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Abstract 18 

The contribution of natural aerosol particles from boreal forests to total aerosol loadings may increase with 19 

reduction in anthropogenic emissions. Aitken and accumulation mode particles in boreal regions differ 20 

significantly in hygroscopicity, and ignoring this size dependence can cause large uncertainty in Cloud 21 

Condensation Nuclei (CCN) prediction. We applied κ-Köhler theory to a multi-year dataset (2016–2020) from 22 

Hyytiälä, Finland, to evaluate different representations of aerosol chemical composition for CCN prediction. 23 

Overpredictions by forward closures using either bulk chemical composition from an Aerosol Chemical 24 

Speciation Monitor (ACSM) or a constant κ = 0.18 were mitigated to a great extent by optimizing size-resolved 25 

composition using two inverse modeling approaches: (1) Nelder–Mead method with the size distribution fixed to 26 

its median during each 2-hour CCN measurement cycle, and (2) MCMC (Markov Chain Monte Carlo) accounting 27 

also for the variability in the size distribution during each cycle. Both methods improved closure at SS = 0.2-1.0% 28 

(with Geometric Mean Bias GMB values 1.12-1.20 and 0.95-1.05, respectively), with moderate improvement at 29 

0.1% (GMBs of 1.53 and 1.32, respectively). The Aitken mode was enriched in organics in 77% of cases using 30 

method (1) and 46% using method (2) – with typical κ values of ~0.1 for Aitken and ~0.3 for accumulation modes. 31 

The results generally align with known size-dependent chemical composition in Hyytiälä and indicate that 32 

variability in CCN hygroscopicity is largely driven by Aitken mode composition. Our results demonstrate the 33 

potential of inverse CCN closure methods for obtaining valuable information of the size-dependent chemical 34 

composition. 35 

 36 

 37 
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1 Introduction 38 
 39 

Aerosol particles play a critical role in the formation of cloud droplets. They serve as cloud condensation nuclei 40 

(CCN) by lowering the energy barrier for heterogeneous nucleation of water, thus promoting cloud droplet 41 

activation at atmospheric levels of water vapor supersaturations SS (Köhler 1936;  Pruppacher and Klett, 2010). 42 

The subset of aerosol particles that act as CCN affects the cloud droplet number concentration (CDNC), thus 43 

changes in the CCN concentration (NCCN) may modulate cloud radiative properties and lifetime — phenomena 44 

known as the first (Twomey, 1974) and second (Albrecht, 1989) indirect aerosol climate effects. The 45 

parameterization schemes related to cloud droplet formation in global climate models (e.g., Abdul-Razzak and 46 

Ghan, 2000, 2002; Nenes and Seinfeld, 2003; Fountoukis and Nenes, 2005; Barahona et al., 2010; Betancourt 47 

and Nenes, 2014) rely on estimates of CCN concentrations which are calculated based on simplified treatment of 48 

aerosol size distributions, chemical compositions and the Köhler theory, leading to varying degrees of uncertainty 49 

depending on the specific scheme used (Simpson et al., 2014). Enhanced understanding of aerosol particles and 50 

their role as CCN may be used to improve representations of aerosol-cloud interactions (ACI) in global climate 51 

models, which remain a significant source of uncertainty in estimates of total anthropogenic radiative forcing over 52 

the industrial period (IPCC report, 2021; Seinfeld et al., 2016). 53 

NCCN and CDNC are primarily determined by aerosol properties and the drivers of maximum 54 

supersaturation (SSmax) fluctuations (e.g. updraft velocities, radiative cooling rates, water vapor concentration field 55 

see e.g. Köhler, 1936; Rogers and Yau, 1989; Reutter et al., 2009; Anttila et al., 2012; Partridge et al., 2012), both 56 

of which are known to display large spatial and temporal variability. Many studies have evaluated NCCN predictions 57 

from Köhler theory against observations of aerosol particle size distributions, chemical composition and 58 

meteorological parameters in various environments. These investigations, often termed aerosol-CCN closure 59 

studies or hygroscopicity-CCN closure studies, will hereafter be referred as 'closure studies'. Typically, such 60 

studies have involved forward modeling, where observational input data (e.g., aerosol size distribution, 61 

composition, and hygroscopicity) is utilized to predict NCCN using the Köhler theory. The model outputs are then 62 

compared directly with observed CCN data to assess consistency and evaluate the predictions (e.g., Bougiatioti et 63 

al., 2009; Martin et al., 2011; Rejano et al., 2024).  In contrast, relatively few studies have leveraged inverse 64 

modeling frameworks, which use observed CCN data to infer the properties of the aerosol population or model 65 

parameters. In these approaches, CCN measurements are treated as a reference (while also accounting for 66 

observational uncertainty), and model parameters such as surface tension, hygroscopicity, and size distribution 67 

are adjusted to reproduce the observations. This not only enables the retrieval of aerosol population characteristics 68 

from CCN data but also provides a means to rigorously test model assumptions and quantify the influence of 69 

uncertain calibration parameters on predicted CCN concentrations (e.g., Partridge et al., 2011, 2012; Lowe et al., 70 

2016). In this study we intend to use a CCN closure study as a means to infer information on the size-dependent 71 

chemical composition of CCN-sized aerosol particles, to enhance bulk chemical composition measurements. 72 

Köhler theory (Köhler, 1936) has been widely used in earlier studies as the standard framework for 73 

predicting CCN activation and proved effective under most relevant atmospheric conditions, provided that there 74 

was accurate knowledge of the aerosol number size distribution, size-dependent chemical composition, and SS. 75 

To simplify the representation of aerosol hygroscopic growth and CCN activity, Petters and Kreidenweis (2007) 76 

introduced the non-dimensional hygroscopicity parameter κ, to facilitate comparisons of data sets with varying 77 

levels of detail for the aerosol chemical composition. These theoretical frameworks along with information about 78 
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particle number size distributions and chemical composition are utilized to calculate the activation diameter (Dact) 79 

of the dry particles and finally the CCN concentration at a particular ambient SS. A successful closure study aims 80 

for the modelled CCN and measured CCN to be comparable within measurement uncertainties and is notably 81 

influenced by the accuracy of the relevant measurements and any theoretical approximations.  82 

The aqueous phase thermodynamics of soluble inorganic salts like ammonium sulfate ((NH4)2SO4), 83 

sodium chloride (NaCl), ammonium bisulfate (NH4HSO4) and ammonium nitrate (NH4NO3) are considered to be 84 

relatively well-understood (e.g., Zhang et al., 2000 and Nenes et al., 1998, 1999), and yield accurate predictions 85 

of CCN activation of these compounds using Köhler theory. However, atmospheric aerosol particles also typically 86 

contain a significant organic mass fraction (Zhang et al., 2007), originating from various sources. In the 87 

atmosphere, organic aerosol typically forms a complex mixture with inorganic aerosol species. The organic 88 

component evolves over time modifying both the mass concentration and the properties of the aerosol (Robinson 89 

et al., 2007; Jimenez et al., 2009). Organic aerosol is comprised of a wide variety of molecules (e.g., Hallquist et 90 

al., 2009; Nozière et al., 2015; Ditto et al., 2018) with different properties, such as solubility, volatility and surface 91 

activity (e.g., Hodzic et al., 2014; Ye et al., 2016; Huang et al., 2024; Haber et al., 2024). While many of the 92 

atmospheric organic compounds are water-soluble, their hygroscopicity is typically lower than that of inorganic 93 

salts (e.g., Pöhlker et al., 2023). Nevertheless, organic aerosol plays a significant role in determining (NCCN) and 94 

CDNC, especially because organic aerosol formation drives aerosol particle growth towards CCN-relevant sizes 95 

in many environments (e.g., Riipinen et al., 2011; Mohr et al., 2019; Croft et al., 2019; Zheng et al., 2020; Qiao 96 

et al., 2021). Importantly, some organic aerosol properties beyond hygroscopicity such as solubility or surface 97 

activity, may enhance the likelihood of an Aitken mode aerosol particle to serve as CCN (Lowe et al., 2019). 98 

Historically, in studies where the organic aerosol contribution to the CCN activation was not adequately 99 

considered, errors of up to an order of magnitude were observed between predicted and measured NCCN in many 100 

environments (e.g., Bigg et al., 1986; Covert et al., 1998; Chuang et al., 1999; Rissman et al., 2006; Quinn et al., 101 

2008). This discrepancy highlights the need to include organics in CCN closure studies. Studies incorporating 102 

organic aerosol effects demonstrated significant improvements in closure as compared with attempts considering 103 

inorganics alone (e.g., Broekhuizen et al., 2006; Rose et al., 2008; Ervens et al., 2009; Guenther et al., 2009; 104 

Bougiatioti et al., 2009; Jurányi et al., 2010; Siegel et al., 2022). These findings underscore the importance of 105 

organics in CCN prediction, particularly in air masses with substantial freshly emitted primary biogenic or 106 

anthropogenic organic vapors.  107 

Boreal forests are environments where local biogenic emissions act as a major source of aerosol particles, 108 

with organic aerosol constituting 50-80% of the observed sub-micron aerosol mass (Heikkinen et al., 2020). This 109 

dominance of organics results from the emission of biogenic volatile organic compounds (BVOCs) by the forests, 110 

which promotes secondary organic aerosol (SOA) production. Understanding the factors controlling NCCN above 111 

boreal forests is necessary for constraining the magnitude of the climate feedbacks involving natural forest 112 

aerosols and clouds, which are likely to increase in importance as anthropogenic aerosol emissions decrease (see 113 

e.g., Paasonen et al., 2013; Yli-Juuti et al., 2021; Blichner et al., 2024).  114 

Hämeri et al. (2001) utilized Hygroscopicity Tandem Differential Mobility Analyzers (HTDMAs) during 115 

the BIOFOR campaign at the SMEAR II Hyytiälä forest field station in south-central Finland, to measure the 116 

hygroscopic growth factors of aerosol particles at 90% relative humidity (RH), and reported Aitken mode particles 117 

