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Abstract

The contribution of natural aerosol particles from boreal forests to total aerosol loadings may increase with
reduction in anthropogenic emissions. Aitken and accumulation mode particles in boreal regions differ
significantly in hygroscopicity, and ignoring this size dependence can cause large uncertainty in Cloud
Condensation Nuclei (CCN) prediction. We applied x-Kdhler theory to a multi-year dataset (2016-2020) from
Hyytidld, Finland, to evaluate different representations of aerosol chemical composition for CCN prediction.
Overpredictions by forward closures using either bulk chemical composition from an Aerosol Chemical
Speciation Monitor (ACSM) or a constant ¥ = 0.18 were mitigated to a great extent by optimizing size-resolved
composition using two inverse modeling approaches: (1) Nelder—-Mead method with the size distribution fixed to
its median during each 2-hour CCN measurement cycle, and (2) MCMC (Markov Chain Monte Carlo) accounting
also for the variability in the size distribution during each cycle. Both methods improved closure at $S = 0.2-1.0%
(with Geometric Mean Bias GMB values 1.12-1.20 and 0.95-1.05, respectively), with moderate improvement at
0.1% (GMBs of 1.53 and 1.32, respectively). The Aitken mode was enriched in organics in 77% of cases using
method (1) and 46% using method (2) — with typical x values of ~0.1 for Aitken and ~0.3 for accumulation modes.
The results generally align with known size-dependent chemical composition in Hyytidld and indicate that
variability in CCN hygroscopicity is largely driven by Aitken mode composition. Our results demonstrate the
potential of inverse CCN closure methods for obtaining valuable information of the size-dependent chemical

composition.
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1 Introduction

Aerosol particles play a critical role in the formation of cloud droplets. They serve as cloud condensation nuclei
(CCN) by lowering the energy barrier for heterogeneous nucleation of water, thus promoting cloud droplet
activation at atmospheric levels of water vapor supersaturations SS (Kdhler 1936; Pruppacher and Klett, 2010).
The subset of aerosol particles that act as CCN affects the cloud droplet number concentration (CDNC), thus
changes in the CCN concentration (Ncen) may modulate cloud radiative properties and lifetime — phenomena
known as the first (Twomey, 1974) and second (Albrecht, 1989) indirect aerosol climate effects. The
parameterization schemes related to cloud droplet formation in global climate models (e.g., Abdul-Razzak and
Ghan, 2000, 2002; Nenes and Seinfeld, 2003; Fountoukis and Nenes, 2005; Barahona et al., 2010; Betancourt
and Nenes, 2014) rely on estimates of CCN concentrations which are calculated based on simplified treatment of
aerosol size distributions, chemical compositions and the Koéhler theory, leading to varying degrees of uncertainty
depending on the specific scheme used (Simpson et al., 2014). Enhanced understanding of aerosol particles and
their role as CCN may be used to improve representations of aerosol-cloud interactions (ACI) in global climate
models, which remain a significant source of uncertainty in estimates of total anthropogenic radiative forcing over
the industrial period (IPCC report, 2021; Seinfeld et al., 2016).

Ncen and CDNC are primarily determined by aerosol properties and the drivers of maximum
supersaturation (SSmay) fluctuations (e.g. updraft velocities, radiative cooling rates, water vapor concentration field
see e.g. Kohler, 1936; Rogers and Yau, 1989; Reutter et al., 2009; Anttila et al., 2012; Partridge et al., 2012), both
of which are known to display large spatial and temporal variability. Many studies have evaluated Nccn predictions
from Kohler theory against observations of aerosol particle size distributions, chemical composition and
meteorological parameters in various environments. These investigations, often termed aerosol-CCN closure
studies or hygroscopicity-CCN closure studies, will hereafter be referred as 'closure studies'. Typically, such
studies have involved forward modeling, where observational input data (e.g., aerosol size distribution,
composition, and hygroscopicity) is utilized to predict Ncen using the Kohler theory. The model outputs are then
compared directly with observed CCN data to assess consistency and evaluate the predictions (e.g., Bougiatioti et
al., 2009; Martin et al., 2011; Rejano et al., 2024). In contrast, relatively few studies have leveraged inverse
modeling frameworks, which use observed CCN data to infer the properties of the aerosol population or model
parameters. In these approaches, CCN measurements are treated as a reference (while also accounting for
observational uncertainty), and model parameters such as surface tension, hygroscopicity, and size distribution
are adjusted to reproduce the observations. This not only enables the retrieval of aerosol population characteristics
from CCN data but also provides a means to rigorously test model assumptions and quantify the influence of
uncertain calibration parameters on predicted CCN concentrations (e.g., Partridge et al., 2011, 2012; Lowe et al.,
2016). In this study we intend to use a CCN closure study as a means to infer information on the size-dependent
chemical composition of CCN-sized aerosol particles, to enhance bulk chemical composition measurements.

Kohler theory (Kohler, 1936) has been widely used in earlier studies as the standard framework for
predicting CCN activation and proved effective under most relevant atmospheric conditions, provided that there
was accurate knowledge of the aerosol number size distribution, size-dependent chemical composition, and SS.
To simplify the representation of aerosol hygroscopic growth and CCN activity, Petters and Kreidenweis (2007)
introduced the non-dimensional hygroscopicity parameter «, to facilitate comparisons of data sets with varying

levels of detail for the aerosol chemical composition. These theoretical frameworks along with information about
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particle number size distributions and chemical composition are utilized to calculate the activation diameter (Dact)
of the dry particles and finally the CCN concentration at a particular ambient SS. A successful closure study aims
for the modelled CCN and measured CCN to be comparable within measurement uncertainties and is notably
influenced by the accuracy of the relevant measurements and any theoretical approximations.

The aqueous phase thermodynamics of soluble inorganic salts like ammonium sulfate ((NH4),SOs4),
sodium chloride (NaCl), ammonium bisulfate (NH4HSO,) and ammonium nitrate (NH4sNOs3) are considered to be
relatively well-understood (e.g., Zhang et al., 2000 and Nenes et al., 1998, 1999), and yield accurate predictions
of CCN activation of these compounds using Kohler theory. However, atmospheric aerosol particles also typically
contain a significant organic mass fraction (Zhang et al., 2007), originating from various sources. In the
atmosphere, organic aerosol typically forms a complex mixture with inorganic aerosol species. The organic
component evolves over time modifying both the mass concentration and the properties of the aerosol (Robinson
et al., 2007; Jimenez et al., 2009). Organic aerosol is comprised of a wide variety of molecules (e.g., Hallquist et
al., 2009; Noziére et al., 2015; Ditto et al., 2018) with different properties, such as solubility, volatility and surface
activity (e.g., Hodzic et al., 2014; Ye et al., 2016; Huang et al., 2024; Haber et al., 2024). While many of the
atmospheric organic compounds are water-soluble, their hygroscopicity is typically lower than that of inorganic
salts (e.g., Pohlker et al., 2023). Nevertheless, organic aerosol plays a significant role in determining (Nccen) and
CDNC, especially because organic aerosol formation drives aerosol particle growth towards CCN-relevant sizes
in many environments (e.g., Riipinen et al., 2011; Mohr et al., 2019; Croft et al., 2019; Zheng et al., 2020; Qiao
et al., 2021). Importantly, some organic aerosol properties beyond hygroscopicity such as solubility or surface
activity, may enhance the likelihood of an Aitken mode aerosol particle to serve as CCN (Lowe et al., 2019).
Historically, in studies where the organic aerosol contribution to the CCN activation was not adequately
considered, errors of up to an order of magnitude were observed between predicted and measured Ncen in many
environments (e.g., Bigg et al., 1986; Covert et al., 1998; Chuang et al., 1999; Rissman et al., 2006; Quinn et al.,
2008). This discrepancy highlights the need to include organics in CCN closure studies. Studies incorporating
organic aerosol effects demonstrated significant improvements in closure as compared with attempts considering
inorganics alone (e.g., Broekhuizen et al., 2006; Rose et al., 2008; Ervens et al., 2009; Guenther et al., 2009;
Bougiatioti et al., 2009; Juranyi et al., 2010; Siegel et al., 2022). These findings underscore the importance of
organics in CCN prediction, particularly in air masses with substantial freshly emitted primary biogenic or
anthropogenic organic vapors.

Boreal forests are environments where local biogenic emissions act as a major source of aerosol particles,
with organic aerosol constituting 50-80% of the observed sub-micron aerosol mass (Heikkinen et al., 2020). This
dominance of organics results from the emission of biogenic volatile organic compounds (BVOCs) by the forests,
which promotes secondary organic aerosol (SOA) production. Understanding the factors controlling Ncen above
boreal forests is necessary for constraining the magnitude of the climate feedbacks involving natural forest
aerosols and clouds, which are likely to increase in importance as anthropogenic aerosol emissions decrease (see
e.g., Paasonen et al., 2013; Yli-Juuti et al., 2021; Blichner et al., 2024).

