
 
Reviewer #3: 
 
Reviewer Report on Manuscript: "Optimizing CCN predictions through inferred modal aerosol 
composition – a boreal forest case study"  
 
The manuscript provides a thorough and insightful exploration of aerosol-cloud interactions, focusing 
specifically on cloud condensation nuclei (CCN) closure studies in boreal forest environments. Using 
a robust, multi-year dataset from SMEAR II (2016–2020), the authors employ forward and inverse 
modelling approaches to evaluate the impact of size-dependent chemical composition and 
hygroscopicity on CCN predictions. The study addresses key uncertainties in climate modelling and 
attempts to constrain modal aerosol composition using CCN observations — an approach with 
significant scientific merit. The manuscript presents an extensive dataset of ~6,200 concurrent ACSM, 
CCN and size distribution observations from Hyytiälä, Finland. The manuscript evaluates three 
methods for predicting CCN concentrations and explores seasonal variability in aerosol hygroscopicity 
and composition, with a particular focus on the differences between the Aitken and accumulation 
modes. This work addresses a significant challenge in the field of aerosol-cloud-climate research, 
particularly in the context of future scenarios involving declining anthropogenic emissions and 
increased contributions from natural aerosol sources. The authors implement a novel inverse closure 
technique using optimization to estimate mode-specific κ values. This comprehensive study is highly 
relevant to the atmospheric sciences community.  
The study is well structured, with a clear methodology and appropriate referencing to prior work. 
However, there are some areas where the clarity could be improved, potential ambiguities could be 
resolved and minor corrections could be made to enhance the quality of the manuscript. The dataset is 
extensive and the topic is timely. Nevertheless, clarification or expansion of several methodological and 
interpretational aspects is required before the manuscript can be considered for publication.  
 
We thank the reviewer for his/her kind attention to the innovative nature of this work and considering 
it timely. In the revised manuscript we have added more detail on the methods and, in particular, further 
improved the inverse closure methodology by introducing an approach based on the DREAM-MCMC 
algorithm, which allows also accounting for the variability of the particle number size distribution 
during the 2-h long CCN measurement cycle. The results from this more sophisticated approach 
improve the closure further and corroborate the conclusion on size-dependent hygroscopicity as a key 
explaining factor for obtaining successful closure. Based on comments and suggestion from other 
reviewers too, we would like to add few more analysis to the revised manuscript and we have attempted 
to mention the changes appropriately in this document. Just for clarity, please note that 𝜅𝜅opt refers to 
the method where we use Nelder–Mead optimization, focusing only on the optimization of the modal 
chemical composition. In the revised manuscript, we have included additional analyses, the most 
significant of which involves DREAM-MCMC simulations. In this approach, referred to as 𝜅𝜅MCMC, we 
not only optimize the modal chemical composition but also account for the variability of the size-
distribution lognormal parameters during the optimization process. 
 
 
Major Comments  
1. The optimization of size-resolved composition is central to this study, yet the method remains a bit 
opaque. It is not very clear: What parameters are varied during optimization? Are any physical 
constraints or priors imposed (e.g., known hygroscopicity bounds for organics/inorganics)? Is the 
optimization performed independently per time point, season, or SS level?  
 
We agree that the methods section was a bit unclear and lacked some details. As also pointed out by 
other reviewers, we have now revised the text to improve clarity and add more details. For example, we 
have included new sections: 2.2.3.1, where the Nelder–Mead method is explained in detail and 2.2.3.2, 
which describes the DREAM-MCMC approach:  
 
“2.2.3.1 Nelder-Mead  



The Nelder–Mead simplex algorithm (Gao and Han, 2012) is suitable for both one-dimensional and 
multidimensional optimization problems and is relatively fast in our application. In our case, we need 
to optimize only one variable (the fraction of total organic mass in Aitken mode, Morg1) and the 
remaining masses can be derived from it through mass closure constraints. For each time step, the 
optimization begins with an initial simplex of three trial values of Morg1, and the NRMSE is evaluated 
at each point. The worst-performing value is reflected  across the midpoint of the better two to explore 
whether a more accurate estimate can be found in the opposite direction. If this improves the fit, the 
algorithm attempts an expansion, pushing further in the same direction. If reflection does not improve 
the result, a contraction step is taken to move closer to the midpoint. If neither reflection nor contraction 
improves the outcome, the simplex undergoes shrinkage, tightening around the best-performing 
solution to focus the search locally. This process continues until the optimization converges, resulting 
in an estimate of Morg1 that minimizes the NRMSE between modeled and observed CCN concentrations. 
Note that Nelder–Mead works well for simple, low-dimensional problems like optimizing just one 
parameter (e.g., morg1), but it starts to struggle as the number of variables increases and have a tendency 
for converging to local minima. Hence, in the inverse closure calculations using the Nelder-Mead 
algorithm we assumed the particle number size distribution and chemical composition to stay constant 
throughout the CCNc measurement cycle. 
 