(with growth factors between 1.0 and 1.4) to be less hygroscopic than accumulation mode particles (growth factors 118 
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~ 1.6). Sihto et al. (2011) studied the annual cycles of aerosol hygroscopicity and CCN, finding the hygroscopicity 119 

at sub-saturated conditions to be a good predictor of the CCN activity as well. They concluded the average 120 

hygroscopicity parameter κ to be 0.18 (for SS values between 0.1 and 1 % during Jul 2008 and Jun 2009) and 121 

therefore, the CCN-sized particles to be mostly organic, but to also contain more hygroscopic material such as 122 

ammonium sulfate (see also Cerully et al., 2011). Paramonov et al. (2013) used a size-segregated CCN observation 123 

data set collected between January 2009 and April 2012 from Hyytiälä, which revealed that the median κ exhibited 124 

significant variation depending on the SS and hence particle size. Specifically, the median κ was 0.41 at 0.1% SS 125 

and 0.14 at 1.0% SS. At 0.1% SS, only the upper tail of the aerosol size distribution is activated, so the 126 

corresponding κ represents the largest particles in the distribution — indicating them to contain more inorganic 127 

species as compared with the smaller particles. In contrast, activation at 1.0% SS includes smaller particles, which 128 

are generally more organic, resulting in a lower κ. The size-dependence of hygroscopicity was more pronounced 129 

during the winter months compared to the summer. In a follow-up study, Paramonov et al. (2015) identified a 130 

statistically significant difference in the hygroscopicity of Aitken and accumulation mode particles in northern 131 

locations and concluded that the assumption of a size-independent κ potentially leads to a recurring overestimation 132 

in CCN predictions at supersaturations above 0.6% in the boreal environment. In the closure study by Schmale et 133 

al. (2017), predictions using bulk chemical composition data indeed led to an over-prediction (geometric mean 134 

bias of 1.32 at SS = 0.5%) of NCCN for the period between Jan 2012 and Jun 2014.  135 

 In large-scale atmospheric models, the aerosol size distribution is often represented by a number of 136 

log-normal modes, and NCCN are estimated from SSmax based on dynamics (e.g., updraft) and physicochemical 137 

properties of the aerosol modes – as the abundance of particles with variable sizes and compositions influences 138 

the development of SS and hence the CCN activation (e.g., Abdul-Razzak and Ghan, 2000). A number of studies 139 

(e.g., Sihto et al., 2011; Paramonov et al., 2013; 2015; Bulatovic et al., 2021; Pöhlker et al., 2021; Lowe et al., 140 

2019, and Duplessis et al., 2023) have demonstrated that Aitken mode particles can contribute significantly to 141 

CDNC, particularly in clean conditions. Therefore, constraints on the physicochemical properties of both Aitken 142 

and accumulation mode particles are important for predictions of NCCN and CDNC. Unfortunately, the standard 143 

methods used for measurements of aerosol chemical composition (e.g., Aerosol Chemical Speciation Monitor 144 

ACSM; see Sect. 2.1.4) cannot typically separate accumulation and Aitken mode composition. The few studies 145 

reporting size-segregated aerosol composition in forested environments suggest an enrichment of inorganics in the 146 

accumulation mode, and higher mass fractions of organics in the Aitken mode (Allan et al., 2006; Hao et al., 2013; 147 

Levin et al., 2014; Timonen et al., 2008; Saliba et al., 2020). Studies involving a full annual coverage suggest a 148 

more size-dependent composition in early spring and winter (Levin et al., 2014; Timonen et al., 2008) compared 149 

to the summer. These findings are also qualitatively in line with the studies investigating the growth of Aitken 150 

mode particles in Hyytiälä, explainable with organic condensation (e.g., Riipinen et al., 2011 Mohr et al., 2019). 151 

Campaign-wise studies like Cubison et al. (2008); Broekhuizen et al. (2006); Stroud et al. (2007); Meng et al. 152 

(2014) used size-resolved Aerosol Mass Spectrometer (AMS) data, which is typically sparse, to achieve CCN 153 

closure in different environments, demonstrating that size-dependent chemical composition of aerosol particles 154 

can often explain the apparent discrepancies between observed and predicted CCN concentrations. Taken together, 155 

these results suggest that observations of CCN concentrations have the potential to be used in an inverse manner 156 

to constrain Aitken and accumulation mode chemical compositions separately – if information on the particle size 157 

distribution and an estimate of the bulk chemical composition is available. 158 
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 In this study, we employ long-term (2016–2020) concurrent measurements from the SMEAR II 159 

atmospheric monitoring site in the boreal forest (Hyytiälä, Finland) to perform inverse aerosol-CCN closures, 160 

where we optimize the modal aerosol chemical composition using two approaches: (1) assuming a fixed size 161 

distribution set to the median values during each CCN spectrum cycle applying a Nelder-Mead optimization 162 

method, and (2) allowing the size distribution parameters to vary within the observed variability during each cycle 163 

and using Markov Chain Monte Carlo simulations for finding the optimal size-dependent composition. 164 

Additionally, we test the performance of two forward closure approaches: a commonly used approach, which 165 

utilizes the bulk aerosol chemical composition (i.e., size-independent composition) observations ('bottom-up' 166 

approach) to estimate the κ and predict CCN concentrations, and a simpler approach using a constant 167 

hygroscopicity parameter κ of 0.18 throughout the study period, as recommended by Sihto et al. (2011). 168 

Specifically, our study aims to address the following questions: 169 

 170 

1. How does the chosen representation of κ affect the CCN closure on a multi-year and seasonal basis? 171 

2. To what degree can a forward CCN closure be achieved when assuming size-independent chemical 172 

composition? 173 

3. Can we improve CCN closure by assuming mode-dependent composition while keeping the size distribution 174 

fixed to the observations? 175 

4. Which modal chemical composition and associated hygroscopicity parameter (κ) provide a more accurate 176 

closure compared to using bulk chemical composition? Furthermore, how do the inferred modal chemical 177 

composition and κ values differ when the variability of the aerosol size distribution during the CCN cycle period 178 

is accounted for versus when it is neglected? 179 

 180 

Through assuming that the SMEAR II station represents a remote continental site with a reasonable accuracy, we 181 

aim to provide useful insights on the role and dependencies of CCN loadings on natural aerosol properties. 182 

 183 

2 Methods and data 184 

 185 

Figure 1 provides an overview of the data and the overall approach used in this study. The core long-term data 186 

sets utilized were simultaneous observations of aerosol number size distribution between 3 and 1000 nm, chemical 187 

composition of the sub-micron (bulk) aerosol fraction and NCCN at SS between 0.1% and 1% during the period of 188 

2016 – 2020. κ-Köhler theory (Petters and Kreidenweis, 2007) was used to predict NCCN based on the size 189 

distribution and composition data with three different approaches for estimating the hygroscopicity parameter κ: 190 

(1) 𝜅ୠ୳୪୩ , i.e. calculating κ using the observed bulk (size-independent) sub-micron aerosol composition; (2) 𝜅଴.ଵ଼, 191 

i.e. using a constant κ value of 0.18 (Sihto et al., 2011) for the entire observation period; and 3) 𝜅୭୮୲ and  𝜅୑େ୑େ 192 

i.e. determining κ through an inverse closure assuming variable Aitken and accumulation mode compositions 193 

while maintaining the total sub-micron chemical composition as observed. In the following subsections we present 194 

further details on the measurement site and observations of aerosol number size distribution, sub-micron chemical 195 

composition, as well as concentrations of CCN at different supersaturations. Finally, a detailed description of 196 

methods including κ-Köhler theory and inverse closure is provided.  197 

 198 



 

  6 

 199 
Figure 1:  Workflow diagram of the observational data along with the steps made in its processing and analysis. NRMSE and 200 
Dp,act refer to Normalized Root Mean Squared Error (see Sect. 2.2.4) and dry activation diameter respectively. DMPS refers to 201 
Differential Mobility Particle Sizer, ACSM to Aerosol Chemical Speciation Monitor, CCN to Cloud Condensation Nuclei and 202 
CCNc to Cloud Condensation Nuclei counter. 203 
 204 

2.1 Experimental data 205 

 206 

2.1.1 Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II) 207 

The SMEAR II measurement site at Hyytiälä is located at 61o 51′ N, 24o 17′ E, 181 m above sea level, and 208 

represents a boreal forest environment with some anthropogenic influence, particularly from the southern direction 209 

where many industrialized areas within Finland, Russia, and continental Europe are located (Patokoski et al., 210 

2015; Riuttanen et al., 2013; Yttri et al., 2011; Tunved et al., 2006). The extent of the representativeness of 211 

SMEAR II for boreal forest environments varies seasonally and with air mass origin. The station is surrounded 212 

by mixed forest which covers 80% of the land within a 5 km radius and 65% within a 50 km radius (Williams et 213 

al., 2011). Primary local emission sources include a sawmill situated to the northeast and a pellet factory located 214 

around 6–7 km southeast of SMEAR II. Overall, the station can be considered a rural background site because the 215 

nearest major city, Tampere, is located about 60 km southeast of the measurement location. During the summer, 216 

local BVOC emissions (Hakola et al., 2012; Barreira et al., 2018), primarily those of monoterpenes, act as a major 217 

source of SOA at the station (Heikkinen et al., 2020; Heikkinen et al., 2021). New particle formation (NPF), which 218 

is an important process contributing to NCCN globally (e.g., Merikanto et al., 2009), is commonly observed at 219 

SMEAR II, especially in spring and fall (Nieminen et al., 2014). Sulfuric acid, bases and low-volatility BVOC 220 

oxidation products (e.g., Kulmala et al., 2014; Lehtipalo et al., 2018; Yan et al., 2018), have been identified as 221 

critical precursors for NPF at the site. During the winter, aerosol particles observed at the site are mainly from 222 

long-range transport (Riuttanen et al. 2013) and are frequently cloud-processed (Isokääntä et al. 2022). During 223 

this season, aerosol particles contain a larger inorganic component (about 36% as compared to 23% in summer, 224 

Heikkinen et al., 2020) increasing their hygroscopicity. However, during the winters, the increased contribution 225 

of black carbon (about 15% as compared to 6% in summer, Luoma et al., 2019), a hydrophobic aerosol component, 226 

decreases the overall hygroscopicity of the particles. SMEAR II is unique due to the comprehensive set of long-227 
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term measurements, crucial for answering questions related to aerosol-cloud interactions, which have been 228 

conducted for several years (Kulmala, 2018). Although facilities for measuring aerosol size distribution and CCN 229 

have existed for a long time (since 1996 and 1998, respectively), long-term composition measurements have 230 

become available more recently (Luoma et al., 2021; Heikkinen et al., 2020). This advancement has been due to 231 

the development and deployment of the ACSM and an aethalometer setup which provide near-real time data on 232 

the organics, sulfate, nitrate, ammonium, chloride and equivalent black carbon (eBC) in sub-micrometre aerosol 233 

particles (see also Sect. 2.1.4).  234 

2.1.2 Aerosol number size distribution   235 

At SMEAR II, a Differential mobility Particle Sizer (DMPS) has been used for particle number size distribution 236 