Hémeri et al. (2001) utilized Hygroscopicity Tandem Differential Mobility Analyzers (HTDMAs) during
the BIOFOR campaign at the SMEAR II Hyytidld forest field station in south-central Finland, to measure the
hygroscopic growth factors of aerosol particles at 90% relative humidity (RH), and reported Aitken mode particles

(with growth factors between 1.0 and 1.4) to be less hygroscopic than accumulation mode particles (growth factors
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~ 1.6). Sihto et al. (2011) studied the annual cycles of aerosol hygroscopicity and CCN, finding the hygroscopicity
at sub-saturated conditions to be a good predictor of the CCN activity as well. They concluded the average
hygroscopicity parameter x to be 0.18 (for SS values between 0.1 and 1 % during Jul 2008 and Jun 2009) and
therefore, the CCN-sized particles to be mostly organic, but to also contain more hygroscopic material such as
ammonium sulfate (see also Cerully et al., 2011). Paramonov et al. (2013) used a size-segregated CCN observation
data set collected between January 2009 and April 2012 from Hyytiéld, which revealed that the median x exhibited
significant variation depending on the SS and hence particle size. Specifically, the median x was 0.41 at 0.1% SS
and 0.14 at 1.0% SS. At 0.1% SS, only the upper tail of the aerosol size distribution is activated, so the
corresponding « represents the largest particles in the distribution — indicating them to contain more inorganic
species as compared with the smaller particles. In contrast, activation at 1.0% SS includes smaller particles, which
are generally more organic, resulting in a lower x. The size-dependence of hygroscopicity was more pronounced
during the winter months compared to the summer. In a follow-up study, Paramonov et al. (2015) identified a
statistically significant difference in the hygroscopicity of Aitken and accumulation mode particles in northern
locations and concluded that the assumption of a size-independent x potentially leads to a recurring overestimation
in CCN predictions at supersaturations above 0.6% in the boreal environment. In the closure study by Schmale et
al. (2017), predictions using bulk chemical composition data indeed led to an over-prediction (geometric mean
bias of 1.32 at SS = 0.5%) of Nccn for the period between Jan 2012 and Jun 2014.

In large-scale atmospheric models, the aerosol size distribution is often represented by a number of
log-normal modes, and Ncen are estimated from SSmax based on dynamics (e.g., updraft) and physicochemical
properties of the aerosol modes — as the abundance of particles with variable sizes and compositions influences
the development of SS and hence the CCN activation (e.g., Abdul-Razzak and Ghan, 2000). A number of studies
(e.g., Sihto et al., 2011; Paramonov et al., 2013; 2015; Bulatovic et al., 2021; Pohlker et al., 2021; Lowe et al.,
2019, and Duplessis et al., 2023) have demonstrated that Aitken mode particles can contribute significantly to
CDNC, particularly in clean conditions. Therefore, constraints on the physicochemical properties of both Aitken
and accumulation mode particles are important for predictions of Ncen and CDNC. Unfortunately, the standard
methods used for measurements of aerosol chemical composition (e.g., Aerosol Chemical Speciation Monitor
ACSM,; see Sect. 2.1.4) cannot typically separate accumulation and Aitken mode composition. The few studies
reporting size-segregated acrosol composition in forested environments suggest an enrichment of inorganics in the
accumulation mode, and higher mass fractions of organics in the Aitken mode (Allan et al., 2006; Hao et al., 2013;
Levin et al., 2014; Timonen et al., 2008; Saliba et al., 2020). Studies involving a full annual coverage suggest a
more size-dependent composition in early spring and winter (Levin et al., 2014; Timonen et al., 2008) compared
to the summer. These findings are also qualitatively in line with the studies investigating the growth of Aitken
mode particles in Hyytidld, explainable with organic condensation (e.g., Riipinen et al., 2011 Mohr et al., 2019).
Campaign-wise studies like Cubison et al. (2008); Broekhuizen et al. (2006); Stroud et al. (2007); Meng et al.
(2014) used size-resolved Aerosol Mass Spectrometer (AMS) data, which is typically sparse, to achieve CCN
closure in different environments, demonstrating that size-dependent chemical composition of aerosol particles
can often explain the apparent discrepancies between observed and predicted CCN concentrations. Taken together,
these results suggest that observations of CCN concentrations have the potential to be used in an inverse manner
to constrain Aitken and accumulation mode chemical compositions separately — if information on the particle size

distribution and an estimate of the bulk chemical composition is available.
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In this study, we employ long-term (2016-2020) concurrent measurements from the SMEAR II
atmospheric monitoring site in the boreal forest (Hyytiéld, Finland) to perform inverse aerosol-CCN closures,
where we optimize the modal aerosol chemical composition using two approaches: (1) assuming a fixed size
distribution set to the median values during each CCN spectrum cycle applying a Nelder-Mead optimization
method, and (2) allowing the size distribution parameters to vary within the observed variability during each cycle
and using Markov Chain Monte Carlo simulations for finding the optimal size-dependent composition.
Additionally, we test the performance of two forward closure approaches: a commonly used approach, which
utilizes the bulk aerosol chemical composition (i.e., size-independent composition) observations (‘bottom-up'
approach) to estimate the x and predict CCN concentrations, and a simpler approach using a constant
hygroscopicity parameter x of 0.18 throughout the study period, as recommended by Sihto et al. (2011).

Specifically, our study aims to address the following questions:

1. How does the chosen representation of « affect the CCN closure on a multi-year and seasonal basis?

2. To what degree can a forward CCN closure be achieved when assuming size-independent chemical
composition?

3. Can we improve CCN closure by assuming mode-dependent composition while keeping the size distribution
fixed to the observations?

4. Which modal chemical composition and associated hygroscopicity parameter (k) provide a more accurate
closure compared to using bulk chemical composition? Furthermore, how do the inferred modal chemical
composition and x values differ when the variability of the aerosol size distribution during the CCN cycle period

is accounted for versus when it is neglected?

Through assuming that the SMEAR 11 station represents a remote continental site with a reasonable accuracy, we

aim to provide useful insights on the role and dependencies of CCN loadings on natural aerosol properties.

2 Methods and data

Figure 1 provides an overview of the data and the overall approach used in this study. The core long-term data
sets utilized were simultaneous observations of aecrosol number size distribution between 3 and 1000 nm, chemical
composition of the sub-micron (bulk) aerosol fraction and Nccx at SS between 0.1% and 1% during the period of
2016 — 2020. x-Kohler theory (Petters and Kreidenweis, 2007) was used to predict Ncen based on the size
distribution and composition data with three different approaches for estimating the hygroscopicity parameter «:
(1) Kpuk » 1.€. calculating x using the observed bulk (size-independent) sub-micron aerosol composition; (2) kg 13,
i.e. using a constant x value of 0.18 (Sihto et al., 2011) for the entire observation period; and 3) kope and Kycmc
i.e. determining x through an inverse closure assuming variable Aitken and accumulation mode compositions
while maintaining the total sub-micron chemical composition as observed. In the following subsections we present
further details on the measurement site and observations of aerosol number size distribution, sub-micron chemical
composition, as well as concentrations of CCN at different supersaturations. Finally, a detailed description of

methods including x-Kohler theory and inverse closure is provided.
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Figure 1: Workflow diagram of the observational data along with the steps made in its processing and analysis. NRMSE and
Dy act refer to Normalized Root Mean Squared Error (see Sect. 2.2.4) and dry activation diameter respectively. DMPS refers to
Differential Mobility Particle Sizer, ACSM to Aerosol Chemical Speciation Monitor, CCN to Cloud Condensation Nuclei and
CCNc to Cloud Condensation Nuclei counter.

2.1 Experimental data

2.1.1 Station for Measuring Ecosystem—Atmosphere Relations (SMEAR 1II)

The SMEAR II measurement site at Hyytidld is located at 61° 51'N, 24° 17'E, 181 m above sea level, and
represents a boreal forest environment with some anthropogenic influence, particularly from the southern direction
where many industrialized areas within Finland, Russia, and continental Europe are located (Patokoski et al.,
2015; Riuttanen et al., 2013; Yttri et al., 2011; Tunved et al., 2006). The extent of the representativeness of
SMEAR 1I for boreal forest environments varies seasonally and with air mass origin. The station is surrounded
by mixed forest which covers 80% of the land within a 5 km radius and 65% within a 50 km radius (Williams et
al., 2011). Primary local emission sources include a sawmill situated to the northeast and a pellet factory located
around 6—7 km southeast of SMEAR II. Overall, the station can be considered a rural background site because the
nearest major city, Tampere, is located about 60 km southeast of the measurement location. During the summer,
local BVOC emissions (Hakola et al., 2012; Barreira et al., 2018), primarily those of monoterpenes, act as a major
source of SOA at the station (Heikkinen et al., 2020; Heikkinen et al., 2021). New particle formation (NPF), which
is an important process contributing to Ncen globally (e.g., Merikanto et al., 2009), is commonly observed at
SMEAR 1I, especially in spring and fall (Nieminen et al., 2014). Sulfuric acid, bases and low-volatility BVOC
oxidation products (e.g., Kulmala et al., 2014; Lehtipalo et al., 2018; Yan et al., 2018), have been identified as
critical precursors for NPF at the site. During the winter, aerosol particles observed at the site are mainly from
long-range transport (Riuttanen et al. 2013) and are frequently cloud-processed (Isokéénté et al. 2022). During
this season, aerosol particles contain a larger inorganic component (about 36% as compared to 23% in summer,
Heikkinen et al., 2020) increasing their hygroscopicity. However, during the winters, the increased contribution
of black carbon (about 15% as compared to 6% in summer, Luoma et al., 2019), a hydrophobic aerosol component,

decreases the overall hygroscopicity of the particles. SMEAR 1I is unique due to the comprehensive set of long-
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term measurements, crucial for answering questions related to aerosol-cloud interactions, which have been
conducted for several years (Kulmala, 2018). Although facilities for measuring aerosol size distribution and CCN
have existed for a long time (since 1996 and 1998, respectively), long-term composition measurements have
become available more recently (Luoma et al., 2021; Heikkinen et al., 2020). This advancement has been due to
the development and deployment of the ACSM and an aethalometer setup which provide near-real time data on
the organics, sulfate, nitrate, ammonium, chloride and equivalent black carbon (eBC) in sub-micrometre aerosol

particles (see also Sect. 2.1.4).

