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Reviewer #1: 
 
Review on the Manuscript entitled: “Optimizing CCN predictions through inferred modal aerosol 
composition – a boreal forest case study”  
 
Aerosol hygroscopicity and CCN activity, both depending on particle size and chemical composition, 
play a key role in the aerosol indirect climate effects. Aerosol hygroscopicity and CCN activity can be 
probed by specialized instrumentation, which can also offer size resolved measurements, like for 
instance the Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) or the Differential Mobility 
CCN counter (DMA-CCNc). However, such instrumentation is not widely used due to various issues 
(e.g., bulkiness, purchasing and operating costs). By exploiting the dependence of aerosol 
hygroscopicity/CCN activity on particle size and chemical composition (both measured at higher 
spatial resolution), one can in principle overcome this limitation. Aerosol chemical composition and 
size distribution are also used in atmospheric/climate models for estimating aerosol 
hygroscopicity/CCN activity and for deriving potential cloud droplet number concentration and cloud 
dynamics using different parameterization schemes. While particle size distributions are measured 
and/or modelled nowadays accurately and with adequate resolution, aerosol chemical composition is 
most commonly measured and/or modelled for the bulk submicron aerosol population. This can reduce 
the accuracy of the estimated, based on the bulk chemical composition, aerosols hygroscopicity/CCN 
activity, especially in complex environments where the aerosols exhibit different compositions at 
different sizes and/or are externally mixed. The latter refers to particles of the same size that exhibit 
different chemical composition. The identified by many studies discrepancies between the measured 
hygroscopicity/CCN activity and that estimated based on the aerosol bulk chemical composition was 
the main motivation of the authors of this manuscript. In more detail, the authors exploit long-term 
observations of submicron particles size distributions, bulk chemical compositions and CCN activity 
conducted at the boreal forest site of SMEAR II (Hyytiälä, Finland) for their study. They investigate the 
discrepancies between the measured aerosols CCN activity and that estimated from measured particle 
size distributions and the bulk chemical composition derived aerosol hygroscopicity, expressed by the 
aerosols hygroscopic parameter κ. In addition, they study the discrepancies between the measured 
aerosol CCN activity and that estimated by the measured particle size distributions but assuming a 
time-constant aerosol hygroscopicity, expressed as a constant hygroscopic parameter κ of 0.18. 
Furthermore, they suggest a method for improving the estimated CCN activity by assigning different 
chemical compositions (and hygroscopic κ parameters) at different size ranges (i.e., modes). In order 
to achieve this, they made some assumptions/simplifications, like treating the whole aerosol population 
as internally mixed (i.e., particles of the same size, share the same chemical composition), assigning 
similar hygroscopicities to inorganic species and assume that Black Carbon (BC) concentration 
fraction is the same at all particle sizes. 
 
General comments  
 
While size-resolved aerosol hygroscopicity/CCN activity can be probed with adequate instrumentation 
(HTDMA, DMA-CCNc, Scanning Mobility CCN Analysis; i.e., CCNc coupled to an SMPS; Moore, 
Nenes and Medina, 2010), this manuscript presents the very important aspect of suggesting a method 
for deriving modal chemical composition from (bulk) CCN and ACSM measurements. For this reason, 
I suggest its publication in Atmospheric Chemistry and Physics, after a minor revision.  
 
We thank the reviewer for this positive assessment. 
 
In more detail, by using adequate instrumentation, like for instance one CCNc downstream a DMA, one 
can measure the CCN activity spectrum for monodisperse particles residing in Aitken and accumulation 
modes. Two monodisperse sizes and 5-7 super-saturations would perhaps be adequate for performing 
these observations. This would result in a more accurate estimation of the aerosol hygroscopic 
parameter κ at these two modes (i.e., Aitken and accumulation). Adding a neutralizer and a DMA in 
front of an existing CCNc does not require a major effort and/or cost. In addition, the time resolution 
of such measurements will be still adequate for studying aerosol CCN activity/hygroscopicity at rural 
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sites and comparable to the one used in this study. However, the authors present a method that 
associates the modal hygroscopic parameter κ to the modal chemical composition, using bulk chemical 
composition measurements (i.e., ACSM); something innovative according to my best knowledge. This 
aspect of their work significantly increases the importance of this manuscript. More specifically:  
 
We thank the reviewer for their kind attention to the innovative nature of this work. We also agree 
regarding the suggestions for potential improvements for direct sampling of the size-dependent CCN 
activity. Our approach – using the inverse closure methods – simply presents a relatively cost-efficient 
alternative to this, and is of course also applicable on data sets where the measurements of size-
dependent hygroscopicity are not available. In the revised manuscript we have further improved the 
inverse closure methodology by introducing an approach based on the DREAM-MCMC algorithm, 
which allows also accounting for the variability of the particle number size distribution during the 2-h 
long CCN measurement cycle. The results from this more sophisticated approach improve the closure 
further and corroborate the conclusion on size-dependent hygroscopicity as a key explaining factor for 
obtaining successful closure. Based on comments and suggestion from other reviewers too, we would 
like to add few more analysis to the revised manuscript and we have attempted to mention the changes 
appropriately in this document. Just for clarity, please note that 𝜅𝜅opt refers to the method where we use 
Nelder–Mead optimization, focusing only on the optimization of the modal chemical composition. In 
the revised manuscript, we have included additional analyses, the most significant of which involves 
DREAM-MCMC simulations. In this approach, referred to as 𝜅𝜅MCMC, we not only optimize the modal 
chemical composition but also account for the variability of the size-distribution lognormal parameters 
during the 2-hour CCN cycle.  
 
