0.9 nM at 10 m,
representing an 82% decrease (and a 76% decrease comparing the minimum dZnr value at 10 m
to the average deepwater (210 — 1000 m) concentration of 3.9 nM + 0.4; Fig. 1m), consistent
with prior observations of surface dZn depletion in this region (Fitzwater et al. 2000).

Observations of rapid Zn uptake (46 pmol L' d! at 10 m) at the experimental site (Fig.
1n) likely contributed to this surface depletion, as Zn uptake rates of this magnitude are of the
appropriate scale to induce the multi-nanomolar surface water depletion during the austral spring
and summer season (Kell et al. 2024). Consistent with high macronutrient abundance in this

region, surface macronutrient concentrations were

partially depleted at the experimental site with 64%, 46%, and 29% decreases in- nitrate+nitrite

(N+N), phosphate (P), and silicate (Si)N-+N;-P;-and-St, respectively, comparing 10 m and

average deep water (200 — 1000 m) values (Fig. 10).

2.3 Evidence for Zn stimulation of phytoplankton: experimental site shipboard incubations
A multifactor incubation experiment was conducted using surface waters collected at the
experimental site by trace metal clean fish sampler (7 m) fed into a shipboard cleanroom to
examine controls on net primary productivity, with triplicate treatments of Zn amended (+Zn; 2
nM as ZnCl,), Fe amended (+Fe; 1 nM as FeCl), and Fe and Zn amended (+Fe+Zn) incubations,
in addition to unamended controls. Addition of Fe alone (+Fe) resulted in significantly higher chl

a content compared to controls (p = 9.5e-5) after six days (T6) (Fig. 2a), demonstrating primary
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Fe limitation as observed previously in the Ross Sea (Martin et al. 1990; Mangoni et al. 2019).
However, addition of Zn alone (+Zn) also resulted in significantly higher chl a content compared
to the controls (p = 0.011), implying that a subset of the incubated phytoplankton population

benefitted from the addition of Zn alone, without additional Fe (Fig. 2a). This observation is

[ Formatted: Font: Bold

consistent with independent co-limitation;-and-may-thus-have-been- (Saito et al. 2008), where

two nutrients (such as Fe and Zn) each independently limit different subpopulations or processes

and adding either nutrient alone yields a response.experieneingprimary-Zn-limitation-(Fig-2a)-

The combined addition of +Fe+Zn resulted in the highest average chl a content among all
treatments at T6, with 4.5+ 0.21 pg L' compared to 3.9+ 0.35 ug L™ and 2.8 £ 0.15 ug L™!
achieved by +Fe and +Zn alone, respectively, demonstrating additive co-limitation between Zn
and Fe (Sperfeld et al. 2016). The Zn stock solution was analyzed to confirm these results were
not caused by inadvertent Feiren contamination (see Methods). Significant differences in
seawater chemistry were also observed within these incubations over time, with larger decreases
in DICr in all metal treatments compared to the control (-12.7 umol kg™! for +Fe (p = 5.3e-6), -
8.2 umol kg 'for +Zn (p = Se-5), and -18.5 pmol kg! for +Fe+Zn (p = 2.2e-16); Fig. 2b). The
decrease in DICt observed with +Fe+Zn was significantly larger than that achieved with +Fe
alone (p = 4.4e-3; Fig. 2b). Statistically significant differences in measured parameters among

treatments are summarized in Supplementary Table 3.,

[ Formatted: Font: Not Bold

Further consistent with the observed Zn stimulation of biomass in the incubations, the
largest decreases in macronutrient (P and N+N) concentrations in these incubations at T6 were
observed in the +Fe+Zn treatment (Supplementary Figure 1a,b), as was the largest increase in
particulate organic carbon (POC; Supplementary Figure 1c¢). POC collected from the +Zn and

+Fe+Zn incubations was characterized by larger C:N atomic ratios (5.9 and 6.2, respectively)
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compared to the +Fe and T6 control (5.2 and 5.3; Supplementary Figure 1d). Significantly
higher bacterial abundances in both +Fe (p = 9.1e-4) and +Fe+Zn (p = 6.3e-4) treatments relative
to the T6 control (Supplementary Figure 1e) indicated the alleviation of bacterial Fe limitation,
consistent with prior reports (Obernosterer et al. 2015; Fourquez et al. 2020; Sun et al. 2021).

At the conclusion of the incubation experiments, biomass was collected by serial

filtration through 5 mm and 0.2 mm filters, and the 0.2-5 pmm fraction was extracted for

proteomic analysis was-performed (see Methods) and analyzed for biomarkers of Zn and Fe
stress. We detected both algal Fe- and Zn-stress proteins, which provided an independent line of
evidence corroborating the results described above (Fig. 2¢). This included the detection of the
Zn/Co responsive protein ZCRP-A (a putative Zn chaperone) (Kellogg et al. 2022a) as a
biomarker of Zn stress as well as the iron starvation-induced proteins ISIP1A, ISIP2A and ISIP3
(ISIPs) as biomarkers of Fe stress (Supplementary Table 4). The ISIPs represent a group of
unrelated proteins that are upregulated under Fe limitation in various algal species. ISIP1
proteins are responsible for endocytosis of siderophore-bound iron, ISIP2 proteins are involved
in Fe** uptake, and ISIP3 has been suggested to act as an Fe storage protein (Allen et al. 2008;
Behnke and LaRoche 2020). RUBISCO abundance within each treatment is shown in Fig. 2¢ as
a proxy for the potential phytoplankton production. Within the T6 incubation biomass, there was
an increased abundance of ISIPs in the control and +Zn treatment, and a decrease in ISIP protein
abundance within the +Fe and +Fe+Zn treatments, consistent with primary Fe limitation and the
expected response to Fe addition (Fig. 2¢). ISIPs were taxonomically assigned to diatoms,
Phaeocystis, and dinoflagellates (Fig. 2d). The strongest expression of ZCRP-A protein was
detected in the +Fe treatment (Fig. 2¢,d) indicative of Fe addition driving the community

towards increased Zn stress. Notably, ZCRP-A was still detected in the +Fe+Zn treatment (Fig.
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2¢,d), implying that the added Zn was unable to completely satiate Zn demand as phytoplankton
biomass increased (as indicated by the increase in chl @ at T6, Fig. 2a), despite added Zn (2 nM)
being double that of added Fe (1 nM). Sequence analysis of the contigs identified as ZCRP-A
homologs in these incubations revealed that all contigs contained one or more canonical
conserved motifs found in COG0523 family proteins such as ZCRP-A (Supplementary Figure
2). Coupled with evidence from prior laboratory studies (Kellogg et al. 2022a), this provides
further support for the role of ZCRP-A in responding to Zn scarcity. ZCRP-A proteins were
taxonomically assigned to chlorophytes, dinoflagellates, and Phaeocystis, with the detection of
Phaeocystis ZCRP-A only in the +Fe treatment (Fig. 2d). The detection of ZCRP-A attributed to
Phaeocystis, but the nondetection of ZCRP-A attributed to diatoms ; implies that either ample

diatom biomass was not captured on the analyzed filters due to being filtered out by the >5mum

pre-filter, or that diatoms present in these incubations (as indicated by diatom RUBISCO; Fig.
2d) were outcompeting Phaeocystis for Zn. Our observations of Fe and Zn biomarkers shifting in
abundance in response to their respective metal treatment provides independent evidence for

Zn/Fe co-limitation.

2.4 Taxonomic characterization of incubation results

To characterize the phytoplankton species responding to metal amendment, we measured
phytoplankton pigments within the shipboard incubations over time, which revealed a diverse
taxonomic response to metal amendments. Measured pigments included fucoxanthin (fuco), 19'-
hexanoyloxyfucoxanthin (19'-hex), prasinoxanthin (prasino), chlorophyll b (chl b), and
chlorophyll ¢3 (chl ¢3). Fuco is produced by both diatoms and by Phaeocystis under certain

conditions, while 19'-hex and chl c3 are indicative of Phaeocystis in the Southern Ocean

10
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(DiTullio et al. 2007). Fuco:19'-hex ratios significantly increased in the +Fe (p = 4.2e-4) and
+Fe+Zn treatments (p = 2.7¢-3) (Supplementary Figure 3a) due to no significant change in
fuco (Supplementary Figure 3b) and decreased 19'-hex (Supplementary Figure 3c¢) relative to
the T6 control. Phaeocystis contributions to total fuco concentrations are typically minimal at the
low Fe levels of the Ross Sea, though Phaeocystis can revert to making fuco rather than 19'-hex
when released from Fe limitation (DiTullio et al. 2007), as was evident in these incubations by
decreased 19'-hex:chl c3 ratios within the +Fe and +Fe+Zn treatments (Supplementary Figure
3d). Phaeocystis therefore likely contributed to total fuco by responding to Fe addition. Notably,
significant decreases in both fuco:chl a and 19'-hex:chl a (Supplementary Figure 3e,f) in all
treatments compared to the T6 control indicated that other phytoplankton groups contributed to
chl a (Fig. 2a) without contributing fuco nor 19'hex. Increases in chl » (Supplementary Figure
3g) and prasinoxanthin (Supplementary Figure 3h) suggest that small green algae such as
chlorophytes and prasinophytes also responded to +Fe and +Zn independently, consistent with
the detection of chlorophyte ZCRP-A in these incubations (Fig. 2d). Photosynthetic efficiency of
photosystem II (Fv/Fm) significantly increased with +Fe (p = 0.011) and with +Fe+Zn (p =
0.0036) at T4 (day 4) compared to T4 controls, but did not significantly increase with +Zn alone,
implying Fv/Fm may not be useful as a diagnostic for Zn stress and that caution should be used
in interpreting its signals universally (Supplementary Figure 3i). No significant difference in
Fv/Fm was observed among treatments at T6. Selective zooplankton grazing on small diatoms
and solitary Phaeocystis cells may have played a role in affecting phytoplankton biomass and the
observed pigment:chl a ratios. For instance, higher ratios of phaeophytin:total phaeopigments
were observed in +Fe and +Zn amended incubations (Supplementary Figure 4) which may

reflect grazing on solitary Phaeocystis cells, as high phaeophytin:total phaeopigments ratios were

11
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previously observed in Phaeocystis dominated waters of the Ross Sea (DiTullio and Smith
1996).
2.5 Detection of Zn- and Fe-stress protein biomarkers in the water column

Metaproteomic and metatranscriptomic analyses of biomass within the water column at
the experimental site provided additional confirmation of the incubation results, as we detected
Zn- and Fe- stress-response proteins present within the water column, which were therefore
naturally present without influence from incubation conditions. In addition to ISIPs and ZCRP-
A, we detected ZCRP-B (a putative membrane-tethered Zn-binding protein) (Kellogg et al.
2022a), Zrt/Irt-like (ZIP) Zn transporters (which are known to be used by marine phytoplankton
for uptake of Zn>* and other divalent metal cations (Allen et al. 2008; Milner et al. 2013; Bender
et al. 2018)), and 0 (theta) and & (delta) carbonic anhydrases (CAs). 0-CAs with Zn>*
coordination sites have been documented in diatoms (Jensen et al. 2020a), including the polar
diatom Chaetoceros neogracile RS19 (Kellogg et al. 2022b), but no studies to date have
investigated enzyme activity nor efficiency with Co?* or Cd*". In contrast, 5-CA (i.e,
Thalassiosira weissflogii TWCAL) is known to function with either Co®" or Zn?" as a cofactor
(Lane and Morel 2000b) conferring metabolic flexibility when Zn?" is scarce.