2.1.2 Aerosol number size distribution

At SMEAR 11, a Differential mobility Particle Sizer (DMPS) has been used for particle number size distribution
(PNSD) measurements in a size range from 3 nm to 1000 nm since 1996 (Aalto et al. 2001). The DMPS data has
the time resolution of 10 minutes. The data used in this study were accessed from SmartSMEAR database

(https://smear.avaa.csc.fi/download) for years 20162020 (see Fig. 2a). Medians of the size distribution data were

taken over the start and end time periods of the respective co-located CCN measurements (see Sect. 2.1.3).

The twin-DMPS system consists of two Vienna-type Differential Mobility Analyzers (DMAs), each
designed to classify aerosol particles into size bins across two distinct size ranges: 3-40 nm and 20-1000 nm. The
sizing is based on the electrical mobility of the sampled and charged aerosol particles. Air is sampled at a height
of 8 meters above ground level with a common aerosol inlet. The common inlet line has a diameter of 100 mm
and a flow velocity of 0.5 m s*'. The sample flow for the instruments is taken from the centreline. The aerosol
flow rates in the DMAs are 4 L min ' and 1 L min™, respectively. The sheath flows, with flow rates of 20 L min™*
and 5 L min™, are dried to maintain RH of less than 40%, while the aerosol flows are not dried. The particle
concentration following each DMA is measured using Condensation Particle Counters (CPCs). For small particles
(3—40 nm), a TSI 3025 CPC model was utilized (later changed to model TSI3776 after October 2016), while a
TSI 3750 CPC is used for the detection of the larger particles in the size range 20—-1000 nm.

As a first step toward the inverse closure (see also Sect. 2.2.3), we applied a Python implementation
(Khadir, 2023) of the modal-fitting algorithm described by Hussein et al. (2005) to decompose the measured
aerosol size distributions into two modes. The algorithm takes size distribution as input and returns the lognormal
parameters (number concentration, geometric standard deviation, geometric mean diameter GMD) of different
modes as output. While the algorithm would allow fitting up to four modes, bimodal fits (Aitken and accumulation
mode, respectively; Fig. Sla) were selected to avoid overfitting (see also Liwendahl, 2023). The bimodal fits
enabled us to reproduce the aerosol size distributions with a high correlation (Pearson correlation coefficient R =
0.99) between the observed total particle number concentration and that calculated from the fitted parameters (Fig.

S1b).
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Figure 2: Temporal coverage of the observation data represented through seven-day running median. The top panel (a) shows
the variation of the aerosol size distribution. The middle panel (b) shows the total number concentration of sub-micron aerosol
particles (in orange) and CCN at 0.1, 0.3 and 1.0% supersaturation (in grey). The bottom panel (c) presents the mass
concentrations of various chemical species and ions in the aerosol particles: organics (Org), sulfate (SO4), nitrate (NOs3),
ammonium (NHa), and equivalent black carbon (eBC).

2.1.3 CCN concentrations

The time series of observed Ncen were obtained using a CCN-100, a continuous-flow streamwise thermal-gradient
CCN counter (CCNc), commercially provided by Droplet Measurement Technologies (Roberts and Nenes, 2005).
The CCNc can be used in either monodisperse or polydisperse mode, where the former is utilized to determine
size-segregated Nccn, as detailed in Paramonov et al. (2013). In contrast, the polydisperse mode, employed here,
measures the overall Ncen at a given supersaturation.

The CCNc consists of a saturator unit and an Optical Particle Counter (OPC). The saturator is a vertically
oriented flow tube, into which aerosol-laden sample air is introduced surrounded by a particle-free sheath air flow
(1/10 flow ratio) under laminar flow conditions, forming a well-defined central flow path. The inner walls of the
tube are wetted and subjected to a controlled temperature gradient. The sheath air flow is saturated with water
vapor at the inlet temperature. A positive temperature gradient is maintained at the saturator column, inducing a
quasi-constant supersaturation profile for a specific temperature difference. As the laminar flow progresses
through the column, water vapor and heat diffuse from the moist walls toward the center. The effective
supersaturation is influenced by factors such as flow rate, pressure, and temperature gradient. While moving
through the tube, aerosol particles absorb water and grow and those particles with critical supersaturations lower
than the centerline supersaturation are activated as cloud droplets. Droplets larger than 0.75 pm in diameter are
detected by the OPC at the exit of the tube and those exceeding 1 um are considered to be activated CCN. To
measure at different supersaturations, the temperature gradient is increased in steps while the flow rate is held
constant. Both polydisperse and monodisperse CCN concentrations were measured at each supersaturation
setpoint (1.0%, 0.5%, 0.3%, 0.2%, 0.1%). At each setpoint, the cycle includes 300 s polydisperse and 600 s

monodisperse measurements, with additional stabilisation time after changing supersaturation, yielding a time
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resolution of about 2 hours for this data set. Quantification and discussion of typical uncertainties related to the
supersaturation and hence Nccny measured with this instrument are presented in e.g., Rose et al. (2008) and Topping
(2005). At SMEAR 11, the air to the CCNc is sampled 8 meters above the ground level and features the same inlet
as the DMPS (see Sect. 2.1.3.). The aerosol flow rate is 0.5 L min™! which is split into sheath flow of 0.45 L min-
! and sample flow of 0.045 L min™'. For quality assurance of the CCNc data, the CCNc calibration is conducted
approximately twice a year using nebulised, dried, charge-equilibrated and size-segregated ammonium sulfate
aerosol following procedure as per Rose et al. (2008).

Estimates of smallest activation dry diameter (Da) were derived using the combination of the DMPS
and the CCNc data by integrating the PNSDs from their maximum diameters to the diameter at which the
integrated particle number was equal to the measured Ncen. Dact Was then calculated by interpolating between the
two adjacent size bins (Furutani et al., 2008). Essentially, variations in activation diameter reflect differences in
the chemical composition of aerosol particles: the more hygroscopic the aerosol, the smaller the activation

diameter.

2.1.4 Aerosol chemical composition

An Aerosol Chemical Speciation Monitor (ACSM; Ng et al., 2011) was used at SMEAR II to measure the mass
concentrations of non-refractory submicron particulate matter (NR-PM:). The ACSM quantifies ions originating
from non-refractory organic and inorganic species and reports them as mass concentrations of sulfate, nitrate,
ammonium, and chloride ions, along with total organic aerosol mass. Briefly, the ACSM samples dried ambient
air through a critical orifice (100 pm in diameter) with a flow rate of 1.4 cm® s! to an aerodynamic lens (Liu et al.
1995a; Liu et al. 1995b), which focuses a submicron particle beam and directs it to the instrument vaporization
and ionization chamber. The lens efficiently transmits particles with vacuum aerodynamic diameters (Dy,) ranging
from approximately 75 to 650 nm, yet it also passes through particles up to 1 um in Dy, with a less efficient
transmission. These aerosol particles then undergo flash vaporization at 600 °C and are subsequently ionized using
electron impact ionization (70 ¢V) and the mass spectrum is obtained with quadrupole mass spectrometry. While
the vacuum system of the ACSM efficiently reduces the amount of air molecules entering the instrument detection
unit, their distinction from the aerosol components is required. For this purpose, the ACSM contains a 3-way
valve system to routinely measure the signals obtained from particle-free air, and this background is subtracted
from the particle-laden sample. The detailed description of the ACSM measurements performed at SMEAR 11
since 2012 is provided in Heikkinen et al. (2020), which includes descriptions of the instrument ionization
efficiency calibrations, collection efficiency corrections and data processing. The ACSM measurements were
conducted < 100 m away from the DMPS, CCNc and aethalometer measurements in a separate container. A PMs s
cyclone was installed on the container roof, and the ~3 m long inlet line had an additional make-up flow of 3 L
m!, The air was dried to < 30% RH with a Nafion dryer. The original time resolution of the ACSM data is ~30
minutes.

We combined the ACSM measurements with measurements of eBC. The eBC concentration was
determined based on PM light absorption measured by an aethalometer (Magee Scientific, models AE31 and
AE33). For the period in question here (2016-2020), the instrument was changed in the middle as the old
instrument broke down. AE31 operated until the end of 2017 and AE33 started measuring in the beginning of

2018. An aethalometer is a filter-based instrument and it measures aerosol light absorption at seven wavelengths
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(370, 470, 520, 590, 660, 880, and 950 nm). The acthalometer data were corrected for measurement artefacts
caused by collecting the particles in a filter medium, the so-called loading effect and scattering caused by the filter
material: AE33 applied the inbuilt dual-spot correction (Drinovec et al., 2015) with multiple scattering correction
factor 1.39 whereas the AE31 data were corrected as suggested by Virkkula et al., 2007 with multiple scattering
correction factor 3.14 (derived by Luoma et al., 2021 for SMEAR II data). The eBC concentration was derived
from the absorption at 880 nm channel by using mass absorption cross-section of 7.77 g m2 for AE33 data (the
default value suggested by the manufacturer) and 4.8 g m for AE31 data (derived from 6.6 g m? at 637 nm used
for multi-angle absorption photometer, which was used as a reference in Luoma et al., 2021). The head of the
sampling line was located 4 m above the ground. The concentration of eBC was measured for PMo. Sample air
was dried with a Nafion dryer and data was marked as invalid if the relative humidity inside the instrument
increased above 40%. The acthalometer data was converted to STP conditions (273.15 K, 1013.25 hPa).