2.2.3.2 DREAM-MCMC 
In order to assess the importance of the variability of the bimodal size distribution parameters within 
each CCN cycle, we conduct a second inverse-closure experiment with the number concentration and 
mean diameter for both modes as additional optimization parameters (simultaneously with Morg1 ). Since 
optimizing both size distribution parameters and composition introduces a more complex and higher-
dimensional parameter space, and we are interested parameter uncertainty, we use a Bayesian inference 
approach to estimate the parameter posterior distributions. Specifically, we chose the DiffeRential 
Evolution Adaptive Metropolis Markov Chain Monte Carlo (DREAM-MCMC) algorithm (Vrugt et al. 
2009), which has been previously used for inverse CCN-closure studies in idealized cases (Partridge et 
al. 2012) and is available in the Python PINTS library (Clerx et al. 2019). DREAM-MCMC is an 
efficient MCMC method (Metropolis et al. 1953, Gelfand et al. 1990) that evaluates multiple Markov 
chains in parallel and automatically adapts its proposal strategy during sampling, making it particularly 
efficient for correlated, multi-modal problems such as aerosol-cloud microphysical interactions. To 
know more about MCMC and Bayesian inference, please see Supplementary note R5. 

We initialize the MCMC optimization with Cauchy priors for each parameter, centered 
on the median values of the fitted bimodal size distributions for each CCN cycle, specifically, the 
number concentration and geometric mean diameter. For chemical composition we use the median of 
the ACSM observations during each CCN spectrum cycle. The scale value is the smaller of either 1 
(resulting in a Student-t distribution) or the median absolute deviation (MAD) of the observations within 
the given CCN cycle. We constrain the total aerosol mass in each mode to remain within ±10% of the 
total mass observed by the ACSM and aethalometer.  

The priors are truncated to positive values only. We use a heteroskedastic Gaussian 
likelihood function, such that the highest likelihood is typically where the parameters provide the least 
squares fit to the CCN observations. The likelihood is defined as  
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where s is standard deviation of the noise on each output 𝑖𝑖, which we assume is 10% of the CCN 
observations at each supersaturation value. We perform the optimization in a log-transformed parameter 
space, which improves sampler efficiency by normalizing scale differences between parameters. For 
each CCN observation window, we run five chains with 40,000 iterations per chain, of which the first 
15,000 are used as burn-in/adaptation. Up to two chains are discarded if they deviate strongly in central 
tendency after burn-in, and the last 20,000 steps of all accepted chains are then used to calculate 
posterior statistics. Convergence is assessed with the 𝑅𝑅�-statistic (Gelman and Rubin, 1992), using a 
relaxed threshold of 𝑅𝑅� < 2.5  for all five parameters to retain a window in the analysis. The 𝑅𝑅�-statistic 
compares the variance within chains to the variance between chains; values close to 1 indicate well-



mixed, converged chains. We use a relaxed threshold because the 𝑅𝑅�-statistic is quite conservative and 
because our problem has high correlation between parameters and the potential for multi-modality if 
there are multiple distinction aerosol populations within one window, which is penalized by the 𝑅𝑅�-
statistic but realistic in this case. Overall, 19% of windows are discarded due to high 𝑅𝑅�-statistic values. 
Even with the relaxed threshold, some windows are excluded where the MCMC identifies reasonable 
parameter values and CCN spectra but the chains fail to mix well and we cannot guarantee the posterior 
is well explored.  
 
2.2.2 Metrics for assessing variability of lognormal size distribution parameters during CCN 

cycle 
Unlike the Nelder–Mead optimization method, which uses the median of the size distribution during 
the CCN cycle period, the DREAM-MCMC setup requires the variability of the size distribution as 
input. To account for this, we calculate the median absolute deviation (MAD) of each lognormal 
parameter for every CCN cycle observation. The overall distribution of MAD values for the full 5-year 
dataset is presented in Fig. R5.  MAD for individual CCN cycle period is calculated as follow: 
Let Ic = [ 𝑡𝑡𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑡𝑡𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒) be the time window for CCN cycle c; For a given lognormal parameter, k (among 
geometric mean diameter (GMD), geometric standard deviation (SD) and number concentration in each 
mode; so total 6 parameters), collect the samples inside this window as {𝑥𝑥𝑘𝑘 (t): t ∈ Ic} = {𝑥𝑥𝑘𝑘,1, 𝑥𝑥𝑘𝑘,2, …, 
𝑥𝑥𝑘𝑘,𝑛𝑛𝑐𝑐}. 
Median in the interval is 𝑚𝑚𝑘𝑘(c): 
 
 
 median{𝑥𝑥𝑘𝑘,1, 𝑥𝑥𝑘𝑘,2, …, 𝑥𝑥𝑘𝑘,𝑛𝑛𝑐𝑐}  

Median Absolute Deviation (MAD) in interval c: 

 median|𝑥𝑥𝑘𝑘,𝑖𝑖 – 𝑚𝑚𝑘𝑘(𝑐𝑐)|, where i varies from 1 to 𝑛𝑛𝑐𝑐  
 
 

  

” 
“Supplementary note R5 
In this section we give a short summary of Bayesian inference and MCMC, then describe the detailed 
setup of the DREAM-MCMC algorithm used in this study and provide some summary statistics. For a 
comprehensive review of Bayesian methods, see Gelman et al. (2013). Bayesian inference is a rigorous 
method for quantifying uncertainty in model parameters, using probability statements. Unknown 
parameters are treated as random variables with some joint posterior probability distribution, which can 
be written using Bayes law as: 