A) I suggest that the authors emphasize more on this aspect of their work (i.e., deriving the modal 
chemical composition from CCN activation spectra).  
We agree that estimation of modal aerosol chemical composition from CCN spectra is the most 
important part of the manuscript. As discussed above, we feel that the addition of another inverse 
closure method (which allows for optimization with respect to more variables) has really strengthened 
our conclusions on this. To improve on making these points even clearer, we have rewritten the abstract, 
part of conclusions, as well as elaborated the methods more in detail adding also a work flow chart (see 
Fig. R1 below) that shows how the size-dependent composition is inferred from the inverse closure 
methods. 
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Figure R1. Workflow of the two inverse closure methods: the Nelder–Mead algorithm (left) and the DREAM-MCMC (right) 
approach. Bimodal fitting - representation of the aerosol size distribution as two lognormal modes. Harmonized size 
distribution - size distribution data harmonized to CCN data; data thus obtained has 2-hour resolution. Unharmonized size 
distribution - raw size distribution data with 10 min resolution. Scaling - adjustment of number concentrations of reconstructed 
lognormal size distribution from bimodal parameters to match observations. Mass-constraint - conservation of total aerosol 
mass (sum of mass in two modes) of each species during optimization. NRMSE - normalized root mean square error, a metric 
of model–observation agreement. MAD - median absolute deviation, used to quantify variability in size distributions during 
CCN spectrum cycle period. Prior distribution - initial parameter ranges provided to the MCMC sampler. Log-likelihood - 
statistical measure of consistency between observed and modeled CCN spectra. 

 
B) The authors should comment (and perhaps describe/mention in the discussion/conclusion sections) 
if their method for deriving the modal aerosol chemical composition can be used in the case(s) where 
modal (or even size resolved) hygroscopic parameters κ are available.  

Thank you for this comment – which is naturally also linked to the way that the sampling is done as 
mentioned above. If size-dependent hygroscopicity values would indeed be available, they could be 
used together with similar composition data as here to infer even more detailed insights on the size-
dependent chemical composition – perhaps through a similar optimization procedure as here, but 
perhaps allowing for e.g. variability in the properties of the organic mixture (which were assumed to be 
constant here) or internal vs. external variability (the former assumed to be the case here throughout the 
data set). Even if modal (or size-resolved) hygroscopicity parameters (κ) are available, there's of course 
always the possibility that these values carry uncertainties or do not fully represent the actual 
hygroscopic behavior of the aerosols in each mode. Our method can help constrain these κ values by 
identifying the set that leads to the best agreement between predicted and observed CCN concentrations. 
In other words, such measurements would allow for a more detailed studies on the topic. We have added 
a brief discussion about it to the revised manuscript in the conclusion section as: 
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“If modal or size-resolved κ (in addition to just having bulk chemical composition) were available, our 
approach could be extended to derive more detailed size-dependent chemical composition, while also 
helping to constrain κ values by identifying those that best match observed CCN concentrations.” 

C) Their methodology, assumptions/simplifications/limitations should be more clearly described in 
order to be more understandable by other aerosol scientists and to be easier to replicate in other 
sites/studies.  
 
We agree that the methodology, assumptions, simplifications, and limitations should be described more 
clearly to enhance transparency and reproducibility. In the revised manuscript, we have made a 
concerted effort to improve the clarity of the information flow and to explain the steps of the method in 
more detail. We agree that the methods section was at parts unclear and lacked some important details. 
To account for comments from other reviewers as well, we have now revised the text to improve clarity 
and add more details. For example, we have included new sections where the Nelder–Mead inverse 
closure method is explained in detail, as well as a section which describes the added DREAM-MCMC 
approach. We have also added a new flowchart (Fig. R1) to give a clearer overview of the workflow 
with the inverse closure methods. 
 
Specific comments:  
1) Abstract (lines 33-35): ― Our study demonstrates the potential for utilizing CCN measurements for 
inferring information on the parts of the aerosol size distribution that are beyond the reach of 
traditional online composition measurements. 
 
This sentence needs to be better written in a way to more clearly convey the important message that 
bulk CCN and (perhaps; see my comment #22) size resolved hygroscopicity/CCN activity together with 
bulk chemical composition measurements can be used for estimating the modal chemical composition. 
In addition, the term ― traditional online composition measurements can be replaced by the more 
accurate ― online bulk chemical composition measurements.  
 
Thank you for the suggestion. We have written a new abstract that better represents the main methods 
and results:  

“With reductions in anthropogenic emissions, natural aerosols from boreal forests are expected to play 
a crucial role in total aerosol loadings. Understanding their cloud-forming potential is therefore crucial. 
Observational data on aerosol particle number size distribution and chemical composition is required 
for predicting cloud condensation nuclei (CCN) concentrations using Köhler theory. However, long-
term online measurements of bulk chemical composition typically provide data on total sub-micron 
particulate mass, which only represents the larger end of the number size distribution. Previous studies 
have shown significant differences in the hygroscopicity of Aitken and accumulation mode particles in 
boreal environments. Neglecting this size-dependence can substantially overestimate cloud 
condensation nuclei (CCN) concentrations — particularly at supersaturations (SS) where Aitken 
particles activate. We applied κ-Köhler theory to a multi-year dataset (2016–2020) from Hyytiälä, 
Finland, to evaluate different representations of aerosol chemical composition for CCN prediction. 
Forward closure tests using either bulk chemical composition or a constant κ value of 0.18 (Sihto et al., 
2011) overpredicted CCN, with geometric mean bias (GMB) highest at SS = 0.1% (1.56 and 1.35) and 
also notable at SS = 1.0% (1.34 and 1.26). To mitigate this bias, we performed inverse closure by 
optimizing size-resolved composition using: (1) Nelder–Mead method with the size distribution fixed 
to its median during each 2-hour CCN spectrum cycle, and (2) MCMC accounting also for the 
variability in the particle number size distribution during the CCN measurement cycle. Both methods 
improved closure at SS = 1.0% (GMB = 1.20 and 0.99), with moderate improvement at 0.1%. The 
optimized results revealed organic enrichment in the Aitken mode in many occasions (as compared with 
the overall bulk chemical composition): the Aitken mode was enriched in organics in 77% of cases 
using method (1) and 46% using method (2) – with typical κ values around 0.1 and 0.3 for Aitken and 
accumulation modes, respectively. The results are generally in line with what is known about size-
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dependent chemical composition in Hyytiälä, and suggest that most of the variability of aerosol 
hygroscopicity in Hyytiälä is due to variability in Aitken mode composition. The results also highlight 
the important role of the highly-variable Aitken mode size distribution in influencing the overall CCN 
variability at the site. Our results demonstrate the potential of inverse CCN closure methods for 
obtaining valuable information of the size-dependent chemical composition beyond the reach of bulk 
chemical composition measurements.” 