The published ACSM and eBC measurements data are averaged over 1-hour intervals, but to align with
the CCN measurements, the data set was further converted to the 2-hour time grid by taking a median of the mass
concentrations of each of the measured species over the time window of each CCN spectrum measurement. The
time series (7-day running median) are shown in Fig. 2¢c. The data coverage is higher for the eBC data compared

to the ACSM data, which has fewer observations during wintertime.

2.1.5 Data coverage and seasonal classification

Figure 2 presents the overall data coverage along with the key aerosol properties observed (see Fig. S2 for the
number of data points across different seasons). As mentioned earlier, SOA formation and NPF events lead to
higher particle number concentrations during spring and summer. This is also reflected in the variability of CCN,
particularly at higher supersaturations (see Fig. 2b), while lower seasonal variation is observed at lower
supersaturations (SS = 0.1%), where only larger particles (> 200 nm, see Fig. S3 and Table S1) are activated. This
suggests that most changes in aerosol particle number and chemical composition occur among smaller particles
(Aitken and nucleation modes) between the winter and growing seasons (spring and summer). In terms of chemical
composition, organics dominate the aerosol mass (see Fig. 2¢), especially during the growing seasons, followed
by sulfate and ammonium ions, with nitrate and black carbon contributing only minor fractions. However, given
the significant seasonal variation in overall aerosol properties at the site, we present the results according to a
seasonal classification. In this framework, March, April, and May represent spring; June, July, and August
represent summer; September, October, and November correspond to autumn; and December, January, and

February correspond to winter.

2.2 Calculations for the forward and inverse closure studies

2.2.1 k-Kohler theory

The classical Kohler theory (Kohler, 1936) utilizes information about the composition and size of aerosol
particles. It estimates the critical supersaturation level SScit and wet particle diameter at which an aerosol particle
becomes activated and grows through condensation to form a cloud droplet. The Kohler equation comprises two
terms (see Eq. 1): one accounting for the influence of solutes (the soluble fraction of aerosol particles), which

tends to reduce the equilibrium saturation ratio S (defined as 1 + SS), and the other known as the Kelvin term,
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which represents the increased surface tension over a spherical surface. In an aqueous solution, if P (Pa) is the
partial vapor pressure of water and P; (Pa) saturation vapor pressure of water over a pure flat liquid, the equilibrium

saturation ratio S = P/P;is represented as

4oM
S = a,, exp (—w
RTPDp,wet

) (1)

where a, is the activity of water in the solution, p is the density of the solution (kg m™), M,, is the molar mass of
water (0.018 kg mol™"), o (N m™) is the surface tension of the solution, R is the universal gas constant (8.314 J
mol™* K™), T is temperature (K), and Dy we is the diameter of the droplet (m). To facilitate the comparison to
previous work, we use the modified version of Kéhler theory (Eq. 1) described by Petters and Kreidenweis (2007)
to calculate the activation dry diameter (related to the total amount of soluble mass) for a particular supersaturation

SS (i.e., S — 1), referred to as the x-Koéhler framework

3 3
S = Dp.wet ~ Dp,dry ( 4oMy ) Q)
D3 et = D3 gy (1 - 10 RTpDp et

where Dy qry is the dry diameter of the dry aerosol particle with a given composition described by a unitless
hygroscopicity parameter k. In our calculations, we have assumed that the density and surface tension of the
solution are equivalent to those of water (1000 kg m™ and 0.0728 N m! respectively). Additionally, we have
considered a constant ambient temperature (7) of 298.48 K for all seasons, corresponding to the median
temperature inside the measurement hut.

Assuming internally mixed aerosol particles, the net hygroscopicity parameter k for a mixture of
n different chemical species is expressed as the linear combination of the individual species k; weighted by their

respective volume fractions & in the dry particle (Stokes and Robinson, 1966):

K = Z ik @)

i

The volume fractions &; of the individual components were calculated from the measured mass concentrations,

mi, and their respective densities, p;

n @

Pi

o

Pi

Assuming an internally mixed aerosol population is a key assumption made in this study. According to Paramonov
et al. (2015), the aerosol in Hyytidld indeed shows some seasonal and size-dependent mixing state characteristics.
Specifically, they report that particles in the ~75-300 nm range are internally mixed during late spring and early

summer (May—July), with a very small CCN-inactive fraction (~0.2%). For the rest of the year, the aerosol
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398 becomes partially externally mixed, with the CCN-inactive fraction increasing to ~6.6%. However, within each
399 size range — either below or above 100 nm — the « distributions are relatively consistent, suggesting that particles
400  are mostly internally mixed within those size classes.

401

402 222  Forward closure

403 In the forward closure, Ncen at supersaturations of 0.1%, 0.2%, 0.3%, 0.5%, and 1.0% (corresponding to the
404 supersaturations set in the CCNc, henceforth referred to as SScenc) are predicted using observations of the aerosol
405 number size distribution from the DMPS. As discussed above, two different assumptions about the hygroscopicity
406 of the aerosol mixture were tested: 1) assuming constant hygroscopicity of 0.18 (x(1g) 2) assuming mixture
407 hygroscopicity (Eq. 4) using chemical composition information from the ACSM and acthalometer measurements
408 (Kpuik)- Kpulk therefore, does not depend on particle size, but is variable in time. For deriving Ky, the observed
409 aerosol chemical composition was utilized, assuming that all sulfates are present as ammonium sulfate (NH4)>SO4
410 (AS) and the observed nitrate was distributed between ammonium nitrate NH4sNO;3 (AN) and organic nitrate (ON),
411 estimated using the method explained in Farmer et al. (2010) (see Supplementary note 1 and Fig. S4). For the
412 calculation of the AS and AN mass concentration, only the measured sulfate and nitrate mass concentrations were
413 used. The ammonium mass concentration required for yielding ion balance within the particles was calculated
414 (see Fig. S5; Zhang et al., 2007). We acknowledge that the assumption that sulfate is present solely as AS can
415 cause underestimations of aerosol hygroscopicity at SMEAR 1I (e.g., Riva et al., 2019). Finally, to retrieve the
416 volume fractions of organics, AS, AN, ON and eBC from their estimated mass concentrations, the density
417 information for each species is required. The chosen densities are shown in Table 1 along with the k; for each
418  species.

419

420  Table 1. Densities (p;) and hygroscopicity parameters (k;) of the assumed dry particle constituents based on the
421  composition estimated from the ACSM and the aethalometer measurements.

Species p (kg m?) K
Organics 1500 (Kostenidou et al., 2007)* 0.12 (Pohlker et al., 2023)
Ammonium nitrate (AN) 1720 0.67 (Petters and Kreidenweis, 2007)
Ammonium sulfate (AS) 1769 0.61 (Petters and Kreidenweis, 2007)
Organic nitrate (ON) 1500P 0.12%
Equivalent black carbon (eBC) 1770 (Park et al., 2013) 0 (Weingartner et al., 1997)

422  2SOA density estimated to be in the 1400 — 1650 kg m range when formed from BVOCs known to produce the
423 majority of SOA at SMEAR 1II. 1500 kg m™ is chosen from this range.

424 bSet to equal that of the rest of the organics for simplicity. Some studies suggest that the density could be slightly
425  lower (1160 — 1210 kg m?, Claflin and Ziemann 2018).

426

427 The critical supersaturation SS.i was then calculated for each of the size bins measured by the DMPS using « -
428 Kohler theory, assuming a uniform composition throughout the size distribution. Particles for which the calculated
429 SSerit was lower than the individual SScene were then considered as CCN corresponding to the respective SScene

430 value. Linear interpolation was applied to estimate the exact activation diameter within a given size bin (see Lowe

12



431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

etal., 2016). The CCN spectra estimated by the forward closure were then compared to the observations made by

the CCNc for the two different hygroscopicity assumptions i.e. Ky and i 1g.

2.2.3 Inverse closure

In the inverse closure, our objective was to minimize the differences (e.g. through Normalized Root Mean Squared
Error, NRMSE, see Sect. 2.2.4) between predicted and observed Ncen, while optimizing the size-dependent
chemical composition and hygroscopicity parameter. More specifically, we assumed the size distribution to
consist of internally mixed and log-normally spaced Aitken and accumulation modes.

The inverse closure and thus the optimization was performed implementing two different methods,
namely the Nelder-Mead and the DREAM-MCMC (DiffeRential Evolution Adaptive Metropolis Markov Chain
Monte Carlo) algorithms (see Sects. 2.2.3.1 and 2.2.3.2). In both optimization methods, all AN and AS masses
were combined and treated as inorganic mass for simplicity. The net p and x of the inorganic fraction were derived
using the corresponding observed mass fraction. While the x for AN is slightly higher than that of AS (Table 1)
and the density of AN is slightly lower of that of AS (Table 1), we consider this as a reasonable simplification
given the low AN concentration at the site. Again, all ON is assumed to have the same k and p as the organics
(Table 1). Another key simplification is that eBC is assumed to have the same mass fraction in both modes.