(PNSD) measurements in a size range from 3 nm to 1000 nm since 1996 (Aalto et al. 2001). The DMPS data has 237 

the time resolution of 10 minutes. The data used in this study were accessed from SmartSMEAR database 238 

(https://smear.avaa.csc.fi/download) for years 2016–2020 (see Fig. 2a). Medians of the size distribution data were 239 

taken over the start and end time periods of the respective co-located CCN measurements (see Sect. 2.1.3). 240 

The twin-DMPS system consists of two Vienna-type Differential Mobility Analyzers (DMAs), each 241 

designed to classify aerosol particles into size bins across two distinct size ranges: 3-40 nm and 20-1000 nm. The 242 

sizing is based on the electrical mobility of the sampled and charged aerosol particles. Air is sampled at a height 243 

of 8 meters above ground level with a common aerosol inlet. The common inlet line has a diameter of 100 mm 244 

and a flow velocity of 0.5 m s-1. The sample flow for the instruments is taken from the centreline. The aerosol 245 

flow rates in the DMAs are 4 L min⁻¹ and 1 L min⁻¹, respectively. The sheath flows, with flow rates of 20 L min⁻¹ 246 

and 5 L min⁻¹, are dried to maintain RH of less than 40%, while the aerosol flows are not dried. The particle 247 

concentration following each DMA is measured using Condensation Particle Counters (CPCs). For small particles 248 

(3–40 nm), a TSI 3025 CPC model was utilized (later changed to model TSI3776 after October 2016), while a 249 

TSI 3750 CPC is used for the detection of the larger particles in the size range 20–1000 nm.   250 

 As a first step toward the inverse closure (see also Sect. 2.2.3), we applied a Python implementation 251 

(Khadir, 2023) of the modal-fitting algorithm described by Hussein et al. (2005) to decompose the measured 252 

aerosol size distributions into two modes. The algorithm takes size distribution as input and returns the lognormal 253 

parameters (number concentration, geometric standard deviation, geometric mean diameter GMD) of different 254 

modes as output. While the algorithm would allow fitting up to four modes, bimodal fits (Aitken and accumulation 255 

mode, respectively; Fig. S1a) were selected to avoid overfitting (see also Liwendahl, 2023). The bimodal fits 256 

enabled us to reproduce the aerosol size distributions with a high correlation (Pearson correlation coefficient R = 257 

0.99) between the observed total particle number concentration and that calculated from the fitted parameters (Fig. 258 

S1b).  259 
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 260 
Figure 2: Temporal coverage of the observation data represented through seven-day running median. The top panel (a) shows 261 
the variation of the aerosol size distribution. The middle panel (b) shows the total number concentration of sub-micron aerosol 262 
particles (in orange) and CCN at 0.1, 0.3 and 1.0% supersaturation (in grey). The bottom panel (c) presents the mass 263 
concentrations of various chemical species and ions in the aerosol particles: organics (Org), sulfate (SO4), nitrate (NO3), 264 
ammonium (NH4), and equivalent black carbon (eBC). 265 
 266 

2.1.3 CCN concentrations 267 

The time series of observed NCCN were obtained using a CCN-100, a continuous-flow streamwise thermal-gradient 268 

CCN counter (CCNc), commercially provided by Droplet Measurement Technologies (Roberts and Nenes, 2005). 269 

The CCNc can be used in either monodisperse or polydisperse mode, where the former is utilized to determine 270 

size-segregated NCCN, as detailed in Paramonov et al. (2013). In contrast, the polydisperse mode, employed here, 271 

measures the overall NCCN at a given supersaturation.  272 

The CCNc consists of a saturator unit and an Optical Particle Counter (OPC). The saturator is a vertically 273 

oriented flow tube, into which aerosol-laden sample air is introduced surrounded by a particle-free sheath air flow 274 

(1/10 flow ratio) under laminar flow conditions, forming a well-defined central flow path. The inner walls of the 275 

tube are wetted and subjected to a controlled temperature gradient. The sheath air flow is saturated with water 276 

vapor at the inlet temperature. A positive temperature gradient is maintained at the saturator column, inducing a 277 

quasi-constant supersaturation profile for a specific temperature difference. As the laminar flow progresses 278 

through the column, water vapor and heat diffuse from the moist walls toward the center. The effective 279 

supersaturation is influenced by factors such as flow rate, pressure, and temperature gradient. While moving 280 

through the tube, aerosol particles absorb water and grow and those particles with critical supersaturations lower 281 

than the centerline supersaturation are activated as cloud droplets. Droplets larger than 0.75 µm in diameter are 282 

detected by the OPC at the exit of the tube and those exceeding 1 µm are considered to be activated CCN. To 283 

measure at different supersaturations, the temperature gradient is increased in steps while the flow rate is held 284 

constant. Both polydisperse and monodisperse CCN concentrations were measured at each supersaturation 285 

setpoint (1.0%, 0.5%, 0.3%, 0.2%, 0.1%). At each setpoint, the cycle includes 300 s polydisperse and 600 s 286 

monodisperse measurements, with additional stabilisation time after changing supersaturation, yielding a time 287 
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resolution of about 2 hours for this data set. Quantification and discussion of typical uncertainties related to the 288 

supersaturation and hence NCCN measured with this instrument are presented in e.g., Rose et al. (2008) and Topping 289 

(2005). At SMEAR II, the air to the CCNc is sampled 8 meters above the ground level and features the same inlet 290 

as the DMPS (see Sect. 2.1.3.). The aerosol flow rate is 0.5 L min-1
, which is split into sheath flow of 0.45 L min-291 

1 and sample flow of 0.045 L min-1. For quality assurance of the CCNc data, the CCNc calibration is conducted 292 

approximately twice a year using nebulised, dried, charge-equilibrated and size-segregated ammonium sulfate 293 

aerosol following procedure as per Rose et al. (2008). 294 

Estimates of smallest activation dry diameter (Dact) were derived using the combination of the DMPS 295 

and the CCNc data by integrating the PNSDs from their maximum diameters to the diameter at which the 296 

integrated particle number was equal to the measured NCCN. Dact was then calculated by interpolating between the 297 

two adjacent size bins (Furutani et al., 2008). Essentially, variations in activation diameter reflect differences in 298 

the chemical composition of aerosol particles: the more hygroscopic the aerosol, the smaller the activation 299 

diameter. 300 

 301 

2.1.4 Aerosol chemical composition  302 

An Aerosol Chemical Speciation Monitor (ACSM; Ng et al., 2011) was used at SMEAR II to measure the mass 303 

concentrations of non-refractory submicron particulate matter (NR-PM₁). The ACSM quantifies ions originating 304 

from non-refractory organic and inorganic species and reports them as mass concentrations of sulfate, nitrate, 305 

ammonium, and chloride ions, along with total organic aerosol mass. Briefly, the ACSM samples dried ambient 306 

air through a critical orifice (100 μm in diameter) with a flow rate of 1.4 cm3 s-1 to an aerodynamic lens (Liu et al. 307 

1995a; Liu et al. 1995b), which focuses a submicron particle beam and directs it to the instrument vaporization 308 

and ionization chamber. The lens efficiently transmits particles with vacuum aerodynamic diameters (Dva) ranging 309 

from approximately 75 to 650 nm, yet it also passes through particles up to 1 μm in Dva with a less efficient 310 

transmission. These aerosol particles then undergo flash vaporization at 600 °C and are subsequently ionized using 311 

electron impact ionization (70 eV) and the mass spectrum is obtained with quadrupole mass spectrometry. While 312 

the vacuum system of the ACSM efficiently reduces the amount of air molecules entering the instrument detection 313 

unit, their distinction from the aerosol components is required. For this purpose, the ACSM contains a 3-way 314 

valve system to routinely measure the signals obtained from particle-free air, and this background is subtracted 315 

from the particle-laden sample. The detailed description of the ACSM measurements performed at SMEAR II 316 

since 2012 is provided in Heikkinen et al. (2020), which includes descriptions of the instrument ionization 317 

efficiency calibrations, collection efficiency corrections and data processing. The ACSM measurements were 318 

conducted < 100 m away from the DMPS, CCNc and aethalometer measurements in a separate container. A PM2.5 319 

cyclone was installed on the container roof, and the ~3 m long inlet line had an additional make-up flow of 3 L 320 

m-1. The air was dried to < 30% RH with a Nafion dryer. The original time resolution of the ACSM data is ~30 321 

minutes. 322 

We combined the ACSM measurements with measurements of eBC. The eBC concentration was 323 

determined based on PM light absorption measured by an aethalometer (Magee Scientific, models AE31 and 324 

AE33). For the period in question here (2016-2020), the instrument was changed in the middle as the old 325 

instrument broke down. AE31 operated until the end of 2017 and AE33 started measuring in the beginning of 326 

2018. An aethalometer is a filter-based instrument and it measures aerosol light absorption at seven wavelengths 327 
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(370, 470, 520, 590, 660, 880, and 950 nm). The aethalometer data were corrected for measurement artefacts 328 

caused by collecting the particles in a filter medium, the so-called loading effect and scattering caused by the filter 329 

material: AE33 applied the inbuilt dual-spot correction (Drinovec et al., 2015) with multiple scattering correction 330 

factor 1.39 whereas the AE31 data were corrected as suggested by Virkkula et al., 2007 with multiple scattering 331 

correction factor 3.14 (derived by Luoma et al., 2021 for SMEAR II data). The eBC concentration was derived 332 

from the absorption at 880 nm channel by using mass absorption cross-section of 7.77 g m-2 for AE33 data (the 333 

default value suggested by the manufacturer) and 4.8 g m-2 for AE31 data (derived from 6.6 g m-2 at 637 nm used 334 

for multi-angle absorption photometer, which was used as a reference in Luoma et al., 2021). The head of the 335 

sampling line was located 4 m above the ground. The concentration of eBC was measured for PM10. Sample air 336 

was dried with a Nafion dryer and data was marked as invalid if the relative humidity inside the instrument 337 

increased above 40%. The aethalometer data was converted to STP conditions (273.15 K, 1013.25 hPa).  338 

