
We thank all reviewers for their useful and constructive comments. These comments have 
been addressed as already announced in the open discussion of our manuscript. Below is a 
summary of this discussion with the specific comments and our responses. In the revised 
version of the manuscript, we have added some references including those suggested in a 
community comment. We have updated Figures 1, 8, and 9 according to the reviewers’ 
suggestions. A marked-up version of the revised manuscript with all changes made to the 
main text highlighted in red/blue will also be provided. 
 
 
Reviewer 1: 
 
- I suggest revising the study area map, adding coordinates, north arrow, scale. 
Thanks for your suggestions, we'll add coordinates (which should also give an idea of the 
scale) and north arrow in the revised version of the manuscript. 
 
- Some literature reviews can be added about hybrid statistical-physical models in 
introduction. 
We'll add some references about hybrid statistical-physical models in the revised version of 
the manuscript. 
 
- You are using different data sources CHIRPS vs. ERA5, did you do some sensitivity check 
analyses? 
Yes. We had originally used ERA5 data for both temperature and precipitation, but had then 
discovered discrepancies between historical trends for ERA5 precipitation and streamflow 
anomalies. Encouraged by comparisons of ERA5 and CHIRPS precipitation data over Brazil 
reported in the literature, we tested CHIRPS data as an alternative to ERA5 data and 
obtained better results with CHIRPS (then still using only the constrained regression 
framework). The downside of this change, a reduction in the number of years available for 
fitting the model, led to the development of the neural network regression approach. 
 
- Have you think about physical relationships between temperature and vapor pressure of 
water (like considering clausius-claperyon equation)? 
In earlier stages of the project, we have discussed and tested more sophisticated ways to 
model the impact of temperature changes (due to global warming) on streamflow through 
increased evapotranspiration, which also take interactions between temperature and 
precipitation changes into account. However, these attempts with more complex (non-linear) 
approaches were not successful, likely due to the limited data and often poor signal-to-noise 
ratio, and we therefore decided to move forward with a simple linear model. 
 
- Considering nearest grid point, did you use orographic effects? 
No, we have not corrected for orographic effects. While discrepancies between model grid 
and real orography may indeed entail biases for both temperature and precipitation, we use 
the same rationale that we describe in section 3.1 ('Data standardization') in the context of 
possible biases in climate model simulations: by using only standardized anomalies in our 
model, systematic biases are corrected implicitly as they cancel out in the standardized 
anomalies. Of course, this rationale does not work for non-linear bias effects, but as 
explained above, such effects are too complex to identify and correct in a robust way with 
the available data. 



 
- I suggest adding skill scores as well for climatology. 
By 'skill scores', are you referring to the fraction of explained variability depicted in Figure 7? 
This quantity is effectively a mean squared error (MSE) skill score, and climatology in this 
context would be constant prediction of zero anomaly (since the climatological signal is 
removed in the standardization described in section 3.1). So, by definition, the explained 
variability (MSE skill score) for climatology is zero everywhere. 
 
 
Reviewer 2: 
 
- Could the authors clarify why the CatchmendID pipeline was separated from the Month 
pipeline in the neural network architecture? A brief explanation would be helpful. 
 
We have experimented with alternative architectures where the catchment and month 
information is combined at an earlier stage. The performance was very similar, the reason 
why we chose the architecture with separate pipelines in the article is that we like the 
interpretation briefly explained in section 3.3.2 as one pipeline learning a set of spatial 
patterns and the other pipeline learning how to weigh these patterns differently over the 
course of the year. One can visualize this as in the figures attached to this comment, where 
we depicted the first 4 (of 25) spatial patterns for the first cross validation fold (see section 
3.3.5) and the associated month-specific coefficients. We find the possibility to visualize and 
interpret the result of the embeddings in this way an advantage of our chosen architecture. If 
interpretability is the main focus, further improvements could be achieved by 
a) choosing activation functions after the respective first dense layer that entail non-negative 
coefficients, and 
b) reducing the number of nodes in the first hidden layer (output dimension of these dense 
layers) which could potentially lead to more unique individual patterns while likely (see figure 
A1) only having a minor negative impact on the model's performance. 
 
 
Reviewer 3: 
 
- The authors provide an overview of process-based hydrological models and data-driven 
approaches, including LSTMs. One potential improvement is to elaborate slightly more on 
why existing hydrological models could not be adapted in this context. 
 