The optimization procedures based on Nelder-Mead and DREAM-MCMC are illustrated in Fig. 3. In
both approaches, the derivation of modal optimized hygroscopicity parameters (Kﬁf,ttke“ and Ké‘fﬁ“m“la“o“ from
Nelder-Mead method and kfjchie . Kiame 24" from DREAM-MCMC, referred to as Kope and Kkycmc for
simplicity) begin with obtaining a bimodal fit of the aerosol number size distribution into Aitken and accumulation
modes (see Sect. 2.1.2). Next, the fitted lognormal size distribution was binned onto the same diameter axes as
the observational data, and the number of particles in each bin was scaled to match the particle number in measured
size distribution (see a demonstration in Fig. S6 and Supplementary note 2). This way, the number contributions
of the Aitken and accumulation modes to the observed aerosol size distribution could be estimated for each time
point. Second, the masses of the Aitken and accumulation modes were estimated by approximating the density of
both modes by the bulk density. The total masses of organics, inorganics and eBC to be distributed to the measured
size distribution were then calculated using the mass fractions derived from the ACSM and aethalometer
measurement. Finally, the Aitken vs. accumulation mode compositions, and hence Kopr OF Kycmc, Were

determined through optimization (see also Supplementary note 3 for details).
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Observational data (2016-2020)
a) CCN concentration at five supersaturation levels (0.1%, 0.2%, 0.3%, 0.5%, 1.0%)
b) Number size distribution for 52 size bins
¢) Composition: Mass concentration of Organics, Nitrate, Sulphate and Black carbon
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1. T =283 K| 2. Surface tension = 0.0728 N/m | 3. Density of solution = 1000 kg/m?

/ \

!

Median of posterior distribution = Optimized modal mass
fraction or mass concentration (Organic, inorganic and eBC)
AND bimodal size distribution lognormal parameters

!

Optimized modal mass fraction or mass concentration

(Organic, inorganic and eBC )

Nelder-Mead DREAM-MCMC
Bimodal fitting in the harmonized size distribution Bimodal fitting in the unharmonized size distribution,
and scaling scaling and calculation of MAD
r — — — For each CCN spectrum cycle observation — — =  — — — For each CCN spectrum cycle observation — — o
™ s
: f Perform Nelder-Mead optimization; use median of : : Run DREAM-MCMC based on prior distributions; :
) size distribution and bulk composition during CCN Iy use median of bulk composition during CCN cycle; |
| L cycle; ensure mass-constraint ) 1 L ensure mass-constraint 1
I 11 I
I 11 v I
I 1 Vs I
1 4 ) ) h 1 Posterior of modal composition and the bimodal size 1
1 Select modal mass concentrations corresponding to 1 distribution log-normal parameters corresponding to 1
1 minimum NRMSE between observed and predicted 1 the maximized log-likelihood between observed and 1
! CCN spectrum I predicted CCN spectrum for each observation. !
I \_ Y, 11 - |
I 11 I
I 11 I
I 11 I
I 11 I
I 11 I
I 11 I
1 11 1
| 11 1

Figure 3: Workflow of the two inverse closure methods: the Nelder—-Mead algorithm (left) and the DREAM-MCMC (right)
approach. Bimodal fitting: representation of the aerosol size distribution as two lognormal modes. Harmonized size
distribution: size distribution data harmonized to CCN data; data thus obtained has 2-hour resolution. Unharmonized size
distribution: raw size distribution data with 10 min resolution. Scaling: adjustment of number concentrations of reconstructed
lognormal size distribution from bimodal parameters to match observations. Mass-constraint: conservation of total aerosol
mass (sum of mass in two modes) of each species during optimization. NRMSE: normalized root mean square error, a metric
of model-observation agreement. MAD: median absolute deviation, used to quantify variability in size distributions during
CCN spectrum cycle period. Prior distribution: initial parameter ranges provided to the MCMC sampler. Log-likelihood:
statistical measure of consistency between observed and modeled CCN spectra.

2.2.3.1 Nelder-Mead

The Nelder—-Mead simplex algorithm (Gao and Han, 2012) is suitable for both one-dimensional and
multidimensional optimization problems and is relatively fast in our application. In our case, we need to optimize
only one variable (the fraction of total organic mass in Aitken mode, Mo ait) and the remaining masses can be
derived from it through mass closure constraints — assuming PNSD to stay constant throughout each CCN
measurement cycle. For each time step, the optimization begins with an initial simplex of three trial values of
Morg Ait, and the NRMSE is evaluated at each point. The worst-performing value is reflected across the midpoint
of the better two to explore whether a more accurate estimate can be found in the opposite direction. If this
improves the fit, the algorithm attempts an expansion, pushing further in the same direction. If reflection does not
improve the result, a contraction step is taken to move closer to the midpoint. If neither reflection nor contraction
improves the outcome, the simplex undergoes shrinkage, tightening around the best-performing solution to focus

the search locally. This process continues until the optimization converges, resulting in an estimate of 7qrg ai: that
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minimizes the NRMSE between modeled and observed CCN concentrations. Note that Nelder—-Mead works well
for simple, low-dimensional problems like optimizing just one parameter (e.g., Morg,ait), but it starts to struggle as

the number of variables increases and have a tendency for converging to local minima.

2.2.3.2 DREAM-MCMC
In order to assess the importance of the variability of the bimodal size distribution parameters within each CCN
cycle, we conducted a second inverse-closure experiment with the number concentration and mean diameter for
both modes as additional optimization parameters (simultaneously with morgair). Since optimizing both size
distribution parameters and composition introduces a more complex and higher-dimensional parameter space, and
we are interested parameter uncertainty, we use a Bayesian inference approach to estimate the parameter posterior
distributions. Specifically, we chose the DiffeRential Evolution Adaptive Metropolis Markov Chain Monte Carlo
(DREAM-MCMC) algorithm (Vrugt et al. 2009), which has been previously used for inverse CCN-closure studies
in idealized cases (Partridge et al. 2012) and is available in the Python PINTS library (Clerx et al. 2019). DREAM-
MCMC is an efficient MCMC method (Metropolis et al. 1953, Gelfand et al. 1990) that evaluates multiple Markov
chains in parallel and automatically adapts its proposal strategy during sampling, making it particularly efficient
for correlated, multi-modal problems such as aerosol-cloud microphysical interactions. To know more about
MCMC and Bayesian inference, see Supplementary note 4.

We initialized the MCMC optimization with Cauchy priors for each parameter (see
Supplementary note 5), centered on the median values of the fitted bimodal size distributions for each CCN cycle,
specifically, the number concentration and GMD. For chemical composition we used the median of the ACSM
observations during each CCN spectrum cycle. The scale value was the smaller of either 1 (resulting in a Student-
t distribution) or the median absolute deviation (MAD) of the observations within the given CCN cycle. The priors
were truncated to positive values only. We also constrained the total aerosol mass in each mode to remain within
+10% of the total mass observed by the ACSM and aethalometer.

We used a heteroskedastic Gaussian likelihood function, which means that the highest likelihood
is typically where the parameters provide the least squares fit to the CCN observations, analogous to minimizing

the NRMSE described above. The likelihood is defined as

L(BIY)=ﬁ . exp[—%si‘z(yi—@(ﬂ))z] Q)
i=1

2ms?

where s; is standard deviation of the measurement error, which we assume is 10% of the CCN observations at
each supersaturation value y;, and ¢; is the model predictions of CCN spectra at each super-saturation given the
calibration parameters 6 (the log-normal parameters and mass fraction). We performed the optimization in a log-
transformed parameter space, which improves sampler efficiency by normalizing scale differences between
parameters. For each CCN observation window, we ran five chains with 40,000 iterations per chain, of which the
first 15,000 were used as burn-in/adaptation. Up to two chains were discarded if they deviated strongly in central
tendency after burn-in, and the last 20,000 steps of all accepted chains were then used to calculate posterior
statistics. Convergence was assessed with the R-statistic (Gelman and Rubin, 1992), using a relaxed threshold of

R < 2.5 for all five parameters to retain a window in the analysis. The R-statistic compares the variance within
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chains to the variance between chains; values close to 1 indicating well-mixed, converged chains. We used a
relaxed threshold because the R-statistic is quite conservative and because our problem has high correlation
between parameters and the potential for multi-modality if there are multiple distinction aerosol populations
within one window, which is penalized by the R-statistic but realistic in this case. Overall, 19% of windows were
discarded due to high R-statistic values. Even with the relaxed threshold, some windows were excluded where the
MCMC identified reasonable parameter values and CCN spectra but the chains failed to mix well. Examples of

the chain evolution and posterior parameter distributions are discussed in Supplementary note 5.

2.2.4  Metrics for assessing variability of lognormal size distribution parameters during CCN cycle
Unlike the Nelder—Mead optimization method, which uses the median of the size distribution during the CCN
cycle period, the DREAM-MCMC setup requires the variability of the size distribution as input. To account for
this, we calculate the median absolute deviation (MAD) of each lognormal parameter for every CCN cycle
observation. The overall distribution of MAD values for the full 5-year dataset is presented in Supplementary note
6 and Fig. S10. MAD for individual CCN cycle period is calculated as follows:

Let I, =[ tstart, t&74) be the time window for CCN cycle c; For a given lognormal parameter, k (among geometric
mean diameter (GMD), geometric standard deviation (SD) and number concentration in each mode; so total 6
parameters), collect the samples inside this window as {x; (¢): € Lc} = {X1, Xk,25 --+» Xien, ) -

Median in the interval is my(c):

median{Xy 1, Xg2, ---» Xk n, } ©)

MAD in interval c:
median|xy, ; — my(c)|, where i varies from 1 to n, )
2.2.5  Metrics for assessing the goodness of closure

The Normalized Root Mean Square Error (NRMSE) between observed and predicted CCN concentrations was
calculated as (see also Supplementary note 7 and Fig. S11):

Lyn - 2
NRMSE = J"Z’“(“N'”ﬂ CCNobs.) @)
CCNyps

Where CCNpreq,; is the predicted CCN concentration at supersaturation i, CCNops; is the observed CCN
concentration at supersaturation i, n is the number of data points (in this case five, as we have five different

supersaturations) and CCN,y is the mean of the observed CCN concentrations across all supersaturations.