The published ACSM and eBC measurements data are averaged over 1-hour intervals, but to align with 339 

the CCN measurements, the data set was further converted to the 2-hour time grid by taking a median of the mass 340 

concentrations of each of the measured species over the time window of each CCN spectrum measurement. The 341 

time series (7-day running median) are shown in Fig. 2c. The data coverage is higher for the eBC data compared 342 

to the ACSM data, which has fewer observations during wintertime. 343 

 344 

2.1.5 Data coverage and seasonal classification 345 

Figure 2 presents the overall data coverage along with the key aerosol properties observed (see Fig. S2 for the 346 

number of data points across different seasons). As mentioned earlier, SOA formation and NPF events lead to 347 

higher particle number concentrations during spring and summer. This is also reflected in the variability of CCN, 348 

particularly at higher supersaturations (see Fig. 2b), while lower seasonal variation is observed at lower 349 

supersaturations (SS = 0.1%), where only larger particles (> 200 nm, see Fig. S3 and Table S1) are activated. This 350 

suggests that most changes in aerosol particle number and chemical composition occur among smaller particles 351 

(Aitken and nucleation modes) between the winter and growing seasons (spring and summer). In terms of chemical 352 

composition, organics dominate the aerosol mass (see Fig. 2c), especially during the growing seasons, followed 353 

by sulfate and ammonium ions, with nitrate and black carbon contributing only minor fractions. However, given 354 

the significant seasonal variation in overall aerosol properties at the site, we present the results according to a 355 

seasonal classification. In this framework, March, April, and May represent spring; June, July, and August 356 

represent summer; September, October, and November correspond to autumn; and December, January, and 357 

February correspond to winter. 358 

2.2 Calculations for the forward and inverse closure studies 359 

 360 

2.2.1 κ-Köhler theory 361 

The classical Köhler theory (Köhler, 1936) utilizes information about the composition and size of aerosol 362 

particles. It estimates the critical supersaturation level SScrit and wet particle diameter at which an aerosol particle 363 

becomes activated and grows through condensation to form a cloud droplet. The Köhler equation comprises two 364 

terms (see Eq. 1): one accounting for the influence of solutes (the soluble fraction of aerosol particles), which 365 

tends to reduce the equilibrium saturation ratio S (defined as 1 + SS), and the other known as the Kelvin term, 366 
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which represents the increased surface tension over a spherical surface. In an aqueous solution, if P (Pa) is the 367 

partial vapor pressure of water and Ps (Pa) saturation vapor pressure of water over a pure flat liquid, the equilibrium 368 

saturation ratio S = P/Ps is represented as 369 

 370 

               S = 𝒂𝐰 exp (
𝟒 𝑴𝐰

𝑹𝑻 𝑫𝐩,𝐰𝐞𝐭
)                                        (1) 

                371 

where aw is the activity of water in the solution,  is the density of the solution (kg m-3), Mw is the molar mass of 372 

water (0.018 kg mol-1),   (N m-1) is the surface tension of the solution, R is the universal gas constant (8.314 J 373 

mol⁻¹ K⁻¹), T is temperature (K), and Dp,wet is the diameter of the droplet (m). To facilitate the comparison to 374 

previous work, we use the modified version of Köhler theory (Eq. 1) described by Petters and Kreidenweis (2007) 375 

to calculate the activation dry diameter (related to the total amount of soluble mass) for a particular supersaturation 376 

SS (i.e., S – 1), referred to as the κ-Köhler framework 377 

 378 

 S = 
𝑫𝐩,𝐰𝐞𝐭
𝟑  ି 𝑫𝐩,𝐝𝐫𝐲

𝟑

𝑫𝐩,𝐰𝐞𝐭
𝟑  ି 𝑫𝐩,𝐝𝐫𝐲

𝟑  ሺ𝟏 ି 𝜿ሻ
 exp (

𝟒 𝑴𝐰

𝑹𝑻 𝑫𝐩,𝐰𝐞𝐭
) (2) 

 379 

where Dp,dry is the dry diameter of the dry aerosol particle with a given composition described by a unitless 380 

hygroscopicity parameter κ.  In our calculations, we have assumed that the density and surface tension of the 381 

solution are equivalent to those of water (1000 kg m-³ and 0.0728 N m-1 respectively). Additionally, we have 382 

considered a constant ambient temperature (T) of 298.48 K for all seasons, corresponding to the median 383 

temperature inside the measurement hut.   384 

 Assuming internally mixed aerosol particles, the net hygroscopicity parameter 𝜅 for a mixture of 385 

n different chemical species is expressed as the linear combination of the individual species 𝜅i weighted by their 386 

respective volume fractions i in the dry particle (Stokes and Robinson, 1966):   387 

                          388 

     𝜿 ൌ෍ 𝒊𝜿𝒊
𝒊

 (3) 

 389 

The volume fractions ௜ of the individual components were calculated from the measured mass concentrations, 390 

mi, and their respective densities, 𝜌୧ 391 

 392 

 
                             𝜺𝒊 = 

𝒎𝒊
𝝆𝒊

∑
𝐦𝒊
𝛒𝒊

 
(4) 

 393 

Assuming an internally mixed aerosol population is a key assumption made in this study. According to Paramonov 394 

et al. (2015), the aerosol in Hyytiälä indeed shows some seasonal and size-dependent mixing state characteristics. 395 

Specifically, they report that particles in the ~75–300 nm range are internally mixed during late spring and early 396 

summer (May–July), with a very small CCN-inactive fraction (~0.2%). For the rest of the year, the aerosol 397 
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becomes partially externally mixed, with the CCN-inactive fraction increasing to ~6.6%. However, within each 398 

size range — either below or above 100 nm — the κ distributions are relatively consistent, suggesting that particles 399 

are mostly internally mixed within those size classes.  400 

 401 

2.2.2 Forward closure 402 

In the forward closure, NCCN at supersaturations of 0.1%, 0.2%, 0.3%, 0.5%, and 1.0% (corresponding to the 403 

supersaturations set in the CCNc, henceforth referred to as SSCCNc) are predicted using observations of the aerosol 404 

number size distribution from the DMPS. As discussed above, two different assumptions about the hygroscopicity 405 

of the aerosol mixture were tested: 1) assuming constant hygroscopicity of 0.18 (𝜅଴.ଵ଼) 2) assuming mixture 406 

hygroscopicity (Eq. 4) using chemical composition information from the ACSM and aethalometer measurements 407 

(𝜅ୠ୳୪୩). 𝜅ୠ୳୪୩ therefore, does not depend on particle size, but is variable in time. For deriving 𝜅ୠ୳୪୩ the observed 408 

aerosol chemical composition was utilized, assuming that all sulfates are present as ammonium sulfate (NH4)2SO4 409 

(AS) and the observed nitrate was distributed between ammonium nitrate NH4NO3 (AN) and organic nitrate (ON), 410 

estimated using the method explained in Farmer et al. (2010) (see Supplementary note 1 and Fig. S4). For the 411 

calculation of the AS and AN mass concentration, only the measured sulfate and nitrate mass concentrations were 412 

used. The ammonium mass concentration required for yielding ion balance within the particles was calculated 413 

(see Fig. S5; Zhang et al., 2007).  We acknowledge that the assumption that sulfate is present solely as AS can 414 

cause underestimations of aerosol hygroscopicity at SMEAR II (e.g., Riva et al., 2019). Finally, to retrieve the 415 

volume fractions of organics, AS, AN, ON and eBC from their estimated mass concentrations, the density 416 

information for each species is required. The chosen densities are shown in Table 1 along with the 𝜅௜ for each 417 

species.  418 

 419 

Table 1. Densities (𝜌௜) and hygroscopicity parameters (𝜅௜) of the assumed dry particle constituents based on the 420 
composition estimated from the ACSM and the aethalometer measurements. 421 

Species  (kg m-3) 𝜿 

Organics 1500 (Kostenidou et al., 2007)a 0.12 (Pöhlker et al., 2023) 

Ammonium nitrate (AN) 1720 0.67 (Petters and Kreidenweis, 2007) 

Ammonium sulfate (AS) 1769 0.61 (Petters and Kreidenweis, 2007) 

Organic nitrate (ON) 1500b 0.12b 

Equivalent black carbon (eBC) 1770 (Park et al., 2013) 0 (Weingartner et al., 1997) 

aSOA density estimated to be in the 1400 – 1650 kg m-3 range when formed from BVOCs known to produce the 422 

majority of SOA at SMEAR II. 1500 kg m-3 is chosen from this range. 423 
bSet to equal that of the rest of the organics for simplicity. Some studies suggest that the density could be slightly 424 

lower (1160 – 1210 kg m-3, Claflin and Ziemann 2018). 425 

 426 

The critical supersaturation SScrit was then calculated for each of the size bins measured by the DMPS using κ -427 

Köhler theory, assuming a uniform composition throughout the size distribution. Particles for which the calculated 428 

SScrit was lower than the individual SSCCNc were then considered as CCN corresponding to the respective SSCCNc 429 

value. Linear interpolation was applied to estimate the exact activation diameter within a given size bin (see Lowe 430 
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et al., 2016). The CCN spectra estimated by the forward closure were then compared to the observations made by 431 

the CCNc for the two different hygroscopicity assumptions i.e. 𝜅ୠ୳୪୩ and 𝜅଴.ଵ଼.  432 

 433 

2.2.3 Inverse closure 434 

In the inverse closure, our objective was to minimize the differences (e.g. through Normalized Root Mean Squared 435 

Error, NRMSE, see Sect. 2.2.4) between predicted and observed NCCN, while optimizing the size-dependent 436 

chemical composition and hygroscopicity parameter. More specifically, we assumed the size distribution to 437 

consist of internally mixed and log-normally spaced Aitken and accumulation modes.  438 

The inverse closure and thus the optimization was performed implementing two different methods, 439 

namely the Nelder-Mead and the DREAM-MCMC (DiffeRential Evolution Adaptive Metropolis Markov Chain 440 

Monte Carlo) algorithms (see Sects. 2.2.3.1 and 2.2.3.2). In both optimization methods, all AN and AS masses 441 

were combined and treated as inorganic mass for simplicity. The net 𝜌 and 𝜅 of the inorganic fraction were derived 442 

using the corresponding observed mass fraction. While the 𝜅 for AN is slightly higher than that of AS (Table 1) 443 

and the density of AN is slightly lower of that of AS (Table 1), we consider this as a reasonable simplification 444 

given the low AN concentration at the site. Again, all ON is assumed to have the same 𝜅 and 𝜌 as the organics 445 