2) Introduction (line 57): ― NCCN and CDNC are primarily determined by aerosol properties and the 
drivers of SSmax fluctuations… 
 
Please define the abbreviation SSmax prior of its first use in the manuscript. While this abbreviation is 
well known to aerosol scientists studying aerosol – cloud interactions, the authors should not assume 
that other aerosol scientists are familiar with this abbreviation.  
 
Thank you for pointing it out. SSmax is now defined appropriately when mentioned for the first time in 
the revised manuscript. 
 
3) Introduction (lines 96-97): ― Importantly, some organic aerosol properties beyond hygroscopicity 
may enhance the likelihood of an Aitken mode aerosol particle to serve as CCN (Lowe et al., 2019).  
 
The authors could elaborate a bit more on which properties of Aitken-mode organic aerosols, besides 
their hygroscopicity, can enhance their CCN activation.  
 
Thanks for this suggestion. We agree and have now included more details in the manuscript:  
 
“Importantly, some organic aerosol properties beyond hygroscopicity – such as solubility or surface 
film formation which reduces surface tension – may enhance the likelihood of an Aitken mode aerosol 
particle to serve as CCN (Lowe et al., 2019).” 
 
4) Introduction (lines 101-103): ― Studies incorporating organic aerosol effects demonstrated 
significant improvements in closure as compared with attempts considering inorganics alone (e.g., 
Broekhuizen et al., 2006; Rose et al., 2008; Ervens et al., 2009; Guenther et al., 2009; Bougiatioti et 
al., 2009; Jurányi et al., 2010).  
 
To which ― organic aerosol effects are the authors pointing at? Surface tension changes to organic 
compounds, solubility effects or just to the fact that by omitting the organic component particle 
hygroscopicity and CCN activity are overestimated? Please be more specific here.  
 
In this context, we refer specifically to the inclusion of organic compounds in the chemical composition 
when predicting CCN. The cited studies demonstrated improved closure primarily by accounting for 
organics — rather than omitting them or assuming them to be insoluble — which led to more accurate 
representations of particle CCN activity. In previous studies the way that organics have influenced the 
results and / or improved the closure varies, but we feel elaborating too much on these reasons is beyond 
the scope of the present work –  as the purpose of this part of the Introduction was simply to highlight 
the important role that organics play in determining the CCN properties of an aerosol population. 
 
5) Introduction (line 161): ―…using a constant hygroscopicity value of 0.18 throughout the study 
period, as recommended by Sihto et al. (2011).  
 
Please use the more appropriate term ― hygroscopic parameter κ of 0.18.  
 
Thank you for mentioning this. We have corrected it in the new version of the manuscript.  
 
6) Section 2.1.1 (lines 213 – 214): ―However during the winter time more black carbon is also 
observed (Luoma et al., 2019), which tends to decrease the overall hygroscopicity. 
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While black carbon it’s a known hydrophobic species it would be better to explicitly mention it in the 
sentence. For example: However, during the winter time the increased contribution of black carbon, 
which is hydrophobic, in the particles decreases their overall hygroscopicity, or something along these 
lines.  
 
Thank you for this helpful suggestion. We agree that explicitly mentioning the hydrophobic nature of 
black carbon adds clarity. Accordingly, we have revised the sentence in the manuscript according to 
your suggestion to better reflect this point.  
 
7) Section 2.1.2 (line 238-239): ―For the inverse closure, we used a Python version (Khadir, 2023) of 
the algorithm by Hussein et al. (2005) to fit two modes into the measured aerosol size distributions.  
 
The way that this sentence reads seems quite misleading. The algorithm suggested and described in 
Hussein et al. (2005) is aimed at performing modal analysis on the particle size distributions measured 
with scanning mobility particle sizers (SMPSs) and can be applied on other instruments that probe 
particle size distributions at equivalent size ranges and with adequate resolution. This algorithm is not 
related to any closure studies between aerosol chemical composition and CCN activity. I understand 
that the authors used a similar (or perhaps the same) algorithm for performing the modal analysis, 
which however is only the first step for performing the inverse closure. This sentence needs to be written 
in a clearer way.  
 
Thanks for mentioning a lack of clarity here. We have added the sentence “The further steps required 
in the inverse closure are described in more detail below.” To the end of the paragraph, which hopefully 
clarifies that the bimodal fitting is indeed only the first step in the inverse closure approach. As 
mentioned above, we have generally added more detail on the inverse closure methodology to the 
revised manuscript. 
 
8) Section 2.1.2 (lines 239 – 242): ― The algorithm takes size distribution as input and returns the 
lognormal parameters (number concentration, geometric standard deviation, geometric mean 
diameter) of different modes as output. While the algorithm would allow fitting up to four modes, 
bimodal fits (Aitken and accumulation mode, respectively; Fig. S1a) were selected to avoid overfitting. 
 
According to my opinion, this part of the procedure should be described in more detail (perhaps in the 
supplement, before figure S1). When reading it, some questions arise. For example, is the number of 
fitted modes (e.g., unimodal, bimodal, trimodal) decided by the user (as an input parameter) in the 
algorithm employed by the authors or is it an automated process? In Hussein et al. (2005) a number of 
criteria for reducing the number of fitted modes (e.g., from a trimodal to a bimodal fitting) are 
described. Did the authors use those criteria or they choose the bimodal fittings due to improved 
Pearson’s r correlation in respect to a unimodal fitting? Was the bimodal fitting optimum for all the 
measured size distributions or there were cases when a unimodal or even a trimodal fitting would be 
preferable? For instance, during a new particle formation (NPF) event, particles residing in the size 
range <25 nm would exhibit increased number concentrations, thus making necessary a trimodal fitting 
(i.e., nucleation, Aitken and accumulation modes) to better describe the measured particle size 
distribution.  