Both proteins and transcripts of Zn and Fe stress biomarkers (ZCRP-A and ISIPs) were
observed throughout the water column at the experimental site. RUBISCO, ZCRP-A, and ISIP
protein spectral counts were most abundant at the surface and decreased with depth within the
within the 3pm size fraction (Fig. 3a-c), consistent with the depletion of trace metals in the
photic zone due to high-biomass bloom conditions. ZCRP-A was detected in both 3 and 51 pm
filter pore-size fractions (Fig. 3b) and was predominantly attributed to Phaeocystis and the

diatom genus Chaetoceros in the euphotic zone, and predominantly to Phaeocystis and the

12
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diatom genus Pseudo-nitzschia in the mesopelagic zone (Fig. 3i, Supplementary Figure 5a).
The presence of Phaeocystis below the photic zone is consistent with prior observations of rapid
export of Phaeocystis cells (DiTullio et al. 2000). Throughout the water column, ISIPs were
predominantly attributed to Phaeocystis and to the diatom genera Fragilariopsis, Chaetoceros,
and Pseudo-nitzschia (Fig. 3i, Supplementary Figure 5b). We note that ZCRP-B, a protein also
found to be upregulated in marine diatoms under low Zn/Co and characterized as a putative
membrane-tethered Zn/Co protein ligand (Kellogg et al. 2022a) was most abundant in the 0.2 uym
fraction throughout the water column (Fig. 3d). As ZCRP-B shares ~30% similarity to the
bacterial ABC-type nickel transporter component NikA, spectral counts within the bacterial 0.2
um fraction most likely reflect true bacterial NikA. BLAST analysis of all ZCRP-B contigs

confirmed that all ZCRP-B hits across all size fractions corresponded to bacteria (Fig. 3i).

The assignment of the majority of ZCRP-A and ISIP proteins to Phaeocystis in the upper water

column provides additional evidence that Phaeocystis was likely Zn/Fe co-limited at the study
site, consistent with incubation results (Fig. 2d).

ZCRP-A belongs to the phylogenetically complex COG0523 family, with some family

members showing functional divergence (that is, activity using different metal cofactors) among

paralogs (Blaby-Haas and Merchant 2012; Edmonds et al. 2021). Here, we infer a Zn-responsive

function for the identified ZCRP-A contigs based on their homology to 7. pseudonana and P.

tricornutum ZCRP-A proteins, which we have previously characterized as Zn-responsive

(Kellogg et al. 2022a), To further support this inference, we used SHOOT (Emms and Kelly

[ Formatted: Font: Italic

2022) to place each ZCRP-A contig within a phylogenetic context. Of the 21 unique contigs
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assigned as ZCRP-A homologs, 19 were confirmed to be 7. pseudonana orthologs, while 2 were Formatted: Font: Italic

assigned as orthologs to the Zn-related COG0523 E. coli proteins YjiA and YeiR, implying a Formatted: Font: [talic
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minor prokaryotic source (Supplementary Table 5). The placement of the majority of these

) L L J

contigs within diatom clades supports our interpretation that these homologs are Zn-related.

ZIP proteins were almost solely detected in the 51 um fraction, likely due to the capture

of abundant Phaeocystis colonies and chain-forming diatoms (Fig. 3e; Supplementary Figure

5¢). ZIP family transporters are functionally diverse and capable of transporting multiple

divalent metal cations. including both Zn?>" and Fe’' (Blaby-Haas and Merchant 2012). with ( Formatted: Superscript

[ Formatted: Superscript

diatom homologs of ZIP1 known to be upregulated under Fe stress (Lampe et al. 2018). Given

the co-limitation of Fe and Zn at the study site, it is difficult to determine which metal these ZIP

transporters were primarily mediating.

The increased abundance of diatom 8-CA and 3-CA proteins within the water column

(Fig. 3f,g), as well as transcripts for the diatom Cd carbonic anhydrase CDCA, which can
replace Zn?" with Cd?" as the catalytic cofactor (Lane and Morel 2000a), in the 3 um and 51 pm
fractions at 200 m (Fig. 3h) was indicative of a sinking, prior diatom bloom event (Subhas et al.
2019). 6-CA and 6-CA were predominantly taxonomically assigned to the diatom genera
Chaetoceros and Pseudo-nitzschia, respectively, while CDCA transcripts belonged to the diatom
genera Chaetoceros and Corethron (Fig. 3i). The presence of 6-CA, but lack of 8-CA, assigned
to Chaetoceros is consistent with proteomic analysis of the polar diatom Chaetoceros neogracile

RS19 grown in culture under Zn limiting conditions (Kellogg et al. 2022b).

2.6 Zn:P ratios of the surface seawater at the experimental site

14
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A third independent line of evidence for the nutritional influence of Zn scarcity on TNB
phytoplankton was obtained from in situ cellular stoichiometry. Particulate Zn:P ratios (Zn:P)
analyzed from biomass collected at the surface of this experimental station were consistent with
ratios from Zn-limited culture studies. Particulate Zn:C ratios reported previously in Zn-limiting
culture studies of the diatom Thalassiosira pseudonana (Sunda and Huntsman 2005) were
converted to Zn:P ratios using the Redfield ratio (Redfield 1958) (Supplementary Table 65).
We then compared these ratios and associated growth rates with particulate Zn:P measured
within biomass collected at 10, 25, 50 and 100 m at the experimental site. At each of these
surface depths, Zn:P measured at the experimental site was ~ 2E-4 mol:mol, which, in
comparison to cultured diatom Zn:P ratios, fell within the range of severely Zn-limited growth
rates (Supplementary Figure 6), again demonstrating the propensity for Zn-limited growth in

this region and corroborating the incubation results.

3 Discussion

Antarctic waters are generally considered to not be prone to Zn limitation, given that high
(> 1nM) dZn concentrations are typically observed in surface Southern Ocean waters (Coale et
al. 2003). -However, we observed multiple independent lines of evidence from both the field
incubation experiment (chlorophyll, DIC, Zn and Fe biomarker proteins) and contextual
environmental biogeochemical data of the water column at the incubation site (dZn, Zn uptake
rates, pigments, cellular Zn:P stoichiometry, metaproteomic, and metatranscriptomic analyses)
demonstrating that phytoplankton within Terra Nova Bay of the Ross Sea, Antarctica, were

experiencing Zn and Fe nutritional stress.
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Multiple factors could be considered as potential drivers in the creation of Zn-limiting
conditions in the field, including Zn demand imposed by total biomass and the species
comprising this biomass. The phytoplankton bloom observed during this expedition was
comprised primarily of diatoms and Phaeocystis, consistent with previous Ross Sea seasonal
blooms (Smith et al. 2006; Arrigo et al. 2012; Mangoni et al. 2019), and which contributed to the
observed high Zn uptake rates and thus surface Zn depletion (Kell et al. 2024), resulting in
nutrient-like dZn profiles throughout TNB.

Our field observation of Zn limitation was made in an environment characterized by
diminished pCOz, which we consider as a factor potentially driving Zn stress. We observed a
substantial drawdown of surface seawater pCOz to 221 patm at the incubation site (a ~45%

decrease compared to offshore waters in the Ross Sea measured during the same time frame; Fig.

1b). Biology was the driver of this decrease in pCOp, rather than freshwater input from glacial [Formatted: Subscript

and sea ice melt. This is evident in the physicochemical data, where over the measured salinity

range (S=33.6-34.8), the effect of simple dilution by freshwater input (DIC=Total Alkalinity=0)

would result in a reduction of pCO, by only ~8-9 ppm. The signals we observe are much larger ( Formatted: Subscript

than that, consistent with a large phytoplankton uptake driver. The total alkalinity (TA) also does

not change proportionally with DIC in this region, which is also not consistent with dilution

driving a conservative mixing of TA and DIC.

Laboratory studies have unequivocally demonstrated that marine phytoplankton can
easily be Zn-limited in culture due to their large Zn requirement, and that this effect is
exacerbated at low pCO2 (Morel et al. 1994; Sunda and Huntsman 2005) due to the use of Zn as
a required catalytic cofactor within carbonic anhydrase (CA) metalloenzymes (Sunda and

Huntsman 2005). CAs catalyze the reversible dehydration of HCO3™ to COz, the substrate
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required by the carbon fixing enzyme RUBISCO. As HCOs™ constitutes about 90% of the
dissolved inorganic carbon (DIC) pool in the surface ocean, sufficient CA activity prevents
carbon stress in marine phytoplankton by ensuring adequate CO> supply to RUBISCO. It has
therefore been hypothesized that the combination of high biomass and resulting low CO> may
cause severe Zn depletion that may limit algal growth rates due to lack of Zn and thus reduced
CA activity, and thus reduced availability of carbon for photosynthesis (Morel et al. 1994; Sunda
and Huntsman 2005). This Zn-C limitation relationship is referred to as ‘biochemically
dependent co-limitation’, in which the availability of one nutrient is essential for the acquisition
or utilization of another nutrient, especially at low concentrations (Saito et al. 2008).