(Table 1). Another key simplification is that eBC is assumed to have the same mass fraction in both modes.  446 

The optimization procedures based on Nelder–Mead and DREAM-MCMC are illustrated in Fig. 3. In 447 

both approaches, the derivation of modal optimized hygroscopicity parameters (𝜅୭୮୲୅୧୲୩ୣ୬ and 𝜅୭୮୲ୟୡୡ୳୫୳୪ୟ୲୧୭୬ from 448 

Nelder-Mead method and 𝜅୑େ୑େ
୅୧୲୩ୣ୬ , 𝜅୑େ୑େ

ୟୡୡ୳୫୳୪ୟ୲୧୭୬ from DREAM-MCMC, referred to as 𝜅୭୮୲ and 𝜅୑େ୑େ for 449 

simplicity) begin with obtaining a bimodal fit of the aerosol number size distribution into Aitken and accumulation 450 

modes (see Sect. 2.1.2). Next, the fitted lognormal size distribution was binned onto the same diameter axes as 451 

the observational data, and the number of particles in each bin was scaled to match the particle number in measured 452 

size distribution (see a demonstration in Fig. S6 and Supplementary note 2). This way, the number contributions 453 

of the Aitken and accumulation modes to the observed aerosol size distribution could be estimated for each time 454 

point. Second, the masses of the Aitken and accumulation modes were estimated by approximating the density of 455 

both modes by the bulk density. The total masses of organics, inorganics and eBC to be distributed to the measured 456 

size distribution were then calculated using the mass fractions derived from the ACSM and aethalometer 457 

measurement. Finally, the Aitken vs. accumulation mode compositions, and hence 𝜅୭୮୲ or 𝜅୑େ୑େ, were 458 

determined through optimization (see also Supplementary note 3 for details). 459 
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   460 

   461 
Figure 3: Workflow of the two inverse closure methods: the Nelder–Mead algorithm (left) and the DREAM-MCMC (right) 462 
approach. Bimodal fitting: representation of the aerosol size distribution as two lognormal modes. Harmonized size 463 
distribution: size distribution data harmonized to CCN data; data thus obtained has 2-hour resolution. Unharmonized size 464 
distribution: raw size distribution data with 10 min resolution. Scaling: adjustment of number concentrations of reconstructed 465 
lognormal size distribution from bimodal parameters to match observations. Mass-constraint: conservation of total aerosol 466 
mass (sum of mass in two modes) of each species during optimization. NRMSE: normalized root mean square error, a metric 467 
of model–observation agreement. MAD: median absolute deviation, used to quantify variability in size distributions during 468 
CCN spectrum cycle period. Prior distribution: initial parameter ranges provided to the MCMC sampler. Log-likelihood: 469 
statistical measure of consistency between observed and modeled CCN spectra. 470 
 471 

2.2.3.1 Nelder-Mead  472 

The Nelder–Mead simplex algorithm (Gao and Han, 2012) is suitable for both one-dimensional and 473 

multidimensional optimization problems and is relatively fast in our application. In our case, we need to optimize 474 

only one variable (the fraction of total organic mass in Aitken mode, morg,Ait) and the remaining masses can be 475 

derived from it through mass closure constraints – assuming PNSD to stay constant throughout each CCN 476 

measurement cycle. For each time step, the optimization begins with an initial simplex of three trial values of 477 

morg,Ait, and the NRMSE is evaluated at each point. The worst-performing value is reflected  across the midpoint 478 

of the better two to explore whether a more accurate estimate can be found in the opposite direction. If this 479 

improves the fit, the algorithm attempts an expansion, pushing further in the same direction. If reflection does not 480 

improve the result, a contraction step is taken to move closer to the midpoint. If neither reflection nor contraction 481 

improves the outcome, the simplex undergoes shrinkage, tightening around the best-performing solution to focus 482 

the search locally. This process continues until the optimization converges, resulting in an estimate of morg,Ait that 483 
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minimizes the NRMSE between modeled and observed CCN concentrations. Note that Nelder–Mead works well 484 

for simple, low-dimensional problems like optimizing just one parameter (e.g., morg,Ait), but it starts to struggle as 485 

the number of variables increases and have a tendency for converging to local minima.  486 

 487 

2.2.3.2 DREAM-MCMC 488 

In order to assess the importance of the variability of the bimodal size distribution parameters within each CCN 489 

cycle, we conducted a second inverse-closure experiment with the number concentration and mean diameter for 490 

both modes as additional optimization parameters (simultaneously with morg,Aitሻ. Since optimizing both size 491 

distribution parameters and composition introduces a more complex and higher-dimensional parameter space, and 492 

we are interested parameter uncertainty, we use a Bayesian inference approach to estimate the parameter posterior 493 

distributions. Specifically, we chose the DiffeRential Evolution Adaptive Metropolis Markov Chain Monte Carlo 494 

(DREAM-MCMC) algorithm (Vrugt et al. 2009), which has been previously used for inverse CCN-closure studies 495 

in idealized cases (Partridge et al. 2012) and is available in the Python PINTS library (Clerx et al. 2019). DREAM-496 

MCMC is an efficient MCMC method (Metropolis et al. 1953, Gelfand et al. 1990) that evaluates multiple Markov 497 

chains in parallel and automatically adapts its proposal strategy during sampling, making it particularly efficient 498 

for correlated, multi-modal problems such as aerosol-cloud microphysical interactions. To know more about 499 

MCMC and Bayesian inference, see Supplementary note 4. 500 

We initialized the MCMC optimization with Cauchy priors for each parameter (see 501 

Supplementary note 5), centered on the median values of the fitted bimodal size distributions for each CCN cycle, 502 

specifically, the number concentration and GMD. For chemical composition we used the median of the ACSM 503 

observations during each CCN spectrum cycle. The scale value was the smaller of either 1 (resulting in a Student-504 

t distribution) or the median absolute deviation (MAD) of the observations within the given CCN cycle. The priors 505 

were truncated to positive values only. We also constrained the total aerosol mass in each mode to remain within 506 

±10% of the total mass observed by the ACSM and aethalometer.  507 

We used a heteroskedastic Gaussian likelihood function, which means that the highest likelihood 508 

is typically where the parameters provide the least squares fit to the CCN observations, analogous to minimizing 509 

the NRMSE described above. The likelihood is defined as  510 

 511 
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 (5) 

 512 

where si is standard deviation of the measurement error, which we assume is 10% of the CCN observations at 513 

each supersaturation value 𝑦௜ , and 𝜙௜ is the model predictions of CCN spectra at each super-saturation given the 514 

calibration parameters 𝜃 (the log-normal parameters and mass fraction).  We performed the optimization in a log-515 

transformed parameter space, which improves sampler efficiency by normalizing scale differences between 516 

parameters. For each CCN observation window, we ran five chains with 40,000 iterations per chain, of which the 517 

first 15,000 were used as burn-in/adaptation. Up to two chains were discarded if they deviated strongly in central 518 

tendency after burn-in, and the last 20,000 steps of all accepted chains were then used to calculate posterior 519 

statistics. Convergence was assessed with the 𝑅෠-statistic (Gelman and Rubin, 1992), using a relaxed threshold of 520 

𝑅෠ ൏ 2.5  for all five parameters to retain a window in the analysis. The 𝑅෠-statistic compares the variance within 521 
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chains to the variance between chains; values close to 1 indicating well-mixed, converged chains. We used a 522 

relaxed threshold because the 𝑅෠-statistic is quite conservative and because our problem has high correlation 523 

between parameters and the potential for multi-modality if there are multiple distinction aerosol populations 524 

within one window, which is penalized by the 𝑅෠-statistic but realistic in this case. Overall, 19% of windows were 525 

discarded due to high 𝑅෠-statistic values. Even with the relaxed threshold, some windows were excluded where the 526 

MCMC identified reasonable parameter values and CCN spectra but the chains failed to mix well. Examples of 527 

the chain evolution and posterior parameter distributions are discussed in Supplementary note 5. 528 

 529 

2.2.4 Metrics for assessing variability of lognormal size distribution parameters during CCN cycle 530 

Unlike the Nelder–Mead optimization method, which uses the median of the size distribution during the CCN 531 

cycle period, the DREAM-MCMC setup requires the variability of the size distribution as input. To account for 532 

this, we calculate the median absolute deviation (MAD) of each lognormal parameter for every CCN cycle 533 

observation. The overall distribution of MAD values for the full 5-year dataset is presented in Supplementary note 534 

6 and Fig. S10.  MAD for individual CCN cycle period is calculated as follows: 535 

Let Ic = [ 𝑡௖௦௧௔௥௧, 𝑡௖௘௡ௗ) be the time window for CCN cycle c; For a given lognormal parameter, k (among geometric 536 

mean diameter (GMD), geometric standard deviation (SD) and number concentration in each mode; so total 6 537 

parameters), collect the samples inside this window as {𝑥௞ (t): t ∈ Ic} = {𝑥௞,ଵ, 𝑥௞,ଶ, …, 𝑥௞,௡೎}. 538 

Median in the interval is 𝑚௞(c): 539 
 540 

 median{𝒙𝒌,𝟏,𝒙𝒌,𝟐, …, 𝒙𝒌,𝒏𝒄} (6) 

MAD in interval c: 541 

 median|𝒙𝒌,𝒊 – 𝒎𝒌ሺ𝒄ሻ|, where i varies from 1 to 𝒏𝒄 (7) 

 542 

2.2.5 Metrics for assessing the goodness of closure 543 

The Normalized Root Mean Square Error (NRMSE) between observed and predicted CCN concentrations was 544 

calculated as (see also Supplementary note 7 and Fig. S11): 545 

 546 

 
NRMSE = 
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𝒏
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 547 

Where 𝐶𝐶𝑁୮୰ୣୢ,௜ is the predicted CCN concentration at supersaturation i, 𝐶𝐶𝑁୭ୠୱ,௜ is the observed CCN 548 

concentration at supersaturation i, n is the number of data points (in this case five, as we have five different 549 

supersaturations) and 𝐶𝐶𝑁୭ୠୱതതതതതതതതത is the mean of the observed CCN concentrations across all supersaturations.  550 