𝑝𝑝(𝜃𝜃|𝑌𝑌) =  
𝑝𝑝(𝜃𝜃)𝐿𝐿(𝑌𝑌|θ)

𝑝𝑝(𝑌𝑌)
 

where 𝑝𝑝(𝜃𝜃) is the prior distribution which encompasses what is known about the parameters prior to 
observing any data, 𝐿𝐿(𝑌𝑌|θ) is the likelihood function which measures how well the model fits observed 
data, and  

𝑝𝑝(𝑌𝑌) =  �𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑌𝑌|θ)dθ 

is the marginal distribution of Y, which represents the probability of observing Y given all possible 
parameter values 𝜃𝜃. The result of conditioning the prior distribution with some observations is the 
posterior probability distribution 𝑝𝑝(𝜃𝜃|𝑌𝑌), which represents the updated probability of the model 
parameters. Bayesian inference is therefore a process of creating a probability model and iteratively 
updating that model based on some observations, resulting in a best estimate of the parameters and 
knowledge about their uncertainty, sensitivity, and correlation (in the case where 𝜃𝜃 is vector-valued). 
 
Monte Carlo Markov Chain (MCMC) simulations are a methodology for sampling from posterior 
distributions. Generally, they involve repeatedly and sequentially sampling 𝜃𝜃 such that each new draw 



depends only on the previous sample and therefore forms a Markov chain, and correcting those draws 
so that the chain converges to the target distribution. Many different algorithms have been proposed for 
generating and correcting chain samples. Here we use the DiffeRential Evolution Adaptive Metropolis 
Markov Chain Monte Carlo (DREAM-MCMC) algorithm (Vrugt et al. 2009). This algorithm runs 
multiple chains simultaneously and adaptively updates the proposal distribution using a randomized 
subset of the chains’ joint history. It also supports large proposal jumps and outlier rejection during the 
initial burn-in phase, which accelerate convergence. This type of self-adaptive evolutionary strategy is 
particularly well suited to heavy-tailed or multi-modal posteriors, such as in this study where different 
combinations of aerosol chemical composition and size distributions parameters could result in similar 
CCN spectra. ” 
 
“Supplementary note R6 
Figure R5 shows the probability density of median absolute deviation, MAD values fitted with chi-
squared distributions for both the Aitken and accumulation modes. The results indicate that the 
variability is generally small, with distributions strongly centered close to zero and narrow tails. The 
fitted chi-squared parameters suggest that fluctuations in diameter and sigma are low, whereas number 
concentrations show comparatively larger spread. Overall, this analysis confirms that the derived 
parameters remain fairly stable within CCN cycle period, with occasional variability in particle number 
concentration. 

 
Figure R5. Chi-squared probability density functions (PDFs) fitted to the median absolute deviation (MAD) values of aerosol 
size distribution parameters calculated with respect to median of corresponding parameters during CCN cycle. The data 
represent entire 5 years period between 2016 to 2020. Panels show Aitken mode (top row) and accumulation mode (bottom 
row) MADs for mode diameter, geometric standard deviation (σ), and particle number concentration. The fitted parameters 
(degrees of freedom, ν, and scale) are reported in the legends. The fits are constrained to non-negative values to reflect the 
definition of MAD.” 
 
 
We have also added a flowchart (see Fig. R6) to give a clearer overview of the workflow:  
 
 



 
Figure R6. Workflow of the two inverse closure methods: the Nelder–Mead algorithm (left) and the DREAM-MCMC (right) 
approaches. Bimodal fitting - representation of the aerosol size distribution as two lognormal modes. Harmonized size 
distribution - size distribution data harmonized to CCN data; data thus obtained has 2-hour resolution. Unharmonized size 
distribution - raw size distribution data with 10 min resolution. Scaling - adjustment of number concentrations of reconstructed 
lognormal size distribution from bimodal parameters to match observations. Mass-constraint - conservation of total aerosol 
mass (sum of mass in two modes) of each species during optimization. NRMSE - normalized root mean square error, a metric 
of model–observation agreement. MAD - median absolute deviation, used to quantify variability in size distributions during 
CCN spectrum cycle period. Prior distribution - initial parameter ranges provided to the MCMC sampler. Log-likelihood - 
statistical measure of consistency between observed and modeled CCN spectra. 

 
2. While the optimized CCN predictions agree better with observations, the inferred composition 
remains unvalidated. Have the authors compared the mode-specific organic/inorganic fractions with 
any available independent chemical data (e.g., AMS, offline filters, or PTR-MS)? Without this, there 
could be a risk of overfitting the CCN closure. Furthermore, the large seasonal variability in 
composition (e.g., +156% inorganic in winter) should be discussed in the context of known aerosol 
processes—such as wintertime transport, boundary layer dynamics, or nucleation suppression.  
 
Thanks for this insightful comment. We agree that there is indeed a risk of overfitting if uncertainties 
in CCN and size distribution measurements are not properly accounted for. These uncertainties alone 
could explain part of the overprediction when bulk composition is used. However, earlier studies (e.g., 
Paramonov et al., 2015) have shown significant differences between the hygroscopicity parameters of 
Aitken and accumulation modes. Since hygroscopicity is strongly linked to chemical composition, this 
provided the main motivation for our study. 
 