To explore this in the context of our field observations, using the available quantitative
constraints on Zn and CO; co-limitation thresholds available from the literature (see Methods),
we estimated that the threshold for Zn-CO; limitation in culture synthesized across many alga
occurs at 259 patm pCO,. We then compared this laboratory-determined Zn/C limitation
threshold estimate to both the in situ 221 patm pCO; measured at our field study site, and to the
historical, global trend in surface ocean pCO: (Fig. 4a,b). Global surface ocean pCO; levels are
rapidly rising above both the laboratory-estimated 259 patm pCO2 Zn/C limitation threshold and
our field observation value of 221 patm (Jiang et al. 2023) (Fig. 4a,b). Though only a fraction of
the modern-day surface ocean is currently at <250 ppm pCO:> (predominantly comprised of
polar regions; Fig. 4¢), this represents a large decrease in oceanic extent compared to only 100
years ago (Fig. 4d). Even though this may move the majority of oceanic regions farther from Zn
and C limitation thresholds, there continue to be highly productive and episodic coastal blooming
events that induce significant pCO2 drawdown (Harrison et al. 2018; Dai et al. 2022). These

coastal regions are increasingly recognized as being disproportionally significant contributors to
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global ocean carbon export (with respect to their area), particularly at the high latitudes (Harrison
et al. 2018; Dai et al. 2022), and will hence continue to be prone to Zn stress at low CO; as we
have observed. Many other coastal regions have been observed to experience depressed CO>
such as the Amundsen Sea (Tortell et al. 2012), Amazon River plume (Valerio et al. 2021), the
west Florida Shelf (Robbins et al. 2018), the East China Sea (Shim et al. 2007), the Northern
Gotland Sea (Schneider and Miiller 2018), and Monterey Bay, California (Chavez et al. 2018) to

name a few examples. On the other hand. it is likely that despite rising pCO- levels, some coastal

regions will continue to experience episodic or persistent low pCO:2 due to high productivity (as

observed in this study), freshwater inputs, or other regional processes. Though we do not attempt

to model future pCO, dynamics in these areas, our results suggest that Zn status may continue to

be an important physiological constraint under low pCO:- conditions, particularly in productive

coastal systems. As such, Zn limitation should be considered as part of the broader framework

for understanding carbon cycling in these regions, especially as they play a disproportionate role

in global carbon export.

4 Conclusions

Given the great challenge of conducting Zn manipulation experiments without
contamination, we did not try to manipulate pCO; as an additional experimental treatment.
Instead, we actively sought out a low pCO» environment for the study site, building on prior
laboratory studies and a cadmium (Cd) pCO: field study (Cullen et al. 1999). The interaction of
Zn (and Cd and Co) with CO; is an important area of future research, particularly in coastal
environments. With the continuing rise in atmospheric and surface ocean pCO: levels, broader

changes in the biogeochemical cycling of Zn and other bioavailable trace metals will likely occur
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within the oceans, influencing NPP and thus total ocean carbon storage capacity. These low
pCO: conditions environments that routinely occur in numerous coastal environments globally
should be further examined for Zn effects in addition to carbon uptake dynamics in different
temperature environments (Tortell et al. 2008; Dai et al. 2022). While there are elaborate
biochemical capabilities available to many marine algae for dealing with Zn scarcity (Kellogg et
al. 2022a), our results suggest that the geographic extent of possible Zn/C co-limiting
environments may further decrease in the coming decades with rising anthropogenic CO»
emissions. Despite this, the biochemical demand for Zn in marine organisms remains substantial,
with cellular demand rivaling that of Fe. The multitude of metabolic functions requiring Zn,
including but not limited to carbonic anhydrase activity, implies the need for further exploration

of Zn influences on primary productivity in a changing ocean environment.

5 Materials and Methods
5.1 Study area and sample collection

Sample collection occurred during the CICLOPS (Cobalamin and Iron Co-limitation of
Phytoplankton Species) expedition (NBP18-01) aboard the RVIB Nathaniel B. Palmer,
December 11, 2017 — March 3, 2018 in the Amundsen Sea and Ross Sea of the Southern Ocean
(Fig. 1a). Station metadata is provided in Supplementary Table 2. All stations were assumed to
be representative of TNB during this temporal study (as evident in the total dissolved metal,
macronutrient, and chlorophyll a datasets). Water samples for dissolved trace metal analyses
were collected using trace metal sampling protocols described previously (Cutter and Bruland
2012). A trace metal clean rosette suspended on a Kevlar line and equipped with twelve 8L X-

Niskin bottles (Ocean Test Equipment) was used to collect seawater at depths ranging from 10 —
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600 m. Niskin bottles were transported to a positive-pressure trace metal clean shipboard van for
filtration upon surfacing. Total fluorescence on the vertical profiles was measured using an ECO
chlorophyll fluorometer (Wet Labs) equipped to the rosette. The rosette also included

instrumentation for measuring conductivity and temperature (Sea-Bird Electronics).

5.2 Preparation of plasticware

Polyethylene and polycarbonate sampling and incubation bottles were rigorously cleaned
to remove trace metal contaminants before use. Bottles were rinsed with 18.2 Q Milli-Q water
(Millipore), soaked for 72h in <1% Citranox detergent, rotated, soaked for an additional 72h, and
then rinsed five times with Milli-Q water. Bottles were then filled with 10% HCI (Baker instar-
analyzed) by volume and soaked for a minimum of one week, rotated, and soaked for another
week. Bottles were then rinsed five times with dilute acid (HCI, pH 2) and stored double-bagged

in plastic zip bags. All cleaning work was conducted in a Class 100 clean room.

5.3 Underway seawater pCO; partial pressure

Surface water pCO> measurements were conducted aboard the RVIB Nathaniel B.
Palmer using an underway method consisting of an air-water equilibrator and IR CO> analyzer
developed and operated by the Lamont-Doherty Earth Observatory (LDEO) group (Takahashi et
al. 2020). A complete data report and sensor list are

available: https://service.rvdata.us/data/cruise/NBP1801/doc/NBP1801DATA.pdf (last access:

14 December 2024) (https://www.rvdata.us/, last access: 14 December 2024).

5.4 TDIC and POC measurements
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Total alkalinity (TA) and dissolved inorganic carbon (DIC) were measured on CTD and
incubations samples in near real-time aboard the NBP. Dissolved inorganic carbon (DIC) and

total alkalinity (TA) samples were collected following previously establishedthe protocols-ef

Dickson-et—al-2007(Dickson et al. 2007). DIC analyses were conducted within ~4 h of collection.
We acidified 1.25 mL of sample using an automated custom-built injection and bubble stripping
system coupled to an infrared gas analyzer (LICOR LI7000) and integrated the infrared
absorption signal versus time for each stripped gas sample to yield a total mass of CO». Each
sample was analyzed in triplicate or greater. Since microbubbles regularly formed as samples
warmed between sample acquisition and DIC analysis, every integration curve was visually
inspected and those curves that exhibited evidence for bubbles were rejected. Certified reference
materials (Dickson CRM batch 169) were analyzed between every 3 to 4 unknowns. The
estimated precision based upon unknowns (>860 samples run in triplicate) and CRM replicates
(n=738) was £ 2.0 umol kg ! (£1 SD). As-deseribed-by DeJonget-al-2015(Defonset-al2015);

Aanalyses for TA on filtered samples were completed within ~12 h of collection by using a

potentiometric titrator (Metrohm 855 Robotic Titrosampler) (DeJong et al. 2015).- The estimated

precision based on replicate analyses of CRMs (n=195) was £ 2.6 umol kg! (£1 SD).

5.5 Analysis of historical atmospheric and surface ocean pCO: trends

Decadal surface ocean pCO; reconstructions fremJianget-al-2023 (Jiang et al. 2023)
were downloaded, binned by decade, and plotted using the ‘violinplot’ in MATLAB.
Atmospheric pCO» data was assembled from the running Mauna Loa record (Keeling et al.

1976), and from measurements made on Antarctic firn ice (Etheridge et al. 1996).
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5.6 Calculation of Zn-and pCO; co-limitation of phytoplankton thresholds

There are few experimental measurements of Zn- and pCO.-co-limitation, either in the
lab or in situ. This study documented Zn of a natural phytoplankton assemblage in the field at a
pCO2 of ~220 ppm. In the literature, several models exist to interpret co-limitation (Buitenhuis et
al. 2003; Saito et al. 2008). For this study we chose to use the biochemically dependent co-
limitation model for growth rate ():

[COsae)]

—, (1
@K, +[COaq)]

p’ = max

where Vi is the maximum growth rate, [COzq)] is the aqueous CO2 concentration of the
growth medium in micromoles per kilogram of seawater, K; is the half-saturation constant in

micromoles per kilogram of seawater, and ¢ is a Zn-dependent growth term:

_ldZn] + K, 2,

[azn] )

Here, the dissolved Zn concentration in the growth medium [dZn] is modified by a Zn-dependent
saturation constant (Kj z:). Few studies have enough experimental data to robustly establish a
kinetic relationship between [dZn] and [CO2g], so we compiled several estimates for these
terms from the literature. Diatom growth rates under pCO> limitation were taken from Riebesell
et al. (1993) (Riebesell et al. 1993). Reported pH and temperature measurements for each
treatment, a total alkalinity of 2300 pmol kg™!, and a salinity of 35 were used to calculate
aqueous CO; concentrations using CO2SYSv3.2.1.(Sharp et al. 2023). Reported Vyax and K for
D. brightwellii, T. punctigera, and R. alata were 1.46, 1.30, and 0.93 d”!, and 1.4, 1.2, and 2.1
umol kg'!, respectively. Values for coccolithophore growth (K = 0.97 pmol kg™!, Viuax= 4.7 dh)

were taken from Krumhardt et al. (2017) (Krumbhardt et al. 2017). A value for K z, of 300 pmol
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L! was taken from Buitenhuis et al. (2003). This value is for the coccolithophore E. huxleyii
generated under varying CO: and Zn conditions, and Zn response growth curves under single
CO; conditions (ambient) are similar to other diatoms like 7. pseudonana (Sunda and Huntsman
1995). The value of 300 pmol L' appears high, but is tied to the functional form of the
biochemically co-limitation equation_(Buitenhuis et al. 2003; Saito et al. 2008). Based on the
same dataset and different models for co-limitation, Buitenhuis et al. (2003) arrived at Ky z,
values of ranging from 38 pmol L! to 300 pmol L. They calculated Zn-limitation alone, at CO»-
replete conditions, of 19 pmol L. Thus, the chosen value of K; 7 is not a reflection of high Zn
demand but determined by the functionality of biochemical co-limitation by Zn and C.

To calculate ¢, a surface ocean Zn concentration of 50 pmol L' was assumed (Bruland
1980; Wyatt et al. 2014). While these concentrations reflect total dissolved Zn, the relationship
between bioavailable free Zn and dZn, especially in the field, remains unclear. Eq. 1 was then
used to calculate effective CO2 concentrations (and thus pCO; values) at which growth is halved,
or in other words, & = 0.5V,u.x. We note that this calculation is distinct from the CO; half-
saturation constant because of the co-limitation by Zn. The median pCO> threshold for 50%
growth from the three diatom species was 278 ppm. Including coccolithophores decreases the
median to 259 ppm. These values are slightly higher than the in sifu evidence for Zn limitation at
220 ppm presented in the present study. Our results cannot be considered as an upper bound for
Zn-CO; limitation, but serve as evidence for growth limitation under those specific

environmental conditions.