 551 

To facilitate direct comparison with Schmale et al. (2016) we also calculated the Geometric Mean Bias (GMB) 552 

for each time point, defined as: 553 

 554 

 GMB = exp൬
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 555 

3 Results and discussion 556 

3.1 Size distributions and activation diameters  557 

 558 
Figure 4: Seasonal overview of the lognormal size distribution, with solid lines representing the median and shaded regions 559 
indicating the interquartile range. The vertical lines denote the activation diameters (Dact) at various supersaturations as 560 
determined by combining the CCN data with the number size distribution measurements from the DMPS. 561 
 562 

Figure 4 presents the median and quartiles of lognormal aerosol number size distributions and median activation 563 

diameters (Dact) calculated from the PNSD-CCN closure across different seasons. In PNSD–CCN closure, Dact at 564 

a given SS was derived by integrating the PNSD from the largest to the smallest diameters until the integrated 565 

number equalled the measured CCN concentration at that SS; the corresponding diameter was then identified as 566 

Dact (see e.g. Sihto et al., 2011 and Supplementary note 8). The shape of a lognormal size distribution depends on 567 

the age of the aerosol population, and the atmospheric processing (e.g. nucleation, coagulation, condensation, 568 

deposition and chemical reactions) that has taken place along the transport trajectory to the measurement site. As 569 

discussed previously, NPF (Nieminen et al., 2014) and biogenic SOA formation (Heikkinen et al., 2020) result in 570 

almost bell-shaped size distributions with high particle number concentrations in spring and summer. In autumn 571 

and winter, on the other hand, biogenic aerosol precursor emissions are reduced leading to a lowering in the 572 

organic aerosol mass fraction. The contribution from long-range transported, cloud-processed and aged particles 573 

increases, detected in the form of bimodal aerosol size distributions with predominant Hoppel minima (Hoppel et 574 

al., 1986) at around 80–90 nm in diameter, and increased inorganic aerosol mass fractions. The activation 575 

diameters decrease with increasing supersaturation and the median Dact (see Table S1) is generally higher for all 576 

seasons than reported in earlier studies using similar methodology (e.g., Sihto et al., 2011; Paramonov et al., 577 

2015). For instance, Paramonov et al. (2015) reported a median Dact  of 46 nm at 1.0%, whereas we find values of 578 

54–57 nm. Similarly, at 0.1% supersaturation, they reported 150 nm, which is lower than our results of 206 – 224 579 

nm, depending on the season. This could reflect decreasing abundance of sulfate during the last two decades as 580 

compared with less hygroscopic organic species (Fig. S12; see also Aas et al., 2019; Li et al., 2024). The activation 581 

diameters are relatively similar across the seasons (see Table S1), therefore suggesting a similar composition of 582 

the CCN over the year in comparison with the variability in the number size distribution. The slope of the PNSD 583 

function is typically steep over the ranges of Dact corresponding to the investigated supersaturations. This indicates 584 

a high sensitivity of CCN to any parameters driving the PNSDs (see e.g., Lowe et al., 2016). While the median 585 

activation diameters show almost no seasonality, looking in more detail (see Fig. S3), an increase in the Dact is 586 

observed during the transition from winter to spring. This is probably due to the addition of more organic aerosol, 587 

which is less hygroscopic than the common inorganic salts. Dact reaches its maximum in summer and decreases 588 
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again towards autumn.  After autumn, there is an increase in Dact toward winter, despite a decrease in BVOC 589 

emissions and the resulting lower organic mass fraction alongside a higher inorganic fraction (see Fig. S13). This 590 

suggests the influence of another factor, possibly the higher eBC fraction observed during winter (see Sect. 3.3). 591 

While the seasonal variation in median activation diameters Dact is not pronounced across all SS, 592 

more detailed inspection (Fig. S3) reveals a decrease in Dact  at the lowest supersaturation (0.1%) during the 593 

transition from autumn into winter (November to April). This trend is consistent with a reduced contribution of 594 

organic aerosols and a higher relative abundance of inorganic components during winter (sources of which include 595 

long-range transport and e.g. cloud-processing along the transport route), as also indicated by the bulk chemical 596 

composition (Fig. S13). Since the activation diameters at 0.1% SS fall within the accumulation mode, the size 597 

range where ACSM measurements are most representative, the observed seasonal variation in Dact  at this SS level 598 

can be directly linked to changes in aerosol composition. Overall, across all supersaturations, an increase in Dact  599 

is generally observed during the transition from spring to summer which is more pronounced at 0.1%, 0.2%, and 600 

1.0% SS, while being relatively weak at 0.5% SS.        601 

 602 

3.2 CCN spectra – Insights from forward and inverse CCN closures 603 

 604 

 605 
Figure 5: Observed (dashed) and predicted (solid) median CCN spectra in different seasons. The whiskers display the 25th 606 
and 75th percentiles.  607 
 608 

Figure 5 shows the comparison between the observed and predicted CCN spectra, again displayed for each season 609 

separately. First, seasonal variations are evident, with CCN concentrations peaking in the summer and having 610 

their minimum in winter – in line with the overall particle number concentrations (see Fig. 4 and S14). The median 611 

seasonal CCN concentration ranges from 29-76 cm-3 for 0.1% supersaturation, 101-317 cm-3 for 0.2%, 143-512 612 

cm-3 for 0.3%, 170-744 cm-3 for 0.5%, and 300-1116 cm-3 for 1.0% with significant variations across seasons.  613 

These values are somewhat lower than previous studies (Sihto et al., 2011; Paramonov et al., 2015), potentially 614 

related to decreases in overall particle number concentrations and a more prominent role of biogenic organic 615 

aerosols vs. inorganic sulfate (see e.g., Li et al., 2024) – reflecting the higher activation diameters reported here 616 

as compared to the previous studies. The NRMSE values for the two forward closure methods range from 0.42 to 617 

0.94 (Table 2). The agreement of the forward closure based on the bulk composition is best for supersaturations 618 
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of 0.2% and 0.3% where the activation diameter is generally within the accumulation mode range, and hence also 619 

the ACSM composition is probably a more accurate estimate of the composition of the dry particles. The 620 

agreement is worst for the lowest supersaturation of 0.1 %, as also observed previously in Wang et al. (2010) and 621 

Meng et al. (2014). Furthermore, the agreement is better during spring and summer compared to autumn and 622 

winter (Fig. 5). Interestingly, when comparing the results from the forward closures, a better closure is obtained 623 

with the simple constant value of 𝜅଴.ଵ଼ than with the "bottom-up" hygroscopicity estimate using the ACSM and 624 

aethalometer data (𝜅ୠ୳୪୩), indicating that assuming size-independent but temporally varying composition 625 

performs worse than a much simpler assumption. The results from the inverse closure (𝜅୭୮୲) however, show that 626 

this issue can be mitigated when distributing the measured/estimated inorganic and organic species between the 627 

Aitken and accumulation modes. Including the size-dependent chemical composition, the variability of the size 628 

distribution during CCN cycles and uncertainty in CCN measurements (10%; see e.g. Rejano et al., 2024 and 629 

references therein) further reduces the bias, correcting most of the overprediction (see Fig. 5, 𝜅୑େ୑େ). All methods 630 

(both the forward and inverse closures) tend to overpredict CCN numbers, with ୠ୳୪୩ exhibiting the highest error, 631 

which is clearer when we look at NRMSE and GMB values (Fig. 6, Supplementary Table S2 and Fig. S15).  632 

 633 

Table 2. NRMSEs and Pearson’s correlation coefficient (R in brackets) corresponding to different methods and 634 

supersaturations for all years taken together. 635 

Methods NRMSE (R) 

SS = 0.1% 

NRMSE (R) 

SS = 0.2% 

NRMSE (R) 

SS = 0.3% 

NRMSE (R) 

SS = 0.5% 

NRMSE (R)  

SS = 1.0% 

𝜿𝐛𝐮𝐥𝐤 0.94 (0.78) 0.49 (0.85) 0.49 (0.85) 0.59 (0.84) 0.60 (0.79) 

𝜿𝟎.𝟏𝟖 0.71 (0.74) 0.43 (0.84) 0.42 (0.86) 0.50 (0.85) 0.52 (0.81) 

𝜿𝐨𝐩𝐭 0.92 (0.78) 0.46 (0.86) 0.43 (0.87) 0.47 (0.88) 0.44 (0.86) 

𝜿𝐨𝐫𝐠 ൌ 𝟎 0.62 (0.70) 0.49 (0.75) 0.48 (0.77) 0.46 (0.80) 0.47 (0.77) 

𝜿𝐌𝐂𝐌𝐂 0.65 (0.85) 0.17 (0.97) 0.12 (0.99) 0.082 (0.99) 0.045 (0.99) 

 636 
 637 

 638 
Figure 6:  Normalized Root Mean Square Error (NRMSE) and Pearson correlation for different supersaturation (SS) levels 639 
for all years taken together, comparing four methodologies: 𝜅ୠ୳୪୩ , 𝜅଴.ଵ଼, and 𝜅୭୮୲, 𝜅୭୰୥= 0 and 𝜅୑େ୑େ. The two panels split 640 
the NRMSE axis to highlight the data in separate ranges, with the left panel covering NRMSE values from 0.3 to 0.6 and the 641 
right panel from 0.7 to 1.1. Each point is sized according to the corresponding SS level (0.1%, 0.2%, 0.3%, 0.5%, and 1.0%). 642 
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The markers are color-coded based on the method for calculating the hygroscopicity parameter, with lines added to represent 643 
a discontinuity in the x-axis.  644 
 645 

When combined across all SS the overall NRMSE values for the entire timeseries are 0.43 for 𝜅ୠ୳୪୩ , 646 

0.35 for, 𝜅଴.ଵ଼, 0.28 for 𝜅୭୮୲ and 0.08 for 𝜅୑େ୑େ. To provide a more detailed perspective, we also calculated the 647 

NRMSE for each SS individually. Figure 6 provides an overview of how the four different methods perform in 648 

estimating CCN concentrations. All methods demonstrate a strong positive correlation with the observations 649 

(Pearson R > 0.70) and the NRSME remains in most cases below 1.0 (Table 2 and Fig. 6). The performance skill 650 