An encouraging outcome is that our approach does not mitigate the overprediction entirely leaving 
space for further error mitigation when uncertainty in CCN and size distribution measurement are 
considered. The improvement is especially clear at the highest supersaturations (SS), while at 0.1% SS 
the improvement is smaller. In that low-SS case, the residual overprediction is likely due more to 



instrument-related factors (such as flow rate and low supersaturation conditions) rather than the 
assumption of bulk vs. size-segregated composition. 
 
3. The improvement is mainly observed above 0.5% supersaturation. The authors should also discuss 
the implications at low SS and whether the optimization technique could be adapted or constrained to 
better handle this regime.  

Thank you for this insightful comment. In our study, the optimization mainly targets uncertainties in 
size-resolved chemical composition, which tend to affect CCN activation more at higher 
supersaturations (SS > 0.5%). This is because the ACSM measurements primarily represent the 
accumulation mode particles that activates at lower SS (< 0.5%). As a result, CCN predictions based 
on bulk ACSM composition already match observations quite well in the low-SS regime (except at 
0.1%), leaving limited room for further improvement in this regime through composition optimization 
there. At higher supersaturations, however, the Aitken mode starts to contribute more significantly, and 
this is where the size-dependence of the hygroscopicity parameter (κ) plays an important role. Our 
optimization helps to better capture this variability, leading to improved CCN closure above 0.5% SS.  

4. The optimization suggests that accumulation mode particles are more enriched in inorganics while 
the Aitken mode is more organic-richer. This is plausible, but a more mechanistic explanation is needed. 
For example: Is this pattern consistent with condensation of oxidized VOCs on smaller particles and 
aqueous-phase processing on larger particles? How does this compare with seasonal biogenic activity 
or anthropogenic influence? Including a more detailed interpretation supported by prior literature 
would strengthen the conclusions.  
 
Thank you for raising this important point.  As suggested, we have added more recent prior studies (e.g. 
Lance et al., 2013; Spiteri et al., 2023; Massling et al., 2023) while explaining the observations in the 
figures. We have added the following discussion (also in relation to the MCMC results added): 

“For the optimized CCN spectra (κopt and κMCMC), the seasonal probability distributions of the 
corresponding hygroscopicity parameters for Aitken and accumulation modes are shown in Fig. R7. 
Both optimization approaches produce almost identical κ distributions for the accumulation mode. In 
contrast, the Aitken mode exhibits a distinct bimodality in both cases. The Nelder–Mead optimization 
produces a sharp peak at κAitken ≈ 0.1, whereas the DREAM–MCMC distribution shows a lower but 
broader peak slightly above 0.1 – which would be in line with the expected hygroscopicities of the 
BVOC oxidation products present at the measurement site. A secondary peak generally appears between 
κAitken = 0.5 and 0.6, with κMCMC consistently shifted toward the lower end of this range. The exception 
is winter, where the second peak is more diffuse in both methods. The lower peak in DREAM–MCMC 
compared to Nelder–Mead reflects differences in how the two methods balance CCN overprediction. 
Since κbulk systematically overestimates CCN, the Nelder–Mead optimization compensates by 
assigning the Aitken mode a much lower hygroscopicity (higher organic fraction). When size-
distribution parameters are also allowed to vary, as in κMCMC, part of this CCN overprediction can 
instead be explained by variability in size distribution lognormal parameters. Consequently, the smaller 
κ peak is reduced in height, while the overall distribution remains consistent with the Nelder–Mead 
method. In general, the probability distribution of Aitken and accumulation mode hygroscopicity 
parameter from both methods indicates that the Aitken mode can be predominantly organic on a 
significant number of instances, with most values of κ clustering around typical organic κ of 0.1. This 
significant difference in hygroscopicity between the two modes exceeds the typical variability in 
hygroscopicity values observed for various soluble chemical components, suggesting indeed distinct 
chemical compositions and water uptake properties of the two modes. Overall, in κopt,the variability 
between seasons is similar for both the Aitken and accumulation mode (see Fig. R9), while in κMCMC 
the Aitken mode a significantly higher variability in all seasons. In autumn and winter, the MCMC 
distributions resemble those from the Nelder-Mead, suggesting a clear organic enrichment in the Aitken 
mode as compared with the accumulation mode. For the spring and summer however, the distributions 
of Aitken mode hygroscopicities are more bimodal. The cases where a clear organic enrichment in the 



Aitken mode is predicted are generally characterized by relatively high Aitken mode particle number 
concentrations and large modal diameter – in line with the explanation above.     

These results are generally in line with previous studies reporting differences in the hygroscopicity of 
Aitken and accumulation mode-sized particles (Hämeri et al., 2001; Paramonov et al., 2015). Because 
the Aitken mode hygroscopicity distributions are bimodal, a single central metric (e.g., the median) can 
under-represent the distribution. Even so, both approaches reveal some common seasonal patterns: 
Aitken κ is generally higher in spring and summer and lower in autumn and winter. In the darker 
seasons, reduced/absent new particle formation (NPF) events and weaker local aerosol production make 
the accumulation mode more frequently the more hygroscopic mode, while in spring–summer Aitken 
κ more often approaches or exceeds accumulation values. Accumulation-mode κ remains comparatively 
stable, typically between 0.2–0.3, with the highest values in winter. This seasonal variability coincides 
with enhanced summertime photochemistry, which drives new Aitken particle formation from organic 
vapors and subsequent aging that increases the oxygen-to-carbon ratio of organics, thereby raising their 
hygroscopicity (Jimenez et al., 2009; Heikkinen et al., 2021). 