5.7 Analyses of total dissolved metals using isotope dilution
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The analysis of total dissolved metals for this expedition has been described previously
(Kell et al. 2024). Briefly, seawater collected shipboard by pressure-filtering X-Niskin bottles
through an acid-washed 142 mm, 0.2 pumM polyethersulfone Supor membrane filter (Pall) within
3 hours of rosette recovery using high purity (99.999%) N> gas and stored at 4°C. All sample
collection occurred shipboard within an on-deck trace metal clean van. Samples were acidified to
pH 1.7 with high purity HCI (Optima) within 7 months of collection and were stored acidified at

room temperature for over 1 year prior to analysis. This extended acidification time was used to

counteract any loss of metal due to adsorption to the bottle walls (Jensen et al. 2020b),

Quantification of total dissolved Fe, Mn, Ni, Cu, Zn, and Cd was performed using isotope
dilution. Acidified seawater samples were spiked with a stable isotope spike solution artificially
enriched in >’Fe, ®'Ni, *Cu, ¢’Zn, and ''°Cd (Oak Ridge National Laboratory). Concentrations
and spike ratios were verified by ICP-MS using a multi-element standard curve (SPEX
CertiPrep). Preconcentration of spiked seawater samples for total dissolved metal analysis was
performed using the automated solid phase extraction system seaFAST -pico (Elemental
Scientific) in offline concentration mode with an initial volume of 15mL and elution volume of
500uL (Rapp et al. 2017; Wuttig et al. 2019). Following preconcentration, multielemental
quantitative analysis was performed using an iCAP-Q inductively coupled plasma-mass
spectrometer (ICP-MS) (Thermo Scientific). Concentrations of Mn, Fe, Ni, Cu, Zn and Cd were
determined using a six-point external standard curve of a multi-element standard (SPEX
CertiPrep), diluted to range from 1-10 ppb in 5% nitric acid. An indium standard (SPEX
CertiPrep) was similarly added to these standard stocks, diluted to range 1-10 ppb. Instrument
injection blanks consisted of 5% nitric acid in Milli-Q. Standard curve R? values were >0.98 for

all metals monitored. Method accuracy and precision were assessed using the 2009
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GEOTRACES coastal surface seawater (GSC) standard (n = 8; Supplementary Table 76),

which produced values consistent with consensus results (Kell et al. 2024).

5.8 Macronutrient, pigment, and Fv/Fm analyses

Seawater for macronutrient (silicate, phosphate, nitrate, and nitrite) analyses were filtered
through 0.2 pm pore-size Supor membrane filters and frozen at sea in acid-washed 60-mL high-
density polyethylene bottles until analysis. Macronutrient analyses were conducted by nutrient
autoanalyzer (Technicon Autoanalyzer II) by Joe Jennings at Oregon State University. The
chemotaxonomic distribution of phytoplankton pigments was determined using HPLC as
described previously (DiTullio et al. 2003). Photosynthetic efficiency of photosystem II (Fv/Fm)
was measured using a Phyto PAM phytoplankton analyzer (Walz, Effeltrich, Germany) as

described previously (Schanke et al. 2021).

5.9 Bacterial abundance

One ml samples for heterotrophic prokaryotes abundance (HPA) analysis were fixed for
10 min with a mix of paraformaldehyde and glutaraldehyde (1% and 0.05% final concentration,
respectively), frozen in liquid nitrogen and stored at —80°C until analysis. After thawing,
samples were stained with SYBR Green (Invitrogen Milan, Italy) using 103 dilution of stock
solution for 15 min at room temperature. Cell concentrations were assessed using a FACSVerse
flow cytometer (BD BioSciences Inc., Franklin Lakes, USA) equipped with a 488 nm Ar laser
and standard set of optical filters. FCS Express software was used for analyzing the data and HP
were discriminated from other particles on the basis of scatter and green fluorescence from

SYBR Green (Balestra et al. 2011).
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5.10 ICP-MS analysis and Zn uptake rates using ’Zn

77n stable isotope uptake experiments were performed to quantify the movement of
dissolved Zn to the particulate phase in units of pmol L' d"');see (Kell et al. 2024). Briefly,
unfiltered seawater was collected using the trace metal rosette over a depth range of 10 — 600 m
into 250mL trace metal clean polycarbonate bottles. Bottles were spiked with ¢Zn such that the
total added (spiked) concentration of Zn was 2 nM. Immediately after spiking, incubation bottles
were sealed, inverted to mix, and transferred to flow-through on-deck incubators for 24hr.
Biomass was collected after 24hr by vacuum filtering each incubation sample at 34.5 kPa (5 psi)
onto an acid-cleaned 3um pore-size acrylic copolymer Versapore filter (Pall) mounted on an
acid-cleaned plastic filtration rig. Sample filters were retrieved from storage at -80°C, removed
from cryovials using plastic acid-washed forceps, and transferred into trace metal clean 15 mL
PFA vials with 4 mL of 5% HNOj3 (Optima) containing a 1 ppb Indium (In) internal standard.
Filters were digested for ~3.5h at 140°C using a HotBlock® heating block (Environmental
Express, USA) before they were removed and discarded. After evaporating the remaining
solution to just dryness, the residue was resuspended in 2 mL of 5% HNOj; (Optima) by light
vortexing. Process blank filters were digested and processed as sample filters were. This
experiment was also carried out using ''°Cd as a tracer of Cd uptake in separate incubation
bottles (data not shown here). Digests were analyzed in duplicate by ICP-MS using a Thermo
ICAP-Q plasma mass spectrometer calibrated to a multi-element standard curve (Spex Certiprep)
over a range of 1 — 20 ppb. Natural Cd and Zn isotope abundances of the standards were
assumed to calculate concentrations of ''°Cd, '''Cd, ''*Cd, ¢7Zn, ®°Zn, and **Zn. Total Zn uptake

(pmol L' d!) was calculated using particulate ’Zn and total water column dZn measurements as
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described previously (Cox et al. 2014). The particulate metal measurements captured
contributions from the active transport of metal into cells, nonspecific metal adsorption to cell
surfaces, metal adsorption to non-living particulate organic matter, and metal adsorption to
particulate inorganic matter, though we expect active transport into cells to dominate the
measured particulate isotopic signal due to the high abundance of actively growing autotrophic
cells in the photic zone observed in Southern Ocean during austral summer. Particulate Zn:P
measurements were calculated using particulate Zn measured on Cd-spiked filters and thus do
not include any pZn contribution from Zn tracer addition. Particulate phosphorus concentrations
were measured by ICP-MS simultaneously and were calibrated to a standard curve ranging from
100 to 3200 ppb using a 1 ppm certified P stock (Alfa Aesar Specpure). All SPEX and P
standard curves had R? values > 0.99. The Zn stock solution used in the incubation experiments
was similarly analyzed by ICP-MS to confirm that the stock was not Fe contaminated— this
analysis showed that less than 2.3 pM (which was near the instrument blank level for this
analysis) of iron was added for every 2 nM of zinc, far less than needed to stimulate

phytoplankton to the extent observed in our experiments.

5.11 Shipboard incubation experiments

Incubation experiments were conducted at station 27 (-74.9870°N, 165.8898°E). Raw
surface seawater was pumped directly into a cleanroom container van, collected into acid-
cleaned 50L carboys, and dispensed into acid-washed 1L polycarbonate bottles using a trace
metal sampling system with acid-washed polypropylene tubing and a teflon diaphragm pump.
Incubation bottles were first rinsed with seawater then filled. Seawater was collected at 16:05

UTC. Triplicate incubation bottles were amended with +Fe (1 nM), +Zn (2 nM) and +Fe+Zn,
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sealed, and placed into a flow-through on-deck incubator with light screens that shaded the
incubator to 20% percent ambient surface irradiance. Incubations were sampled at 0, 48, 96, and
144 hours (corresponding to TO, T2, T4, and T6 timepoints) for analysis by filtering onto GFF
filters for chlorophyll (all time points, biological triplicates), pigment analyses (T6, biological
triplicates), and proteomic analyses (T6, pooled biological triplicates). Chlorophyll was extracted
immediately, otherwise samples were frozen at -80°C until further analyses, with pigment and
protein samples kept in -80°C freezers, liquid nitrogen dewars, or dry ice coolers at all times
during transport back to the laboratories. All amendments and sampling were conducted in a
positive-pressure, clean room van with laminar flow hoods and plastic sheeting to minimize

trace-metal contamination.

5.12 Metaproteomic analysis
Water column metaproteomic biomass was collected onto 0.2, 3, and 51 um pore-size

filters (“field filters) using in-situ battery operated McLane pumps. Half of each field filter was

processed for metaproteomic analysis. Incubation metaproteomic biomasssamples wasere

serially filtered through a Sum pore prefilter followed by a 142mm GFF filter. Three-fourths of

each GFF filter was used for subsequent metaproteomic analysis of the incubations. All filters

were frozen at -80°C and stored until laboratory extraction. To extract proteins, filters were

placed into extraction buffer (1% SDS, 0.1M Tris/HCL pH 7.5, 10mM EDTA). 8 mL of buffer

was used for each field filter, and 15 mL of buffer was used for each GFF incubation filter. All

reagents were made with HPLC-grade water. Samples were heated at 95°C for 10 minutes and

shaken at room temperature for 30 minutes. Filters were removed and protein extracts were

filtered through 5.0 um Millex low protein binding filters (Merck Millipore #SLSV025LS).
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Millex filters were rinsed with 1 mL of extraction buffer to ensure no loss of protein. Samples

were then spun for 30 minutes at 3220 rcf in an Eppendorf 5810 centrifuge. The supernatant was

transferred to Vivaspin 5K MWCO ultrafiltration columns (Sartorius #VS0611). Protein extracts

were concentrated to approximately 300 puL, washed with 1 mL of extraction buffer, and

transferred to a 2 mL ethanol-washed microtube (all tubes from this point on are ethanol-

washed). Vivaspin columns were rinsed with small volumes of protein extraction buffer to

remove all concentrated protein and samples were brought up to 400 uL. with extraction buffer.

Samples were incubated with 2 uLL benzonase nuclease (EMD Millipore 70746-3) for 30 minutes

at 37°C.

