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Abstract 18 

The contribution of natural aerosol particles from boreal forests to total aerosol loadings may increasesincrease 19 

with anticipated reduction in anthropogenic emissions. It is therefore pertinent to understand the cloud forming 20 

potential of these Aitken and accumulation mode particles. Observational data on  in boreal regions differ 21 

significantly in hygroscopicity, and ignoring this size dependence can cause large uncertainty in Cloud 22 

Condensation Nuclei (CCN) prediction. We applied κ-Köhler theory to a multi-year dataset (2016–2020) from 23 

Hyytiälä, Finland, to evaluate different representations of aerosol particle number size distribution and chemical 24 

composition is required for predicting cloud condensation nuclei (CCN) concentrations. However, long-term 25 

online measurements of CCN prediction. Overpredictions by forward closures using either bulk chemical 26 

composition typically provide data on total sub micron particulate mass, which only represents from an Aerosol 27 

Chemical Speciation Monitor (ACSM) or a constant κ = 0.18 were mitigated to a great extent by optimizing size-28 

resolved composition using two inverse modeling approaches: (1) Nelder–Mead method with the size distribution 29 

fixed to its median during each 2-hour CCN measurement cycle, and (2) MCMC (Markov Chain Monte Carlo) 30 

accounting also for the larger end of variability in the number size distribution. To bridge this gap, we employed 31 

κ-Köhler theory on a multi-year (2016–2020) dataset from Hyytiälä, southern Finland, to investigatesize 32 

distribution during each cycle. Both methods improved closure between observed and predicted CCN 33 

concentrations by optimizing the size-resolved at SS = 0.2-1.0% (with Geometric Mean Bias GMB values 1.12-34 

1.20 and 0.95-1.05, respectively), with moderate improvement at 0.1% (GMBs of 1.53 and 1.32, respectively). 35 

The Aitken mode was enriched in organics in 77% of cases using method (1) and 46% using method (2) – with 36 

typical κ values of ~0.1 for Aitken and ~0.3 for accumulation modes. The results generally align with known size-37 

dependent chemical composition. This optimization improved the  in Hyytiälä and indicate that variability in CCN 38 

hygroscopicity is largely driven by Aitken mode composition. Our results demonstrate the potential of inverse 39 

CCN closure primarily at supersaturations above 0.5 % where the Aitken mode makes a substantial contribution 40 
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to the CCN number. The optimization suggested inorganic enrichment in the accumulation mode compared to 41 

organic enrichment in the Aitken mode. The mass fractions of inorganics in the two modes vary with season, the 42 

greatest difference taking place in winter (+156% in the accumulation mode as compared with Aitken mode) and 43 

smallest in summer (+52%). These results reflect the contributions from long-range transport and chemical cloud 44 

processing as well as the pivotal role of organic vapors in facilitating the growth of newly-formed particles towards 45 

CCN-sizes. Our study demonstrates the potential for utilizing CCN measurements for inferringmethods for 46 

obtaining valuable information on the parts of the aerosol size distribution that are beyond the reach of traditional 47 

online-dependent chemical composition measurements. 48 

1 Introduction 49 
 50 

Aerosol particles are importantplay a critical role in the formation of cloud droplets as they. They serve as cloud 51 

condensation nuclei (CCN) by lowering the energy barrier for heterogeneous nucleation of water and hence, thus 52 

promoting cloud droplet activation inat atmospheric levels of water vapor supersaturations SS (Köhler 19211936;  53 

Pruppacher and Klett, 2010). The subset of aerosol particles that act as CCN, in turn, affects the cloud droplet 54 

number concentration (CDNC), therebythus changes in the CCN concentration (NCCN) may modulate cloud 55 

radiative properties and lifetime — phenomena known as the first (Twomey, 1974) and second (Albrecht, 1989) 56 

indirect aerosol climate effects. The parameterization schemes related to cloud droplet formation in global climate 57 

models (e.g., Abdul-Razzak and Ghan, 2000, 2002; Nenes and Seinfeld, 2003; Fountoukis and Nenes, 2005; 58 

Barahona et al., 2010; Betancourt and Nenes, 2014) rely on their estimates of CCN concentrations which are 59 

calculated based on simplified treatment of aerosol size distributions, chemical compositions and the Köhler 60 

theory, leading to varying degrees of uncertainty depending on the specific scheme used (Simpson et al., 2014). 61 

Enhanced understanding of aerosol particles and their role as CCN may be used to improve representations of 62 

aerosol-cloud interactions (ACI) in global climate models, which remain a significant source of uncertainty in 63 

estimates of total anthropogenic radiative forcing over the industrial period (IPCC report, 2021; Seinfeld et al., 64 

2016). 65 

NCCN and CDNC are primarily determined by aerosol properties and the drivers of maximum 66 

supersaturation (SSmax) fluctuations (e.g. updraft velocities, radiative cooling rates, water vapor concentration field 67 

see e.g. Köhler, 1936; Rogers and Yau, 1989; Reutter et al., 2009; Anttila et al., 2012; Partridge et al., 2012), both 68 

of which are known to display large spatial and temporal variability. Many studies have evaluated NCCN predictions 69 

from Köhler theory against observations of aerosol particle size distributions, chemical composition and 70 

meteorological parameters in various environments. These investigations, often termed aerosol-CCN closure 71 

studies or hygroscopicity-CCN closure studies, will hereafter be referred to here simply as 'closure studies'. 72 

Typically, such studies have involved forward modeling, where observational input data (e.g., aerosol size 73 

distribution, composition, and hygroscopicity) is utilized to predict NCCN using a CCN prediction model.the Köhler 74 

theory. The model outputs are then compared directly with observed CCN data to assess consistency and evaluate 75 

the predictions (e.g., Bougiatioti et al., 2009; Martin et al., 2011; Rejano et al., 2024). However In contrast, 76 

relatively few studies have leveraged inverse modeling frameworks, which use observed CCN data to infer the 77 

properties of the aerosol population or model parameters. These inverseIn these approaches allow, CCN 78 

measurements are treated as a reference (while also accounting for testingobservational uncertainty), and model 79 

parameters such as surface tension, hygroscopicity, and size distribution are adjusted to reproduce the 80 
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observations. This not only enables the retrieval of aerosol population characteristics from CCN data but also 81 

provides a means to rigorously test model assumptions and constraining observed CCN concentrations as a 82 

functionquantify the influence of uncertain calibration parameters on predicted CCN concentrations (e.g., 83 

Partridge et al., 2011, 2012; Lowe et al., 2016). In this study we intend to use a CCN closure study as a means to 84 

infer information on the size-dependent chemical composition of CCN-sized aerosol particles, to enhance bulk 85 

chemical composition measurements. 86 

In earlier studies, Köhler theory (Köhler, 1936) washas been widely used in earlier studies as the standard 87 

framework for predicting CCN activation and proved effective under most relevant atmospheric conditions, 88 

provided that there was accurate knowledge of the aerosol number size distribution, size-dependent chemical 89 

composition, and SS. To simplify the representation of aerosol hygroscopic growth and CCN activity, Petters and 90 

Kreidenweis (2007) introduced the non-dimensional hygroscopicity parameter κ, to facilitate comparisons of data 91 

sets with varying levels of detail for the aerosol chemical composition. These theoretical frameworks along with 92 

information about particle number size distributions and chemical composition are utilized to calculate the 93 

activation diameter (Dact) of the dry particles and finally the CCN concentration at a particular ambient SS. A 94 

successful closure study aims for the modelled CCN and measured CCN to be comparable within measurement 95 

uncertainties and is notably influenced by the accuracy of the relevant measurements and any theoretical 96 

approximations.  97 

 98 

The aqueous phase thermodynamics of soluble inorganic salts like ammonium sulfate ((NH4)2SO4), 99 

sodium chloride (NaCl), ammonium bisulfate (NH4HSO4) and ammonium nitrate (NH4NO3) are considered to be 100 

relatively well-understood (e.g., Zhang et al., 2000 and Nenes et al., 1998, 1999), and yield accurate predictions 101 

of CCN activation of these compounds using Köhler theory. However, atmospheric aerosol particles also typically 102 

contain a significant organic mass fraction (Zhang et al., 2007), originating from various sources. In the 103 

atmosphere, organic aerosol typically forms a complex mixture with inorganic aerosol species. The organic 104 

component evolves over time modifying both the mass concentration and the properties of the aerosol (Robinson 105 

et al., 2007; Jimenez et al., 2009). Organic aerosol comprisesis comprised of a wide variety of molecules (e.g., 106 

Hallquist et al., 2009; Nozière et al., 2015; Ditto et al., 2018) with different properties, such as solubility, volatility 107 

and surface activity (e.g., Hodzic et al., 2014; Ye et al., 2016; Huang et al., 2024; Haber et al., 2024). While many 108 

of the atmospheric organic compounds are water-soluble, their hygroscopicity is typically lower than that of 109 

inorganic salts (e.g., Pöhlker et al., 2023). StillNevertheless, organic aerosol plays a significant role in determining 110 

(NCCN) and CDNC, especially because organic aerosol formation drives aerosol particle growth towards CCN-111 

relevant sizes in many environments (e.g., Riipinen et al., 2011; Mohr et al., 2019; Croft et al., 2019; Zheng et al., 112 

2020; Qiao et al., 2021). Importantly, some organic aerosol properties beyond hygroscopicity such as solubility 113 

or surface activity, may enhance the likelihood of an Aitken mode aerosol particle to serve as CCN (Lowe et al., 114 

2019). Historically, in studies where the organic aerosol contribution to the CCN activation was not adequately 115 

considered, errors of up to an order of magnitude were observed between predicted and measured NCCN in many 116 

environments (e.g., Bigg et al., 1986; Covert et al., 1998; Chuang et al., 1999; Rissman et al., 2006; Quinn et al., 117 

2008). This discrepancy highlights the need to include organics in CCN prediction models.closure studies. Studies 118 

incorporating organic aerosol effects demonstrated significant improvements in closure as compared with attempts 119 

considering inorganics alone (e.g., Broekhuizen et al., 2006; Rose et al., 2008; Ervens et al., 2009; Guenther et 120 
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al., 2009; Bougiatioti et al., 2009; Jurányi et al., 2010).; Siegel et al., 2022). These findings underscore the 121 

importance of organics in CCN prediction, particularly in air masses with substantial freshly emitted primary 122 

biogenic or anthropogenic organic vapors.  123 

Boreal forests are environments where local biogenic emissions act as a major source of aerosol particles, 124 

with organic aerosol constituting 50-80% of the observed sub-micron aerosol mass (Heikkinen et al., 2020). This 125 

dominance of organics results from the emission of biogenic volatile organic compounds (BVOCs) by the forests, 126 

which promotes secondary organic aerosol (SOA) production. Understanding the factors controlling NCCN above 127 

boreal forests is necessary for constraining the magnitude of the climate feedbacks involving natural forest 128 

aerosols and clouds, which are likely to increase in importance as anthropogenic aerosol emissions decrease (see 129 

e.g., Paasonen et al., 2013; Yli-Juuti et al., 2021; Blichner et al., 2024).  130 

Hämeri et al. (2001) utilized Hygroscopicity Tandem Differential Mobility Analyzers (HTDMAs) during 131 

the BIOFOR campaign at the SMEAR II Hyytiälä forest field station in south-central Finland, to measure the 132 

hygroscopic growth factors of aerosol particles at 90% relative humidity (RH), and reported Aitken mode particles 133 

(with growth factors between 1.0 and 1.4) to be less hygroscopic than accumulation mode particles (growth factors 134 