Using hydrological models is certainly possible, and the first community comment has 
pointed us to a paper that calculates projections of future streamflow over South America 
using that approach. However, this requires both expertise with the respective local 
hydroclimate and a substantial amount of time to calibrate that model for all catchments. 
Since our project partners at Statkraft want to use this model in several different parts of the 
world and often have to provide a first iteration of future streamflow simulations rather 
quickly, there was a desire for an approach that can more easily be transferred to different 
regions. This was one of the primary motivations for this work, and we will expand our 
explanations to make this more clear. 
 



- In the introduction, the authors emphasize the limitations of LSTM models, characterizing 
them as “black boxes.” However, in this study, LSTMs or neural networks are not applied to 
make direct predictions but rather to learn coefficient embeddings for a linear regression 
model. Moreover, there are many established approaches to improve the interpretability of 
neural networks. I suggest that the authors compare existing explainability methods (e.g., 
attention mechanisms, feature attribution techniques) with the embedding approach adopted 
in this study, to more clearly situate the method within the broader context of explainable 
machine learning. 
 
We will expand this section and add some comments and references on explainability and 
interpretability. In our understanding, explainability methods can help better understand the 
sensitivity of the output to the various inputs, but cannot make it interpretable to the same 
degree as a process-based hydrological or linear statistical model where one has a clear, 
intuitive understanding of the model’s decisions. We’ll also add a sentence that makes it 
clear where our proposed method is situated w.r.t. explainable machine learning 
approaches. 
 
- Please briefly explain how missing months or gaps in time series were handled in the 
regressions. 
In our setup, missing values only occurred in the context that for a small number of 
combinations of months and catchments, the streamflow data looked suspicious (identical 
values across the majority of years). In those cases, we removed the entire 
month-catchment combination from the analysis. The case where only a few years for a 
given month-catchment combination are missing did not occur in our study, but should not 
pose any problems as long as the standardization (section 3.1) can be calculated in a robust 
way. The regression model (especially the one fitted within a neural network framework 
using month and catchment embeddings) can be fitted with the missing years removed from 
the training data set. 
 
- Figure 5 is helpful, but it would improve understanding to provide a clearer description of 
the dimensionality of embeddings and dense layer outputs in the main text rather than in the 
appendix. 
We will provide that information in the main text in discussing Figure 5 to give an idea about 
the typical hyperparameter values early on, while still referring to the ‘Hyperparameter’ 
subsection and the Appendix for the technical details of how these values were obtained. 
 
- Figure 7 shows the percentiles of the coefficients of determination across all catchments. It 
is noted that in July, the model performance is relatively poor, with many catchments having 
values even below 0.03. Please check whether this is correct, and provide an explanation for 
this phenomenon. How this affects the robustness of long-term projections. 
 
We believe that this is correct, and is a result of typically low precipitation amounts in July 
over large parts of Brazil (see Figure 2), which makes modeling the rainfall-runoff relation 
more difficult than in other months, and more dependent on long-term storage mechanisms 
and possibly other factors (more impact from reservoir operations that was not fully 
accounted for in the available streamflow series). We will expand the discussion of the 
negative implications for long-term projections and associated uncertainty (section 5), and 



add a sentence to the conclusion to make it clear that this is where more complex 
approaches may have the most potential for improvement. 
 
- The horizontal and vertical axis labels and units in Figure 8 and Figure 9 are missing. 
The horizontal axis label (year) should be self-explanatory, for the vertical axis we will add 
labels and units to the two left panels in the revised version. 
 
- Figure 11 analyzed the predictor contributions which is insightful. It is noted that this 
decomposition does not capture interaction effects, which could be a limitation. For example, 
the temperature emerges as the primary driver of projected declines in streamflow. However, 
this may be partly an artifact of the linear model structure. Have the authors tested 
alternative formulations, such as including interaction terms (e.g., temperature × 
precipitation) or exploring nonlinear relationships? 
 
In earlier stages of the project, we have discussed and tested more sophisticated ways to 
model the impact of temperature changes on streamflow through increased 
evapotranspiration which also take interactions between temperature and precipitation 
changes into account. However, these attempts with more complex (non-linear) approaches 
were not successful, likely due to the limited data and often poor signal-to-noise ratio, and 
we therefore decided to move forward with a simple linear model. We agree though that 
there is a potential danger of an omitted variable bias with our model, and we will add this 
caveat to the discussion of Figure 11.  
 
- While smoothing year-to-year variability is understandable, applying centered 30-year 
moving averages can mask decadal shifts and dampen trends, particularly in non-stationary 
time series. It could be informative to provide supplementary figures with alternative window 
lengths (e.g., 10 or 20 years) or without smoothing, to demonstrate the stability of trends. 
 
We will provide supplementary figures with the suggested alternative window lengths. 
 