Extracted proteins were purified from SDS detergent, reduced, alkylated and digested

with trypsin while embedded within a polyacrylamide tube gel, using a modified, previously

published method (Lu and Zhu 2005). A gel premix was made by combining 1 M Tris HCL (pH

7.5) and 40% Bis-acrylamide L 29:1 (Acros Organics) at a ratio of 1:3. The premix (103 pL) was

combined with 50-100 pg of the extracted protein sample, Tris-EDTA, 7 ulL 1% APS and 3 uL

of TEMED (Acros Organics) to a final volume of 200 pL. After 1 hour of polymerization at

room temperature, 200 uL of gel fix solution (50% ETOH, 10% acetic acid in LC/MS grade

water) was added to the top of the gel and incubated at room temperature for 20 minutes. Liquid

was then removed and the tube gel was transferred into a new 1.5 mL microtube containing 1.2

mL of gel fix solution before incubating at room temperature, 350 rpm in a Thermomixer R

(Eppendorf) for 1 h. Gel fix solution was removed and replaced with 1.2 mL of destain solution

(50% MeOH, 10% acetic acid in LC/MS grade water) and incubated at 350 rpm, room

temperature for 2 h. Liquid was removed, gels were cut up into 1 mm cubes and added back to

tubes containing 1 mL of 50:50 acetonitrile:25 mM ammonium bicarbonate (ambic) and
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incubated for 1 h, 350 rpm at room temperature. Liquid was removed and replaced with fresh

50:50 acetonitrile:ambic solution and incubated at 16°C, 350 rpm overnight. The above step was

repeated for 1 hour the following morning. Gel pieces were then dehydrated twice in 800 ul of

acetonitrile for 10 min at room temperature and dried for 10 min in a ThermoSavant DNA110

speedvac after removing the solvent. Proteins were reduced in 600 puL of 10 mM DTT, 25 mM

ambic at 56°C, 350 rpm for 1 h. The volume of unabsorbed DTT solution was measured prior to

removal. Gel pieces were washed with 25 mM ambic, and 600 pl of 55 mM iodoacetamide was

added to alkylate proteins at RT, 350 rpm for 1 h. Gel cubes were then washed with 1 mL ambic

for 20 minutes, 350 rpm at RT. Acetonitrile (1mL) dehydrations and speedvac drying were

repeated as described above. Trypsin (Promega #V5280) was added in an appropriate volume of

25 mM ambic to rehydrate and submerse gel pieces at a concentration of 1:20 pg trypsin:protein.

Proteins were digested overnight at 350 rpm, 37°C. Unabsorbed solution was removed and

transferred to a new tube. 50 ul of peptide extraction buffer (50% acetonitrile, 5% formic acid in

water) was added to gels, incubated for 20 min at RT, then centrifuged at 14,100 x g for 2 min.

The supernatant was collected and combined with the corresponding unabsorbed solution. The

above peptide extraction step was repeated again, combining corresponding supernatants.

Combined digested peptides were centrifuged at 14,100 x g for 20 minutes, supernatants

transferred into a new tube and dehydrated down to approximately 20 pL in the speedvac. Total

digested peptides were quantified (Bio-Rad DC protein assay, Hercules, CA) with BSA as a

standard. Peptides were then diluted in 2% acetonitrile, 0.1% formic acid in LC/MS grade water

to a concentration of 1ug/ul for storage until analysis. All water used in the tube gel digestion

protocol was LC/MS grade, and all plastic microtubes were ethanol rinsed and dried prior to use.
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Purified peptides were diluted to 0.1 pg pl™" and 20 pl (2 pg) was injected onto a Dionex
UltiMate 3000 RSLCnano LC system (Thermo Fisher Scientific) with an additional RSLCnano
pump run in online two-dimensional active modulation mode coupled to a Thermo Fusion Orbitrap

mass spectrometer as described previously (Mcllvin and Saito 2021).

A translated metatranscriptome (see below) was used as a reference protein database and

peptide spectra matches were performed using the SEQUEST algorithm within Proteome
Discoverer v.2.1 (Thermo Fisher Scientific) with a fragment tolerance of 0.6 Da and parent
tolerance of 10 ppm. Identification criteria consisted of a peptide threshold of 95% (false
discovery rate (FDR) = 0.1%) and protein threshold of 99% (1 peptide minimum, FDR = 0.8%)
in Scaffold v.5 (Proteome Software) resulting in 5,387 proteins identified in the incubation
experiment and 27,924 proteins identified in the water column. To avoid double-counting mass
spectra, exclusive spectral counts were used for the downstream proteomic analysis. Exclusive
spectral counts were normalized using the normalized spectral abundance factor (NSAF)

calculation (Zhang et al. 2010) to allow for a comparison of protein abundance across samples
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while remaining consistent with the metatranscriptomic procedure, see Cohen et al. 2021 for
details. Counts associated with redundant ORFs (sharing identical taxonomic and functional
assignments) were summed together. The stand-alone command line application BLAST+ from
the National Center for Biotechnology Information (NCBI) was used to identify proteins of
interest in the metaproteomic data. Metaproteomes were BLAST searched (E = Se-5) against the
known sequences of proteins of interest acquired from annotated proteomic databases
(Supplementary Table 4) and combined with further annotation data based on contig ID (see

below).

5.13 Metatranscriptomic analysis

RNA sequencing was performed using the Illumina HiSeq platform. Transcriptomic
assemblies were generated for biomass collected using McLane pumps filtered through 0.2, 3,
and 51 pum pore-size filters. In order to enrich metatranscriptomic libraries derived from 0.2 pm
filters in prokaryotic transcripts and libraries derived from 3 pm and 51 pm filters in eukaryotic
transcripts, 0.2 um libraries were generated from total rRNA-depleted mRNA and 3 pm and 51
um libraries were generated from polyA mRNA. Total RNA was extracted from 0.2 pm, 3 pm,
and 51um filters using Macherey-Nagel a NucleoMag RNA kit (Macherey-Nagel GmbH &
Co0.KG). Cleared lysate was loaded into a 96 deep-well plate and put on an epMotion 5075 TMX
liquid handler to complete the RNA extraction following the Machery-Nagel standard protocol.
For 3 um and 51 um samples with total RNA greater than 1 pug, 800 ng of total RNA was used
for preparing poly A libraries with an Illumina Stranded mRNA Prep Ligation kit (Illumina),
following the manufacturer’s protocol. For the 3 um and 51 pm samples with total RNA less

than 1 pg, 20 ng of total RNA was used as input for the SMART-Seq v4 Ultra Low Input RNA
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kit (Takara Bio USA. Inc), which converts poly(A) RNA to full-length cDNA using a modified
oligo (dT) primer with simultaneous cDNA amplification. The resulting double-stranded cDNA
was then fragmented using a Covaris E210 system with the target size of 300bp. Libraries were
prepared from fragmented double-stranded cDNA using an Illumina Stranded mRNA Prep
Ligation kit (Illumina). For RNA obtained from 0.2 um filters, ribosomal RNA was removed
using a riboPOOL Seawater Kit (Galen Laboratory Supplies, North Haven, Connecticut, USA).
The riboPOOL Seawater Kit is a customized mixture of Removal Solutions: Pan-Prokaryote
riboPOOL, Pan-Plant riboPOOL and Pan-Mammal in a ratio of 6:1:1. The rRNA-depleted total
RNA was used for cDNA synthesis by Ovation RNA-Seq System V2 (TECAN, Redwood City,
USA). Double stranded cDNA was then prepared for the libraries using an [llumina Stranded
mRNA Prep Ligation kit (Illumina). Ampure XP beads (Beckman Coulter) were used for final
library purification. Library quality was analyzed on a 2200 TapeStation System with an Agilent
High Sensitivity DNA 1000 ScreenTape System (Agilent Technologies, Santa Clara, CA, USA).
Resulting libraries were subjected to paired-end Illumina sequencing via NovaSeq S4.

The input paired-end fastq sequences are trimmed of sequencing adapters, primers and
low quality bases by using either BLASTN (NCBI, v2.2.25) (Altschul et al. 1990) or
trimmomatic, v0.36 (Bolger et al. 2014). The trimmed paired and unpaired sequences were then
depleted of rRNA sequences with riboPicker v0.4.3 (Schmieder et al. 2012). The command-line
program clc_assembler, v5.2.1 (Qiagen) was used to assemble processed sequences into contigs
and ORFs were identified by FragGeneScan, v1.31 (Rho et al. 2010). The trimmed sequences
were mapped to the predicted ORFs using the command-line program clc_mapper, v5.2.1
(Qiagen) to generate mapped raw read counts for each ORF. The raw counts were normalized

initially to RPKM values, to account for variations in inter-sample sequencing depth and the
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ORF sequence length (Mortazavi et al. 2008). The RPKM values were subsequently converted to
TPM (transcripts per million) units for estimation of the relative RNA abundance among samples
(Li and Dewey 2011). The ORFs were annotated for putative function by several programs in
parallel using BLASTP against PhyloDB, hidden Markov models PFAM and TIGRFAM by
HMMER, v3.3.2 (Eddy 2011), KEGG Ortholog HMM by kofamscan, v1.3.0 (Aramaki et al.
2020), and transmembrane HMM by TMHMM (Krogh et al. 2001). Additional annotations were
generated by similarity searches using BLASTP to transporter (PhyloDB), organelle (PhyloDB)
and KOG (Tatusov et al. 2003) databases. The ORFs are assigned to the best taxonomic
species/group as determined by LPI (Lineage Probability Index) analysis (Podell and
Gaasterland 2007). The final list of curated ORFs was generated by removing ORFs with low
mapping coverage (< 50 reads total over all samples) and with no BLAST hits and no known

domains.

5.14 Statistical analysis and data visualization

ANOVA and Dunnett tests were performed using MATLAB 2019a. Statistics are
summarized in Supplementary Table 3. Figures were made using matplotlib (version 3.5.0),
Ocean Data View (version 5.5.2), Excel (2019), and RStudio (version 1.3.1093). Color palettes

used in Ocean Data View section plots (https://doi.org/10.5281/zenodo.1243862) are inverse

“roma” for trace metal concentrations, “thermal” for Zn and Cd uptake rates, and “algae” for

chlorophyll fluorescence (Crameri 2023).

Data Availability
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CICLOPS (NBP18-01) conductivity—temperature—depth (CTD) hydrography data
including pressure, temperature, total dissolved oxygen, conductivity, fluorescence, and beam

transmission (https://doi.org/10.1575/1912/bco-dmo.783911.1) and total dissolved metal, Zn and

Cd uptake rate, macronutrient, and pigment datasets are available through the NSF Biological
and Chemical Oceanography Data Management Office (BCO-DMO) repository

(https://doi.org/10.7284/907753). Underway pCO:> data collected during cruise NBP1801 are

available through R2R at https://doi.org/10.7284/139318. The mass spectrometry global

proteomics data for CICLOPS bottle incubations and water column analyses have been deposited
with the ProteomeXchange Consortium through the PRIDE repository under the project name
“Zinc-iron co-limitation of natural marine phytoplankton assemblages in coastal Antarctica” with
project accession number PXD037056
(https://www.ebi.ac.uk/pride/archive/projects/PXD037056). This data is accessible for review by
using the following login information: username reviewer pxd037056@ebi.ac.uk, password:
IFdOUOED. The translated transcriptome used for spectrum to peptide matching has been
deposited in the National Center for Biotechnology Information sequence read archive under
BioProject accession no. PRINA890306
(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRINA890306) and RNA-Seq BioSample
accession nos. SAMN31286421-SAMN31286522

(https://www.ncbi.nlm.nih.gov/biosample/?term=SAMN31286421).