~ 1.6). Sihto et al. (2011) studied the annual cycles of aerosol hygroscopicity and CCN, finding the hygroscopicity 135 

at sub-saturated conditions to be a good predictor of the CCN activity as well. They concluded the average 136 

hygroscopicity parameter κ to be 0.18 (for SS values between 0.1 and 1 % during Jul 2008 and Jun 2009) and 137 

therefore, the CCN-sized particles to be mostly organic, but to also contain more hygroscopic material such as 138 

ammonium sulfate (see also Cerully et al., 2011). Paramonov et al. (2013) used a size-segregated CCN observation 139 

data set collected between January 2009 and April 2012 from Hyytiälä, which revealed that the median κ 140 

exhibited significant variation depending on the SS and hence particle size. Specifically, the median κ was 0.41 at 141 

a SS of 0.1% (corresponding to larger activation dry diameter) SS and 0.14 at a SS of 1.0% (corresponding to 142 

smaller activation dry diameter), whereSS. At 0.1% SS, only the upper endtail of the aerosol size distribution is 143 

activated, so the corresponding κ represents a primarilythe largest particles in the distribution — indicating them 144 

to contain more inorganic aerosol and the lower endspecies as compared with the smaller particles. In contrast, 145 

activation at 1.0% SS includes smaller particles, which are generally more organic dominance, resulting in a lower 146 

κ. The size-dependence of hygroscopicity was more pronounced during the winter months compared to the 147 

summer. In a follow-up study, Paramonov et al. (2015) identified a statistically significant difference in the 148 

hygroscopicity of Aitken and accumulation mode particles in northern locations and concluded that the 149 

assumption of a size-independent κ potentially leads to a systematic overpredictionrecurring overestimation in 150 

CCN predictions at supersaturations above 0.6% in the boreal environment. In the closure study by Schmale et al. 151 

(2017), predictions using bulk chemical composition data indeed led to an over-prediction (geometric mean bias 152 

of 1.32 at SS = 0.5%) of NCCN for the period between Jan 2012 and Jun 2014.  153 

 In large-scale atmospheric models, the aerosol size distribution is often represented by a number of 154 

log-normal modes, and NCCN are estimated from SSmax based on dynamics (e.g., updraft) and physicochemical 155 

properties of the aerosol modes – as the abundance of particles with variable sizes and compositions influences 156 

the development of SS and hence the CCN activation (e.g., Abdul-Razzak and Ghan, 2000). A number of studies 157 

(e.g., Sihto et al., 2011; Paramonov et al., 2013; 2015; Bulatovic et al., 2021; Pöhlker et al., 2021; Lowe et al., 158 

2019, and Duplessis et al., 2023) have demonstrated that Aitken mode particles can contribute significantly to 159 

CDNC, particularly in clean conditions. Therefore, constraints foron the physicochemical properties of both Aitken 160 
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and accumulation mode particles are important for predictions of NCCN and CDNC. Unfortunately, the standard 161 

methods used for measurements of aerosol chemical composition (e.g., Aerosol Chemical Speciation Monitor 162 

ACSM; see Sect. 2.1.4) cannot typically separate accumulation and Aitken mode composition. The few studies 163 

reporting size-segregated aerosol composition in forested environments suggest an enrichment of inorganics in the 164 

accumulation mode, and higher mass fractions of organics in the Aitken mode (Allan et al., 2006; Hao et al., 2013; 165 

Levin et al., 2014; Timonen et al., 2008; Saliba et al., 2020). Studies involving a full annual coverage suggest a 166 

more size-dependent composition in early spring and winter (Levin et al., 2014; Timonen et al., 2008) compared 167 

to the summer. These findings are also qualitatively in line with the studies investigating the growth of Aitken 168 

mode particles in Hyytiälä, explainable with organic condensation (e.g., Riipinen et al., 2011 Mohr et al., 2019). 169 

Campaign-wise studies like Cubison et al. (2008); Broekhuizen et al. (2006); Stroud et al. (2007); Meng et al. 170 

(2014) used size-resolved Aerosol Mass Spectrometer (AMS) data, which is typically sparse, to achieve CCN 171 

closure in different environments, demonstrating that size-dependent chemical composition of aerosol particles 172 

can often explain the apparent discrepancies between observed and predicted CCN concentrations. Taken together, 173 

these results suggest that observations of CCN concentrations have the potential to be used in an inverse manner 174 

to constrain Aitken and accumulation mode chemical compositions separately – if information on the particle size 175 

distribution and an estimate of the bulk chemical composition is available. 176 

 In this study, we employ long-term (2016–2020) concurrent measurements from the SMEAR II 177 

atmospheric monitoring site in the boreal forest (Hyytiälä, Finland) to perform an inverse aerosol-CCN 178 

closure.inverse aerosol-CCN closures, where we optimize the modal aerosol chemical composition using two 179 

approaches: (1) assuming a fixed size distribution set to the median values during each CCN spectrum cycle 180 

applying a Nelder-Mead optimization method, and (2) allowing the size distribution parameters to vary within the 181 

observed variability during each cycle and using Markov Chain Monte Carlo simulations for finding the optimal 182 

size-dependent composition. Additionally, we test the performance of two forward closure approaches: a 183 

commonly used approach, which utilizes the bulk aerosol chemical composition (i.e., size-independent 184 

composition) observations ('bottom-up' approach) to estimate the hygroscopicity parameter κκ and predict CCN 185 

concentrations, and a simpler approach using a constant hygroscopicity valueparameter κ of 0.18 throughout the 186 

study period, as recommended by Sihto et al. (2011). Specifically, our study aims to address the following 187 

questions: 188 

 189 

1. How does the chosen representation of κ affect the CCN closure on a multi-year and seasonal basis? 190 

2. To what degree can a forward CCN closure be achieved when assuming size-independent chemical 191 

composition? 192 

3. Can we improve CCN closure by assuming mode-dependent composition while keeping the size distribution 193 

fixed to the observations? 194 

4. WhatWhich modal chemical composition and  yieldassociated hygroscopicity parameter (κ) provide a more 195 

accurate closure compared to using bulk chemical composition? Furthermore, how do the inferred modal chemical 196 

composition and κ values differ when the variability of the aerosol size distribution during the CCN cycle period 197 

is accounted for versus when it is neglected? 198 

 199 
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Through assuming that the SMEAR II station represents a remote continental site with a reasonable accuracy, we 200 

aim to provide useful insights on the role and dependencies of CCN loadings on natural aerosol properties. 201 

 202 

2 Methods and data 203 

 204 

Figure 1 provides an overview of the data and the overall approach used in this study. The core long-term data 205 

sets utilized were simultaneous observations of aerosol number size distribution between 3 and 1000 nm, chemical 206 

composition of the sub-micron (bulk) aerosol fraction and NCCN at SS between 0.1% and 1% during the period of 207 

2016 – 2020. κ-Köhler theory (Petters and Kreidenweis, 2007) was used to predict NCCN based on the size 208 

distribution and composition data with three different approaches for estimating the hygroscopicity parameter κ: 209 

(1) κbulk𝜅ୠ୳୪୩ , i.e. calculating κ using the observed bulk (size-independent) sub-micron aerosol composition; (2) 210 

κ0.18 ,𝜅଴.ଵ଼, i.e. using a constant κ value of 0.18 (Sihto et al., 2011) for the entire observation period; and 3) κopt 211 

,𝜅୭୮୲ and  𝜅୑େ୑େ i.e. determining κ through an inverse closure assuming variable Aitken and accumulation mode 212 

compositions while maintaining the total sub-micron chemical composition as observed.  213 

In the following subsections we present further details on the measurement site and observations of aerosol 214 

number size distribution, sub-micron chemical composition, as well as concentrations of CCN at different 215 

supersaturations. Finally, a detailed description of methods including κ-Köhler theory and inverse closure is 216 

provided.  217 

 218 
 219 
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 220 

 221 

Figure 1:  Workflow diagram of the observational data along with the steps made in its processing and analysis. NRMSE and 222 
Dp,act refer to Normalized Root Mean Squared Error (see Sect. 2.2.4) and dry activation diameter respectively. DMPS refers to 223 
Differential Mobility Particle Sizer, ACSM to Aerosol Chemical Speciation Monitor, CCN to Cloud Condensation Nuclei and 224 
CCNc to Cloud Condensation Nuclei counter. 225 

 226 

2.1 Experimental data 227 

 228 

2.1.1 Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II) 229 

The SMEAR II measurement site at Hyytiälä is located at 61o 51′ N, 24o 17′ E, 181 m above sea level, and 230 

represents a boreal forest environment with some anthropogenic influence, particularly from the southern direction 231 

where many industrialized areas within Finland, Russia, and continental Europe are located (Patokoski et al., 232 

2015; Riuttanen et al., 2013; Yttri et al., 2011; Tunved et al., 2006). The extent of the representativeness of 233 

SMEAR II for boreal forest environments varies seasonally and with air mass origin. The station is surrounded 234 

by mixed forest which covers 80% of the land within a 5 km radius and 65% within a 50 km radius (Williams et 235 

al., 2011) and one of the primary). Primary local emission sources includesinclude a sawmill situated to the 236 

northeast and a pellet factory located around 6–7 km southeast of SMEAR II. TheOverall, the station can be 237 

considered a rural background site because the nearest major city, Tampere, is located about 60 km southeast of 238 

the measurement location. During the summer, local BVOC emissions (Hakola et al., 2012; Barreira et al., 239 

20172018), primarily those of monoterpenes, act as a major source of SOA at the station (Heikkinen et al., 2020; 240 

Heikkinen et al., 2021). New particle formation (NPF), thatwhich is an important process contributing to NCCN 241 

globally (e.g., Merikanto et al., 2009), is commonly observed at SMEAR II, especially in spring and fall 242 

(Nieminen et al., 2014). Sulfuric acid, bases and low-volatility BVOC oxidation products (e.g., Kulmala et al., 243 

2014; Lehtipalo et al., 2018; Yan et al., 2018), have been identified as critical precursors for NPF at the site. 244 

During the winter, aerosol particles observed at the site are mainly from long-range transportedtransport 245 

(Riuttanen et al. 2013) and are frequently cloud-processed (Isokääntä et al. 2022). During this season, aerosol 246 

particles contain a larger inorganic component (about 36% as compared to 23% in summer, Heikkinen et al., 247 
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2020) increasing their hygroscopicity. However, during the winter time morewinters, the increased contribution 248 

of black carbon is also observed ((about 15% as compared to 6% in summer, Luoma et al., 2019), which ´tends 249 

to decreasea hydrophobic aerosol component, decreases the overall hygroscopicity of the particles. SMEAR II is 250 

unique due to the comprehensive set of long-term measurements, crucial for answering questions related to 251 

aerosol-cloud interactions, which have been conducted for several years (Kulmala, 2018). Although facilities for 252 

measuring aerosol size distribution and CCN have existed for a long time (since 1996 and 1998, respectively), 253 

long-term composition measurements have become available more recently (Luoma et al., 2021; Heikkinen et al., 254 

2020). This advancement has been due to the development and deployment of the ACSM and an aethalometer 255 

setup which provide near-real time data on the organics, sulfate, nitrate, ammonium, chloride and equivalent black 256 

carbon (eBC) in sub-micrometre aerosol particles (see also Sect. 2.1.4).  257 

2.1.2 Aerosol number size distribution   258 

At SMEAR II, a Differential mobility Particle Sizer (DMPS) has been used for particle number size distribution 259 

(PNSD) measurements in a size range from 3 nm to 1000 nm since 1996 (Aalto et al. 2001). The DMPS data has 260 

the time resolution of 10 minutes. The data used in this study were accessed from SmartSMEAR database 261 

(https://smear.avaa.csc.fi/download) for years 2016–2020 (see Fig. 2a). Medians of the size distribution data were 262 

taken over the start and end time periods inof the respective co-located CCN measurements (see Sect. 2.1.3). 263 