To facilitate direct comparison with Schmale et al. (2016) we also calculated the Geometric Mean Bias (GMB)

for each time point, defined as:

GMB = exp(% = 1n (CCCCI:,V%)) ”
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3 Results and discussion

3.1 Size distributions and activation diameters
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Figure 4: Seasonal overview of the lognormal size distribution, with solid lines representing the median and shaded regions
indicating the interquartile range. The vertical lines denote the activation diameters (Dact) at various supersaturations as
determined by combining the CCN data with the number size distribution measurements from the DMPS.

Figure 4 presents the median and quartiles of lognormal aerosol number size distributions and median activation
diameters (Da) calculated from the PNSD-CCN closure across different seasons. In PNSD—CCN closure, D, at
a given SS was derived by integrating the PNSD from the largest to the smallest diameters until the integrated
number equalled the measured CCN concentration at that SS; the corresponding diameter was then identified as
Dyt (see e.g. Sihto et al., 2011 and Supplementary note 8). The shape of a lognormal size distribution depends on
the age of the aerosol population, and the atmospheric processing (e.g. nucleation, coagulation, condensation,
deposition and chemical reactions) that has taken place along the transport trajectory to the measurement site. As
discussed previously, NPF (Nieminen et al., 2014) and biogenic SOA formation (Heikkinen et al., 2020) result in
almost bell-shaped size distributions with high particle number concentrations in spring and summer. In autumn
and winter, on the other hand, biogenic aerosol precursor emissions are reduced leading to a lowering in the
organic aerosol mass fraction. The contribution from long-range transported, cloud-processed and aged particles
increases, detected in the form of bimodal aerosol size distributions with predominant Hoppel minima (Hoppel et
al., 1986) at around 80-90 nm in diameter, and increased inorganic aerosol mass fractions. The activation
diameters decrease with increasing supersaturation and the median D, (see Table S1) is generally higher for all
seasons than reported in earlier studies using similar methodology (e.g., Sihto et al., 2011; Paramonov et al.,
2015). For instance, Paramonov et al. (2015) reported a median D, of 46 nm at 1.0%, whereas we find values of
54-57 nm. Similarly, at 0.1% supersaturation, they reported 150 nm, which is lower than our results of 206 — 224
nm, depending on the season. This could reflect decreasing abundance of sulfate during the last two decades as
compared with less hygroscopic organic species (Fig. S12; see also Aas etal.,2019; Li et al., 2024). The activation
diameters are relatively similar across the seasons (see Table S1), therefore suggesting a similar composition of
the CCN over the year in comparison with the variability in the number size distribution. The slope of the PNSD
function is typically steep over the ranges of D, corresponding to the investigated supersaturations. This indicates
a high sensitivity of CCN to any parameters driving the PNSDs (see e.g., Lowe et al., 2016). While the median
activation diameters show almost no seasonality, looking in more detail (see Fig. S3), an increase in the Dy is
observed during the transition from winter to spring. This is probably due to the addition of more organic aerosol,

which is less hygroscopic than the common inorganic salts. D, reaches its maximum in summer and decreases
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again towards autumn. After autumn, there is an increase in D, toward winter, despite a decrease in BVOC
emissions and the resulting lower organic mass fraction alongside a higher inorganic fraction (see Fig. S13). This
suggests the influence of another factor, possibly the higher eBC fraction observed during winter (see Sect. 3.3).
While the seasonal variation in median activation diameters D, is not pronounced across all SS,
more detailed inspection (Fig. S3) reveals a decrease in D, at the lowest supersaturation (0.1%) during the
transition from autumn into winter (November to April). This trend is consistent with a reduced contribution of
organic aerosols and a higher relative abundance of inorganic components during winter (sources of which include
long-range transport and e.g. cloud-processing along the transport route), as also indicated by the bulk chemical
composition (Fig. S13). Since the activation diameters at 0.1% SS fall within the accumulation mode, the size
range where ACSM measurements are most representative, the observed seasonal variation in D, at this SS level
can be directly linked to changes in aerosol composition. Overall, across all supersaturations, an increase in Djc
is generally observed during the transition from spring to summer which is more pronounced at 0.1%, 0.2%, and

1.0% SS, while being relatively weak at 0.5% SS.

3.2 CCN spectra — Insights from forward and inverse CCN closures
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Figure 5: Observed (dashed) and predicted (solid) median CCN spectra in different seasons. The whiskers display the 25™
and 75" percentiles.

Figure 5 shows the comparison between the observed and predicted CCN spectra, again displayed for each season
separately. First, seasonal variations are evident, with CCN concentrations peaking in the summer and having
their minimum in winter — in line with the overall particle number concentrations (see Fig. 4 and S14). The median
seasonal CCN concentration ranges from 29-76 cm for 0.1% supersaturation, 101-317 cm™ for 0.2%, 143-512
cm™ for 0.3%, 170-744 cm? for 0.5%, and 300-1116 cm™ for 1.0% with significant variations across seasons.
These values are somewhat lower than previous studies (Sihto et al., 2011; Paramonov et al., 2015), potentially
related to decreases in overall particle number concentrations and a more prominent role of biogenic organic
aerosols vs. inorganic sulfate (see e.g., Li et al., 2024) — reflecting the higher activation diameters reported here
as compared to the previous studies. The NRMSE values for the two forward closure methods range from 0.42 to

0.94 (Table 2). The agreement of the forward closure based on the bulk composition is best for supersaturations
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0f 0.2% and 0.3% where the activation diameter is generally within the accumulation mode range, and hence also
the ACSM composition is probably a more accurate estimate of the composition of the dry particles. The
agreement is worst for the lowest supersaturation of 0.1 %, as also observed previously in Wang et al. (2010) and
Meng et al. (2014). Furthermore, the agreement is better during spring and summer compared to autumn and
winter (Fig. 5). Interestingly, when comparing the results from the forward closures, a better closure is obtained
with the simple constant value of k ;5 than with the "bottom-up" hygroscopicity estimate using the ACSM and
acthalometer data (kyp,), indicating that assuming size-independent but temporally varying composition
performs worse than a much simpler assumption. The results from the inverse closure (k,p¢) however, show that
this issue can be mitigated when distributing the measured/estimated inorganic and organic species between the
Aitken and accumulation modes. Including the size-dependent chemical composition, the variability of the size
distribution during CCN cycles and uncertainty in CCN measurements (10%; see e.g. Rejano et al., 2024 and
references therein) further reduces the bias, correcting most of the overprediction (see Fig. 5, kycmc)- All methods
(both the forward and inverse closures) tend to overpredict CCN numbers, with &y, exhibiting the highest error,

which is clearer when we look at NRMSE and GMB values (Fig. 6, Supplementary Table S2 and Fig. S15).

Table 2. NRMSEs and Pearson’s correlation coefficient (R in brackets) corresponding to different methods and
supersaturations for all years taken together.
Methods NRMSE (R) NRMSE (R) NRMSE (R) NRMSE (R) NRMSE (R)
S5 =0.1% S5=0.2% $5=0.3% 85 =0.5% S5 =1.0%

Kbulk 0.94 (0.78) 0.49 (0.85) 0.49 (0.85) 0.59 (0.84) 0.60 (0.79)
Ko1s 0.71 (0.74) 0.43 (0.84) 0.42 (0.86) 0.50 (0.85) 0.52 (0.81)
Kopt 0.92 (0.78) 0.46 (0.86) 0.43 (0.87) 0.47 (0.88) 0.44 (0.86)
Korg=0  0.62(0.70) 0.49 (0.75) 0.48 (0.77) 0.46 (0.80) 0.47 (0.77)
Kmeme 0.65 (0.85) 0.17 (0.97) 0.12(0.99)  0.082(0.99)  0.045(0.99)

e 1.00 %\G‘z + S5=0.1%
(=) %*
4 0.95
- % SS=0.2%
@ 0.90
= # J SS = 0.3%
= . o
O o.85 * * =
e 3
€ 0.80 * SS = 0.5%
o . ﬂ? °
u *
= 0.75 *
8 *  Kpulk % Korg = i f SS = 1.0%
Q. o707 * k=0.18 *  Kmcmc *
*  Kopt
0.65
01 02 03 04 05 0.6 0.7 080 0.85 0.90 0.95 1.00 1.05 1.10

NRMSE NRMSE

Figure 6: Normalized Root Mean Square Error (NRMSE) and Pearson correlation for different supersaturation (SS) levels
for all years taken together, comparing four methodologies: Kpyik > Ko.18> ad Kopt, Korg= 0 and Kycmc- The two panels split
the NRMSE axis to highlight the data in separate ranges, with the left panel covering NRMSE values from 0.3 to 0.6 and the
right panel from 0.7 to 1.1. Each point is sized according to the corresponding SS level (0.1%, 0.2%, 0.3%, 0.5%, and 1.0%).
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The markers are color-coded based on the method for calculating the hygroscopicity parameter, with lines added to represent
a discontinuity in the x-axis.