This is a great point. In fact, some of the co-authors have supervised a BSc thesis (Liwendahl, 2023) 
that focused on the performance of the Hussein et al. (2005) algorithm and the optimal number of fitted 
modes for the particle number size distributions measured in 2012-2017. The study found (expectedly) 
four fitted modes to represent the measured size distribution about 30% better than just two modes. 
There was, however, no clear seasonality or annual trends in this which would indicate that our choice 
of fitting two modes (which simplifies the inverse closure procedure considerably) would significantly 
distort the trend analysis or even the closure itself. This is also because we scale the fitted size 
distributions to match the observed values, which we explain in detail in Supplementary Note 2. In 
simple words, in scaling we equal the number concentration of particles in each bin in the fitted size 



 7 

distribution to the observed size distribution. We have added a reference to the work by Liwendahl 
(2023) to the revised manuscript. 

9) Section 2.1.3 (lines 253 – 256): ―The CCNc consists of a saturator unit and an Optical Particle 
Counter (OPC). The saturator includes a vertical flow tube where aerosol samples are introduced 
alongside filtered sheath air under laminar flow conditions, creating a central flow path. The tube’s 
inner surface is kept moist to generate a supersaturation gradient. 
 
The sentences describing the operating principles of the CCNc can be better and more clearly written. 
For instance, the sheath air flow is saturated at the inlet temperature. A positive temperature gradient 
is maintained at the saturator column, inducing a quasi-constant supersaturation profile for a specific 
temperature difference. 
 
Thanks for suggestion, which we have accounted for in the revised manuscript. We have also included 
a description of the measurement cycle to obtain the complete CCN spectrum. 
  
10) Section 2.1.4 (lines 278 -280): ―An Aerosol Chemical Speciation Monitor (ACSM; Ng et al., 2011) 
was used to retrieve long-term observations of the non-refractory sub-micron particulate matter (NR-
PM1; i.e., organics, sulfate, nitrate, ammonium and chloride) at SMEAR II. ―  
 
This sentence can be written in a clearer way that better describes what the ACSM is measuring. For 
example, the ACSM measures the mass concentrations of ions originating from non-refractory organic 
and inorganic atmospheric species. The results are provided as mass concentrations of ammonium, 
sulfate, nitrate and chloride ions, as well as a total organic mass.  
 
Thanks for suggestions. We have made appropriate changes in the manuscript. 
 
11) Section 2.1.4 (Data Coverage and seasonal classification): This should be section 2.1.5.  
 
Thanks for pointing it out. We have corrected it in the manuscript. 
 
12) In the same section (lines 321 – 322): ―As mentioned earlier, SOA formation and NPF events lead 
to higher particle number concentrations during spring and summer. 
 
During these observed NPF events did the authors still use a bimodal fitting? Would a trimodal fitting 
(i.e., including nucleation, Aitken and accumulation modes) be more appropriate during the cases that 
NPF events were observed (see also my comment #8)? Would a trimodal fitting during NPF events 
affect the inverted closure (CCN-ACSM) procedure described in the manuscript? The authors should 
clarify these aspects. In addition, in the case that they have used bimodal fittings for all the measured 
particle size distributions they should justify that by omitting the nucleation mode during NPF events 
the inverted closure procedure is not significantly affected. They can add briefly this justification to the 
manuscript.  

Thank you for the comment – please see our response to comment #8.   

13) Section 2.2.2 (lines 390 – 392): ― We acknowledge that the assumption that sulfate is present solely 
as AS can cause underestimations of aerosol hygroscopicity at SMEAR II, because aerosols can be 
more acidic at the site (e.g., Riva et al., 2019). 
 
What do the authors mean by more acidic aerosols? Do they mean that perhaps there are cases that 
particles may contain ammonium bisulfate or sulfuric acid as well? Please be more specific here. In 
addition, why did the authors not employed a simplified ion-pairing algorithm, similar to the one 
described in Gysel et al. (2007)? They could employ this simplified ion-pairing scheme, after 
calculating the organic nitrate content (as they have already done).  
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We thank the reviewer for this valuable comment. By “more acidic aerosols,” we refer to the presence 
of species such as un-neutralized ammonium bisulfate (NH₄HSO₄)  and sulfuric acid (H₂SO₄), which 
are more likely under ammonium-limited conditions. To evaluate the impact of this assumption, we 
additionally calculated κ using the simplified ion-pairing approach described by Gysel et al. (2007). 
The comparison of κ values obtained using both methods — (i) assuming full neutralization to 
ammonium sulphate and nitrate, and (ii) using the Gysel et al. (2007) ion-pairing scheme — is shown 
in Figure R2 and will be added to the supplement to the revised manuscript. The resulting κ values were 
very similar, with median values of 0.21 and 0.23, respectively. This difference is insignificant for our 
inverse-closure output. 

                                    
Figure R2. Comparison of κ values calculated using two different methods: (i) a simplified full neutralization approach 
assuming complete conversion of SO₄²⁻ and NO₃⁻ to ammonium sulfate and ammonium nitrate, and (ii) a more chemically 
detailed ion-pairing scheme based on Gysel et al. (2007), which allows for the formation of acidic species such as ammonium 
bisulfate (NH₄HSO₄) and sulfuric acid (H₂SO₄). The red dashed line denotes the 1:1 reference.  
 
14) Section 2.2.3 (Inverse closure): This section can be complemented with additional information (and 
perhaps equations) in order for the inverse closure procedure to be clearer and easier to reproduce or 
even being improved. The authors may use the supplement for including the additional information (and 
perhaps explanatory figures) for this scope, if they want to avoid ―overloading the manuscript. 
 
Thank you for this valuable suggestion. We agree, and have added a great deal of more details on the 
inverse modelling approach to both, the main manuscript and the supplement (see also Fig. R1). For 
instance, the descriptions of the two inverse modelling approaches and the related supplementary notes 
now read as below: 
 
“2.2.3.1 Nelder-Mead  
The Nelder–Mead simplex algorithm (Gao and Han, 2012) is suitable for both one-dimensional and 
multidimensional optimization problems and is relatively fast in our application. In our case, we need 
to optimize only one variable (the fraction of total organic mass in Aitken mode, Morg1) and the 
remaining masses can be derived from it through mass closure constraints. For each time step, the 
optimization begins with an initial simplex of three trial values of Morg1, and the NRMSE is evaluated 
at each point. The worst-performing value is reflected  across the midpoint of the better two to explore 
whether a more accurate estimate can be found in the opposite direction. If this improves the fit, the 
algorithm attempts an expansion, pushing further in the same direction. If reflection does not improve 
the result, a contraction step is taken to move closer to the midpoint. If neither reflection nor contraction 
improves the outcome, the simplex undergoes shrinkage, tightening around the best-performing 
solution to focus the search locally. This process continues until the optimization converges, resulting 
in an estimate of Morg1 that minimizes the NRMSE between modeled and observed CCN concentrations. 
Note that Nelder–Mead works well for simple, low-dimensional problems like optimizing just one 
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parameter (e.g., morg1), but it starts to struggle as the number of variables increases and have a tendency 
for converging to local minima. Hence, in the inverse closure calculations using the Nelder-Mead 
algorithm we assumed the particle number size distribution and chemical composition to stay constant 
throughout the CCNc measurement cycle. 
 