The twin-DMPS system consists of two Vienna-type Differential Mobility Analyzers (DMAs), each 264 

designed to classify aerosol particles into size bins across two distinct size ranges: 3-40 nm and 20-1000 nm. The 265 

sizing is based on the electrical mobility of the sampled and charged aerosol particles. Air is sampled at a height 266 

of 8 meters above ground level with a common aerosol inlet. The common inlet line has a diameter of 100 mm 267 

and a flow velocity of 0.5 m s-1. The sample flow for the instruments is taken from the centreline. The aerosol 268 

flow rates in the DMAs are 4 L min⁻¹ and 1 L min⁻¹, respectively. The sheath flows, with flow rates of 20 L min⁻¹ 269 

and 5 L min⁻¹, are dried to maintain RH of less than 40%, while the aerosol flows are not dried. The particle 270 

concentration following each DMA is measured using Condensation Particle Counters (CPCs). For small particles 271 

(3–40 nm), a TSI 3025 CPC model was utilized (later changed to model TSI3776 after October 2016), while a 272 

TSI 3750 CPC is used for the detection of the larger particles in the size range 20–1000 nm.   273 

For the inverse closure, we used a Python version (Khadir, 2023) of the algorithm by Hussein et al. 274 

(2005) to fit two modes into the measured aerosol size distributions. As a first step toward the inverse closure (see 275 

also Sect. 2.2.3), we applied a Python implementation (Khadir, 2023) of the modal-fitting algorithm described by 276 

Hussein et al. (2005) to decompose the measured aerosol size distributions into two modes. The algorithm takes 277 

size distribution as input and returns the lognormal parameters (number concentration, geometric standard 278 

deviation, geometric mean diameter GMD) of different modes as output. While the algorithm would allow fitting 279 

up to four modes, bimodal fits (Aitken and accumulation mode, respectively; Fig. S1a) were selected to avoid 280 

overfitting. (see also Liwendahl, 2023). The bimodal fits enabled us to reproduce the aerosol size distributions 281 

with a high correlation (pearsonPearson correlation coefficient R = 0.99) between the observed total particle 282 

number concentration and that calculated from the fitted parameters (see Fig. S1b).  283 

 284 
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 285 
Figure 2: Temporal coverage of the observation data represented through seven-day running median. The top panel (a) shows 286 
the variation of the aerosol size distribution. The middle panel (b) shows the total number concentration of sub-micron aerosol 287 
particles (in orange) and CCN at 0.1, 0.3 and 1.0% supersaturation (in grey). The bottom panel (c) presents the mass 288 
concentrations of various chemical species and ions in the aerosol particles: organics (Org), sulfate (SO4), nitrate (NO3), 289 
ammonium (NH4), and equivalent black carbon (eBC). 290 
 291 

2.1.3 CCN concentrations 292 

The time series of observed NCCN were obtained using a CCN-100, a continuous-flow streamwise thermal-gradient 293 

CCN counter (CCNc), commercially provided by Droplet Measurement Technologies (Roberts and Nenes, 2005). 294 

The CCNc can be used in either monodisperse or polydisperse mode, where the former is utilized to determine 295 

size-segregated NCCN, as detailed in Paramonov et al. (2013). In contrast, the polydisperse mode, employed here, 296 

measures the overall NCCN at a given supersaturation.  297 

The CCNc consists of a saturator unit and an Optical Particle Counter (OPC). The saturator includesis a 298 

verticalvertically oriented flow tube where, into which aerosol samples are -laden sample air is introduced 299 

alongside filteredsurrounded by a particle-free sheath air flow (1/10 flow ratio) under laminar flow conditions, 300 

creatingforming a well-defined central flow path. The tube’s inner surface is kept moistwalls of the tube are wetted 301 

and subjected to generate a a controlled temperature gradient. The sheath air flow is saturated with water vapor at 302 

the inlet temperature. A positive temperature gradient is maintained at the saturator column, inducing a quasi-303 

constant supersaturation gradient. profile for a specific temperature difference. As the laminar flow 304 

movesprogresses through the column, water vapor and heat and water vapor movediffuse from the tube’s 305 

innermoist walls towardstoward the center. Due to the faster diffusion of water molecules compared to heat, a 306 

stable water vapor supersaturation is maintained along the tube’s centerline. The effective supersaturation is 307 

influenced by factors such as flow rate, pressure, and temperature gradient. While moving through the tube, 308 

aerosol particles absorb water and grow and those particles with critical supersaturations lower than the centerline 309 

supersaturation are activated as cloud droplets. Droplets larger than 0.75 µm in diameter are detected by the OPC 310 
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at the exit of the tube and those exceeding 1 µm are considered to be activated CCN. To measure at different 311 

supersaturations, the temperature gradient is increased in steps while the flow rate is constant.held constant. Both 312 

polydisperse and monodisperse CCN concentrations were measured at each supersaturation setpoint (1.0%, 0.5%, 313 

0.3%, 0.2%, 0.1%). At each setpoint, the cycle includes 300 s polydisperse and 600 s monodisperse measurements, 314 

with additional stabilisation time after changing supersaturation, yielding a time resolution of about 2 hours for 315 

this data set. Quantification and discussion of typical uncertainties related to the supersaturation and hence NCCN 316 

measured with this instrument are presented in e.g., Rose et al. (2008) and Topping (2005). At SMEAR II, the air 317 

to the CCNc is sampled 8 meters above the ground level and features anthe same inlet same as inthe DMPS (see 318 

Sect. 2.1.3.). The aerosol flow rate is 0.5 L min-1
, which is split into sheath flow of 0.45 L min-1 and sample flow 319 

of 0.045 L min-1. For quality assurance of the CCNc data, the CCNc calibration is conducted approximately twice 320 

a year using nebulised, dried, charge -equilibrated and size-segregated ammonium sulfate aerosol following 321 

procedure as per Rose et al. (2008). 322 

Estimates of smallest activation dry diameter (Dact) were derived using the combination of the DMPS 323 

and the CCNc data by integrating the particle number size distributionsPNSDs from their maximum diameters to 324 

the diameter at which the integrated particle number was equal to the measured NCCN. Dact was then calculated by 325 

interpolating between the two adjacent size bins (Furutani et al., 2008). Essentially, variations in activation 326 

diameter reflect differences in the chemical composition of aerosol particles: the more hygroscopic the aerosol, 327 

the smaller the activation diameter. 328 

 329 

2.1.4 Aerosol chemical composition  330 

An Aerosol Chemical Speciation Monitor (ACSM; Ng et al., 2011) was used at SMEAR II to retrieve long-term 331 

observations of measure the mass concentrations of non-refractory sub-micronsubmicron particulate matter (NR-332 

PM1; i.e., organics,PM₁). The ACSM quantifies ions originating from non-refractory organic and inorganic 333 

species and reports them as mass concentrations of sulfate, nitrate, ammonium, and chloride) at SMEAR II ions, 334 

along with total organic aerosol mass. Briefly, the ACSM samples dried ambient air through a critical orifice (100 335 

μm in diameter) with a flow rate of 1.4 cm3 s-1 to an aerodynamic lens (Liu et al. 1995a; Liu et al. 1995b), which 336 

focuses a submicron particle beam and directs it to the instrument vaporization and ionization chamber. The lens 337 

efficiently transmits particles with vacuum aerodynamic diameters (Dva) ranging from approximately 75 to 650 338 

nm, yet it also passes through particles up to 1 μm in Dva with a less efficient transmission. These aerosol particles 339 

then undergo flash vaporization at 600 °C and are subsequently ionized using electron impact ionization (70 eV) 340 

and the mass spectrum is obtained with quadrupole mass spectrometry. While the vacuum system of the ACSM 341 

efficiently reduces the amount of air molecules entering the instrument detection unit, their distinction from the 342 

aerosol components is required. For this purpose, the ACSM contains a 3-way valve system to routinely measure 343 

the signals obtained from particle-free air, and this background is subtracted from the particle-laden sample. The 344 

detailed description of the ACSM measurements performed at SMEAR II since 2012 is provided in Heikkinen et 345 

al. (2020), which includes descriptions of the instrument ionization efficiency calibrations, collection efficiency 346 

corrections and data processing. The ACSM measurements were conducted < 100 m away from the DMPS, CCNc 347 

and aethalometer measurements in a separate container. A PM2.5 cyclone was installed toon the container roof, 348 

and the ~3 m long inlet line had an additional make-up flow of 3 L m-1. The air was dried to < 30% RH with a 349 

Nafion dryer. The original time resolution of the ACSM data is ~30 minutes. 350 



 

  11

We combined the ACSM measurements with measurements of equivalent Black Carbon (eBC).eBC. The 351 

eBC concentration was determined based on PM light absorption measured by an aethalometer (Magee Scientific, 352 

models AE31 and AE33). For the period in question here (2016-2020), the instrument was changed in the middle 353 

as the old instrument broke down. AE31 operated until the end of 2017 and AE33 started measuring in the 354 

beginning of 2018. AethalometerAn aethalometer is a filter-based instrument and it measures aerosol light 355 

absorption at seven wavelengths (370, 470, 520, 590, 660, 880, and 950 nm). To consider theThe aethalometer 356 

data were corrected for measurement artefacts in the measurements caused by collecting the particles in a filter 357 

medium, the aethalometer data were corrected for the so-called loading effect and scattering caused by the filter 358 

material: AE33 applied the inbuilt dual-spot correction (Drinovec et al., 2015) with multiple scattering correction 359 

factor 1.39 whereas the AE31 data were corrected as suggested by Virkkula et al., 2007 with multiple scattering 360 

correction factor 3.14 (derived by Luoma et al., 2021 for SMEAR II data). The eBC concentration was derived 361 

from the absorption at 880 nm channel by using mass absorption cross-section of 7.77 g m-2 for AE33 data (the 362 

default value suggested by the manufacturer) and 4.8 g m-2 for AE31 data (derived from 6.6 g m-2 at 637 nm used 363 

for multi-angle absorption photometer, which was used as a reference in Luoma et al., 2021). The head of the 364 

sampling line was located 4 m above the ground. The concentration of eBC was measured for PM10. Sample air 365 

was dried with by a Nafion dryer and data was marked as invalid, if the relative humidity inside the instrument 366 

increased above 40%. The aethalometer data was converted to STP conditions (273.15 K, 1013.25 hPa).  367 

The published ACSM and eBC measurements data are averaged over 1-hour intervals, but to concuralign 368 

with the CCN measurementmeasurements, the data set was further converted to the 2-hour time grid by taking a 369 

median of the mass concentrations of each of the measured species over the time window of each CCN 370 

measurements.spectrum measurement. The time series (7-day running median) are shown in Fig. 2b2c. The data 371 

coverage is higher for the eBC data compared to the ACSM data, which has fewer observations during wintertime. 372 

 373 

2.1.45 Data coverage and seasonal classification 374 

Figure 2 presents the overall data coverage along with the key aerosol properties observed (see Fig. S2 for the 375 

number of data points across different seasons). As mentioned earlier, SOA formation and NPF events lead to 376 

higher particle number concentrations during spring and summer. This is also reflected in the variability of CCN, 377 

particularly at higher supersaturations (see Fig. 2b), while lower seasonal variation is observed at lower 378 

supersaturations (SS = 0.1%), where only larger particles (> 200 nm, see Fig. S3 and Table S1) are activated. This 379 

suggests that most changes in aerosol particle number and chemical composition occur among smaller particles 380 

(Aitken and nucleation modes) between the winter and growing seasons (spring and summer). In terms of chemical 381 

composition, organics dominate the aerosol mass (see Fig. 2c), especially during the growing seasons, followed 382 

by sulfate and ammonium ions, with nitrate and black carbon contributing only minor fractions. However, given 383 

the significant seasonal variation in overall aerosol properties at the site, we present the results according to a 384 

seasonal classification. In this framework, March, April, and May represent spring; June, July, and August 385 

represent summer; September, October, and November correspond to autumn; and December, January, and 386 