(i.e., the combined behavior of R  and NRMSE; see Fig. 6) varies with SS, but when averaged across all SS, 𝜅୑େ୑େ 651 

achieves the best agreement, followed by 𝜅୭୮୲, 𝜅଴.ଵ଼and 𝜅ୠ୳୪୩. As shown in Table 2, the largest errors generally 652 

occur at the lowest (0.1%) and highest (1.0%) supersaturations. An exception is 𝜅୑େ୑େ, which substantially 653 

reduces the bias and NRMSE across all supersaturations. The highest error is still at 0.1%, while the other 654 

supersaturations agree closely with the observations. At 0.5% SS, the NRMSE for 𝜅ୠ୳୪୩ is around 0.56 and the 655 

GMB is around 1.38 (see Fig. S15 and Table S2), which is slightly higher than the GMB (1.32) reported by 656 

Schmale et al. (2017) for a shorter dataset and a different time period. The best performance skill for the forward 657 

closure is obtained at SS = 0.3%, followed closely by SS = 0.2% (see Table 2), where predominantly accumulation 658 

mode particles activate (see Fig. 4). Given that the typical SSmax in stratocumulus clouds in the region are often 659 

below 1 % (Roberts et al., 2006; Hegg et al., 2009), the performance at these levels is particularly relevant. The 660 

different SS-dependence of the bias in the MCMC inverse closure as compared with the other closure methods 661 

suggests that the source of the bias for the lowest supersaturation is different from the higher supersaturations. 662 

For the lowest supersaturations, the high flow rate in the CCN counter may hinder smaller particles from growing 663 

sufficiently to be detected by the CPC (see also Ervens et al., 2007 and Lance et al., 2006). For the highest 664 

supersaturation, our results suggest that the significant over-prediction of the forward-closure and Nelder-Mead 665 

methods are indeed a result of the high variability of the PNSD and the sensitivity of the Aitken-mode CCN to it.    666 

The results presented in Fig. 5 reveal a systematic overprediction of NCCN. Part of this overprediction 667 

could be remedied by assuming a size-dependent chemical composition with an enrichment of organics in the 668 

Aitken mode – given the expected lower 𝜅 of the organic as compared with the inorganic aerosol components. 669 

Previous studies have observed that the 𝜅 of OA can be even lower than the assumed value of 0.1 (see e.g., Rastak 670 

et al., 2017; Cai et al., 2018 and references therein). An alternative way to optimize the results could therefore be 671 

through assuming a size-independent composition but lower organic 𝜅. As a conservative evaluation of this 672 

approach, we conducted a test assuming organics to be non-hygroscopic, similar to black carbon. In Table 2 and 673 

Fig. 6 these calculations are denoted with 𝜅୭୰୥ ൌ 0. The resulting NRMSE and GMB (see also Fig. S15, S16 and 674 

Supplementary note 9) suggests that organics in the accumulation mode are likely hygroscopic, as assuming zero 675 

hygroscopicity leads to underprediction of NCCN. Another explanation could be due to an under-representation of 676 

larger inorganic particles in the observations, for example in the upper tail of the accumulation mode, or an 677 

undetected coarse mode component such as sea salt which is not measured by the ACSM. Alternatively, the 678 

finding may arise from the initial assumption of the equal distribution of BC among Aitken and accumulation 679 

modes. In terms of correlation, 𝜅୭୮୲, in comparison to 𝜅୭୰୥ ୀ ଴, consistently performs better overall (see Table 2), 680 

the NRMSE values also being smaller than for the entirely non-hygroscopic organics. This suggests that, 681 

compared to the variation in the hygroscopicity parameter of organics with size, accounting for the size-segregated 682 

nature of chemical composition provides a more accurate explanation for the overprediction of CCN than simply 683 
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non-hygroscopic organics. The impact of assuming constant BC fraction in both modes was also found to be 684 

minor (see Supplementary note 10). Using the DREAM-MCMC optimization to account for the variability of the 685 

PNSD during the CCN measurement cycle mitigates most of the overpredictions – further strengthening the strong 686 

role of size-dependent chemical composition as key factor for yielding a successful CCN closure, but also 687 

highlighting the importance of the PNSD variability.  688 

 689 

3.3 Insights on size-dependent submicron hygroscopicity parameter and aerosol composition from inverse 690 

CCN closure 691 

692 
Figure 7. Seasonal probability distributions of the hygroscopicity parameter (κ) for the Aitken and accumulation modes. Each 693 
panel corresponds to one season: spring, summer, autumn, and winter. Distributions are shown separately (see legends) for 694 
Nelder–Mead optimization and DREAM-MCMC. 695 
 696 

For the optimized CCN spectra (𝜅୭୮୲ and 𝜅୑େ୑େ), the seasonal probability distributions of the corresponding 697 

hygroscopicity parameters for Aitken and accumulation modes are shown in Fig. 7. Both optimization approaches 698 

produce almost identical κ distributions for the accumulation mode with median hygroscopicity values around 699 

0.2-0.3. In contrast, the Aitken mode exhibits a distinct bimodality in both cases. The Nelder–Mead optimization 700 

produces a sharp peak at 𝜅୅୧୲୩ୣ୬ ≈ 0.1, whereas the DREAM–MCMC distribution shows a lower but broader peak 701 

slightly above 0.1 – which would be in line with the expected hygroscopicities of the BVOC oxidation products 702 

present at the measurement site. A secondary peak generally appears between 𝜅୅୧୲୩ୣ୬ = 0.5 and 0.6, with 𝜅୑େ୑େ 703 

consistently shifted toward the lower end of this range. The exception is winter, where the second peak is more 704 

diffuse in both methods. The lower peak in DREAM–MCMC compared to Nelder–Mead reflects differences in 705 

how the two methods balance CCN overprediction. Since ୠ୳୪୩ systematically overestimates CCN, the Nelder–706 

Mead optimization compensates by assigning the Aitken mode a much lower hygroscopicity (higher organic 707 

fraction). When size-distribution parameters are also allowed to vary, as in 𝜅୑େ୑େ, part of this CCN overprediction 708 

can instead be explained by variability in size distribution lognormal parameters. Consequently, the smaller κ 709 

peak is reduced in height, while the overall distribution remains consistent with the Nelder–Mead method. In 710 

general, the probability distribution of Aitken and accumulation mode hygroscopicity parameter from both 711 

methods indicates that the Aitken mode can be predominantly organic on a significant number of instances, with 712 

most values of κ clustering around typical organic κ of 0.1. This significant difference in hygroscopicity between 713 

the two modes exceeds the typical variability in hygroscopicity values observed for various soluble chemical 714 

components, suggesting indeed distinct chemical compositions and water uptake properties of the two modes. 715 

Overall, in 𝜅୭୮୲,the variability between seasons is similar for both the Aitken and accumulation mode (see Fig. 716 

S17), while in 𝜅୑େ୑େ the Aitken mode has a significantly higher variability in all seasons. In autumn and winter, 717 

the MCMC distributions resemble those from the Nelder-Mead, suggesting a clear organic enrichment in the 718 
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Aitken mode as compared with the accumulation mode. For the spring and summer however, the distributions of 719 

Aitken mode hygroscopicities are more bimodal. The cases where a clear organic enrichment in the Aitken mode 720 

is predicted are characterized by relatively high Aitken mode particle number concentrations and large modal 721 

diameter. These results are generally in line with previous studies reporting differences in the hygroscopicity of 722 

Aitken and accumulation mode-sized particles (Hämeri et al., 2001; Paramonov et al., 2015). Because the Aitken 723 

mode hygroscopicity distributions are bimodal, a single central metric (e.g., the median) can under-represent the 724 

distribution. Even so, both approaches reveal some common seasonal patterns: Aitken κ is higher in spring and 725 

summer, and lower in autumn and winter. In the darker seasons, reduced/absent NPF events and weaker local 726 

aerosol production make the accumulation mode more frequently the more hygroscopic mode, while in spring–727 

summer Aitken κ more often approaches or exceeds accumulation values. Accumulation-mode κ remains 728 

comparatively stable, typically between 0.2–0.3, with the highest values in winter. This seasonal variability 729 

coincides with enhanced summertime photochemistry, which drives new Aitken particle formation from organic 730 

vapors and subsequent aging that increases the oxygen-to-carbon ratio of organics, thereby raising their 731 

hygroscopicity (Jimenez et al., 2009; Heikkinen et al., 2021). 732 

Because a bimodal distribution in κ was observed with the MCMC optimization, we separated 733 

the optimized data into two groups: cases where 𝜅୅୧୲୩ୣ୬ > κaccumulation and cases where 𝜅୅୧୲୩ୣ୬ < κaccumulation. The 734 

mean optimized compositions for these groups are shown in Fig. 8, while the corresponding medians are given in 735 

Tables S4-S7. In the Nelder–Mead optimization, 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ occurs in 23% of cases, compared to 56% 736 

with the MCMC method. Conversely, 𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ is found in 77% of cases with Nelder–Mead and 737 

46% with MCMC (see Table S8). Despite these differences in frequency, the median κ values shows remarkable 738 

agreement between the two approaches (see Table S8). For 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, the median GMD୅୧୲୩ୣ୬, 739 

GMDୟୡୡ୳୫୳୪ୟ୲୧୭୬, 𝜅୅୧୲୩ୣ୬, and 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ are 30–32 nm, 133–137 nm, 0.5, and 0.2, respectively. In contrast, for 740 

𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, they are 37–43 nm, 137–164 nm, 0.1, and 0.27. Thus, cases with higher Aitken κ are 741 

characterized by smaller Aitken GMD and occurred throughout the year but were much more frequent in summer. 742 

This feature has also been reported in previous studies from various environments, where κ increased at diameters 743 

typical of Aitken and nucleation mode (particularly below 60–70 nm) and was often — but not always — 744 

associated with NPF events (Lance et al., 2013; Spiteri et al., 2023; Massling et al., 2023). For 𝜅୅୧୲୩ୣ୬ > 745 

𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, the Aitken mass is consistently lower than in the 𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ case (see Fig. 8), reflecting 746 

the availability with condensable vapors with low enough volatility to overcome the Kelvin barrier and condense 747 

on the Aitken mode. In both optimization methods, the composition patterns within each group are very similar, 748 

just as with the κ values (Fig. 8). For cases where 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, the Nelder–Mead predicted the Aitken 749 

mode to be almost entirely inorganic, while DREAM-MCMC suggested slightly more organic material but still 750 

mostly inorganics. In these cases, both approaches agree that the Aitken mode had the lowest organic fraction in 751 

winter and spring. For 𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, our results, consistent with previous studies at SMEAR II (e.g., 752 