2.2.3.2 DREAM-MCMC 
In order to assess the importance of the variability of the bimodal size distribution parameters within 
each CCN cycle, we conduct a second inverse-closure experiment with the number concentration and 
mean diameter for both modes as additional optimization parameters (simultaneously with Morg1 ). Since 
optimizing both size distribution parameters and composition introduces a more complex and higher-
dimensional parameter space, and we are interested parameter uncertainty, we use a Bayesian inference 
approach to estimate the parameter posterior distributions. Specifically, we chose the DiffeRential 
Evolution Adaptive Metropolis Markov Chain Monte Carlo (DREAM-MCMC) algorithm (Vrugt et al. 
2009), which has been previously used for inverse CCN-closure studies in idealized cases (Partridge et 
al. 2012) and is available in the Python PINTS library (Clerx et al. 2019). DREAM-MCMC is an 
efficient MCMC method (Metropolis et al. 1953, Gelfand et al. 1990) that evaluates multiple Markov 
chains in parallel and automatically adapts its proposal strategy during sampling, making it particularly 
efficient for correlated, multi-modal problems such as aerosol-cloud microphysical interactions. To 
know more about MCMC and Bayesian inference, please see Supplementary note R1. 

We initialize the MCMC optimization with Cauchy priors for each parameter, centered 
on the median values of the fitted bimodal size distributions for each CCN cycle, specifically, the 
number concentration and geometric mean diameter. For chemical composition we use the median of 
the ACSM observations during each CCN spectrum cycle. The scale value is the smaller of either 1 
(resulting in a Student-t distribution) or the median absolute deviation (MAD) of the observations within 
the given CCN cycle. We constrain the total aerosol mass in each mode to remain within ±10% of the 
total mass observed by the ACSM and aethalometer.  

The priors are truncated to positive values only. We use a heteroskedastic Gaussian 
likelihood function, such that the highest likelihood is typically where the parameters provide the least 
squares fit to the CCN observations. The likelihood is defined as  

𝐿𝐿(𝜃𝜃|Y) =  �
1
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where s is standard deviation of the noise on each output 𝑖𝑖, which we assume is 10% of the CCN 
observations at each supersaturation value. We perform the optimization in a log-transformed parameter 
space, which improves sampler efficiency by normalizing scale differences between parameters. For 
each CCN observation window, we run five chains with 40,000 iterations per chain, of which the first 
15,000 are used as burn-in/adaptation. Up to two chains are discarded if they deviate strongly in central 
tendency after burn-in, and the last 20,000 steps of all accepted chains are then used to calculate 
posterior statistics. Convergence is assessed with the 𝑅𝑅�-statistic (Gelman and Rubin, 1992), using a 
relaxed threshold of 𝑅𝑅� < 2.5  for all five parameters to retain a window in the analysis. The 𝑅𝑅�-statistic 
compares the variance within chains to the variance between chains; values close to 1 indicate well-
mixed, converged chains. We use a relaxed threshold because the 𝑅𝑅�-statistic is quite conservative and 
because our problem has high correlation between parameters and the potential for multi-modality if 
there are multiple distinction aerosol populations within one window, which is penalized by the 𝑅𝑅�-
statistic but realistic in this case. Overall, 19% of windows are discarded due to high 𝑅𝑅�-statistic values. 
Even with the relaxed threshold, some windows are excluded where the MCMC identifies reasonable 
parameter values and CCN spectra but the chains fail to mix well and we cannot guarantee the posterior 
is well explored.  
 
2.2.2 Metrics for assessing variability of lognormal size distribution parameters during CCN 

cycle 
Unlike the Nelder–Mead optimization method, which uses the median of the size distribution during 
the CCN cycle period, the DREAM-MCMC setup requires the variability of the size distribution as 
input. To account for this, we calculate the median absolute deviation (MAD) of each lognormal 
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parameter for every CCN cycle observation. The overall distribution of MAD values for the full 5-year 
dataset is presented in Supplementary note R2 and Fig. R3.  MAD for individual CCN cycle period is 
calculated as follow: 
Let Ic = [ 𝑡𝑡𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑡𝑡𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒) be the time window for CCN cycle c; For a given lognormal parameter, k (among 
geometric mean diameter (GMD), geometric standard deviation (SD) and number concentration in each 
mode; so total 6 parameters), collect the samples inside this window as {𝑥𝑥𝑘𝑘 (t): t ∈ Ic} = {𝑥𝑥𝑘𝑘,1,𝑥𝑥𝑘𝑘,2, …, 
𝑥𝑥𝑘𝑘,𝑛𝑛𝑐𝑐}. 
Median in the interval is 𝑚𝑚𝑘𝑘(c): 
 
 
 median{𝑥𝑥𝑘𝑘,1,𝑥𝑥𝑘𝑘,2, …, 𝑥𝑥𝑘𝑘,𝑛𝑛𝑐𝑐}  

Median Absolute Deviation (MAD) in interval c: 

 median|𝑥𝑥𝑘𝑘,𝑖𝑖 – 𝑚𝑚𝑘𝑘(𝑐𝑐)|, where i varies from 1 to 𝑛𝑛𝑐𝑐  
 
 

  

.” 
 