February correspond to winter.  387 

2.2 Calculations for the forward and inverse closure studies 388 

 389 
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2.2.1 κ-Köhler theory 390 

The classical Köhler theory (Köhler, 1936) utilizes information about the composition and size of aerosol 391 

particles. It estimates the critical supersaturation level SScrit and wet particle diameter at which an aerosol particle 392 

becomes activated and grows through condensation to form a cloud droplet. The Köhler equation comprises two 393 

terms (see Eq. 1): one accounting for the influence of solutes (the soluble fraction of aerosol particles), which 394 

tends to reduce the equilibrium saturation ratio S (defined as 1 + SS), and the other known as the Kelvin term, 395 

which represents the increased surface tension over a spherical surface. In an aqueous solution, if P (Pa) is the 396 

partial vapor pressure of water and Ps (Pa) saturation vapor pressure of water over a pure flat liquid, the equilibrium 397 

saturation ratio S = P/Ps is represented as 398 

 399 

               S = 𝒂𝐰 exp (
𝟒 𝑴𝐰

𝑹𝑻 𝑫𝐩,𝐰𝐞𝐭
)                                        (1) 

                400 

where aw is the activity of water in the solution,  is the density of the solution (kg m-3), Mw is the molecular 401 

weightmolar mass of water (0.018 kg mol-1),   (N m-1) is the surface tension of the solution, R is the universal 402 

gas constant (8.314 J mol⁻¹ K⁻¹), T is temperature (K), and Dp,wet is the diameter of the droplet (m). To facilitate 403 

the comparison to previous work, we use the modified version of Köhler theory (Eq. 1) described by Petters and 404 

Kreidenweis (2007) to calculate the activation dry diameter (related to the total amount of soluble mass) for a 405 

particular supersaturation SS (i.e., S – 1) and termed), referred to as the κ-Köhler framework 406 

 407 

 S = 
𝑫𝐩,𝐰𝐞𝐭
𝟑  ି 𝑫𝐩,𝐝𝐫𝐲

𝟑

𝑫𝐩,𝐰𝐞𝐭
𝟑  ି 𝑫𝐩,𝐝𝐫𝐲

𝟑  ሺ𝟏 ି 𝜿ሻ
 exp (

𝟒 𝑴𝐰

𝑹𝑻 𝑫𝐩,𝐰𝐞𝐭
) (2) 

 408 

where Dp,dry is the dry diameter of the dry aerosol particle (m) with a given composition described by a unitless 409 

hygroscopicity parameter .κ.  In our calculations, we have assumed that the density and surface tension of the 410 

solution are equivalent to those of water (1000 kg m-³ and 0.0728 N m-1 respectively). Additionally, we have 411 

considered a constant ambient temperature (T) of 298.48 K for all seasons, corresponding to the median 412 

temperature inside the measurement hut.   413 

Assuming internally mixed aerosol particles, the net hygroscopicity parameter 𝜅 for a mixture of 414 

n different chemical species is expressed as the linear combination of the individual species 𝜅i weighted by their 415 

respective volume fractions i in the dry particle (Stokes and Robinson, 1966):   416 

                          417 

     𝜿 ൌ෍ 𝒊𝜿𝒊
𝒊

 (3) 

 418 

The volume fractions ௜ of the individual components were calculated from the measured mass concentrations, 419 

mi, and their respective densities, 𝜌୧ 420 

 421 
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                             𝜺𝒊 = 

𝒎𝒊
𝝆𝒊

∑
𝐦𝒊
𝛒𝒊

 
(4) 

 422 

Assuming an internally mixed aerosol population is a key assumption made in this study. According to Paramonov 423 

et al. (2015), the aerosol in Hyytiälä indeed shows some seasonal and size-dependent mixing state characteristics. 424 

Specifically, they report that particles in the ~75–300 nm range are internally mixed during late spring and early 425 

summer (May–July), with a very small CCN-inactive fraction (~0.2%). For the rest of the year, the aerosol 426 

becomes partially externally mixed, with the CCN-inactive fraction increasing to ~6.6%. However, within each 427 

size range — either below or above 100 nm — the κ distributions are relatively consistent, suggesting that particles 428 

are mostly internally mixed within those size classes.  429 

 430 

2.2.2 Forward closure 431 

In the forward closure, NCCN at supersaturations of 0.1%, 0.2%, 0.3%, 0.5%, and 1.0% (corresponding to the 432 

supersaturations set in the CCNc, henceforth referred to as SSCCNc) are predicted using observations of the aerosol 433 

number size distribution from the DMPS. As discussed above (see Sect. 2),, two different assumptions about the 434 

hygroscopicity of the aerosol mixture were tested: 1) Assumingassuming constant hygroscopicity of 0.18 435 

(଴.ଵ଼𝜅଴.ଵ଼) 2) Assumingassuming mixture hygroscopicity (Eq. 4) using chemical composition information from 436 

the ACSM and aethalometer measurements (ୠ୳୪୩𝜅ୠ୳୪୩). ୠ୳୪୩𝜅ୠ୳୪୩ therefore, does not depend on particle size, 437 

but is variable in time. For deriving ୠ୳୪୩𝜅ୠ୳୪୩ the observed aerosol chemical composition was utilized, assuming 438 

that all sulfates are present as ammonium sulfate (NH4)2SO4 (AS) and the observed nitrate was distributed between 439 

ammonium nitrate NH4NO3 (AN) and organic nitrate (ON) was), estimated using the method (Supplementary note 440 

1 and Fig. S4 for details) explained in Farmer et al. (2010) (see Supplementary note 1 and Fig. S4). For the 441 

calculation of the AS and AN mass concentration, only the measured sulfate and nitrate mass concentrations were 442 

used. The ammonium mass concentration required for yielding ion balance within the particles was calculated 443 

(see Fig. S5; Zhang et al., 2007).  We acknowledge that the assumption that sulfate is present solely as AS can 444 

cause underestimations of aerosol hygroscopicity at SMEAR II, because aerosols can be more acidic at the site 445 

(e.g., Riva et al., 2019). Finally, to retrieve the volume fractions of organics, AS, AN, ON and eBC from their 446 

estimated mass concentrations, the density information for each species is required. The chosen densities are 447 

shown in Table 1 along with the ௜𝜅௜ for each species.  448 

 449 

Table 1. Densities (𝜌௜) and hygroscopicity parameters (𝜅௜) of the assumed dry particle constituents based on the 450 

composition estimated from the ACSM and the aethalometer measurements. 451 

Species  (kg m-3) 𝜿 

Organics 1500 (Kostenidou et al., 2007)a 0.12 (Pöhlker et al., 2023) 

Ammonium nitrate (AN) 1720 0.67 (Petters and Kreidenweis, 2007) 

Ammonium sulfate (AS) 1769 0.61 (Petters and Kreidenweis, 2007) 

Organic nitrate (ON) 1500b 0.12b 

Equivalent black carbon (eBC) 1770 (Park et al., 2013) 0 (Weingartner et al., 1997) 
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aSOA density estimated to be in the 1400 – 1650 kg m-3 range when formed from BVOCs known to produce the 452 

majority of SOA at SMEAR II. 1500 kg m-3 is chosen from this range. 453 
bSet to equal that of the rest of the organics for simplicity. Some studies suggest that the density could be slightly 454 

lower (1160 – 1210 kg m-3, Claflin et al.,and Ziemann 2018). 455 

 456 

The critical supersaturation SScrit was then calculated for each of the size bins measured by the DMPS using κ -457 

Köhler theory, assuming a uniform composition throughout the size distribution. Particles for which the calculated 458 

SScrit was lower than the individual SSCCNc were then considered as CCN corresponding to the respective SSCCNc 459 

value. Linear interpolation was applied to estimate the exact activation diameter within a given size bin (see Lowe 460 

et al., 2016). The CCN spectra estimated by the forward closure were then compared to the observations made by 461 

the CCNc for the two different hygroscopicity assumptions i.e. 𝜅ୠ୳୪୩ and 𝜅଴.ଵ଼.  462 

 463 

2.2.3 Inverse closure 464 

In the inverse closure, our objective iswas to minimize the differences (e.g. through Normalized Root Mean 465 

Squared Error (, NRMSE, see Sect. 2.2.4) between predicted and observed NCCN, while optimizing the size-466 

dependent chemical composition and hygroscopicity parameter (denoted ୭୮୲). This makes ୭୮୲ variable in time 467 

as well as a function of particle size.. More specifically, the size-dependency of ୭୮୲ is approximated by 468 

assumingwe assumed the size distribution to consist of two internally mixed and log-normally spaced aerosol 469 

modes, specifically the Aitken orand accumulation mode. Importantly, formodes.  470 

The inverse closure and thus the optimization was performed implementing two different methods, 471 

namely the Nelder-Mead and the ୭୮୲ derivation,DREAM-MCMC (DiffeRential Evolution Adaptive Metropolis 472 

Markov Chain Monte Carlo) algorithms (see Sects. 2.2.3.1 and 2.2.3.2). In both optimization methods, all AN and 473 

AS masses were combined and treated as inorganic mass for simplicity. The net 𝜌 and 𝜅 of the inorganic fraction 474 

were derived using the corresponding observed mass fraction. While the 𝜅 for AN is slightly higher than that of 475 

AS (Table 1) and the density of AN is slightly lower of that of AS (Table 1), we consider this as a reasonable 476 

simplification given the low AN concentration at the site. Again, all ON is assumed to have the same 𝜅 and 𝜌 as 477 

the organics (Table 1). Another importantkey simplification concernsis that eBC, which is assumed to have the 478 

same mass fraction in both the Aitken and accumulation modes. Attaining 479 

The optimization procedures based on Nelder–Mead and DREAM-MCMC are illustrated in Fig. 3. In 480 

both approaches, the derivation of ୭୮୲ starts bymodal optimized hygroscopicity parameters (𝜅୭୮୲୅୧୲୩ୣ୬ and 481 

𝜅୭୮୲
ୟୡୡ୳୫୳୪ୟ୲୧୭୬ from Nelder-Mead method and 𝜅୑େ୑େ

୅୧୲୩ୣ୬ , 𝜅୑େ୑େ
ୟୡୡ୳୫୳୪ୟ୲୧୭୬ from DREAM-MCMC, referred to as 𝜅୭୮୲ 482 

and 𝜅୑େ୑େ for simplicity) begin with obtaining a bimodal fittingfit of the aerosol number size distribution to 483 

theinto Aitken and accumulation modes (see Sect. 2.1.2).  Next, the fitted lognormal parameters of size 484 

distributions were used to produce the fitted aerosol number size distribution was binned onto the same diameter 485 

axes as the observational data, and the number of particles in each bin was scaled to match the particle number in 486 

measured size distribution (see a demonstration in Fig. S6 and Supplementary note 2). This way, the number 487 

contributions of the Aitken and accumulation modes to the observed aerosol size distribution could be estimated 488 

for each time point. Second, the masses of both the Aitken and accumulation modes were estimated using the 489 

assumptions outlined above, andby approximating the density of both modes by the bulk density. The total masses 490 



 

  15

of organics, inorganics and eBC to be distributed to the measured size distribution arewere then calculated using 491 

the mass fractions derived from the ACSM and aethalometer measurement. Finally, the Aitken vs. accumulation 492 

mode compositions, and hence ୭୮୲, fulfilling these constraints and best reproducing the observed CCN 493 

spectra𝜅୭୮୲ or 𝜅୑େ୑େ, were founddetermined through optimization.  (see also Supplementary note 3 for details). 494 