When combined across all SS the overall NRMSE values for the entire timeseries are 0.43 for k. ,
0.35 for, K¢ 15, 0.28 for Kope and 0.08 for kycmc. To provide a more detailed perspective, we also calculated the
NRMSE for each SS individually. Figure 6 provides an overview of how the four different methods perform in
estimating CCN concentrations. All methods demonstrate a strong positive correlation with the observations
(Pearson R > 0.70) and the NRSME remains in most cases below 1.0 (Table 2 and Fig. 6). The performance skill
(i.e., the combined behavior of R and NRMSE; see Fig. 6) varies with SS, but when averaged across all SS, kKycmc
achieves the best agreement, followed by kop, Ko 1gand Kpyii. As shown in Table 2, the largest errors generally
occur at the lowest (0.1%) and highest (1.0%) supersaturations. An exception is Kycmc, Which substantially
reduces the bias and NRMSE across all supersaturations. The highest error is still at 0.1%, while the other
supersaturations agree closely with the observations. At 0.5% SS, the NRMSE for Ky is around 0.56 and the
GMB is around 1.38 (see Fig. S15 and Table S2), which is slightly higher than the GMB (1.32) reported by
Schmale et al. (2017) for a shorter dataset and a different time period. The best performance skill for the forward
closure is obtained at SS = 0.3%, followed closely by SS'=0.2% (see Table 2), where predominantly accumulation
mode particles activate (see Fig. 4). Given that the typical SSpax in stratocumulus clouds in the region are often
below 1 % (Roberts et al., 2006; Hegg et al., 2009), the performance at these levels is particularly relevant. The
different SS-dependence of the bias in the MCMC inverse closure as compared with the other closure methods
suggests that the source of the bias for the lowest supersaturation is different from the higher supersaturations.
For the lowest supersaturations, the high flow rate in the CCN counter may hinder smaller particles from growing
sufficiently to be detected by the CPC (see also Ervens et al., 2007 and Lance et al., 2006). For the highest
supersaturation, our results suggest that the significant over-prediction of the forward-closure and Nelder-Mead
methods are indeed a result of the high variability of the PNSD and the sensitivity of the Aitken-mode CCN to it.

The results presented in Fig. 5 reveal a systematic overprediction of Ncen. Part of this overprediction
could be remedied by assuming a size-dependent chemical composition with an enrichment of organics in the
Aitken mode — given the expected lower k of the organic as compared with the inorganic aerosol components.
Previous studies have observed that the « of OA can be even lower than the assumed value of 0.1 (see e.g., Rastak
etal., 2017; Cai et al., 2018 and references therein). An alternative way to optimize the results could therefore be
through assuming a size-independent composition but lower organic k. As a conservative evaluation of this
approach, we conducted a test assuming organics to be non-hygroscopic, similar to black carbon. In Table 2 and
Fig. 6 these calculations are denoted with k,g = 0. The resulting NRMSE and GMB (see also Fig. S15, S16 and
Supplementary note 9) suggests that organics in the accumulation mode are likely hygroscopic, as assuming zero
hygroscopicity leads to underprediction of Ncen. Another explanation could be due to an under-representation of
larger inorganic particles in the observations, for example in the upper tail of the accumulation mode, or an
undetected coarse mode component such as sea salt which is not measured by the ACSM. Alternatively, the
finding may arise from the initial assumption of the equal distribution of BC among Aitken and accumulation
modes. In terms of correlation, kp¢, in comparison to Kqrg = o, consistently performs better overall (see Table 2),
the NRMSE values also being smaller than for the entirely non-hygroscopic organics. This suggests that,
compared to the variation in the hygroscopicity parameter of organics with size, accounting for the size-segregated

nature of chemical composition provides a more accurate explanation for the overprediction of CCN than simply
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non-hygroscopic organics. The impact of assuming constant BC fraction in both modes was also found to be
minor (see Supplementary note 10). Using the DREAM-MCMC optimization to account for the variability of the
PNSD during the CCN measurement cycle mitigates most of the overpredictions — further strengthening the strong
role of size-dependent chemical composition as key factor for yielding a successful CCN closure, but also

highlighting the importance of the PNSD variability.