 

Figure R7. Seasonal probability distributions of the hygroscopicity parameter (κ) for the Aitken and accumulation modes. 
Each panel corresponds to one season: spring, summer, autumn, and winter. Distributions are shown separately (see legends) 
for Nelder–Mead optimization and DREAM-MCMC. 
 
 

 

Figure R8. Seasonal mean mass fractions of organic, inorganic, and black carbon components in Aitken and Accumulation 
modes from Nelder-mead (NM) and DREAM-MCMC optimizations. Panels show cases where κAitken > κAccumulation (a: NM, c: 



MCMC) and κaccumulation > κAitken(b: NM, d: MCMC). The stacked bars represent the contributions of organic (green), 
ammonium sulfate (maroon), and black carbon (black) components within each mode. Aitken mode is depicted with solid 
colors, while Accumulation mode is represented with slightly faded colors. The width of the bars has been scaled to the mass 
concentration in the corresponding mode. 
 

Because a bimodal distribution in κ was observed with the MCMC optimization, we separated the 
optimized data into two groups and examined their size-segregated compositions as presented in Fig. 
R8. Specifically, we considered cases where κAitken > κaccumulation. and cases where κAitken < κaccumulation. 
The mean optimized compositions are shown in Fig. R8, while the corresponding medians are given in 
Tables S3 (see preprint), S4 (see preprint), R7 and R8. In the Nelder–Mead optimization, κAitken > 
κaccumulation occurs in 23% of cases, compared to 56% with the MCMC method. Conversely, κAitken < 
κaccumulation is found in 77% of cases with Nelder–Mead and 46% with MCMC. Despite these differences 
in frequency, the median κ values shows remarkable agreement between the two approaches. For κAitken 
> κaccumulation, the median GMDAitken, GMDaccumulation (Geometric Mean Diameters), κAitken, and κaccumulation 
are 30–32 nm, 133–137 nm, 0.5, and 0.2, respectively. In contrast, for κAitken < κaccumulation, they are 37– 
43 nm, 137–164 nm, 0.1, and 0.27. Thus, cases with higher Aitken κ are characterized by smaller Aitken 
GMD and occurred throughout the year but were much more frequent in summer. This feature has also 
been reported in previous studies from various environments, where κ increased at diameters typical of 
Aitken and nucleation mode (particularly below 60 –70 nm) and was often — but not always — 
associated with new particle formation (NPF) events (Lance et al., 2013; Spiteri et al., 2023; Massling 
et al., 2023). For κAitken > κaccumulation, the Aitken mass is consistently lower than in the κAitken < κaccumulation 

case (see Fig. R8), reflecting the availability with condensable vapors with low enough volatility to 
overcome the Kelvin barrier and condense on the Aitken mode. In both optimization methods, the 
composition patterns within each group are very similar, just as with the κ values (Fig. R7 & R8). For 
cases where κAitken > κaccumulation, the Nelder–Mead predicted the Aitken mode to be almost entirely 
inorganic, while DREAM-MCMC suggested slightly more organic material but still mostly inorganics. 
In these cases, both approaches agree that the Aitken mode had the lowest organic fraction in winter 
and spring. For κAitken < κaccumulation, our results, consistent with previous studies at SMEAR II (e.g., Allan 
et al., 2006), indicate that the accumulation mode contained a larger inorganic fraction, leading to higher 
hygroscopicity compared to the Aitken mode. Such a difference has also been observed in other similar 
environments (Timonen et al., 2008; Hao et al., 2013; Levin et al., 2014) as well as in urban Beijing 
(see also Wu et al., 2016). This disparity in mass fractions of inorganics between the two modes is most 
pronounced in winter (for example in Nelder-mead optimization, the relative enrichment in Aitken vs. 
Accumulation model mass fraction being ~156 %) and autumn (the relative enrichment of ~106 %), i.e. 
the periods when the distinction between Aitken and accumulation modes is most evident (see Fig. 4 in 
the preprint). This seasonal variation reflects shifts in aerosol sources and processes, and the results are 
generally in line with what is known. During summer, biogenic SOA is a major source of particulate 
matter in Hyytiälä (Heikkinen et al., 2021; Yli-Juuti et al., 2022). In contrast, autumn and winter are 
characterized by a higher mass fraction (and concentration) of inorganic aerosol chemical components 
(Heikkinen et al., 2020), which highlights the prevalence of transported (Riuttanen et al. 2013) and 
cloud-processed particles (Isokääntä et al., 2022). Cloud processing leads to both the observed bimodal 
PNSD (Fig. 3) and a higher sulfate abundance in the accumulation mode (e.g., Leitach et al., 1996; 
Roelofs et al., 1998; Kreidenweis et al., 2003; Wonaschuetz et al., 2012; Ervens et al., 2018). ” 



 

Figure R9. Seasonal variability of κ for Aitken and accumulation mode particles derived using Nelder–Mead optimization 
(left) and DREAM–MCMC inversion (right). Boxes represent interquartile ranges, whiskers the 5th–95th percentiles, and 
horizontal lines the medians. 
 
