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Abstract. How do snow distribution patterns influence the surface temperature of snow on sea ice? Despite its crucial
role in the sea-ice energy balance, snow on Antarctic sea ice remains under-sampled and poorly understood. In our study,
we combined Uncrewed Aerial Vehicle (UAV) and ground-based measurements to obtain high resolution (9 cm/px) maps
of snow topography (Digital Elevation Model; DEM), surface temperature, and modeled irradiance over a 200 m x 200 m
test site on relatively uniform landfast sea ice (2.4 + 0.04 m thick) in McMurdo Sound, Ross Sea, Antarctica. A key tech-
nical advance presented here is a new algorithm to correct thermal camera drift from Non-Uniformity Correction (NUC)
events in the DJI Matrice 30T, enabling consistent, accurate airborne temperature retrievals with applications beyond
polar research. Based on MagnaProbe measurements, the average snow depth for the test site is 0.1 +£0.04 m. Snow
surface temperatures average - 14.7 £ 0.4 °C, with local variations up to 12 °C. Small-scale topography strongly affects
local irradiance (modeled 592 + 45 Wm~—2 vs. 593 4+ 20 Wm~—2 measured), revealing that flat-surface assumptions under-
estimate local variability of irradiance. Statistical analyses identify irradiance and visible sediment deposition as dominant
predictors of surface temperatures, while snow depth plays only a minor role. These results highlight that assuming that
snow-covered sea ice is a flat surface fails to represent the full irradiance range, potentially impacting non-linear energy
balance processes. Our study provides new insights into drivers of snow surface temperatures over sea ice with potential

implications for the sea-ice energy balance.

1 Introduction

The effects of climate change have far-reaching consequences in polar environments, particularly in the ice-dominated
high-latitude regions of the Arctic and Antarctica (Callaghan et al., 2011; Simmonds, 2015; Lindsay and Schweiger, 2015;
Meredith et al., 2022). These regions experience polar amplification, a phenomenon where warming is more pronounced
compared to lower latitudes (Stuecker et al., 2018; Wendisch et al., 2022). As polar ice caps, glaciers, and sea ice melt,
the exposed darker surfaces, such as the open ocean and bare land surfaces, can absorb more solar energy, leading to

further melting and darkening, and thus influencing large-scale atmospheric circulation patterns (Perovich et al., 2007).
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QSea ice growth and decay play a key role in this ice-albedo feedback loop (Riihela et al., 2021). The annual growth
cycle of sea ice is one of the most extensive changes observed on Earth’s surface (Parkinson, 2014), and its long-term
trend differs significantly between the Arctic and Antarctica. Arctic sea ice has experienced a trend of rapid sea ice loss
(Lindsay and Schweiger, 2015). In contrast, the minimum Antarctic sea ice extent exhibits more variability, with a general
increase through the satellite period (since 1978) until 2016, and a decrease thereafter. Recent records show the lowest
minimum extent since record-keeping began in 1978 (Wang et al., 2022). The thickness, extent, and duration of sea ice
impact the absorption and reflectance of solar radiation, thereby influencing the Earth’s energy balance (Massom and
Stammerjohn, 2010). Additionally, sea ice affects ocean circulation patterns, ecosystems, and the carbon cycle (Stein
et al., 2020; Massom and Stammerjohn, 2010).

Snow cover is a critical factor in sea ice thermodynamics, impacting interactions between sea ice and the atmosphere
(Landrum and Holland, 2022). Snow, one of the most insulating natural materials, is a barrier to heat exchange between
the ocean, sea ice, and atmosphere (Webster et al., 2018). ifhas a high albedo, up to 0.9, compared to the albedo of bare
sea ice (~0.4-0.6) or the open ocean (0.06) (Perovich et al., 2007; Brandt et al., 2011; Light et al., 2022; SmitbQ'et al.,
2022), enhancing reflectance and influencing regional and global climate by affecting heat and mass balance (Zatko
and Warren, 2015). Snow accumulation and metamorphism impact the conductive and radiative properties of sea ice,
affecting its thickness, salinity, temperature, and permeability, highlighting the importance of understanding snowpack
dynamics (Sturm et al., 1997; Perovich and Polashenski, 2012). Despite the recognized influence of snow properties on
sea ice thermodynamics, the relative importance of different factors - such as snow depth, surface microtopography, and
sediment deposition - on snow surface temperature remains poorly understood.