   495 

   496 

Figure 3: Workflow of the two inverse closure methods: the Nelder–Mead algorithm (left) and the DREAM-MCMC (right) 497 
approach. Bimodal fitting: representation of the aerosol size distribution as two lognormal modes. Harmonized size 498 
distribution: size distribution data harmonized to CCN data; data thus obtained has 2-hour resolution. Unharmonized size 499 
distribution: raw size distribution data with 10 min resolution. Scaling: adjustment of number concentrations of reconstructed 500 
lognormal size distribution from bimodal parameters to match observations. Mass-constraint: conservation of total aerosol 501 
mass (sum of mass in two modes) of each species during optimization. NRMSE: normalized root mean square error, a metric 502 
of model–observation agreement. MAD: median absolute deviation, used to quantify variability in size distributions during 503 
CCN spectrum cycle period. Prior distribution: initial parameter ranges provided to the MCMC sampler. Log-likelihood: 504 
statistical measure of consistency between observed and modeled CCN spectra. 505 
 506 

2.2.3.1 Nelder-Mead  507 

The Nelder–Mead simplex algorithm (Gao and Han, 2012) is suitable for both one-dimensional and 508 

multidimensional optimization problems and is relatively fast in our application. In our case, we need to optimize 509 

only one variable (the fraction of total organic mass in Aitken mode, morg,Ait) and the remaining masses can be 510 

derived from it through mass closure constraints – assuming PNSD to stay constant throughout each CCN 511 
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measurement cycle. For each time step, the optimization begins with an initial simplex of three trial values of 512 

morg,Ait, and the NRMSE is evaluated at each point. The worst-performing value is reflected  across the midpoint 513 

of the better two to explore whether a more accurate estimate can be found in the opposite direction. If this 514 

improves the fit, the algorithm attempts an expansion, pushing further in the same direction. If reflection does not 515 

improve the result, a contraction step is taken to move closer to the midpoint. If neither reflection nor contraction 516 

improves the outcome, the simplex undergoes shrinkage, tightening around the best-performing solution to focus 517 

the search locally. This process continues until the optimization converges, resulting in an estimate of morg,Ait that 518 

minimizes the NRMSE between modeled and observed CCN concentrations. Note that Nelder–Mead works well 519 

for simple, low-dimensional problems like optimizing just one parameter (e.g., morg,Ait), but it starts to struggle as 520 

the number of variables increases and have a tendency for converging to local minima.  521 

 522 

2.2.3.2 DREAM-MCMC 523 

In order to assess the importance of the variability of the bimodal size distribution parameters within each CCN 524 

cycle, we conducted a second inverse-closure experiment with the number concentration and mean diameter for 525 

both modes as additional optimization parameters (simultaneously with morg,Aitሻ. Since optimizing both size 526 

distribution parameters and composition introduces a more complex and higher-dimensional parameter space, and 527 

we are interested parameter uncertainty, we use a Bayesian inference approach to estimate the parameter posterior 528 

distributions. Specifically, we chose the DiffeRential Evolution Adaptive Metropolis Markov Chain Monte Carlo 529 

(DREAM-MCMC) algorithm (Vrugt et al. 2009), which has been previously used for inverse CCN-closure studies 530 

in idealized cases (Partridge et al. 2012) and is available in the Python PINTS library (Clerx et al. 2019). DREAM-531 

MCMC is an efficient MCMC method (Metropolis et al. 1953, Gelfand et al. 1990) that evaluates multiple Markov 532 

chains in parallel and automatically adapts its proposal strategy during sampling, making it particularly efficient 533 

for correlated, multi-modal problems such as aerosol-cloud microphysical interactions. To know more about 534 

MCMC and Bayesian inference, see Supplementary note 4. 535 

We initialized the MCMC optimization with Cauchy priors for each parameter (see 536 

Supplementary note 5), centered on the median values of the fitted bimodal size distributions for each CCN cycle, 537 

specifically, the number concentration and GMD. For chemical composition we used the median of the ACSM 538 

observations during each CCN spectrum cycle. The scale value was the smaller of either 1 (resulting in a Student-539 

t distribution) or the median absolute deviation (MAD) of the observations within the given CCN cycle. The priors 540 

were truncated to positive values only. We also constrained the total aerosol mass in each mode to remain within 541 

±10% of the total mass observed by the ACSM and aethalometer.  542 

We used a heteroskedastic Gaussian likelihood function, which means that the highest likelihood 543 

is typically where the parameters provide the least squares fit to the CCN observations, analogous to minimizing 544 

the NRMSE described above. The likelihood is defined as  545 

 546 
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 (5) 

 547 

where si is standard deviation of the measurement error, which we assume is 10% of the CCN observations at 548 

each supersaturation value 𝑦௜ , and 𝜙௜ is the model predictions of CCN spectra at each super-saturation given the 549 
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calibration parameters 𝜃 (the log-normal parameters and mass fraction).  We performed the optimization in a log-550 

transformed parameter space, which improves sampler efficiency by normalizing scale differences between 551 

parameters. For each CCN observation window, we ran five chains with 40,000 iterations per chain, of which the 552 

first 15,000 were used as burn-in/adaptation. Up to two chains were discarded if they deviated strongly in central 553 

tendency after burn-in, and the last 20,000 steps of all accepted chains were then used to calculate posterior 554 

statistics. Convergence was assessed with the 𝑅෠-statistic (Gelman and Rubin, 1992), using a relaxed threshold of 555 

𝑅෠ ൏ 2.5  for all five parameters to retain a window in the analysis. The 𝑅෠-statistic compares the variance within 556 

chains to the variance between chains; values close to 1 indicating well-mixed, converged chains. We used a 557 

relaxed threshold because the 𝑅෠-statistic is quite conservative and because our problem has high correlation 558 

between parameters and the potential for multi-modality if there are multiple distinction aerosol populations 559 

within one window, which is penalized by the 𝑅෠-statistic but realistic in this case. Overall, 19% of windows were 560 

discarded due to high 𝑅෠-statistic values. Even with the relaxed threshold, some windows were excluded where the 561 

MCMC identified reasonable parameter values and CCN spectra but the chains failed to mix well. Examples of 562 

the chain evolution and posterior parameter distributions are discussed in Supplementary note 5. 563 

 564 

2.2.4 Metrics for assessing variability of lognormal size distribution parameters during CCN cycle 565 

Unlike the Nelder–Mead optimization method, which uses the median of the size distribution during the CCN 566 

cycle period, the DREAM-MCMC setup requires the variability of the size distribution as input. To account for 567 

this, we calculate the median absolute deviation (MAD) of each lognormal parameter for every CCN cycle 568 

observation. The overall distribution of MAD values for the full 5-year dataset is presented in Supplementary note 569 

6 and Fig. S10.  MAD for individual CCN cycle period is calculated as follows: 570 

Let Ic = [ 𝑡௖௦௧௔௥௧, 𝑡௖௘௡ௗ) be the time window for CCN cycle c; For a given lognormal parameter, k (among geometric 571 

mean diameter (GMD), geometric standard deviation (SD) and number concentration in each mode; so total 6 572 

parameters), collect the samples inside this window as {𝑥௞ (t): t ∈ Ic} = {𝑥௞,ଵ, 𝑥௞,ଶ, …, 𝑥௞,௡೎}. 573 

Median in the interval is 𝑚௞(c): 574 
 575 

 median{𝒙𝒌,𝟏,𝒙𝒌,𝟐, …, 𝒙𝒌,𝒏𝒄} (6) 

MAD in interval c: 576 

 median|𝒙𝒌,𝒊 – 𝒎𝒌ሺ𝒄ሻ|, where i varies from 1 to 𝒏𝒄 (7) 

 577 

2.2.42.2.5 Metrics for assessing the goodness of closure 578 

The optimization described above was done by minimizing the NRMSE between the observed CCN spectra and 579 

the calculated CCN spectra (taken as the sum of the Aitken and accumulation mode CCN spectra) by 580 

implementing the Nelder-Mead optimization algorithm (Gao and Han 2012) available in the Python SciPy library. 581 

The Nelder-Mead algorithm is a widely used optimization method that iteratively searches for the minimum or 582 

maximum of an objective function. The optimization goal was to determine the optimal modal chemical 583 

composition in terms of mass fractions of different species (see supplementary note 3 and Fig. S7) and eventually 584 
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the hygroscopicity (κopt) that minimized the Normalized Root Mean Square Error (NRMSE) between observed 585 

and predicted CCN concentrations. The NRMSE was calculated for as: 586 

 587 

The Normalized Root Mean Square Error (NRMSE) between observed and predicted CCN concentrations was 588 

calculated as (see also Supplementary note 7 and Fig. S11): 589 

 590 

 
NRMSE = 

ට𝟏
𝒏
∑ ൫𝑪𝑪𝑵𝐩𝐫𝐞𝐝,𝒊ି𝑪𝑪𝑵𝐨𝐛𝐬,𝒊൯

𝟐𝒏
𝒊స𝟏

𝑪𝑪𝑵𝐨𝐛𝐬തതതതതതതതതതത  (8) 

 591 

Where 𝐶𝐶𝑁୮୰ୣୢ,௜ is the predicted CCN concentration at supersaturation i, 𝐶𝐶𝑁୭ୠୱ,௜ is the observed CCN 592 

concentration at supersaturation i, n is the number of data points (in this case five, as we have five different 593 

supersaturations) and 𝐶𝐶𝑁୭ୠୱതതതതതതതതത is the mean of the observed CCN concentrations across all supersaturations.  594 

 595 

To facilitate direct comparison with Schmale et al. (2016) we also calculated the Geometric Mean Bias (GMB) 596 

for each time point, defined as: 597 

 598 

 GMB = exp൬𝟏
𝒏
∑ 𝐥𝐧 ൬

𝑪𝑪𝑵𝐩𝐫𝐞𝐝,𝒊

𝑪𝑪𝑵𝐨𝐛𝐬,𝒊
൰𝒏

𝒊ୀ𝟏 ൰    (9) 

 599 

3 Results and discussion 600 

 601 

3.1 Size distributions and activation diameters  602 

 603 
Figure 4: Seasonal overview of the lognormal size distribution, with solid lines representing the median and shaded regions 604 
indicating the interquartile range. The vertical lines denote the activation diameters (Dact) at various supersaturations as 605 
determined by combining the CCN data with the number size distribution measurements from the DMPS. 606 
 607 

Figure 4 presents the median and quartiles of lognormal aerosol number size distributions and median activation 608 

diameters (Dact) calculated from the PNSD-CCN closure across different seasons (see also Supplementary note 609 

2).. In PNSD–CCN closure, Dact at a given SS was derived by integrating the PNSD from the largest to the smallest 610 

diameters until the integrated number equalled the measured CCN concentration at that SS; the corresponding 611 

diameter was then identified as Dact (see e.g. Sihto et al., 2011 and Supplementary note 8). The shape of a 612 

lognormal size distribution depends on the age of the aerosol population, and the atmospheric processing (e.g. 613 

nucleation, coagulation, condensation, deposition and chemical reactions) that has taken place along the transport 614 
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trajectory to the measurement site. As discussed previously (Sect. 1), freshly formed particles via, NPF in spring 615 

(Nieminen et al., 2014) and at the same time, the temperature-dependent emissions of BVOCs leading to the 616 

biogenic SOA formation of SOA (Heikkinen et al., 2020) result in almost bell-shaped size distributions with high 617 

particle number concentrations in spring and summer. In autumn and winter, on the other hand, biogenic aerosol 618 

precursor emissions are reduced leading to a lowering in the organic aerosol mass fraction. The contribution from 619 

long-range transported, cloud-processed and aged particles increases, detected in the form of bimodal aerosol size 620 

distributions with predominant Hoppel minima (Hoppel et al., 1986) at around 80–90 nm in diameter, and 621 

increased inorganic aerosol mass fractions. The activation diameters decrease with increasing supersaturation and 622 

when all seasons are taken into account,the median Dact (see Table S1) beingis generally higher for all seasons 623 

than reported in earlier studies using similar methodology (e.g., Sihto et al., 2011; Paramonov et al., 2015). For 624 

instance, Paramonov et al. (2015) reported a median Dact  of 46 nm at 1.0%, whereas we find values of 54–57 nm. 625 