 
Table R7. Median mass fractions by group and optimization method 
 

Groups Organics 
(Aitken) 

Inorganics 
(Aitken) 

Black 
carbon 

(Aitken) 

Organics 
(Accumulati

on) 

Inorganics 
(Accumulatio

n) 

Black carbon 
(Accumulatio

n) 
κAitken > κAccumul

ation (MCMC) 0.11 0.78 0.11 0.69 0.23 0.08 

κAitken > κAccumul

ation (Nelder-me
ad) 

0.0004 0.87 0.12 0.68 0.23 0.087 

κaccumulation > κAi

tken (MCMC) 0.87 0.04 0.09 0.54 0.37 0.088 

κaccumulation > κAi

tken (Nelder-me
ad) 

0.91 0.0001 0.09 0.09 0.58 0.087 

 

Table R8. Median κ and fraction of data points by group and optimization method 
 

Groups Median κAitken Median κaccumulation Fraction of data 
κAitken > κAccumulation (MCMC) 0.47 0.21 0.54 

κAitken > κAccumulation (Nelder-mead) 0.50 0.20 0.23 
κaccumulation > κAitken (MCMC) 0.13 0.27 0.46 

κaccumulation > κAitken (Nelder-mead) 0.11 0.26 0.77 

 

5. While the research questions are outlined at the end of the introduction, the manuscript would benefit 
from explicitly stating the working hypothesis earlier (perhaps around line 55 or 70). Suggest 
rephrasing and condensing the goals for better readability and alignment with subsequent 
methodology.  
 
Thank you for the good suggestion. We have now added the following sentence to the relevant part of 
the Introduction: 



 
“In this study we intend to use a CCN closure study as a means to infer information on size-dependent 
chemical composition of CCN-sized aerosol particles, to enhance bulk chemical composition 
measurements.”   
 
6. The inverse modeling framework is a major novelty in this work but is not adequately introduced in 
terms of assumptions, mathematical implementation, or validation strategies. Clarify what “inverse 
aerosol-CCN closure” means in practical terms—e.g., optimization method, objective function, 
constraints used.  
 
Thanks for this suggestion. As discussed in the response to Comment #1 above, we have added 
substantially more details on the inverse closure methods used to the revised manuscript. 
 
7. The manuscript discusses organic aerosol extensively but does not explain how the complex 
properties of organics (e.g., surface tension depression, limited solubility) are accounted for in κ 
parameterization or closure attempts.  

Thank you for this observation. In our analysis, the κ parameter is used as an effective hygroscopicity 
parameter that implicitly accounts for various influences, including limited solubility and possible 
surface tension effects. However, we do not treat surface tension depression or solubility limitations 
explicitly. It is worth noting that incorporating surface tension depression into the κ-Köhler framework 
would typically reduce the activation diameter, leading to higher predicted CCN concentrations. Given 
that our closure results based on bulk chemical composition already tend to slightly overpredict CCN 
compared to observations, explicitly accounting for surface tension depression would likely worsen the 
agreement. To account for this comment (and similar comments from the other reviewers, we have now 
conducted an inverse closure study testing the sensitivity of the results to the assumptions of organic 
molecular properties. We performed two types of inverse-closure studies: 

a) Using bulk-composition but optimizing only the organic density, ρorg and organic 
hygroscopicity parameter, κorg 

b) Optimizing ρorg and κorg while also accounting for variability of size distribution lognormal 
parameters 

In both tests, κorg was varied between 0.05 and 0.15, while ρorg was varied between 1000 and 3000 kg 
m⁻³. Method (a) resulted in a lower NRMSE but suggested a median optimized organic density of 1000 
kg m⁻³, which seems unrealistic. Method (b) produced a slightly higher NRMSE (0.085 compared to 
0.079 from κMCMC) but yielded a more realistic optimized organic density of 2179 kg m⁻³, with clear 
seasonal variability (minimum around 1750 kg m⁻³ in summer). This is notably higher than the 1500 kg 
m⁻³ assumed in the original inverse-closure approach. Both methods produced optimized κorg values 
between 0.05 and 0.07 depending on the season. 

We have described these results (which we feel strengthens our conclusions) in the revised manuscript. 

8. There’s an implicit assumption that Hyytiälä data can be generalized to other forest regions or clean 
continental environments. This assumption should be stated explicitly and discussed in the limitations.  
 
Thank you for this great comment. We have now added a sentence stating this assumption (“Through 
assuming that the SMEAR II station represents a remote continental site with a reasonable accuracy, 
we aim to provide useful insights on the role and dependencies of natural aerosol on CCN loadings.”) 
to the Introduction and its limitation to the Conclusions (“In the future, the method applied here should 
be tested at other locations with varying aerosol chemical compositions – also to mitigate the inherent 
representativity issues related to using data from a single station.”) sections of the revised manuscript.  
 



9. The study notes persistent overprediction errors not resolved by optimized κ values. It would 
strengthen the work to more directly explore model structural assumptions such as: constant surface 
tension, neglecting semi-volatile partitioning, mixing state (internal mixing assumption for size modes).  
 