Comprehensive datasets concerning the spatial evolution of snow on sea in Antarctica are limited(Eicken'etall, 1994;
Massom et al., 2001; Brandt et al., 2005; Sturm and Massom, 2016; Arndt and Paul, 2018). Antarctic snow on sea ice
differs markedly from its Arctic counterpart, with large spatial variability depending on the location. Antarctic snow is
generally thicker (Arndt et al., 2017; Arndt and Paul, 2018; Nicolaus et al., 2021; Lawrence et al., 2024), colder, and
persists throughout the year, contrasting with the thinner, warmer snow in the Arctic (Massom et al., 2001). In McMurdo
Sound, snow on sea ice persists through summer unti?breakout, but is generally thinner than in other Antarctic fast ice
regions (Brett et al., 2020). This persistent snow cover influences sea ice albedo, primarily through snow thickness and
physical properties such as specific surface area, salinity and liquid water content in summer (Zhou et al., 2001). In some
areas in Antarctica, like the Weddel Sea, the thick snow cover and thinner sea ice lead to flooding, where the weight of the
snow depresses the ice surface, allowing seawater to infiltrate the snow. This seawater-saturated snow then refreezes,
resulting in snow-ice formation and thickening of the iclerom above (Eicken et al., 1994; Massom et al., 2001; Arndt et al.,
2017).

)
’QQQQQQQI??JI”::I\?&%QS%SM, in particular, research on snow is sparse (Price et al., 2013, 2019; Brett et al., 2020). Recent

55

advancements, such as the Tan et al. (2021) airborne study provide valuable data into snow depth distribution, but
underscore the need for more extensive datasets to address critical gaps in our understanding of Antarctic snow on sea

ice dynamics. The lack of comprehensive snow data on Antarctica sea ice, and the significant differences between the
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Antarctic and Arctic lead to biases in modeling sea ice behavior and errors in global climate system scenarios (Wever
et al., 2021; Landrum and Holland, 2022).

To collect data on the physical properties of snow on Antarctic sea ice, drones are a promising tool (Gaffey and Bhard-
waj, 2020; Pirazzini et al., 2021; Roman et al., 2024). They have been widely used in scientific studies of the cryosphere
outside the polar regions (Buhler et al., 2016; Sproles et al., 2020). Drones can cover extensive areas and simultaneously
measure specific snow parameters a@high resolution, bridging the gap between point-based ground measurements and
low-resolution satellite remote sensing (Wigmore et al., 2019; Tan et al., 2021; Wigmore and Molotch, 2023), and even
provide opportunities for validating satellite remote sensing products. For example, airborne laser scanning has been
used to assess ICESat-2’s ability to capture sea ice surface topography and roughness, revealing limitations in detecting
small-scale features such as ridges and cracks (Ricker et al., 2023). Similarly, drone-based observations could contribute
to validating missions like Polar Radiant Energy in the Far Infrared Experiment (PREFIQJ_Q/,thich aims to improve our
understanding of the Earth’s energy budget in polar regions (Kahn'et'al, 2020).

Our study has three objectives: (1) To develop and validate an airborne method for accurately mapping snow
surface topography and surface temperature on flat sea ice in the polar regions. (2) To use this airborne method
to quantify the snow topography and surface temperature variability over landfast, flat Antarctic sea ice at the
100 m - scale. (3) To investigate the relative influence of potential drivers - including snow depth, sediment pres-
ence, and microtopography-driven irradiance variations - on snow surface temperature. We used multi-spectral
(visible, thermal infrared) Uncrewed Aerial Vehicle (UAV) imagery at sub-metre spatial resolution, closely following the
workflow published by Wigmore et al. (2019). We integrate airborne surface elevation and temperature data collected in
November 2022 with ground-based surveys of snow depth, snow surface temperature, and ice thickness. The resulting
datasets, combined with topography-dependent irradiance modeling, allowed us to examine how fine-scale surface to-
pography and local sediment deposition control snow surface temperature variability. Our findings demonstrate that no
single factor alone can explain the complexity of the sea ice surface energy balance. Our work not only provides new
insights into the role ofssmall-scale variabill?)?in snow-atmosphere interactions but also delivers a novel, high-resolution
dataset to support improved parameterizations of sea ice models.

This paper first describes the study site, ground-based and airborne data, and processing methods, including UAV
thermal imaging, Digital Elevation Model (DEM) generation, and the resulting snow depth proxy. The results explore
spatial patterns of snow depth and surface temperature, followed by a discussion on technical considerations, and the

roles of snow depth, sediment, and irradiance on snow surface temperature.