“Supplementary note R1 
In this section we give a short summary of Bayesian inference and MCMC, then describe the detailed 
setup of the DREAM-MCMC algorithm used in this study and provide some summary statistics. For a 
comprehensive review of Bayesian methods, see Gelman et al. (2013). Bayesian inference is a rigorous 
method for quantifying uncertainty in model parameters, using probability statements. Unknown 
parameters are treated as random variables with some joint posterior probability distribution, which can 
be written using Bayes law as: 

𝑝𝑝(𝜃𝜃|𝑌𝑌) =  
𝑝𝑝(𝜃𝜃)𝐿𝐿(𝑌𝑌|θ)

𝑝𝑝(𝑌𝑌)  

where 𝑝𝑝(𝜃𝜃) is the prior distribution which encompasses what is known about the parameters prior to 
observing any data, 𝐿𝐿(𝑌𝑌|θ) is the likelihood function which measures how well the model fits observed 
data, and  

𝑝𝑝(𝑌𝑌) =  �𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑌𝑌|θ)dθ 

is the marginal distribution of Y, which represents the probability of observing Y given all possible 
parameter values 𝜃𝜃. The result of conditioning the prior distribution with some observations is the 
posterior probability distribution 𝑝𝑝(𝜃𝜃|𝑌𝑌), which represents the updated probability of the model 
parameters. Bayesian inference is therefore a process of creating a probability model and iteratively 
updating that model based on some observations, resulting in a best estimate of the parameters and 
knowledge about their uncertainty, sensitivity, and correlation (in the case where 𝜃𝜃 is vector-valued). 
 
Monte Carlo Markov Chain (MCMC) simulations are a methodology for sampling from posterior 
distributions. Generally, they involve repeatedly and sequentially sampling 𝜃𝜃 such that each new draw 
depends only on the previous sample and therefore forms a Markov chain, and correcting those draws 
so that the chain converges to the target distribution. Many different algorithms have been proposed for 
generating and correcting chain samples. Here we use the DiffeRential Evolution Adaptive Metropolis 
Markov Chain Monte Carlo (DREAM-MCMC) algorithm (Vrugt et al. 2009). This algorithm runs 
multiple chains simultaneously and adaptively updates the proposal distribution using a randomized 
subset of the chains’ joint history. It also supports large proposal jumps and outlier rejection during the 
initial burn-in phase, which accelerate convergence. This type of self-adaptive evolutionary strategy is 
particularly well suited to heavy-tailed or multi-modal posteriors, such as in this study where different 
combinations of aerosol chemical composition and size distributions parameters could result in similar 
CCN spectra. ” 
 
“Supplementary note R2 
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Figure R3 shows the probability density of median absolute deviation, MAD values fitted with chi-
squared distributions for both the Aitken and accumulation modes. The results indicate that the 
variability is generally small, with distributions strongly centered close to zero and narrow tails. The 
fitted chi-squared parameters suggest that fluctuations in diameter and sigma are low, whereas number 
concentrations show comparatively larger spread. Overall, this analysis confirms that the derived 
parameters remain fairly stable within CCN cycle period, with occasional variability in particle number 
concentration. 

 
Figure R3. Chi-squared probability density functions (PDFs) fitted to the median absolute deviation (MAD) values of aerosol 
size distribution parameters calculated with respect to median of corresponding parameters during CCN cycle. The data 
represent entire 5 years period between 2016 to 2020. Panels show Aitken mode (top row) and accumulation mode (bottom 
row) MADs for mode diameter, geometric standard deviation (σ), and particle number concentration. The fitted parameters 
(degrees of freedom, ν, and scale) are reported in the legends. The fits are constrained to non-negative values to reflect the 
definition of MAD. 
 
i) Lines 412 – 413: ―This makes κopt variable in time as well as a function of particle size. 
 
Was κopt variable as a function of particle size, or two κopt values were assigned (i.e., one for the Aitken 
and one for the accumulation modes)? This needs to be clarified.  
 
Indeed, the sentence should have read “two κopt values were assigned (i.e., one for the Aitken and one 
for the accumulation modes)”. This is corrected in the revised manuscript. 
 
ii) The equation(s) relating κopt to the measured CCN activation spectra is missing. The authors in 
section 2.2.1 provide the generalized equation of the κ-Köhler theory only (see equation 2 in the 
manuscript). Did they use this equation, during the inverted closure? If yes, what was the value(s) 
assigned in Dp,wet?  

Thank you for pointing this out. Yes, we did use the κ-Köhler theory (as shown in Equation 2) during 
the inverse-closure analysis. In this process, the κ-Köhler equation is applied repeatedly for different 
combinations of Aitken and accumulation mode chemical compositions. These combinations are 
explored using the Nelder–Mead optimization algorithm. The key difference between the forward and 
inverse closure is that in the forward closure, we use a single set of Aitken and accumulation mode mass 
fractions — both taken from the bulk composition —and apply the κ-Köhler equation once to compute 
the predicted CCN spectrum. In contrast, during the inverse closure, the κ-Köhler equation is run 
multiple times across a wide range of combinations of Aitken and accumulation mode chemical 
compositions. For each combination, we calculate a predicted CCN spectrum and then evaluate the 
normalized root-mean-square error (NRMSE) between the predicted and observed CCN spectra. The 
composition that results in the lowest NRMSE is selected as the best-fit solution. Regarding the wet 
diameter used in the κ-Köhler calculations, in both forward and inverse closures we use the value that 
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corresponds to the assigned composition and dry diameter in any given size bin (defined by the size 
grid of the DMPS data).  

iii) In section 2.2.1, equation 3, the authors (correctly) provide the equation for the volume fraction of 
each species, accounting for the mass and the density of each species. However, in section 2.2.3, they 
use the bulk density (derived by the bulk chemical composition measurements). While this is perhaps a 
necessary simplification, I wonder if they could further optimize this aspect. If the system of equations 
solved for the inverted closure procedure was provided, it would be clearer if this assumption (and 
potential limitation) is indeed necessary or if two different apparent densities (i.e., one for the particles 
residing in the Aitken mode and one for those residing in the accumulation mode) could be estimated, 
further improving the results.  