Thank you for this excellent comment. Motivated by this suggestion and the suggestions from other 
reviewers we have now indeed included a more detailed inverse analysis with an additional method 
(namely the DREAM-MCMC calculation) which allows for letting also the particle number size 
distribution vary within its uncertainty limits during the CCN measurement cycle. Including the size 
distribution variability during the CCN measurement cycle improves the closure considerably (see 
Table R9 and Figs. R10 and R11 below). We have added these figures and their description into the 
revised manuscript. 
 
Table R9. NRMSEs and Pearson’s correlation coefficient (R in brackets) corresponding to different 
methods and supersaturations for all years taken together. 

Methods NRMSE (R) 
at SS = 
0.1% 

NRMSE (R) 
at SS = 
0.2% 

NRMSE (R) 
at SS = 
0.3% 

NRMSE (R) 
at SS = 
0.5% 

NRMSE (R)  
at SS = 
1.0% 

κ𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 0.94 (0.78) 0.49 (0.85) 0.49 (0.85) 0.59 (0.84) 0.60 (0.79) 
κ𝟎𝟎.𝟏𝟏𝟏𝟏 0.71 (0.74) 0.43 (0.84) 0.42 (0.86) 0.50 (0.85) 0.52 (0.81) 
κ𝐨𝐨𝐨𝐨𝐨𝐨 0.92 (0.78) 0.46 (0.86) 0.43 (0.87) 0.47 (0.88) 0.44 (0.86) 

κ𝐨𝐨𝐨𝐨𝐨𝐨 = 𝟎𝟎 0.62 (0.70) 0.49 (0.75) 0.48 (0.77) 0.46 (0.80) 0.47 (0.77) 
κ𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 0.65 (0.85) 0.17 (0.97) 0.12 (0.99) 0.082 (0.99) 0.045 (0.99) 

 
 

 
Figure R10. Observed (dashed) and predicted (solid) median CCN spectra in different seasons. The whiskers display the 
25th and 75th percentiles.  
 



 
Figure R11.  Normalized Root Mean Square Error (NRMSE) and Pearson correlation for different supersaturation (SS) levels 
for all years taken together, comparing four methodologies: κbulk , κ0.18, and κopt, κorg= 0. The two panels split the NRMSE 
axis to highlight the data in separate ranges, with the left panel covering NRMSE values from 0.3 to 0.6 and the right panel 
from 0.7 to 1.1. Each point is sized according to the corresponding SS level (0.1%, 0.2%, 0.3%, 0.5%, and 1.0%). The markers 
are color-coded based on the method for calculating the hygroscopicity parameter, with lines added to represent a discontinuity 
in the x-axis.  
 
 
10. The assumption of stable size distributions during the CCN cycle is critical. Was this stability 
verified using size-resolved time series? Otherwise, this assumption should be treated more cautiously. 
 
Thank you for this excellent comment, see our responses to the comment #9 above. As an outcome of 
the MCMC calculations included, e.g. the Abstract now reads: 
 

“With reductions in anthropogenic emissions, natural aerosols from boreal forests are expected to play 
a crucial role in total aerosol loadings. Understanding their cloud-forming potential is therefore crucial. 
Observational data on aerosol particle number size distribution and chemical composition is required 
for predicting cloud condensation nuclei (CCN) concentrations using Köhler theory. However, long-
term online measurements of bulk chemical composition typically provide data on total sub-micron 
particulate mass, which only represents the larger end of the number size distribution. Previous studies 
have shown significant differences in the hygroscopicity of Aitken and accumulation mode particles in 
boreal environments. Neglecting this size-dependence can substantially overestimate cloud 
condensation nuclei (CCN) concentrations — particularly at supersaturations (SS) where Aitken 
particles activate. We applied κ-Köhler theory to a multi-year dataset (2016–2020) from Hyytiälä, 
Finland, to evaluate different representations of aerosol chemical composition for CCN prediction. 
Forward closure tests using either bulk chemical composition or a constant κ value of 0.18 (Sihto et al., 
2011) overpredicted CCN, with geometric mean bias (GMB) highest at SS = 0.1% (1.56 and 1.35) and 
also notable at SS = 1.0% (1.34 and 1.26). To mitigate this bias, we performed inverse closure by 
optimizing size-resolved composition using: (1) Nelder–Mead method with the size distribution fixed 
to its median during each 2-hour CCN spectrum cycle, and (2) MCMC accounting also for the 
variability in the particle number size distribution during the CCN measurement cycle. Both methods 
improved closure at SS = 1.0% (GMB = 1.20 and 0.99), with moderate improvement at 0.1%. The 
optimized results revealed organic enrichment in the Aitken mode in many occasions (as compared with 
the overall bulk chemical composition): the Aitken mode was enriched in organics in 77% of cases 
using method (1) and 46% using method (2) – with typical κ values around 0.1 and 0.3 for Aitken and 
accumulation modes, respectively. The results are generally in line with what is known about size-
dependent chemical composition in Hyytiälä, and suggest that most of the variability of aerosol 
hygroscopicity in Hyytiälä is due to variability in Aitken mode composition. The results also highlight 
the important role of the highly-variable Aitken mode size distribution in influencing the overall CCN 
variability at the site. Our results demonstrate the potential of inverse CCN closure methods for 



obtaining valuable information of the size-dependent chemical composition beyond the reach of bulk 
chemical composition measurements.” 