3.3 Insights on size-dependent submicron hygroscopicity parameter and aerosol composition from inverse

CCN closure

Spring Summer Autumn Winter

—— Aitken (Nelder Mead)
~~~~~ Accumulation (Nelder Mead)
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Figure 7. Seasonal probability distributions of the hygroscopicity parameter (x) for the Aitken and accumulation modes. Each
panel corresponds to one season: spring, summer, autumn, and winter. Distributions are shown separately (see legends) for
Nelder—Mead optimization and DREAM-MCMC.

For the optimized CCN spectra (kqpe and Kymcmc), the seasonal probability distributions of the corresponding
hygroscopicity parameters for Aitken and accumulation modes are shown in Fig. 7. Both optimization approaches
produce almost identical x distributions for the accumulation mode with median hygroscopicity values around
0.2-0.3. In contrast, the Aitken mode exhibits a distinct bimodality in both cases. The Nelder—-Mead optimization
produces a sharp peak at kjiren = 0.1, whereas the DREAM-MCMC distribution shows a lower but broader peak
slightly above 0.1 — which would be in line with the expected hygroscopicities of the BVOC oxidation products
present at the measurement site. A secondary peak generally appears between Kpjen = 0.5 and 0.6, with kycmc
consistently shifted toward the lower end of this range. The exception is winter, where the second peak is more
diffuse in both methods. The lower peak in DREAM-MCMC compared to Nelder—Mead reflects differences in
how the two methods balance CCN overprediction. Since &, systematically overestimates CCN, the Nelder—
Mead optimization compensates by assigning the Aitken mode a much lower hygroscopicity (higher organic
fraction). When size-distribution parameters are also allowed to vary, as in kycpmc, part of this CCN overprediction
can instead be explained by variability in size distribution lognormal parameters. Consequently, the smaller x
peak is reduced in height, while the overall distribution remains consistent with the Nelder—Mead method. In
general, the probability distribution of Aitken and accumulation mode hygroscopicity parameter from both
methods indicates that the Aitken mode can be predominantly organic on a significant number of instances, with
most values of « clustering around typical organic x of 0.1. This significant difference in hygroscopicity between
the two modes exceeds the typical variability in hygroscopicity values observed for various soluble chemical
components, suggesting indeed distinct chemical compositions and water uptake properties of the two modes.
Overall, in kp,the variability between seasons is similar for both the Aitken and accumulation mode (see Fig.
S17), while in kycmc the Aitken mode has a significantly higher variability in all seasons. In autumn and winter,

the MCMC distributions resemble those from the Nelder-Mead, suggesting a clear organic enrichment in the
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Aitken mode as compared with the accumulation mode. For the spring and summer however, the distributions of
Aitken mode hygroscopicities are more bimodal. The cases where a clear organic enrichment in the Aitken mode
is predicted are characterized by relatively high Aitken mode particle number concentrations and large modal
diameter. These results are generally in line with previous studies reporting differences in the hygroscopicity of
Aitken and accumulation mode-sized particles (Hémeri et al., 2001; Paramonov et al., 2015). Because the Aitken
mode hygroscopicity distributions are bimodal, a single central metric (e.g., the median) can under-represent the
distribution. Even so, both approaches reveal some common seasonal patterns: Aitken x is higher in spring and
summer, and lower in autumn and winter. In the darker seasons, reduced/absent NPF events and weaker local
aerosol production make the accumulation mode more frequently the more hygroscopic mode, while in spring—
summer Aitken x more often approaches or exceeds accumulation values. Accumulation-mode x remains
comparatively stable, typically between 0.2-0.3, with the highest values in winter. This seasonal variability
coincides with enhanced summertime photochemistry, which drives new Aitken particle formation from organic
vapors and subsequent aging that increases the oxygen-to-carbon ratio of organics, thereby raising their
hygroscopicity (Jimenez et al., 2009; Heikkinen et al., 2021).

Because a bimodal distribution in x was observed with the MCMC optimization, we separated
the optimized data into two groups: cases where Kajigen > Kaccumulation and cases where Kajigen < Kaccumulation. 1he
mean optimized compositions for these groups are shown in Fig. 8, while the corresponding medians are given in
Tables S4-S7. In the Nelder—Mead optimization, Kjtken > Kaccumulation ©Ccurs in 23% of cases, compared to 56%
with the MCMC method. Conversely, Kajien < Kaccumulation 18 found in 77% of cases with Nelder—-Mead and
46% with MCMC (see Table S8). Despite these differences in frequency, the median x values shows remarkable
agreement between the two approaches (see Table S8). For Kajken > Kaccumulation, the median GMD ajixens
GMD,ccumulations Kaitkens 31d Kaccumulation @r¢ 30-32 nm, 133—-137 nm, 0.5, and 0.2, respectively. In contrast, for
Kaitken < Kaccumulation» they are 37—43 nm, 137-164 nm, 0.1, and 0.27. Thus, cases with higher Aitken x are
characterized by smaller Aitken GMD and occurred throughout the year but were much more frequent in summer.
This feature has also been reported in previous studies from various environments, where x increased at diameters
typical of Aitken and nucleation mode (particularly below 60-70 nm) and was often — but not always —
associated with NPF events (Lance et al., 2013; Spiteri et al., 2023; Massling et al., 2023). For Kjtken >
Kaccumulation» the Aitken mass is consistently lower than in the Kajiren < Kaccumulation €as€ (see Fig. 8), reflecting
the availability with condensable vapors with low enough volatility to overcome the Kelvin barrier and condense
on the Aitken mode. In both optimization methods, the composition patterns within each group are very similar,
just as with the x values (Fig. 8). For cases where Kpjiken > Kaccumulation» the Nelder—Mead predicted the Aitken
mode to be almost entirely inorganic, while DREAM-MCMC suggested slightly more organic material but still
mostly inorganics. In these cases, both approaches agree that the Aitken mode had the lowest organic fraction in
winter and spring. For Kajiken < Kaccumulation» OUI Tesults, consistent with previous studies at SMEAR 1I (e.g.,
Allan et al., 2006), indicate that the accumulation mode contained a larger inorganic fraction, leading to higher
hygroscopicity compared to the Aitken mode. Such a difference has also been observed in other similar
environments (Timonen et al., 2008; Hao et al., 2013; Levin et al., 2014) as well as in urban Beijing (see also Wu
et al., 2016). This disparity in mass fractions of inorganics between the two modes is most pronounced in winter
(for example in Nelder-Mead optimization, the relative enrichment in Aitken vs. Accumulation model mass

fraction being ~156 %) and autumn (the relative enrichment of ~106 %), i.e. the periods when the distinction
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between Aitken and accumulation modes is most evident (see Fig. 4). This seasonal variation reflects shifts in
aerosol sources and processes, and the results are generally in line with what is known. During summer, biogenic
SOA is a major source of particulate matter in Hyytiéld (Heikkinen et al., 2021; Yli-Juuti et al., 2022). In contrast,
autumn and winter are characterized by a higher mass fraction (and concentration) of inorganic aerosol chemical
components (Heikkinen et al., 2020), which highlights the prevalence of transported (Riuttanen et al. 2013) and
cloud-processed particles (Isokdénti et al., 2022). Cloud processing leads to both the observed bimodal PNSD
(Fig. 3) and a higher sulfate abundance in the accumulation mode (e.g., Leitach et al., 1996; Roelofs et al., 1998;
Kreidenweis et al., 2003; Wonaschuetz et al., 2012; Ervens et al., 2018).
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Figure 8. Seasonal mean mass fractions of organic, inorganic, and black carbon components in Aitken and Accumulation
modes from Nelder-mead (NM) and DREAM-MCMC optimizations. Panels show cases where kpjtken > Kaccumulation (8
NM, ¢: MCMC) and Kpjtken < Kaccumulation» (0: NM, d: MCMC). The stacked bars represent the contributions of organic
(green), ammonium sulfate (maroon), and black carbon (black) components within each mode. Aitken mode is depicted with
solid colors, while Accumulation mode is represented with slightly faded colors. The width of the bars has been scaled to the
mass concentration in the corresponding mode.

In our analysis, we assumed values of organic properties (x and density) based on past studies, as mentioned in
Table 1. However, to discard any possibility of major changes in the results, we performed additional inverse-
closure studies allowing organic properties to vary in several ways, as discussed in Supplementary note 11. These
sensitivity tests showed that two of the optimization approaches led to physically unrealistic organic densities
(~1000 kg m™ and > 2500 kg m?), despite achieving similar NRMSE:s. In contrast, the method keeping the size
distribution to the median values observed during CCN cycles produced physically reasonable pgrg (~1200-1300
kg m™) and kg (0.06-0.08), consistent across seasons — also in the light of typical hygroscopicity values of
organic molecules such as those resulting from BVOC oxidation (e.g. Petters and Kreidenweis, 2007; Siegel et
al., 2022). This confirms that the assumed organic properties used in the main analysis are robust and do not

significantly bias the optimized results.
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4 Conclusions

In this study, we integrated long-term chemical composition measurements from an Aerosol Chemical Speciation
Monitor (ACSM) with Cloud Condensation Nuclei (CCN) observations and aerosol number size distributions.
This resulted in ~6,200 concurrent two-hour resolution data points. We used this dataset to evaluate four methods
for predicting CCN concentrations based on x-Kohler theory across varying supersaturations, beginning with two
forward closure approaches. The first, a 'bottom-up' method, used ACSM and aethalometer data to estimate the
bulk hygroscopicity parameter (ki) for predicting CCN concentrations, while the second approach (kg 1g)
assumed a constant x value of 0.18, as recommended by Sihto et al. (2011), throughout the study period. We
observed that the overall median activation dry diameters (Da) ranged from 54 nm (SS = 1%) to 224 nm (SS =
0.1%) nm across different months, suggesting that Aitken mode particles contribute to the CCN numbers at this
location — besides the well-known contribution of the accumulation mode (Pierce et al., 2012 and references
therein). Therefore, the possibility of different chemical composition/hygroscopicity between Aitken and
accumulation modes (for e.g. Broekhuizen et al., 2006) motivated us to use an inverse closure technique that
involved an optimization algorithm (Nelder-Mead in the Python SciPy library and DREAM-MCMC) to determine
the optimal modal hygroscopicity (kqp; and kycemc) by obtaining a closure between observed and predicted CCN
concentrations.

CCN concentrations at Hyytidld exhibit clear seasonal variations, peaking in summer and
reaching their lowest in winter, reflecting overall particle number trends. Our closure calculations agree
reasonably well with observed CCN concentrations, with Pearson correlations exceeding 0.8. However, all of the
applied methods tend to overpredict CCN concentrations to varying degrees. As expected, the inverse closure
methods perform the best, especially at higher supersaturations (0.3%, 0.5% and 1.0%), where both accumulation
and Aitken mode particles can activate, highlighting the importance of accounting for the size-dependent nature
of aerosol composition for more accurate CCN predictions. Overall, the GMB remains well below 1.3 for kycmc,
Kopt and K 1 across all supersaturations (see Table S2), except at 0.1%. The best agreement is observed at 0.2%
and 0.3% supersaturations, where the GMB is around 1.1 for all methods, except for kycmc, for which the best
agreement occurs at 0.5% and 1.0%. These results suggest that most of the overprediction at higher
supersaturations where the Aitken mode activates, can be reduced if variability in the lognormal parameters of the
size distribution is also considered. However, at a supersaturation of 0.1%, the use of size-dependent composition
i.e. Kope and kyeme does not significantly reduce the error. This suggests that the primary source of the error at
this supersaturation arises from another factor — most likely, the substantial measurement uncertainty of the CCN
counter at low supersaturation, as previously discussed (see Sect. 3.2).

Both inverse-closure methods reveal clear differences in aerosol composition and hygroscopicity
between the Aitken and accumulation modes. The Aitken mode shows a bimodal distribution in «, with one peak
near 0.1 and another between 0.5 and 0.6, whereas that of accumulation mode is unimodal with x values centered
around 0.2-0.3. Based on this bimodality, we divided the optimized data into two groups: cases with Kajten >
Kaccumulation and those with Kajien < Kaccumulation- 1h€ former occurs more often in summer and is associated
with a smaller Aitken-mode GMD compared to the accumulation mode. The occurrence of high « in the Aitken
mode appears to be linked—though not exclusively—to new particle formation (NPF) but limited growth. Overall,

x in the accumulation mode remains relatively stable between 0.2 and 0.3, while x in the Aitken mode varies
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widely from 0.1 to 0.6. This indicates that most seasonal changes in aerosol hygroscopicity occur in the Aitken
mode. In all cases, summer has comparatively more organics as biogenic secondary organic aerosols formation
dominate among all aerosol sources, whereas autumn and winter show higher fractions of inorganic components
due to transported and cloud-processed particles. The Aitken mode has the lowest x values in winter, while summer
features higher Aitken mode hygroscopicity (lowest accumulation mode x) possibly due to decreasing BC content.

In the Nelder-Mead optimization, the relative difference in the median Aitken and accumulation
x is most pronounced in winter (~162 %), followed by spring (~134 %), autumn (~116 %) and summer (~85 %)
reflecting seasonal shifts in aerosol sources and processes. These seasonal variations are consistent with known
atmospheric processes, providing confidence in using CCN data to understand mode composition differences. The
findings in this study are in line with previous research highlighting distinct differences between Aitken and
accumulation mode compositions at Hyytiéld and similar environments (Hao et al., 2013). Previous studies have
also demonstrated that chemical composition and hygroscopicity parameter are size-dependent (Lance et al., 2013;
Ray et al., 2023) and accounting for size-dependency improves CCN predictions (Meng et al., 2014). Specifically,
our results indicate that on many occasions, the accumulation mode is enriched with sulfate, while the Aitken
mode is predominantly organic, in agreement with observed size-dependent chemical compositions using an
Aerosol Mass Spectrometer (AMS; Allan et al., 2006). This is furthermore consistent with Mohr et al. (2019), who
found that organic vapors significantly contribute to particle growth in the Aitken mode. It is notable however that
all optimized compositions (k,pt and kycmc) do not resolve all the over-prediction of the CCN concentration,
indicating an additional structural error in the theoretical approach or experimental uncertainties that we did not
account for. If modal or size-resolved « (in addition to just having bulk chemical composition) were available, our
approach could be extended to derive more detailed size-dependent chemical composition—for example, size-
dependent organic hygroscopicity—while also helping to constrain x values by identifying those that best reproduce
observed CCN concentrations.

In the future, the method applied here should be tested at other locations with varying aerosol
chemical compositions — also to mitigate the inherent representativity issues related to using data from a single
station. Furthermore, the approach for optimizing the closure using size-resolved composition should be compared
and contrasted with other approaches, e.g. accounting for potential structural issues with the x-Kohler model such
as the treatment of the surface tension or volatility of the particle components (see e.g. Lowe et al., 2019; Heikkinen

et al., 2024).

Data availability. CCN, size distribution and chemical composition data used to generate most of the figures are
available at https://github.com/rahulranjanaces/Inverse-closure.git and also on Zenodo

(https://doi.org/10.5281/zenodo.17243563; https://doi.org/10.5281/zenodo.17243685) The raw CCN, PNSD and

chemical composition data are available on Zenodo (10.5281/zenodo.17277646).

Code availability. The codes to perform inverse-closures and to generate most of the figures are available at

https://github.com/rahulranjanaces/Inverse-closure.git, and

https://github.com/mauradewey/Modal-Aerosol-Composition. These codes and also be accessed on Zenodo at

https://doi.org/10.5281/zenodo.17243563 and https://doi.org/10.5281/zenodo.17243685.
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