We thank the reviewer for this comment. Indeed, for the inverse closure procedure this assumption is 
key for making conversions between the dry diameters and compositions. It would indeed be possible 
of exploring the role of the density assumption for improving the inverse closure. However, with the 
DREAM-MCMC approach, we were able to mitigate the overprediction in CCN concentrations by 
accounting for size-dependent chemical composition and incorporating variability in the size 
distribution's lognormal parameters within each CCN spectrum cycle. Introducing further optimization 
of mode-specific densities could add unnecessary complexity and increase the risk of overfitting, 
particularly given the limited observational constraints. Nonetheless, we recognize this as a valuable 
point for future study – for instance in cases where size-dependent hygroscopicity values would provide 
further constraints for the inverse closure. 

iv) It would be easier for the reader to deeply understand the inverse closure procedure if some 
explanatory images were added in the supplement. For instance, figure S6 helps a lot in understanding 
the scaling process of the fitted lognormal distributions. Similar figures could be added below figure 
S6, showcasing the process step by step (e.g., converting the scaled fitted size distributions to mass 
distributions and then to fractional volume distributions, which in turn will be used for estimating modal 
hygroscopic parameters, etc).  
 
We agree, and hope that the inclusion of Fig. R1 addresses this valuable comment. 
 
15) Section 3.1 (lines 467 – 469): ―The activation diameters decrease with increasing supersaturation 
and when all seasons are taken into account median Dact (see Table S1) being generally higher than 
reported in earlier studies using similar methodology (e.g., Sihto et al., 2011; Paramonov et al., 2015). 
 
It is not very clear what the authors refer to as the median Dact when all seasons are taken into account. 
Do they mean the yearly median Dact, which is not depicted in Table S1 or that Dact for every season is 
generally higher than that reported in earlier studies? In addition, it would be better to report the 
median Dact from those earlier studies for comparison reasons.  
 
Here we meant to say that in every season, the Dact is greater than previously reported. We agree that 
more information is required for better clarity, and have modified the revised manuscript accordingly. 
We have also added the quantitative comparison requested. 
 
16) Section 3.1 (lines 475 – 476): ― While the median activation diameters show almost no seasonality, 
looking in more detail (see Fig. S4), an increase in the Dact is observed during the transition from winter 
to spring. 
 
Figure S4 does not depict Dact values. Please correct accordingly (figure S3 seems to be the correct 
one). In addition, the increase in Dact is more pronounced for the lower supersaturations (0.1 and 0.2%).  
 
Thank for pointing it out, we have revised the manuscript accordingly. 
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17) Section 3.1 (lines 478 – 481: ―After autumn, there is an increase in Dact toward winter, despite a 
decrease in BVOC emissions and the resulting lower organic mass fraction alongside a higher 
inorganic fraction (see Fig. S9). This suggests the influence of another factor, possibly the higher eBC 
fraction observed during winter (see Sect. 3.3). 
 
From figure S3 it seems the opposite (i.e., Dact) decreasing for the lowest supersaturation (i.e., 0.1%) 
from November and until April (i.e., last month of autumn and the whole winter). For all the other 
supersaturations a clear trend for autumn and winter months cannot be seen, with the exception perhaps 
of 0.5% supersaturation. For the lowest supersaturation (0.1%) the decrease of Dact during the winter 
period is consistent with the lower contribution of the organics, observed during the same period from 
the bulk chemical composition (figure S9). That said, Dact for 0.1% supersaturation is well within the 
accumulation mode and in the size range where the chemical composition measured by the ACSM 
should match that of these particles. On the other hand, for the higher supersaturations (0.5 and 1.0%), 
where Dact resides well within the Aitken mode, the differences in the median Dact values between autumn 
and winter do not seem significant to justify a higher contribution of BC in this mode.  
 
Many thanks for this suggestion. We acknowledge that there has to be correction in the description of 
this figure. In the latest version of the manuscript, we have incorporated the changes. The inclusion of 
the MCMC inverse closure method, we have also gained further insights into the supersaturation-
dependence of the goodness of the closure – particularly for 0.1% – which have also been added to the 
revised manuscript. The relevant paragraph now reads: 
 
“While the seasonal variation in median activation diameters Dact is not pronounced across all SS, more 
detailed inspection (Fig. S3) reveals a decrease in Dact  at the lowest supersaturation (0.1%) during the 
transition from autumn into winter (November to April). This trend is consistent with a reduced 
contribution of organic aerosols and a higher relative abundance of inorganic components during winter, 
as also indicated by the bulk chemical composition (Fig. S9). Since the activation diameters at 0.1% SS 
fall within the accumulation mode, the size range where ACSM measurements are most representative, 
the observed seasonal variation in Dact  at this SS level can be directly linked to changes in aerosol 
composition. Overall, across all supersaturations, an increase in Dact  is generally observed during the 
transition from spring to summer which is more pronounced at 0.1%, 0.2%, and 1.0% SS, while being 
relatively weak at 0.5% SS.”      
 
 
18) Section 3.2 (paragraph starting from line 536 ending in line 553): In this paragraph the authors 
provide some plausible explanations for the discrepancies between the estimated (based on the different 
closure methods) and measured CCN number concentrations. According to my opinion, they should 
include in addition some sentences discussing the implication(s) of particles mixing state. In section 
2.2.3, the authors correctly point out that for performing the closure studies they had to assume 
internally mixed particles. However, what would be the effects of sampling externally mixed particles? 
In addition, the authors could perhaps use the HTDMA measurements (Hämeri et al., 2001; cited in the 
manuscript; or other more recent HTDMA measurements if available) for qualitatively investigating if 
the particles residing in the Aitken mode are externally mixed and if yes, if this happens in most of the 
cases or just in some.  
 
In our analysis, we assumed internally mixed particles within each fitted mode (Aitken and 
accumulation), as outlined in Section 2.2.3. Unfortunately, we did not have concurrent HTDMA 
measurements to directly verify mixing state during our study period. However, existing literature 
provides useful insights into typical mixing behavior at Hyytiälä. 
 
According to Paramonov et al. (2015), the aerosol in Hyytiälä shows clear seasonal and size-dependent 
mixing state characteristics. Specifically, they report that particles in the ~75–300 nm range are 
internally mixed during late spring and early summer (May–July), with a very small CCN-inactive 
fraction (~0.2%). For the rest of the year, the aerosol becomes partially externally mixed, with the CCN-
inactive fraction increasing to ~6.6%. Moreover, the study also presents a distribution of κ which shifts 
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significantly between 0.2% and 0.4% supersaturation — reflecting an external mixing between particles 
above and below 100 nm. However, within each size range — either below or above 100 nm — the κ 
distributions are relatively consistent, suggesting that particles are mostly internally mixed within those 
size classes. Due to this, we do not expect the assumption of internal mixing to significantly bias our 
inverse closure results as our analysis optimizes chemical composition and thus hygroscopicity 
parameter separately for the Aitken and accumulation modes, rather than assuming a single bulk 
composition. This partially compensates for possible differences in mixing state between modes. We 
will add a description of these results to the revised manuscript. 