Allan et al., 2006), indicate that the accumulation mode contained a larger inorganic fraction, leading to higher 753 

hygroscopicity compared to the Aitken mode. Such a difference has also been observed in other similar 754 

environments (Timonen et al., 2008; Hao et al., 2013; Levin et al., 2014) as well as in urban Beijing (see also Wu 755 

et al., 2016). This disparity in mass fractions of inorganics between the two modes is most pronounced in winter 756 

(for example in Nelder-Mead optimization, the relative enrichment in Aitken vs. Accumulation model mass 757 

fraction being ~156 %) and autumn (the relative enrichment of ~106 %), i.e. the periods when the distinction 758 
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between Aitken and accumulation modes is most evident (see Fig. 4). This seasonal variation reflects shifts in 759 

aerosol sources and processes, and the results are generally in line with what is known. During summer, biogenic 760 

SOA is a major source of particulate matter in Hyytiälä (Heikkinen et al., 2021; Yli-Juuti et al., 2022). In contrast, 761 

autumn and winter are characterized by a higher mass fraction (and concentration) of inorganic aerosol chemical 762 

components (Heikkinen et al., 2020), which highlights the prevalence of transported (Riuttanen et al. 2013) and 763 

cloud-processed particles (Isokääntä et al., 2022). Cloud processing leads to both the observed bimodal PNSD 764 

(Fig. 3) and a higher sulfate abundance in the accumulation mode (e.g., Leitach et al., 1996; Roelofs et al., 1998; 765 

Kreidenweis et al., 2003; Wonaschuetz et al., 2012; Ervens et al., 2018).  766 

 767 

Figure 8. Seasonal mean mass fractions of organic, inorganic, and black carbon components in Aitken and Accumulation 768 
modes from Nelder-mead (NM) and DREAM-MCMC optimizations. Panels show cases where 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ (a: 769 
NM, c: MCMC) and 𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, (b: NM, d: MCMC). The stacked bars represent the contributions of organic 770 
(green), ammonium sulfate (maroon), and black carbon (black) components within each mode. Aitken mode is depicted with 771 
solid colors, while Accumulation mode is represented with slightly faded colors. The width of the bars has been scaled to the 772 
mass concentration in the corresponding mode. 773 

 774 

In our analysis, we assumed values of organic properties (κ and density) based on past studies, as mentioned in 775 

Table 1. However, to discard any possibility of major changes in the results, we performed additional inverse-776 

closure studies allowing organic properties to vary in several ways, as discussed in Supplementary note 11. These 777 

sensitivity tests showed that two of the optimization approaches led to physically unrealistic organic densities 778 

(∼1000 kg m⁻³ and > 2500 kg m⁻³), despite achieving similar NRMSEs. In contrast, the method keeping the size 779 

distribution to the median values observed during CCN cycles produced physically reasonable 𝜌୭୰୥ (∼1200–1300 780 

kg m⁻³) and 𝜅୭୰୥ (0.06–0.08), consistent across seasons – also in the light of typical hygroscopicity values of 781 

organic molecules such as those resulting from BVOC oxidation (e.g. Petters and Kreidenweis, 2007; Siegel et 782 

al., 2022). This confirms that the assumed organic properties used in the main analysis are robust and do not 783 

significantly bias the optimized results. 784 
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4 Conclusions 785 

 786 

In this study, we integrated long-term chemical composition measurements from an Aerosol Chemical Speciation 787 

Monitor (ACSM) with Cloud Condensation Nuclei (CCN) observations and aerosol number size distributions. 788 

This resulted in ~6,200 concurrent two-hour resolution data points. We used this dataset to evaluate four methods 789 

for predicting CCN concentrations based on κ-Köhler theory across varying supersaturations, beginning with two 790 

forward closure approaches. The first, a 'bottom-up' method, used ACSM and aethalometer data to estimate the 791 

bulk hygroscopicity parameter (𝜅ୠ୳୪୩) for predicting CCN concentrations, while the second approach (𝜅଴.ଵ଼) 792 

assumed a constant κ value of 0.18, as recommended by Sihto et al. (2011), throughout the study period. We 793 

observed that the overall median activation dry diameters (Dact) ranged from 54 nm (SS = 1%) to 224 nm (SS = 794 

0.1%) nm across different months, suggesting that Aitken mode particles contribute to the CCN numbers at this 795 

location – besides the well-known contribution of the accumulation mode (Pierce et al., 2012 and references 796 

therein). Therefore, the possibility of different chemical composition/hygroscopicity between Aitken and 797 

accumulation modes (for e.g. Broekhuizen et al., 2006) motivated us to use an inverse closure technique that 798 

involved an optimization algorithm (Nelder-Mead in the Python SciPy library and DREAM-MCMC) to determine 799 

the optimal modal hygroscopicity (𝜅୭୮୲ and 𝜅୑େ୑େ) by obtaining a closure between observed and predicted CCN 800 

concentrations.  801 

CCN concentrations at Hyytiälä exhibit clear seasonal variations, peaking in summer and 802 

reaching their lowest in winter, reflecting overall particle number trends. Our closure calculations agree 803 

reasonably well with observed CCN concentrations, with Pearson correlations exceeding 0.8. However, all of the 804 

applied methods tend to overpredict CCN concentrations to varying degrees.  As expected, the inverse closure 805 

methods perform the best, especially at higher supersaturations (0.3%, 0.5% and 1.0%), where both accumulation 806 

and Aitken mode particles can activate, highlighting the importance of accounting for the size-dependent nature 807 

of aerosol composition for more accurate CCN predictions. Overall, the GMB remains well below 1.3 for 𝜅୑େ୑େ, 808 

𝜅୭୮୲ and 𝜅଴.ଵ଼ across all supersaturations (see Table S2), except at 0.1%. The best agreement is observed at 0.2% 809 

and 0.3% supersaturations, where the GMB is around 1.1 for all methods, except for 𝜅୑େ୑େ, for which the best 810 

agreement occurs at 0.5% and 1.0%. These results suggest that most of the overprediction at higher 811 

supersaturations where the Aitken mode activates, can be reduced if variability in the lognormal parameters of the 812 

size distribution is also considered. However, at a supersaturation of 0.1%, the use of size-dependent composition 813 

i.e. 𝜅୭୮୲ and 𝜅୑େ୑େ  does not significantly reduce the error. This suggests that the primary source of the error at 814 

this supersaturation arises from another factor — most likely, the substantial measurement uncertainty of the CCN 815 

counter at low supersaturation, as previously discussed (see Sect. 3.2). 816 

Both inverse-closure methods reveal clear differences in aerosol composition and hygroscopicity 817 

between the Aitken and accumulation modes. The Aitken mode shows a bimodal distribution in κ, with one peak 818 

near 0.1 and another between 0.5 and 0.6, whereas that of  accumulation mode is unimodal with κ values centered 819 

around 0.2-0.3. Based on this bimodality, we divided the optimized data into two groups: cases with 𝜅୅୧୲୩ୣ୬ > 820 

𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ and those with 𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬. The former occurs more often in summer and is associated 821 

with a smaller Aitken-mode GMD compared to the accumulation mode. The occurrence of high κ in the Aitken 822 

mode appears to be linked—though not exclusively—to new particle formation (NPF) but limited growth. Overall, 823 

κ in the accumulation mode remains relatively stable between 0.2 and 0.3, while κ in the Aitken mode varies 824 
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widely from 0.1 to 0.6. This indicates that most seasonal changes in aerosol hygroscopicity occur in the Aitken 825 

mode. In all cases, summer has comparatively more organics as biogenic secondary organic aerosols formation 826 

dominate among all aerosol sources, whereas autumn and winter show higher fractions of inorganic components 827 

due to transported and cloud-processed particles. The Aitken mode has the lowest κ values in winter, while summer 828 

features higher Aitken mode hygroscopicity (lowest accumulation mode κ) possibly due to decreasing BC content. 829 

In the Nelder-Mead optimization, the relative difference in the median Aitken and accumulation 830 

κ is most pronounced in winter (~162 %), followed by spring (~134 %), autumn (~116 %) and summer (~85 %) 831 

reflecting seasonal shifts in aerosol sources and processes. These seasonal variations are consistent with known 832 

atmospheric processes, providing confidence in using CCN data to understand mode composition differences. The 833 

findings in this study are in line with previous research highlighting distinct differences between Aitken and 834 

accumulation mode compositions at Hyytiälä and similar environments (Hao et al., 2013). Previous studies have 835 

also demonstrated that chemical composition and hygroscopicity parameter are size-dependent (Lance et al., 2013; 836 

Ray et al., 2023) and accounting for size-dependency improves CCN predictions (Meng et al., 2014). Specifically, 837 

our results indicate that on many occasions, the accumulation mode is enriched with sulfate, while the Aitken 838 

mode is predominantly organic, in agreement with observed size-dependent chemical compositions using an 839 

Aerosol Mass Spectrometer (AMS; Allan et al., 2006). This is furthermore consistent with Mohr et al. (2019), who 840 

found that organic vapors significantly contribute to particle growth in the Aitken mode. It is notable however that 841 

all optimized compositions (𝜅୭୮୲ and 𝜅୑େ୑େ) do not resolve all the over-prediction of the CCN concentration, 842 

indicating an additional structural error in the theoretical approach or experimental uncertainties that we did not 843 

account for. If modal or size-resolved κ (in addition to just having bulk chemical composition) were available, our 844 

approach could be extended to derive more detailed size-dependent chemical composition–for example, size-845 

dependent organic hygroscopicity–while also helping to constrain κ values by identifying those that best reproduce 846 

observed CCN concentrations. 847 

In the future, the method applied here should be tested at other locations with varying aerosol 848 

chemical compositions – also to mitigate the inherent representativity issues related to using data from a single 849 

station. Furthermore, the approach for optimizing the closure using size-resolved composition should be compared 850 

and contrasted with other approaches, e.g. accounting for potential structural issues with the κ-Köhler model such 851 

as the treatment of the surface tension or volatility of the particle components (see e.g. Lowe et al., 2019; Heikkinen 852 

et al., 2024). 853 

 854 

Data availability. CCN, size distribution and chemical composition data used to generate most of the figures are 855 

available at https://github.com/rahulranjanaces/Inverse-closure.git and also on Zenodo 856 
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