Similarly, at 0.1% supersaturation, they reported 150 nm, which is lower than our results of 206 – 224 nm, 626 

depending on the season. This could reflect decreasing abundance of sulfate during the last two decades as 627 

compared with less hygroscopic organic species (Fig. S8S12; see also Aas et al., 2019; Li et al., 2024). The 628 

activation diameters are relatively similar across the seasons (see Table S1), therefore suggesting a similar 629 

composition of the CCN over the year in comparison with the variability in the number size distribution. The 630 

slope of the particle number size distributionPNSD function is typically steep over the ranges of Dact 631 

corresponding to the investigated supersaturations. This indicates a high sensitivity of CCN to any parameters 632 

driving the particle number size distributionsPNSDs (see e.g., Lowe et al., 2016). While the median activation 633 

diameters show almost no seasonality, looking in more detail (see Fig. S4S3), an increase in the Dact is observed 634 

during the transition from winter to spring. This is probably due to the addition of more organic aerosol, which is 635 

less hygroscopic than the common inorganic salts. Dact reaches its maximum in summer and decreases again 636 

towards autumn.  After autumn, there is an increase in Dact toward winter, despite a decrease in BVOC emissions 637 

and the resulting lower organic mass fraction alongside a higher inorganic fraction (see Fig. S9S13). This suggests 638 

the influence of another factor, possibly the higher eBC fraction observed during winter (see Sect. 3.3). 639 

While the seasonal variation in median activation diameters Dact is not pronounced across all SS, 640 

more detailed inspection (Fig. S3) reveals a decrease in Dact  at the lowest supersaturation (0.1%) during the 641 

transition from autumn into winter (November to April). This trend is consistent with a reduced contribution of 642 

organic aerosols and a higher relative abundance of inorganic components during winter (the sources of which 643 

include long-range transport and e.g. cloud-processing along the transport route), as also indicated by the bulk 644 

chemical composition (Fig. S13). Since the activation diameters at 0.1% SS fall within the accumulation mode, 645 

the size range where ACSM measurements are most representative, the observed seasonal variation in Dact  at this 646 

SS level can be directly linked to changes in aerosol composition. Overall, across all supersaturations, an increase 647 

in Dact  is generally observed during the transition from spring to summer which is more pronounced at 0.1%, 648 

0.2%, and 1.0% SS, while being relatively weak at 0.5% SS.        649 

 650 

3.2 CCN spectra – Insights from forward and inverse CCN closures 651 

 652 
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 653 
Figure 5: Observed (dashed) and predicted (solid) median CCN spectra in different seasons. The whiskers display the 25th 654 
and 75th percentiles.  655 
 656 

Figure 5 shows the comparison between the observed and predicted CCN spectra, again displayed for each season 657 

separately. First, seasonal variations are evident, with CCN concentrations peaking in the summer and having 658 

their minimum in winter – in line with the overall particle number concentrations (see Fig. 34 and S9S14). The 659 

median seasonal CCN concentration rangeranges from 29-76 cm-3 for 0.1% supersaturation, 101-317 cm-3 for 660 

0.2%, 143-512 cm-3 for 0.3%, 170-744 cm-3 for 0.5%, and 300-1116 cm-3 for 1.0% with significant variations 661 

across seasons (Fig. 4 and Fig. S10)..  These values are somewhat lower than previous studies (Sihto et al., 2011; 662 

Paramonov et al., 2015), potentially related to decreases in overall particle number concentrations and a more 663 

prominent role of biogenic organic aerosols vs. inorganic sulfate (see e.g., Li et al., 2024) – also generally in line 664 

withreflecting the higher activation diameters reported here as compared to the previous studies. The NRMSE 665 

values for the two forward closure between the predictions and the observationsmethods range from 0.4942 to 666 

0.94 (Table 2). The agreement of the forward closure based on the bulk composition is best for supersaturations 667 

of 0.2% and 0.3% where the activation diameter is generally within the accumulation mode range, and hence also 668 

the ACSM composition is probably a more accurate estimate of the composition of the dry particles. The 669 

agreement is worst for the lowest supersaturation of 0.1 %, as also observed previously in Wang et al. (2010) and 670 

Meng et al. (2014). Furthermore, the agreement is better during spring and summer compared to autumn and 671 

winter. (Fig. 5). Interestingly, when comparing the results from the forward closures, a better closure is obtained 672 

with the simple constant value of ଴.ଵ଼𝜅଴.ଵ଼ than with the "bottom-up" hygroscopicity estimate using the ACSM 673 

and aethalometer data (ୠ୳୪୩𝜅ୠ୳୪୩), indicating that assuming size-independent but temporally varying composition 674 

performs worse than a much simpler assumption. The results from the inverse closure (୭୮୲),𝜅୭୮୲) however, show 675 

that this issue can – at least to some degree – be mitigated when distributing the measured/estimated inorganic 676 

and organic species between the Aitken and accumulation modes. Including the size-dependent chemical 677 

composition, the variability of the size distribution during CCN cycles and uncertainty in CCN measurements 678 

(10%; see e.g. Rejano et al., 2024 and references therein) further reduces the bias, correcting most of the 679 

overprediction (see Fig. 5, 𝜅୑େ୑େ). All methods (both the forward and inverse closures) tend to overpredict CCN 680 

numbers, with ୠ୳୪୩ exhibiting the highest error. , which is clearer when we look at NRMSE and GMB values 681 

(Fig. 6, Supplementary Table S2 and Fig. S15).  682 
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 683 

Table 2. NRMSEs and Pearson’s correlation coefficient (R in brackets) corresponding to different methods and 684 

supersaturations for all years taken together. 685 

Methods NRMSE (R) 

SS = 0.1% 

NRMSE (R) 

SS = 0.2% 

NRMSE (R) 

SS = 0.3% 

NRMSE (R) 

SS = 0.5% 

NRMSE (R)  

SS = 1.0% 

𝜿𝐛𝐮𝐥𝐤 0.94 (0.78) 0.49 (0.85) 0.49 (0.85) 0.59 (0.84) 0.60 (0.79) 

𝜿𝟎.𝟏𝟖 0.71 (0.74) 0.43 (0.84) 0.42 (0.86) 0.50 (0.85) 0.52 (0.81) 

𝜿𝐨𝐩𝐭 0.92 (0.78) 0.46 (0.86) 0.43 (0.87) 0.47 (0.88) 0.44 (0.86) 

𝜿𝐨𝐫𝐠 ൌ 𝟎 0.62 (0.70) 0.49 (0.75) 0.48 (0.77) 0.46 (0.80) 0.47 (0.77) 

𝜿𝐌𝐂𝐌𝐂 0.65 (0.85) 0.17 (0.97) 0.12 (0.99) 0.082 (0.99) 0.045 (0.99) 

 686 
 687 

 688 

Figure 6:  Normalized Root Mean Square Error (NRMSE) and Pearson correlation for different supersaturation (SS) levels 689 
for all years taken together, comparing four methodologies: 𝜅ୠ୳୪୩ , 𝜅଴.ଵ଼, and 𝜅୭୮୲, 𝜅୭୰୥= 0 and 𝜅୑େ୑େ. The two panels split 690 

the NRMSE axis to highlight the data in separate ranges, with the left panel covering NRMSE values from 0.3 to 0.6 and the 691 
right panel from 0.7 to 1.1. Each point is sized according to the corresponding SS level (0.1%, 0.2%, 0.3%, 0.5%, and 1.0%). 692 
The markers are color-coded based on the method for calculating the hygroscopicity parameter, with lines added to represent 693 
a discontinuity in the x-axis.  694 
 695 
 696 
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 697 
Figure 4When combined across all SS the overall NRMSE values for the entire timeseries are 0.43 for 698 

ୠ୳୪୩𝜅ୠ୳୪୩ , 0.35 for ଴.ଵ଼ and , 𝜅଴.ଵ଼, 0.28 for ୭୮୲. 𝜅୭୮୲ and 0.08 for 𝜅୑େ୑େ. To provide a more detailed 699 

perspective, we also calculated the NRMSE for each SS individually. Figure 56 provides an overview of how the 700 

threefour different methods perform in estimating CCN concentrations. All methods demonstrate a strong positive 701 

correlation with the observations (Pearson R > 0.8070) and the NRSME remains in most cases below 1.0 (see 702 

Table 2 and Fig. 5). On average over the different supersaturations, the highest correlations and lowest NRMSE 703 

are obtained with ୭୮୲, followed by ଴.ଵ଼and ୠ୳୪୩.6). The performance skill (i.e.., the combinationcombined 704 

behavior of R  and NRMSE,; see Fig. 5) depends on the supersaturation.  As discussed above, the lowest R and 705 

the highest NRMSE6) varies with SS, but when averaged across all SS, 𝜅୑େ୑େ achieves the best agreement, 706 

followed by 𝜅୭୮୲, 𝜅଴.ଵ଼and 𝜅ୠ୳୪୩. As shown in Table 2, the largest errors generally occur at the lowest and 707 

highest(0.1%) and highest (1.0%) supersaturations. An exception is 𝜅୑େ୑େ, which substantially reduces the bias 708 

and NRMSE across all supersaturations i.e.,. The highest error is still at SS = 0.1% and SS = 1% (see also Table 709 

2).0.1%, while the other supersaturations agree closely with the observations. At 0.5% SS, the NRMSE for 710 

ୠ୳୪୩𝜅ୠ୳୪୩ is around 0.4956 and the GMB is around 1.38 (see Fig. S11S15 and Table S2 ), which is slightly higher 711 

than the GMB (1.32) reported by Schmale et al. (2017) for a shorter dataset and a different time period. The best 712 

performance skill for the forward closure is obtained at SS = 0.3%, followed closely by SS = 0.2% (see tableTable 713 

2), where predominantly accumulation mode particles activate (see Fig. 34). Given that the typical SSmax in 714 

stratocumulus clouds in the region are often below 1 % (Roberts et al., 2006; Hegg et al., 2009), the performance 715 

at these levels is particularly relevant. Two explanations could account for the large bias at low and high 716 

supersaturations: 1) TheThe different SS-dependence of the bias in the MCMC inverse closure as compared with 717 

the other closure methods suggests that the source of the bias for the lowest supersaturation is different from the 718 

higher supersaturations. For the lowest supersaturations, the high flow rate in the CCN counter may hinder smaller 719 

particles from growing sufficiently to be detected by the CPC at low supersaturation (see also Ervens et al., 2007 720 

and Lance et al., 2006); 2) It is possible). For the highest supersaturation, our results suggest that the assigned 721 

hygroscopicitysignificant over-prediction of the forward-closure and Nelder-Mead methods are indeed a result of 722 

the high variability of the PNSD and the sensitivity of the Aitken -mode particles is still higher than it should be 723 

(especially at high supersaturations) – e.g., dueCCN to too high assumed organic hygroscopicity (see e.g., Rastak 724 

et al., 2017).it.    725 
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The results presented in Fig. 45 reveal a systematic overprediction of NCCN. As discussed above, somePart 726 

of this overprediction could be remedied by assuming a size-dependent chemical composition with an enrichment 727 

of organics in the Aitken mode – given the expected lower hygroscopicity𝜅 of the organic as compared with the 728 

inorganic aerosol components. Furthermore, previousPrevious studies have observed that the hygroscopicity𝜅 of 729 