Acknowledgements

We thank the captain, crew, marine technicians and science party of RVIB Nathaniel B.

Palmer for their support and contributions to the success of the NBP18-01 cruise. We thank

35


https://doi.org/10.1575/1912/bco-dmo.783911.1
https://doi.org/10.7284/907753
https://doi.org/10.7284/139318

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

Natalie Cohen for assistance and training with the SeaFAST. We thank Veronique Oldham for
assistance with trace metal sampling. This work was funded by the National Science Foundation
(2125063, 1643684, 1924554) and the Simons Foundation to M.A.S.; NSF-PLR 1643845 to
R.B.D, NSF-CO (2123055) to M.A.S. and A.V.S., and the National Institutes of Health

(GM135709-01A1 to M.A.S).

Author contributions statement

All authors contributed to data acquisition and analysis. RMK, NLS, LEL, RJC, DR, DMM,
MRM, FB, RBD, GRD and MAS implemented the shipboard incubation study. RMK, MMB,
RJC, DR, TJH, and AVS contributed to the formal analysis. NLS, LEL, FB, OM, RF, and GRD
contributed to pigment datasets and interpretations. CB provided bacterial abundance data. RBD
contributed DIC and in situ pCO; data. AVS contributed analyses and discussion regarding
historical pCO> data and Zn-C growth limitation estimates. AEA contributed the
metatranscriptome reference database used for proteomic analyses. RMK and MAS wrote the
original draft. RMK, MAS, GRD, AVS, TJH, and RBD contributed to review and editing. All

authors approved the final submitted manuscript.

Competing interests statement

The authors declare no competing interests.

36



821
822
823
824

825  Figures

{

3
S g
3
H
53
g
i
i
i
12 1“
Jan 2018

e =, = 160°E 165°E 170°E 175°E 180°E 175°W

Fluorescence (mg/m3) . Fuco (ng/L)

—

19"Hex (ng/L)

Depth (m)

w w w » » 5w n % w m = = T e ow
Jan 2018 Feb 2018 Jan 2018 Lated Jan 2018 Feb 2018

Zn uptake rate (pmol/L/d)

Silicate (umol L")

Chiorophyll a (ng L") Pigments (ng L) DICT (umol kg') [dZny] (nmol L") pZn (pmol L' d) Nitrate +Nitrite (umol L")
0 2000 4000 0 25 500 750 1000 2150 2200 2250 2300 0.0 1.0 20 30 4.0 50 6.0 0 10 20 30 40 50 0 20 40 60 80
0 . 0 0 —ag—— 3 0 e 0y 0 —acmr
10 100 | 100 t 100 /‘(
20 - 200 | 200 ¢ 200 S
a 0 300 | 300 + 300 {
c i _400 | _400 + _ 400
] E Es00 | Es00 + Eso }
£ 50 his s 5
po b3 ue o oo | 00
(2] 60 *19-hex e oo 266
70 a0 | 800 00 | NN
80 *Si
900 900 | 900 | gp
% 1000 | 1000 1000 A
100 1100 1100 1100
0 2 4
826 N il L i U L Phosphate (umol L) .

37



827

828

829

830

831

832

833

|Im ‘ ﬂ\w
L0 B
IRE
|
250

i
i i
g 1 1

- — —S81s0
160°E 165°E 170°E 175°E 180°E 175°W Jan 2018

.2 5y BUCO (PP,

) "
Jan 2018 Fob 2018

Zn uptake rate (pmol/L/d)

: Silicate (umol L")
DICT (umol kg"') [dZn;] (nmol L) pZn (pmol L d-) Nitrate+Nitrite (pmol L")
1000 2150 2200 2250 2300 00102030405060 0 10 20 30 40 S50 40 60 80
0 . . or . — —

Chiorophyll a (ng L") Pigments (ng L")
0 2000 4000 0 25 500 750

0,

Station 27
28883

Depth (m)
2

Dept
g
Depth (m)

2 4
Phosphate (umol L-')

Figure 1. Temporal biogeochemistry of Terra Nova Bay and characterization of the
experimental site at Station 27. (a) Sampling locations over the Ross Sea shelf in Terra Nova
Bay, Antarctica. (b) Location of station 27 (red star) and surrounding seawater pCO, measured
over a three-day transit northwards represented in color scale. (¢) pCO> measured over time

within TNB during the three-day transit shown in (b). The vertical red line denotes the pCO2
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level at the time of initial seawater collection at station 27. (d) Total chlorophyll fluorescence,
(e) fucoxanthin (fuco), (f) 19' hexanoyloxyfucoxanthin (19'-hex), (g) total dissolved Zn, (h) total
Zn uptake rates, and (i) total dissolved Fe measured in the upper 250 m represented on a color
scale. Station data is presented in order of sampling date, from the earliest (Stn 22, early January)
to the latest (Stn 79, late February). The data gap between January 13-23 occurred when the ship
was unable to sample due to icebreaking duties for the McMurdo Station resupply ship. Stations
indicated in (a) are those where the trace metal rosette (TMR) was deployed; pigment data was
supplemented with additional TNB stations using a CTD (Table S2). Depth profiles of (j)
chlorophyll @, (k) the pigments fuco and 19’hex, (1) total dissolved inorganic carbon (DICT), (m)
total dissolved Zn, (n) total Zn uptake rates, and (o) the macronutrients nitrate+nitrite (N+N),
phosphate (P), and silicate (Si) at the study site. Panels (d),(g),(h) and (i) were originally
presented in Kell et al. (2024) and are reprised here to introduce the environmental context of the

study site.

39

[ Formatted: Font: Italic




857

858

859

860

861

862

863

864

865

866

867

868

869

870

Chia(ug L)

TO

loguod

T6 Control

s 5

T6 +Fe T6 +Zn

uzaj

RUBISCO

ZCRP-A

ISIP3

ISIP1

ISIP2A

T6 +Fa+Zn
5 &
3
1 2
8
05
3
0 E
5
-0.5 %
i)
A
8
-1.5 8.

2140
_ 2130
o 2120
E 210 -
3 —_——
5 2100 = xe
R
2080 . . . . .
T0 T6Control  T6+Fe  Te+Zn  T6+Fe+Zn
M Diatom Chlorophyte [l Cryptophyte
d. Phaeocystis Ml Dinoflagellate
5.2}
RUBISCO
ZCRP-A
I1SIPs .7

2

T6 Control +Fe +Zn +Fe+Zn

40



871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

Figure 2. Evidence for Zn co-limitation with Fe in bottle incubations. (a) Chlorophyll ¢ and
(b) total DIC (DICT) at TO (day 0) and in each treatment at T6 (day 6). Significant differences
among groups were found using one-way ANOVA and post-hoc Dunnett test (¥*** p <0.001, **
p <0.01, * p <0.05). Error bars are the standard deviation of biological triplicates (n=3).
Individual data points are overlaid (white circles). (¢) Heatmap of row-scaled exclusive protein
spectral counts (normalized total spectra) showing relative protein abundance in each treatment.
The dendrogram shows similarity in spectral abundance among samples based on Euclidean
distance and hierarchical clustering. Color gradients represent low (yellow) to high (blue) protein
expression. Ribulose-1,5-biphosphate carboxylase/oxygenase (RUBISCO), zinc/cobalt
responsive protein A (ZCRP-A), and iron starvation induced proteins (ISIP1, ISIP2A, ISIP3) are
shown. (d) Taxonomies assigned to RUBISCO, ZCRP-A, and ISIP proteins in each treatment at
T6. Counts (normalized total spectra) assigned to each taxa are shown. ISIPs are the combined

spectral counts of ISIP1A, ISIP2A and ISIP3.
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Figure 3. Metatranscriptomic and metaproteomic detection of Zn- and Fe-related proteins

of interest at the experimental site. Depth profiles of summed NSAF-normalized protein

spectral counts of (a) RUBISCO, (b) ZCRP-A, (¢) iron starvation induced proteins (ISIPs), (d)

ZCRP-B, (e) ZIP, (f) Theta CA, and (g) Delta CA detected from proteomic analysis of each filter

size fraction (0.2, 3 and 51pm). (h) TPM-normalized transcript read counts of CDCA. (i)

Stacked pie charts depicting relative community composition for proteins of interest for euphotic

(<200 m) and mesopelagic (> 200 m) depths. The outer rings show community composition

based on NSAF-normalized protein spectral counts while the inner rings are TPM-normalized

transcript read counts. Protein and transcript counts plotted in (i) were summed across all size

fractions. ISIPs are the combined spectral counts of ISIP1A, ISIP2A and ISIP3.

42



903

904

905

906

907

908

909

910
911

912

913

914

915

8+ 500 ., b. 1500 =
=$= Surface ocean é ‘=;6e:igduslnal
450 Atmosphere 2
pCO, Zn limitation threshald (taboratory) <
TNB'CO, 2
400 202 {5 e
- 2 ES
5 | ‘ 3 1000
2 350 1 | 3
£ ]
2 -
g 300 §
= o
@ Y
£ 250 aboratory
g 500
S 200 || i situ (his study) i
N
5
[=
150 3
T
a
100 P ¥ 0
1750 1800 1850 1900 1950 2000 100 200 300 400 500
¢ Year AD Surface ocean pCO, (pnatm)
; d. .35
°

g2 B 8
8

o

Kl
o

5

2

2

°

150 @
]

@

100 §
@

T

3

8

5 )

%

1800 1900 2000
Year AD

o

o
Q
Q
2
£
-4
2
g
¥
g
515
c
€10
g
s
z
4
5
4

Figure 4. The partial pressure of CO; (pCO:) and associated phytoplankton responses from
this study and the literature. (a) Pre-industrial and decadal surface ocean pCO: reconstructions
plotted as violin plots, with a running black line through the median values. The atmospheric
curve is a composite of ice core data (dashed yellow line (Etheridge et al. 1996)) and the Mauna

Loa record (solid yellow line (Keeling et al. 1976)). An estimated thresholds for zinc-limited
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growth is plotted as the median of previous laboratory results (259 patm, dark green line; see
Methods), and is compared to the in situ results of this study (220 patm, light green line). (b)
Data in (a) plotted as a histogram comparing preindustrial and modern (2010) pCO> values, with
the same pCO2 levels indicated. (¢) Global map of surface ocean pCO; plotted using
GLODAPv2.2022 data (Lauvset et al. 2022). (b) Percentage of the ocean surface less than 250
patm pCOz as a function of time. Surface ocean pCO> reconstructions taken from Jiang et al.