We acknowledge that if externally mixed particle populations (e.g., internally non-hygroscopic 
subfractions) were consistently present and active in the CCN size range, they could influence the 
closure. However, incorporating such effects would require a more advanced inverse-modeling 
framework that includes the mixing state as an explicit parameter, as well as supporting observational 
constraints (e.g., HTDMA or SP-AMS measurements). Developing such an approach would be a 
valuable next step but is beyond the scope of the current study. 

19) Section 4 (lines 641 - 642): ― However, all of the applied methods tend to overpredict CCN 
concentrations to varying degrees. 
 
A more clear ―take home message can be conveyed to the reader if the authors could be more specific. 
For instance, they may add some percentages, in order for the reader to better understand the 
magnitude of the overprediction.  
 
Thank you for this comment. We have modified the Abstract and Conclusions of the revised manuscript 
to include more clear and quantitative take-home messages (see response to specific comment #1). The 
relevant paragraph in the Conclusions now reads: 
 
“CCN concentrations at Hyytiälä exhibit clear seasonal variations, peaking in summer and reaching 
their lowest in winter, reflecting overall particle number trends. Our closure calculations generally agree 
reasonably well with observed CCN concentrations, with Pearson correlations exceeding 0.8. However, 
all of the applied methods tend to overpredict CCN concentrations to varying degrees.  As expected, 
the inverse closure methods perform the best, especially at higher supersaturations (0.3%, 0.5% and 
1.0%), where both accumulation and Aitken mode particles can activate, highlighting the importance 
of accounting for the size-dependent nature of aerosol composition for more accurate CCN predictions. 
Overall, the GMB remains well below 1.3 for κMCMC, κopt and κ0.18 across all supersaturations (see Table 
S1 in supplementary), except at 0.1%. The best agreement is observed at 0.2% and 0.3% 
supersaturations, where the GMB is around 1.1 for all methods, except for κMCMC, for which the best 
agreement occurs at 0.5% and 1.0%, suggesting that most of the overprediction at higher 
supersaturations, where the Aitken mode activates can be reduced if variability in the lognormal 
parameters of the size distribution is also considered. However, at a supersaturation of 0.1%, the use of 
size-dependent composition i.e. κopt and κMCMC don’t significantly reduce the error. This suggests that 
the primary source of the error at this supersaturation arises from another factor — most likely, the 
substantial measurement uncertainty of the CCN counter at low supersaturation, as previously discussed 
(see Sect. 3.2).” 
 
20) Section 4 (lines 657 – 659): The Aitken mode has the lowest κ values in winter while summer 
features higher Aitken mode hygroscopicity (lowest accumulation mode κ) possibly due to decreasing 
BC content which was not accounted for in the calculations.  
 
This sentence can be written in a clearer way. I suggest that the authors should conclude separately for 
the κ values of the Aitken and of accumulation mode particles, since the reasons for the observed 
seasonal variability in their hygroscopicities are most probably different, based on the discussion in 
the previous sections. In addition, if I understood correctly, BC content was accounted during the 
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estimation of the particle hygroscopicities and in the different closure methods. What was not accounted 
for, was a size-dependent BC content. The authors need to describe this in clearer way.  
 
Great point. The sentence now reads “The Aitken mode has the lowest κ values in winter, while summer 
features higher Aitken mode hygroscopicity (lowest accumulation mode κ) possibly due to decreasing 
BC content.” We have also modified the conclusions and the comparison between Aitken and 
accumulation mode hygroscopicities obtained with the two inverse closure methods to the revised 
manuscript. 
 
21) Section 4 (lines 678 – 680): ― Our study uses this approach, leveraging routine monitoring 
instruments to estimate size-dependent composition; with the inverse closure method it takes only a few 
seconds to determine the composition of Aitken and accumulation mode particles for a given time.  
 
Do the authors refer here to the computation time of the inverse closure method or to the necessary 
measuring time by the ACSM, CCNc and DMPS? To my understanding, the time resolution of these 
instruments is in the order of an hour or longer, especially when accounting for the time that the CCNc 
needs in order to step 5 supersaturations. Considering this, the estimation of size-dependent 
composition by combining these instruments would take far more than few seconds. The authors should 
distinguish and more clearly report the necessary time resolution of the measurements from the 
computational time of their software routine(s).  
 
We thank the reviewer for this comment. Our results now indicate that – except in some cases – the 2-
hour resolution of the CCN cycle is often enough to get a reasonable idea of the modal composition of 
the aerosol population. We have added extensive explanations to clarify this in the revised manuscript, 
and removed the confusing sentence that the reviewer refers to. 
 
22) Section 4 (lines 682 – 684): ― Moreover, the aerosol particle size distribution should remain 
relatively stable during a CCN measurement cycle, as the accuracy of predicting CCN spectra is more 
sensitive to variations in size distribution than to changes in chemical composition (see e.g. Lowe et al., 
2016).  
 
The combination of the instruments described in this work for estimating one data point of size-
segregated chemical composition results to time resolution in the order of one hour or more (see my 
comment above). However, perhaps the same (or similar) instruments with a different mode of 
operation can be employed for reducing the necessary measuring time. For example, could a Scanning 
Flow CCN Analysis (SFCA, Moore and Nenes, 2009) or a scanning mobility CCNc Analysis (SMCA, 
Moore, Nenes and Medina, 2010) be used for significantly reducing the necessary measuring period? 
Can the above two CCN methods be used with the inverse closure method and software routine(s) 
developed by the authors?  
 
Indeed, as also shown by the added analysis with the second inverse closure method, the time-resolution 
of the CCN measurement makes a significant difference for how accurately the modal composition can 
be constrained. The manuscript has been revised extensively to clearly illustrate this point. 
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