OA can be even lower than the assumed value of 0.1 (see e.g., Rastak et al., 2017; Cai et al., 2018 and references 730 

therein), thus, an). An alternative way to optimize the results could therefore be through assuming a size-731 

independent composition but lower organic hygroscopicity.𝜅. As a conservative testevaluation of this approach, 732 

we conducted a test assuming organics to be non-hygroscopic, similar to black carbon. In Table 2 and Fig. 56 733 

these calculations are denoted with ୭୰୥𝜅୭୰୥ ൌ 0. The resulting NRMSE and GMB (see also Fig. S11S15, S16 734 

and Supplementary note 9) suggests that organics in the accumulation mode are likely more hygroscopic, as 735 

assuming zero hygroscopicity leads to underprediction of NCCN. Another explanation could be due to an under-736 

representation of larger inorganic particles in the observations, for example in the upper tail of the accumulation 737 

mode, or an undetected inorganiccoarse mode component such as sea salt which is not measured by the ACSM.  738 

Alternatively, the finding may arise from the initial assumption of the equal distribution of BC among Aitken and 739 

accumulation modes. In terms of correlation, 𝜅୭୮୲ , in comparison to 𝜅୭୰୥ ୀ ଴, consistently performs better overall 740 

(see Table 2), the NRMSE values also being smaller than for the entirely non-hygroscopic organics. This suggests 741 

that, compared to the variation in the hygroscopicity parameter of organics with size, that accounting for the size-742 

segregated nature of chemical composition provides a more accurate explanation for the overprediction of CCN 743 

than simply non-hygroscopic organics. It is notable, however, that none of the closure methods reproduces the 744 

observations, indicating remaining structural model uncertainty or unknown experimental uncertainties.The 745 

impact of assuming constant BC fraction in both modes was also found to be minor (see Supplementary note 10). 746 

Using the DREAM-MCMC optimization to account for the variability of the PNSD during the CCN measurement 747 

cycle mitigates most of the overpredictions – further strengthening the strong role of size-dependent chemical 748 

composition as key factor for yielding a successful CCN closure, but also highlighting the importance of the PNSD 749 

variability.  750 

 751 

3.3 Insights on size-dependent submicron hygroscopicity parameter and aerosol composition from inverse 752 

CCN closure 753 

754 

Figure 7. Seasonal probability distributions of the hygroscopicity parameter (κ) for the Aitken and accumulation modes. Each 755 
panel corresponds to one season: spring, summer, autumn, and winter. Distributions are shown separately (see legends) for 756 
Nelder–Mead optimization and DREAM-MCMC. 757 
 758 
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For the optimized compositions CCN spectra (𝜅୭୮୲ and 𝜅୑େ୑େ), the seasonal probability distributions of the 759 

corresponding hygroscopicity parameters for Aitken and accumulation modes are shown in Fig. 7. Both 760 

optimization approaches produce almost identical κ distributions for the accumulation mode with median 761 

hygroscopicity values around 0.2-0.3. In contrast, the Aitken mode exhibits a distinct bimodality in both cases. 762 

The Nelder–Mead optimization produces a sharp peak at 𝜅୅୧୲୩ୣ୬ ≈ 0.1, whereas the DREAM–MCMC distribution 763 

shows a lower but broader peak slightly above 0.1 – which would be in line with the expected hygroscopicities of 764 

the BVOC oxidation products present at the measurement site. A secondary peak generally appears between 765 

𝜅୅୧୲୩ୣ୬ = 0.5 and 0.6, with 𝜅୑େ୑େ consistently shifted toward the lower end of this range. The exception is winter, 766 

where the second peak is more diffuse in both methods. The lower peak in DREAM–MCMC compared to Nelder–767 

Mead reflects differences in how the two methods balance CCN overprediction. Since ୠ୳୪୩ systematically 768 

overestimates CCN, the Nelder–Mead optimization compensates by assigning the Aitken mode a much lower 769 

hygroscopicity (higher organic fraction). When size-distribution parameters are also allowed to vary, as in 𝜅୑େ୑େ, 770 

part of this CCN overprediction can instead be explained by variability in size distribution lognormal parameters. 771 

Consequently, the smaller κ peak is reduced in height, while the overall distribution remains consistent with the 772 

Nelder–Mead method. In general, the probability distribution of Aitken and accumulation mode hygroscopicity 773 

parameter from both methods indicates that the Aitken mode can be predominantly organic on a significant 774 

number of instances, with most values of κ clustering around typical organic κ of 0.1. This significant difference 775 

in hygroscopicity between the two modes exceeds the typical variability in hygroscopicity values observed for 776 

various soluble chemical components, suggesting indeed distinct chemical compositions and water uptake 777 

properties of the two modes. Overall, in 𝜅୭୮୲,the variability between seasons is similar for both the Aitken and 778 

accumulation mode (see Fig. S17), while in 𝜅୑େ୑େ the Aitken mode has a significantly higher variability in all 779 

seasons. In autumn and winter, the MCMC distributions resemble those from the Nelder-Mead, suggesting a clear 780 

organic enrichment in the Aitken mode as compared with the accumulation mode. For the spring and summer 781 

however, the distributions of Aitken mode hygroscopicities are more bimodal. The cases where a clear organic 782 

enrichment in the Aitken mode is predicted are characterized by relatively high Aitken mode particle number 783 

concentrations and large modal diameter. These results are generally in line with previous studies reporting 784 

differences in the hygroscopicity of Aitken and accumulation mode-sized particles (Hämeri et al., 2001; 785 

Paramonov et al., 2015). 6Because the Aitken mode hygroscopicity distributions are bimodal, a single central 786 

metric (e.g., the median) can under-represent the distribution. Even so, both approaches reveal some common 787 

seasonal patterns: Aitken κ is higher in spring and summer, and lower in autumn and winter. In the darker seasons, 788 

reduced/absent NPF events and weaker local aerosol production make the accumulation mode more frequently 789 

the more hygroscopic mode, while in spring–summer Aitken κ more often approaches or exceeds accumulation 790 

values. Accumulation-mode κ remains comparatively stable, typically between 0.2–0.3, with the highest values 791 

in winter. This seasonal variability coincides with enhanced summertime photochemistry, which drives new 792 

Aitken particle formation from organic vapors and subsequent aging that increases the oxygen-to-carbon ratio of 793 

organics, thereby raising their hygroscopicity (Jimenez et al., 2009; Heikkinen et al., 2021). 794 

Because a bimodal distribution in κ was observed with the MCMC optimization, we separated 795 

the optimized data into two groups: cases where 𝜅୅୧୲୩ୣ୬ > κaccumulation and cases where 𝜅୅୧୲୩ୣ୬ < κaccumulation. The 796 

mean optimized compositions for these groups are shown in Fig. 8, while the corresponding medians are given in 797 

Tables S4-S7. In the Nelder–Mead optimization, 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ occurs in 23% of cases, compared to 56% 798 
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with the MCMC method. Conversely, 𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ is found in 77% of cases with Nelder–Mead and 799 

46% with MCMC (see Table S3 and S4 for medians) in comparison with the bulkS8). Despite these differences 800 

in frequency, the median κ values shows remarkable agreement between the two approaches (see Table S8). For 801 

𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, the median GMD୅୧୲୩ୣ୬, GMDୟୡୡ୳୫୳୪ୟ୲୧୭୬, 𝜅୅୧୲୩ୣ୬, and 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ are 30–32 nm, 133–802 

137 nm, 0.5, and 0.2, respectively. In contrast, for 𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, they are 37–43 nm, 137–164 nm, 0.1, 803 

and 0.27. Thus, cases with higher Aitken κ are characterized by smaller Aitken GMD and occurred throughout 804 

the year but were much more frequent in summer. This feature has also been reported in previous studies from 805 

various environments, where κ increased at diameters typical of Aitken and nucleation mode (particularly below 806 

60–70 nm) and was often — but not always — associated with NPF events (Lance et al., 2013; Spiteri et al., 2023; 807 

Massling et al., 2023). For 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, the Aitken mass is consistently lower than in the 𝜅୅୧୲୩ୣ୬ < 808 

𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ case (see Fig. 8), reflecting the availability with condensable vapors with low enough volatility to 809 

overcome the Kelvin barrier and condense on the Aitken mode. In both optimization methods, the composition 810 

from the ACSM, with corresponding differences in hygroscopicity shown in Fig. 7. Our findings suggest, in line 811 

with previous studies from patterns within each group are very similar, just as with the κ values (Fig. 8). For cases 812 

where 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, the Nelder–Mead predicted the Aitken mode to be almost entirely inorganic, while 813 

DREAM-MCMC suggested slightly more organic material but still mostly inorganics. In these cases, both 814 

approaches agree that the Aitken mode had the lowest organic fraction in winter and spring. For 𝜅୅୧୲୩ୣ୬ < 815 

𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, our results, consistent with previous studies at SMEAR II (e.g., Allan et al., 2006), indicate that the 816 

accumulation mode containscontained a higher mass fraction oflarger inorganic components, resulting in 817 

greaterfraction, leading to higher hygroscopicity compared to the Aitken mode. Such a difference has also been 818 

observed in other similar environments (Timonen et al., 2008; Hao et al., 2013; Levin et al., 2014) as well as in 819 

urban Beijing (see also Wu et al., 2016). This disparity in mass fractions of inorganics between the two modes is 820 

most pronounced in winter (for example in Nelder-Mead optimization, the relative enrichment in Aitken vs. 821 

accumulationAccumulation model mass fraction being ~156 %) and autumn (the relative enrichment of ~106 %), 822 

i.e. the periods when the distinction between Aitken and accumulation modes is most evident (see Fig. 34). This 823 

seasonal variation reflects shifts in aerosol sources and processes, and the results are generally in line with what 824 

is known. During summer, biogenic SOA is a major source of particulate matter in Hyytiälä (Heikkinen et al., 825 

2021; Yli-Juuti et al., 2022). In contrast, autumn and winter are characterized by a higher mass fraction (and 826 

concentration) of inorganic aerosol chemical components (Heikkinen et al., 2020), which highlights the 827 

prevalence of transported (Riuttanen et al. 2013) and cloud-processed particles (Isokääntä et al., 2022). Cloud 828 

processing leads to both the observed bimodal PNSD (Fig. 3) and a higher sulfate abundance in the accumulation 829 

mode (e.g., Leitach et al., 1996; Roelofs et al., 1998; Kreidenweis et al., 2003; Wonaschuetz et al., 2012; Ervens 830 

et al., 2018). The difference in relative contribution of chemical species between the Aitken and accumulation 831 

modes also leads to different hygroscopicity (Fig. 7). The density distribution of Aitken and accumulation mode 832 

hygroscopicity indicates that the Aitken mode is predominantly organic, with most values clustering around 0.1, 833 

while the accumulation mode shows a broader distribution, peaking at nearly twice that value or higher. This 834 

significant difference in hygroscopicity between the two modes exceeds the typical variability in hygroscopicity 835 

values observed for various soluble chemical components, highlighting distinct chemical compositions and water 836 

uptake properties of the two modes i.e. the median hygroscopicity parameter κopt is ~ 0.11 in the Aitken mode and 837 

0.22-0.29 in the accumulation mode. Overall, the variability between seasons is larger for the accumulation mode 838 
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(see Fig. 7). The peak in κ occurs in the spring despite the larger contribution of organics to the overall mass. This 839 

is explained by the low abundance of eBC in this seasonAlthough the seasonal differences in κopt are not 840 

pronounced (median Aitken κ is 0.12 in summer and 0.11 in winter), the Aitken mode has its lowest κ values 841 

during autumn and winter, whereas spring and summer display more frequent occurrences of κ values exceeding 842 