We have extensively described the new inverse closure results and their description into the revised 
manuscript. 
 
11. The text mentions calibration frequency for CCNc and invalidation criteria for aethalometer data 
(e.g., RH > 40%). Please clarify how data gaps or invalid data points were handled in the analysis. 
Were interpolation or gap-filling methods used? What fraction of data was excluded due to quality 
control?  

Thank you for your comment. For the CCNc data, we did not apply any gap-filling or interpolation 
methods. Only valid, quality-assured data were used in the analysis. Regarding the equivalent black 
carbon (eBC) data, approximately 92% of the study period is covered. Data gaps mainly resulted from 
periods when the instrument was undergoing maintenance or experienced technical issues. As part of 
our quality control, we excluded data points when the relative humidity inside the aethalometer 
exceeded 40%, as well as occasional clear outliers. Similar to the CCNc data, no interpolation or gap-
filling was performed. All analyses were based solely on available, quality-checked data. 

 
Minor Comments  
Line 43: “Aerosol particles are important in the formation…” consider rephrasing as “Aerosol 
particles play a critical role in the formation…”  
 
Thank you for the suggestion, we have modified the manuscript accordingly. 
 
Line 44: Check the phrasing. Suggest: “...by lowering the energy barrier for the heterogeneous 
nucleation of water, thus promoting cloud droplet activation…”  
 
Thank you for pointing out this. We have modified the manuscript accordingly. 
 
Line 46-47: Rephrase: "thereby changes in the CCN concentration" to “thus, changes in CCN 
concentration”  
 
Thank you for pointing out this. We have modified the manuscript accordingly. 
 
Line 57: “drivers of SSmax fluctuations”. Define “SSmax” explicitly on the first use for clarity.  
We have modified the manuscript accordingly. 
 
Line 68: Suggest moving the sentence “These inverse approaches…” earlier to clarify the inverse 
model’s novelty and importance.  
 
We have reworked the respective paragraph for clarity. 
 
Line 93: “Still, organic aerosol plays a significant role…”. Consider beginning with “Nevertheless,” 
to better connect to prior sentence.  
 
Thank you for pointing this out. We have modified the manuscript accordingly. 
 
 
Line 123: Confusing sentence. Suggest: “Specifically, median κ was 0.41 at 0.1% SS (corresponding to 
larger activation diameters), and 0.14 at 1.0% SS (smaller activation diameters)...”  
 
We have modified the sentence as suggested. 



 
Line 129: Add a clarifying phrase on what “systematic overprediction” means quantitatively. 
 
Systematic overprediction means: when size-independent hygroscopicity parameter was used it 
produced CCN overprediction in most of the observation with respect to observation at 0.6% and above.  
We have changed to ‘recurring overestimation’ for more clarity.  
 
Lines 196-214: The site description is thorough, but additional discussion on how representative the 
SMEAR II site is for boreal forest aerosols under varying seasonal anthropogenic influence would be 
valuable.  
 
Thanks for this comment. We believe that the current site description already explains how the sources 
influencing SMEAR II vary seasonally and how this affects aerosol composition. To improve 
information in this section, we have now added information on the seasonal fractions of organics, 
equivalent black carbon, and inorganics, based on the data reported in Heikkinen et al., 2020.  
 
Line 310: “with by a Nafion dryer” to “with a Nafion dryer” (remove “by”).  
 
Thanks for the comment. We have implemented it.  
 
Lines 314-315: The ACSM and eBC data are averaged over 1-hour intervals but converted to a 2-hour 
median to match CCN measurements. Please discuss potential impacts of this temporal averaging on 
capturing short-term variability in aerosol composition and CCN. Were any tests performed to ensure 
this does not bias the results?  
 
We did not perform a separate test for this, as the variability of the size distribution was deemed to be 
the most important source of uncertainty in this regard. The original ACSM data were already averaged 
to 1 h, since the overall aerosol loading at Hyytiälä is quite low and shorter averaging would not provide 
meaningful statistics. For comparison with CCN, we further converted these to 2 h medians to match 
the CCN cycle. This assumes that sub-hourly variability does not strongly influence the calculated κ, as 
organics—which are relatively less hygroscopic (κ ≈ 0.1) consistently dominate the aerosol composition 
across seasons. We therefore expect the impact of this temporal averaging on our results to be minimal. 
 
Line 659–661: Consider rephrasing for clarity: “The relative difference in the median Aitken and 
accumulation κ…” to Perhaps “The seasonal variability in median κ between Aitken and accumulation 
modes is most pronounced in winter (~162%)...”  
 
Thank you for this comment. We would, however, prefer to keep the sentence as is to keep it clear that 
the 162% refers to the difference in the Aitken and accumulation mode κ instead of the amplitude of 
the seasonal variability. We hope this is acceptable. 
 
Line 676–678: Repetition – consider merging: “observed CCN concentrations are a valuable tool… 
Our study uses this approach…” to avoid redundancy.  
 
Thank you for highlighting this repetition. We have removed the paragraph. 
 
Line 687–688: Suggest citing more recent or diverse κ-related parameterization studies for broader 
context. 
 
Thank you for the suggestion. We have included a few more studies, such as Lance et al. (2013), Ray 
et al. (2023), and Siegel et al. (2022). 
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