2023.
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Supplementary information for “Zinc stimulation of phytoplankton in a low carbon

dioxide, coastal Antarctic environment: evidence for the Zn hypothesis”

Supplementary Table 1. Summary of zinc incubation experiments in marine environments.
Note that all experiments focus on phytoplankton populations with the exception of Fukada et al
(2000) and Mazzotta et al. (2021) which focus on bacterial heterotrophy. This list represents our

knowledge of the literature but may be incomplete.
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Dissolved

Zn Treatment | pCO;
Study Location Environmental | Zn Response
Replication Data
Zn Data
Scharek et al.
Southern | Zn n=2, control Negative/“very
1997(Scharek No No
Ocean n=1 small”
et al. 1997)
Integrated Leucine
water column aminopeptidase
Fukada et al.,
North leucine activity
2000(Fukuda No Yes
Pacific aminopeptidase positively
et al. 2000)
activity (0- correlated with
100m) dZn
Cochlan et al. Increase in
Western None (n=1
2002(Cochlan No No specific uptake
Ross Sea +Zn, +Zn+Fe)
et al. 2002) of NO3
Coale et al. Ross Sea,
None (n=1 Negative/“very
2003(Coale et Southern No Yes
+Zn, +Zn+Fe) small”
al. 2003) Ocean
“Slightly but
Crawford et al. | Northeast significantly”
Triplicate
2003(Crawford Pacific Yes No altered Chl,
(n=3)
et al. 2003a) Ocean nitrate and

phosphate
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Franck et al.

Secondary Zn

Costa Rica Triplicate limitation after
2003(Franck et No No
Dome (n=3) Fe in diatom
al. 2003)
microscopy data
Ellwood
Duplicates
2004(Ellwood | Subantarctic No Yes Negative
(n=2)
2004)
Cullen et al.
Enhanced Cd:P
1999; Cullen
in low pCO»
and Sherrell
Coastal Duplicates treatments,
2005(Cullen et No No
California (n=2) decrease in
al. 1999;
Cd:P with Zn
Cullen and
addition
Sherrell 2005)
Jakuba et al. Singlicate with Primary, no
North Yes
2012(Jakuba et timepoints No additive effect
Pacific
al. 2012) sacrificed with iron.
Dreux
Chappell et al. Secondary
Costa Rica Triplicate
2016(Dreux No Yes limitation with
Dome (n=3)
Chappell et al. Si
2016)
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1%48
1249

1250

1251

Sharma et al.
2020(Sharma

et al. 2020)

Eastern

Arabian Sea

Triplicate

(n=3)

Yes

Negative/
“insignificant

effects”

Mazzotta et al.
2021(Mazzotta

etal. 2021)

Equatorial

Pacific

Quintuplicate
(n=5) sediment
trap

incubations

Yes in separate
study (Cohen et

al., 2021)

Enhancement of
alkaline
phosphatase
activity with Zn
addition in
sediment trap

samples

This study

Terra Nova
Bay, Ross

Sea

Triplicate

(n=3)

Yes

Primary and
Secondary
limitation.

Independent

validation by Zn

biomarkers.

Supplementary Table 2. Station metadata for the NBP18-01 cruise. Stations at which total Zn

uptake rates were determined are indicated by asterisks (*).

Station Latitude (°N) Longitude (°E)

Sampling Date

(yyyy-mm-dd hh:mm)

4% -72.751 -116.001 2017-12-30 01:23

61



10

11*

15%

20%*

22%

27%*

29%

31

32%

34

35%

-73.054
-74.047
-75.864
-76.714
-75.013

-75.003

-74.987

-76.001

-77.295

-76.750

-77.147

-76.231

-74.741

-129.988

-133.764

-151.918

179.819

165.358

165.781

2018-01-03 03:39

2018-01-03 19:58

2018-01-05 14:51

2018-01-08 02:00

2018-01-09 15:56

2018-01-01 3:51

165.551

2018-01-10 16:33

163.914

164.836

2018-01-11 01:26

2018-01-11 5:14

165.890

172.997

175.390

172.000

168.503

168.769

164.999

2018-01-11 16:05

2018-01-16 03:00

2018-01-17 04:39

2018-01-17 19:19

2018-01-23 22:59

2018-01-26 20:17

2018-01-27 23:21

164.170

2018-01-28 6:00

165.002

164.169

2018-01-29 00:41

2018-01-29 19:30

165.287

164.249

2018-01-31 21:32

2018-02-01 19:28

164.670

2018-02-01 23:30

165.488

2018-02-02 21:17
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1252

1253

62%*

67*

70

72%

-74.999

-76.454

74744

-74.800

164.498

2018-02-03 0:46

164.005

164.441

2018-02-03 21:43

2018-02-05 5:30

164.169

2018-02-05 19:26

165.498

2018-02-06 0:10

164.482

164.843

2018-02-06 20:12

2018-02-07 5:26

164.739

164.773

2018-02-08 20:06

2018-02-09 6:35

169.491

167.919

170.374

164.395

164.503

2018-02-09 19:27

2018-02-11 19:19

2018-02-13 21:25

2018-02-14 22:28

2018-02-15 7:03

164.531

2018-02-15 23:18

164.677

2018-02-16 6:22

164.597

165.764

2018-02-16 20:15

2018-02-17 6:59

164.796

164.356

164.792

2018-02-17 20:34

2018-02-18 19:29

2018-02-18 23:00
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1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

Supplementary Table 3. Summary of ANOVA statistics for T6 incubation treatments

comparing measured parameters. Significant differences among groups were found using one-

way ANOVA and post-hoc Dunnett test (*** p < 0.001, ** p<0.01, * p<0.05,.p<0.1). Chl g,

1264  chlorophyll a,; DICr, total dissolved inorganic carbon; chl b, chlorophyll b; Prasino,
1265  prasinoxanthin; fuco, fucoxanthin; 19’hex, 19'-hexanoyloxyfucoxanthin; chl c3, chlorophyll ¢3.
1266  NA, no statistically significant difference. All parameters were measured in biological triplicate.
1267
Bacteri
Treatmen Fuco:he | Hex:Ch al
Chl a DICr Chl b | Prasino | Fuco 19’hex
t (T6) X 1c3 abunda
nce
pP= p= p= pP= p = 8e- p= p= p=
+Fe vs
9.5¢-5 | 53e-6 | 4.0e-3 | 2.9e-2 NA 3 42¢-4 | 2.0e-4 | 9.1e4
Ctrl
+Znvs p= p= p= p= p=
NA NA NA NA
Ctrl l.1e2 | 5.0e-6 | 8.0e-2 | 7.4e-3 0.02520
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*) (**%) ) (**) (*)
pP= pP= P= pP= pP= pP= pP=
+FeZn vs
1.3e-7 | 2.2e-16 | 4.0e-4 | 5.7e-2 NA NA 2.7e-3 1.9e-4 | 6.3e-4
Ctrl
p= p= p=
+FeZn vs
3.4e-2 | 4.4e-3 NA NA NA 6.0e-2 NA NA NA
+Fe
*) ) )
1268
1269
1270  Supplementary Table 4. Representative proteins of interest, reference organism and IDs.

1271

1272

1273

1274

Protein of interest Reference organism Protein ID
ZCRP-A Thalassiosira pseudonana CCMP1335 3054 (JGI Thaps3™)
ZCRP-B Thalassiosira pseudonana CCMP1335 938 (JGI Thaps3_bd™)

RUBISCO Phaeodactylum tricornutum CCMP632

ISIP1A

ISIP2A

ISIP3
ZIP]

CDCA

Thalassiosira oceanica CCMP1005
Phaeodactylum tricornutum CCMP632
Phaeodactylum tricornutum CCMP632
Phaeodactylum tricornutum CCMP632

Thalassiosira pseudonana CCMP1335

AAF07200.1 (NCBI)

KORCT3 (Uniprot)
B7FYL2 (Uniprot)
B7G4HS (Uniprot)
46780 (JGI Phatr2")

25840 (JGI Thaps3®)

*Joint Genome Institute (JGI) Thaps3 database

(https://mycocosm.jgi.doe.gov/Thaps3/Thaps3.home.html)

"Joint Genome Institute Thaps3_bd database

(https://mycocosm.jgi.doe.gov/Thaps3 bd/Thaps3 bd.home.html
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1275
1276
1277
1278
1%79
1280
1281
1282
1283
1284
1285
1%86
1287
1288
1289
1290
1291
1292
1293

1294

fJoint Genome Institute CCAP 1055/1 v2.0 Phatr2, all models database

(https://mycocosm.jgi.doe.gov/Phatr2/Phatr2.home.html)

Supplementary Table 5. Summary of metaproteomic contigs detected in both the incubation

biomass and in the water column at station 27 identified as ZCRP-A or ZIP homologs. For each
contig, the top reference BLAST hit (see Supplementary Table 4) is listed with alignment
statistics (E-value, percent identity). An example ortholog identified by SHOOT and the

ortholog’s corresponding UniProt protein description is also presented.

Supplementary Table 65. Particulate Zn:P ratios measured in 7. pseudonana cultured at various
concentrations of Zn (log [Zn']) (Sunda and Huntsman 2005) compared to particulate Zn:P ratios
measured at Station 27 of research cruise NBP18-01. Zn:C measurements by Sunda and
Huntsman 2005 were converted to Zn:P using the Redfield ratio. Data is plotted in
Supplementary Figure 6. Zn' refers to the sum of inorganic Zn metal complexes.

"Particulate P data measured directly in this study

*Particulate P from Sunda 2005 data was estimated by converting particulate C measurements to

P using the Redfield ratio (106C:1P).

Particulate Zn:P ratios at Station 27
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Particulat Zn:P

Particulat
Depth (m) eZn . (mol:mol
e P (mol)
(mol) )

100 1E-11 8E-08 1E-04

50 1E-11 1E-07 1E-04

25 3E-11 2E-07 2E-04

10 4E-11 2E-07 2E-04

Cellular Zn:P ratios of cultured 7. pseudonana from Sunda and Huntsman 2005, Table

1.