0.1 (see Fig. 7), leading to the highest observed values. This seasonal variability coincides with the onset of 843 

photochemical reactions during summer, which significantly contribute to the formation of Aitken particles 844 

through organic vapor condensation. During the sunlit months, the organic aerosol undergoes photochemical 845 

aging, leading to a higher oxygen-to-carbon ratio of the aerosol (Heikkinen et al., 2021), and potentially an 846 

increased organic aerosol hygroscopicity (Jimenez et al., 2009).  847 

 848 

 849 
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 850 

Figure 6: (a)8. Seasonal mean mass fractions of organic, sulfate, nitrate, inorganic, and black carbon, and ammonia 851 
observed by the ACSM and aethalometer. (b) Seasonal optimized mean mass fractions of components in Aitken and 852 
Accumulation modes plotted against different seasons.from Nelder-mead (NM) and DREAM-MCMC optimizations. Panels 853 
show cases where 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ (a: NM, c: MCMC) and 𝜅୅୧୲୩ୣ୬ < 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬, (b: NM, d: MCMC). The stacked 854 
bars represent the contributions of organic (green), ammonium sulfate (maroon), and black carbon (black) components within 855 
each mode. Aitken mode is depicted with solid colors, while Accumulation mode is represented with slightly faded colors. 856 
The width of the bars has been scaled to the mass concentration in the corresponding mode. 857 

 858 

 859 
Figure 7: Seasonal distribution of hygroscopicity parameter () for Aitken and accumulation modes. Each panel 860 
represents the probabilities of  values for a specific season: spring, summer, autumn, and winter. The histograms are 861 
plotted for the Aitken mode (turquoise) and the accumulation mode (deep pink).  862 
 863 
Overall, the median contribution from Aitken mode to the NCCN is < 1 % for 0.1 % SS, 3 % for 0.2 % SS, 6 % for 864 

0.3 % SS, 15 % for 0.5 % SS, and 32 % for 1.0 % SS – being however highly variable for the whole duration of 865 

the time series.  866 

 867 

In our analysis, we assumed values of organic properties (κ and density) based on past studies, as mentioned in 868 

Table 1. However, to discard any possibility of major changes in the results, we performed additional inverse-869 
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closure studies allowing organic properties to vary in several ways, as discussed in Supplementary note 11. These 870 

sensitivity tests showed that two of the optimization approaches led to physically unrealistic organic densities 871 

(∼1000 kg m⁻³ and > 2500 kg m⁻³), despite achieving similar NRMSEs. In contrast, the method keeping the size 872 

distribution to the median values observed during CCN cycles produced physically reasonable 𝜌୭୰୥ (∼1200–1300 873 

kg m⁻³) and 𝜅୭୰୥ (0.06–0.08), consistent across seasons – also in the light of typical hygroscopicity values of 874 

organic molecules such as those resulting from BVOC oxidation (e.g. Petters and Kreidenweis, 2007; Siegel et 875 

al., 2022). This confirms that the assumed organic properties used in the main analysis are robust and do not 876 

significantly bias the optimized results. 877 

4 Conclusions 878 

 879 

In this study, we integrated long-term chemical composition measurements from an Aerosol Chemical Speciation 880 

Monitor (ACSM) with Cloud Condensation Nuclei (CCN) observations and aerosol number size distributions. 881 

This resulted in ~6,200 concurrent two-hour resolution data points. We used this dataset to evaluate threefour 882 

methods for predicting CCN concentrations based on κ-Köhler theory across varying supersaturations, beginning 883 

with two forward closure approaches. The first, a 'bottom-up' method, used ACSM and aethalometer data to 884 

estimate the bulk hygroscopicity parameter (κbulk)𝜅ୠ୳୪୩) for predicting CCN concentrations, while the second 885 

approach (κ0.18)𝜅଴.ଵ଼) assumed a constant κ value of 0.18, as recommended by Sihto et al. (2011), throughout the 886 

study period. We observed that the overall median activation dry diameters (Dact) ranged from 54 nm (SS = 1%) 887 

to 224 nm (SS = 0.1%) nm across different months, suggesting that Aitken mode particles contribute to the CCN 888 

numbers at this location – besides the well-known contribution of the accumulation mode (Pierce et al., 2012 and 889 

references therein). Therefore, the possibility of different chemical composition/hygroscopicity between Aitken 890 

and accumulation modes (for e.g. Broekhuizen et al., 2006) motivated us to use an inverse closure technique that 891 

involved an optimization algorithm (Nelder-Mead in the Python SciPy library and DREAM-MCMC) to determine 892 

the optimal modal hygroscopicity (κopt)𝜅୭୮୲ and 𝜅୑େ୑େ) by minimizing the Normalized Root Mean Square Error 893 

(NRMSE)obtaining a closure between observed and predicted CCN concentrations.  894 

CCN concentrations at Hyytiälä exhibit clear seasonal variations, peaking in summer and 895 

reaching their lowest in winter, reflecting overall particle number trends. Our closure calculations generally agree 896 

reasonably well with observed CCN concentrations, with Pearson correlations exceeding 0.8. However, all of the 897 

applied methods tend to overpredict CCN concentrations to varying degrees. Among  As expected, the inverse 898 

closure methods, ୭୮୲ performs perform the best, as expected, especially at higher supersaturations (0.3%, 0.5% 899 

and 1.0%), where both accumulation and Aitken mode particles can activate, highlighting the importance of 900 

accounting for the size-dependent nature of aerosol composition for more accurate CCN predictions. At a 901 

supersaturation of 0.3%, which is typical average SSmax for stratocumulus clouds, the different methods show 902 

similar NRMSE (Normalized Root Mean Squared Error) and GMB (Geometric Mean Bias). Overall, the GMB 903 

remains well below 1.3 for both ୭୮୲ 𝜅୑େ୑େ, 𝜅୭୮୲ and ଴.ଵ଼𝜅଴.ଵ଼ across all supersaturations (see Table S1 in 904 

supplementaryS2), except at 0.1%. The best agreement is observed at 0.2% and 0.3% supersaturations, where the 905 

GMB is around 1.1 for all methods., except for 𝜅୑େ୑େ, for which the best agreement occurs at 0.5% and 1.0%. 906 

These results suggest that most of the overprediction at higher supersaturations where the Aitken mode activates, 907 

can be reduced if variability in the lognormal parameters of the size distribution is also considered. However, at 908 
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a supersaturation of 0.1%, the use of size-dependent composition i.e. ୭୮୲𝜅୭୮୲ doesn’tand 𝜅୑େ୑େ  does not 909 

significantly reduce the error. This suggests that the primary source of the error at this supersaturation arises from 910 

another factor — most likely, the substantial measurement uncertainty of the CCN counter at low supersaturation, 911 

as previously discussed (see Sect. 3.2). 912 

Our study highlights significant 913 

Both inverse-closure methods reveal clear differences in aerosol composition and hygroscopicity 914 

between the Aitken and accumulation modes. The accumulation mode has a higher mass fraction of inorganics, 915 

leading to greater hygroscopicity compared to the Aitken mode. During summer, biogenic SOA dominates the 916 

overall sub-micron aerosol composition, while autumn and winter are characterized by higher concentrationsThe 917 

Aitken mode shows a bimodal distribution in κ, with one peak near 0.1 and another between 0.5 and 0.6, whereas 918 

that of  accumulation mode is unimodal with κ values centered around 0.2-0.3. Based on this bimodality, we 919 

divided the optimized data into two groups: cases with 𝜅୅୧୲୩ୣ୬ > 𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬ and those with 𝜅୅୧୲୩ୣ୬ < 920 

𝜅ୟୡୡ୳୫୳୪ୟ୲୧୭୬. The former occurs more often in summer and is associated with a smaller Aitken-mode GMD 921 

compared to the accumulation mode. The occurrence of high κ in the Aitken mode appears to be linked—though 922 

not exclusively—to new particle formation (NPF) but limited growth. Overall, κ in the accumulation mode remains 923 

relatively stable between 0.2 and 0.3, while κ in the Aitken mode varies widely from 0.1 to 0.6. This indicates that 924 

most seasonal changes in aerosol hygroscopicity occur in the Aitken mode. In all cases, summer has comparatively 925 

more organics as biogenic secondary organic aerosols formation dominate among all aerosol sources, whereas 926 

autumn and winter show higher fractions of inorganic components due to transported and cloud-processed 927 

particles. The Aitken mode has the lowest κ values in winter, while summer features higher Aitken mode 928 

hygroscopicity (lowest accumulation mode κ) possibly due to decreasing BC content which was not accounted for 929 

in the calculations. The. 930 

In the Nelder-Mead optimization, the relative difference in the median Aitken and accumulation κ is most 931 

pronounced in winter (~162 %), followed by spring (~134 %), autumn (~116 %) and summer (~85 %) reflecting 932 

seasonal shifts in aerosol sources and processes. These seasonal variations are consistent with known atmospheric 933 

processes, providing confidence in using CCN data to understand mode composition differences. It is notable 934 

however that even the optimized composition does not resolve the over-prediction of the CCN concentrations, 935 

indicating an additional structural error in the theoretical approach or experimental uncertainties that we did not 936 

account for. 937 

The findings in this study are in line with previous research highlighting distinct differences 938 

between Aitken and accumulation mode compositions at Hyytiälä and similar environments (Hao et al., 2013). 939 

Previous studies have also demonstrated that chemical composition and hygroscopicity parameter are size-940 

dependent (Lance et al., 2013; Ray et al., 2023) and accounting for size-dependency improves CCN predictions 941 

(Meng et al., 2014). Specifically, our results indicate that on many occasions, the accumulation mode is enriched 942 

with sulfate, while the Aitken mode is predominantly organic, in agreement with observed size-dependent 943 

chemical compositions using an Aerosol Mass Spectrometer (AMS; Allan et al., 2006). This is furthermore 944 

consistent with Mohr et al. (2019), who found that organic vapors significantly contribute to particle growth in the 945 

Aitken mode. It is notable however that all optimized compositions (𝜅୭୮୲ and 𝜅୑େ୑େ) do not resolve all the over-946 

prediction of the CCN concentration, indicating an additional structural error in the theoretical approach or 947 

experimental uncertainties that we did not account for. If modal or size-resolved κ (in addition to just having bulk 948 
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chemical composition) were available, our approach could be extended to derive more detailed size-dependent 949 

chemical composition–for example, size-dependent organic hygroscopicity–while also helping to constrain κ 950 

values by identifying those that best reproduce observed CCN concentrations. 951 

The AMS is well-suited for measuring the size-dependent composition of aerosol particles but is 952 

less effective for Aitken particles due to their relatively small size and low mass. Similarly, ACSM is biased 953 

towards larger particles. In contrast, a CCN counter can measure the growth of small particles to CCN size at high 954 

supersaturations, including Aitken particles. Given that the particle growth to CCN size depends on both size and 955 

chemistry, observed CCN concentrations are a valuable tool for inversely estimating the chemical composition of 956 

Aitken particles. Our study uses this approach, leveraging routine monitoring instruments to estimate size-957 

dependent composition; with the inverse closure method it takes only a few seconds to determine the composition 958 

of Aitken and accumulation mode particles for a given time. It should be noted, however, that uncertainties in 959 

CCN observations impact the results, as accurate CCN measurements are crucial for size-dependent composition 960 

estimates. Moreover, the aerosol particle size distribution should remain relatively stable during a CCN 961 

measurement cycle, as the accuracy of predicting CCN spectra is more sensitive to variations in size distribution 962 

than to changes in chemical composition (see e.g. Lowe et al., 2016). In the future, the method applied here should 963 

be tested at other locations with varying aerosol chemical compositions. – also to mitigate the inherent 964 

representativity issues related to using data from a single station. Furthermore, the approach for optimizing the 965 

closure (which still left room for improvement) using size-resolved composition should be compared and 966 

contrasted with other approaches, e.g. accounting for potential structural issues with the kappaκ-Köhler model 967 

such as the treatment of the surface tension or volatility of the particle components (see e.g. Lowe et al., 2019; 968 

Heikkinen et al., 2024). 969 
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