Particulat Particulat Zn:P Growth
Experimen Log Particulat
pH eZn eP (mol:mol | rate (d°
t [Zn’] e C (mol)
(mol) (mol)* ) D
1 -12.05 8.2 3.3E-05 22 0.21 2E-04 0.1
1 -11.47 8.2 5.2E-05 15 0.14 4E-04 1.23
1 -10.87 8.2 1.2E-04 15 0.14 9E-04 1.62
1 -10.36 8.2 1.5E-04 15 0.14 1E-03 1.76
1 -9.82 8.2 1.8E-04 15 0.14 1E-03 1.76
1 -11.96 9 3.8E-05 15 0.14 3E-04 0.51
1 -11.38 9 8.5E-05 15 0.14 6E-04 1.12
1 -10.78 9 2.0E-04 15 0.14 1E-03 1.28
1 -10.27 9 4.1E-04 15 0.14 3E-03 1.42
1 -9.73 9 5.0E-04 15 0.14 4E-03 1.49
2 -11.82 8.2 4.9E-05 15 0.14 3E-04 0.64
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1295
1296
1297
1298
1299
1300

1F01

1302

2 -11.82 8.2 4.0E-05 15 0.14 3E-04 0.79
2 -10.87 8.2 1.3E-04 15 0.14 9E-04 1.45
2 -9.82 8.2 2.0E-04 15 0.14 1E-03 1.51
2 -11.71 9 5.8E-05 15 0.14 4E-04 0.73
2 -11.71 9 5.8E-05 15 0.14 4E-04 0.78
2 -10.76 9 1.9E-04 15 0.14 1E-03 1.39
2 -10.76 9 2.1E-04 15 0.14 1E-03 1.38
2 -9.71 9 4.3E-04 15 0.14 3E-03 1.44
2 -9.71 9 5.0E-04 15 0.14 4E-03 1.42
4 -11.82 8.2 2.8E-05 18.1 0.21 3E-04 0.72
4 -11.32 8.2 5.5E-05 15.2 0.13 4E-04 1.45
4 -10.82 8.2 1.3E-04 14.7 0.14 9E-04 2

4 -10.32 8.2 2.2E-04 15.1 0.14 2E-03 2.03
4 -9.82 8.2 2.6E-04 15.6 0.14 2E-03 2.04

Supplementary Table 76. Reference seawater comparisons using the 2009 GEOTRACES

coastal surface seawater (GSC) standard.

This study GEOTRACES GSC consensus (nM)
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1303

1304

1305

1306

1307

Metal (n=28)
(nM)
Fe 1.6+0.23 1.6+£0.12
Zn  14+023 1.5+0.10
Cd 0.4+0.01 0.4+0.02
Cu 1.3£0.05 1.1+0.15
Ni  4.2+0.07 4.5+0.21
Mn 2.1+037 2.2+0.08

Supplementary Figures
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1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318
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Supplementary Figure 1. Additional parameters measured in shipboard bottle incubations.
Time course decreases in (a) phosphate and (b) nitrite + nitrate. (¢) total POC of biomass in each
treatment at T6. (d) the atomic carbon:nitrogen (C:N) ratio of biomass in each treatment at T6,
and (e) bacterial abundance. Significant differences among groups were found using one-way
ANOVA and post-hoc Dunnett test (*** p < 0.001, ** p <0.01, * p < 0.05). Error bars are the
standard deviation of biological triplicates (n=3) with individual data points overlaid (white
circles). Macronutrients, POC, and PON were measured in singlicate (n=1) from pooled

biological triplicates.
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1320
1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

Phaeodactyl...nutum_ZCRPA
contig_652592_49_1335_-
contig 1048313 _980_

contig 947870 2 1288 -
contig_104832 3 716_
contig 120421 1 351

contig_343121_503_1144_+
contig_120413_3_335_
contig 120390 752_1060_-

Phaeodactyl. . .nutum_ZCRPA
contig_652592_49_1335_

contig_104831_3_980_
contig_947870_2_1288_
contig 104832 3 716_
contig 120421 1 351 -

contig_343121_503_1144
contig 120413 3 335_

GUWalker A Guswiteh1
TGFLGSGTTLLMIL 53 < . utus_ZCAPA
- VPVIVLTGFL GAGKTTLUMTUNDOWAGLKFATTENELGEETVD 44 contig 652592, 49_1335.-
- VIPRGCRCLLTGANGAGKTTLLIILTA-WHGKRIAVIENEFGEVGVD 47%  contig 1048313 980_
LATAEKLSAGPQRDSKVPVTVLTGFLGSGKTTLLNRILKE -VHGKRIAVIENEFGEVGID 1794 contig 947870_2.1288 -
e WGKRIAVIENEFGEVGVD  19°  contig 1048323 716,
E : 14 contig 120421 1 351 -
VRRAGKQVHLGSFVTAEEAMLATAR - -~~~ 255 contig 343121_503_1144_+
== mnsssoansa: 1 contig 120413_3_335_
1 contig_120390_752_1060_-
exce G3Walker B
ETILS. .- ENVDEETTEVMNGEICCTVAGOUWALKKLYKKVES - ---FN-GVITESTIG 104  phacodactyl. . .autum_ ZCRPA
DKVLS - - -QKTDEKIVEVMNGEICCHVRGOUWALKKLWKRVAT - - - -FO-GVITE-TIG 95/  contig 652592 49
DSLIR-NRFKTDEDTF EMMNGCICCTVAGOLIRILGKLFRFKSO- ---LO-ALTIE-TIG 100  contig 104831
051 TCCTVRGOL TIETI6 237 contig 947870,
OSLIR-NRFKTOEDLF EMMNGCICCTVRGOLIRILGKLFRFKSD- ---LO-ALTIE-TIG 720 contig 104832
- --NGEACCTVRGDLVRSLQGLKKKLEK - ---FO-MWFE-TIG 35:  contig 120421 1

65
13

contig 343121
contig 120413 3

LVKDKL
TEGFLSCKAEENL
~DDKYVYQGVHML FTGEV - - -LEPWG -DAKRLNRLTF TGKNLVREELKASFESCK - - - -~

contig_120390_752_1060_- 4 contig 12039
 .nutus_ZCRPA KL EQUAFAOK 164 -nutus_ZCRPA THSNE
contig_652592_43_1335_ TKAKYRLOST 155 contig 652592 49 1335 _-
contig 1048313 980_- DGIVTL FADR 160:  contig 1048313 980_-
contig 947879 2 1288_ 061 297 contig 9478702 1288 _
contig 104832 3 716 _- 2 QUCFADR 132 contlg_104832_3_716_-
contig 120421 1 351 - LVDSHFL 94:  contig 120421 1 351
contig 343121 503 1144_+ GMEAGT IVKQFYRQSSFPPGTF APYQURLONGKLIVAPIOE -« ------o-oneeenDR 1084 contig_343121 503 1144 4 VRSLG
contig_120413 3 _335_- LADPAPTHKTF -QQPE INTHE RVOGWCLVDSHF LKDNINEVRPEGTVNEAVOQUAFADK 72/ contig_120413_3_335_-
contig_120390_752_1060_- LTsow 10 contig 120390 752_1060_-
Phaeodactyl. ..outus_ZCRPA TILVDLAE - YSKISPKEL XF 2224 B L T 3954
contig_652592_49_1335_ VLLWKTOLVT NI 2130 contig 65259249 1335
contig 104831 3_980_- LLLAKVOLYS - - -PEDL TRVEARLRKLNAYAPIVQCQNARVTMENVLNIKAFELQRVLEM  217:  contig 104831 3 980 -
contig 947870 2 1288_ 1 L EM 3570 contig 947870 2 1288 _
contig 104832 3 716_- LLLAKVDLVS - - -PEDL TRVEARLRKLNAYAP IVQCQNAOVTMENVLNIKAFELQRVLEM  189¢  contig 104832 3 716 -
contig 120421 1_351_- TLLNKTOLVS - - -KAEMKTLKDTVTSG - oo eeeeeeeeeeececeo 1180 contig 1204211351 -
contig 343121 503 1144_+ o LY. VLNE 1614 contig 343121 503 1144 s
contig 1204133 335_- TLUmTDL - 1120 contig 120413 3 335 _-
contig 120399_752_1060_ - 14 contig 120399_752_1060_-
orf_id Hit E value % ID
contig_652592_49_1335_- Phaeodactylum_tricornutum_ZCRPA 4.75E-162 56.266
contig_104831_3_980_- Phaeodactylum_tricornutum_ZCRPA 6.51E-110 50.311
contig_947870_2_1288_- Phaeodactylum_tricornutum_ZCRPA 5.00E-86 49.488
contig_104832_3 716 - Phaeodactylum_tricornutum_ZCRPA 5.25€-80 48.954
contig_120421 1 _351 - Phaeodactylum_tricornutum_ZCRPA 1.62€-32 51.818
contig_343121_503_1144_+ Phaeodactylum_tricornutum_ZCRPA 3.24€-23 60.526
contig_120413_3_335 - Phaeodactylum_tricornutum_2CRPA 5.54€-22 41.964
Phaeodactylum_tricornutum_ZCRPA 7.76E-13 41.111

contig_120390_752_1060_-

Supplementary Figure 2. Sequence alignments of ZCRP-A peptides detected in T6

incubation biomass. (a) Sequence alignment of the Phaeodactylum tricornutum ZCRP-A

protein compared to all ZCRP-A proteins detected in T6 incubation biomass. Alignment was

generated using the MUSCLE algorithm with default parameters within MEGA11. Four

conserved GTPase (G1/Walker A, G2/Switchl, CXCC metal binding, and G3/Walker B) are

labeled. (b) E values and percent% identities of the identified proteins with significant sequence

similarity to P. tricornutum ZCRP-A aligned above.
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Supplementary Figure 3. Pigment analysis of T6 incubations. (a) ratio of fucoxanthin: 19°-
Hex, (b) fucoxanthin, (¢) 19-hexanoyloxyfucoxanthin (19'-Hex), (d) ratio of 19’-Hex: chl c3, (e)
ratio of fucoxanthin: chlorophyll a, (f) ratio of 19'-Hex: chlorophyll a, (g) chlorophyll b, (h)
prasinoxanthin, and (i) maximum quantum efficiency (Fv/Fm) among treatments at T4.
Significant differences among groups were found using one-way ANOVA and post-hoc Dunnett
test (¥** p <0.001, ** p <0.01, * p <0.05, . p <0.1). Data with error bars are presented as mean
values + the standard deviation of biological triplicates (n=3) with individual data points overlaid

(white circles).
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1350  Supplementary Figure 4. Phacopigments measured in T6 incubation biomass. Abundances of
1351  (a) phaeophorbide and (b) phacophytin, and (c) the ratio of phaeophytin: total phacopigments
1352 (the sum of phaeophorbide and phaeophytin). Error bars are the standard deviation of biological
1353 triplicates (n=3).
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Supplementary Figure 5. Depth profiles for proteins of interest at station 27 categorized by
genus. Depth profiles of NSAF-normalized protein spectral counts of (a) ZCRP-A, (b), iron
starvation induced proteins (ISIPs), and (¢) ZIPs summed by genus. Proteins assigned to an
individual genus were summed across all size fractions (0.2, 3 and 51 um). ISIPs are the

combined spectral counts of ISIP1A, ISIP2A and ISIP3.
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