2 Methods

During a field campaign in November 2022 (4 weeks), we collected snow and sea ice data on the fast ice in front of
theQMcMurdo Ice Shelf, Ross Sea, about 5km southwest of Scott Base and McMurdo Station (Fig. 1). We collected a

new and unique airborne dataset consisting of aerial Red, Green, Blue (RGB) and Thermal InfraRed (TIR) images of
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the snow surface along with photogrammetrically derived digital elevation models, the latter also used to model local
irradiance patterns. We calibrated the airborne dataset with ground-based surface temperature, snow depth, and ice

thickness surveys, as well as radiation measurements.
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Figure 1. Landsat image from November 6, 2022. Study area (black star) in West Antarctica, McMurdo Sound, and Ross Island with
Scott Base (NZ), McMurdo Station (USA), and the Camp Site (CS) test field (yellow rectangle) on the ice wedge between the Ross Ice
Shelf and the tip of Ross Island.

2.1 Study site and conditions

McMurdo Sound is located in West Antarctica, in the southwestern part of the Ross Sea, framed by Ross Island to the
east, the Ross Ice Shelf to the south, and Victoria Land to the west (Fig. 1). McMurdo Sound has a variable snow cover of
0.1-0.3m (Brett et al., 2020) and limited snow-ice formation compared to wetter regions like the Weddell Sea (Maksym
and Markus, 2008). The landfast sea ice is usually 2-2.5m thick (Brett et al., 2020), and there is an extensive sub-ice
platelet layer (up to 9 m) due to the proximity of the Ross Ice Shelf and its super-cooled water supply (Gougtht al., 2012;
Langhorne et al., 2015; Haas et al., 2021). During our field campaign, the average wind speed was 4.7 ms~', and the
average temperature was - 14.2 °C (Fig. A1).

Typically, sea ice formation starts in March and lasts until October, followed by a break-out in January/February. In
2022, the sea ice formation was highly impacted by southerly storms repeatedly interrupting the sea ice formation cycle,
similar to the conditions in winter 2019 (Leonard et al., 2021). Except for a small "wedge" of ice pinned between the front
of the ice shelf and the tip of Ross Island (Fig. 1), the Sound remained largely ice-free until August 2022. As a result,
two distinct sea ice types formed: "old ice", which began forming in the typical cycle around March/April and reached a
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Table 1. Summary of ground-based and airborne instruments with measurement parameters and uncertainties. The uncertainty for the

airborne snow depth (*) is the propagated error counting for the MagnaProbe snow depth error and the GCP error in the z-direction.

Airborne Ground-based Parameter Instrument/Method Unit Uncertainty
X Ice Thickness Geonics EM31 m +0.1
X Snow Depth SnowHydro MagnaProbe m +0.02
X Snow Depth (Proxy) DJI Matrice 30T m +0.045*
X Surface Temperature Apogee SI-121-SS °C +0.2
X Surface Temperature DJI Matrice 30T °C +2
) N R.M. Young Heavy Duty Wind Monitor
X Wind Direction +3
HD-Alpine
. R.M. Young Heavy Duty Wind Monitor -
X Wind Speed ms +0.3
HD-Alpine
. . =+ (0.226-0.0028
X Air Temperature Vaisala HMP155 Temperature Probe °C
x temperature)
X Relative Humidity Vaisala HMP155 Temperature Probe % +2%
Incoming (direct/diffuse) Delta-T Devices Win=2 +5%
X m
Shortwave Radiation SPN1 Pyranometer Daily integrals
Incoming/Outgoing Kipp & Zonen Wm=2 +1.2%to
X m
Shortwave Radiation CMP22 Pyranometer +1.4%
Incoming/Outgoing Kipp & Zonen Wim=2 +1.5%to
X m
Longwave Radiation CGR4 Pyrgeometer +2.0%
. . £ 0.01 horizontally
X Location (Long/Lat) Septentrio AsteRx m

=+ 0.02 vertically

thickness of about 2.5 m during our field campaign, and "new ice", which started forming only after August 2022 and grew

to about 1-1.5m thickness by November 2022. During the November 2022 field campaign, we collected data on five

200 m x 200 m sites with different snow and ice conditions, of which, in this study, we only discuss the site we assumed to

be "flat and relatively homogeneous". The site was our main test site (Camp Site; CS), located on the flat "old ice", next

to the field camp (Fig. 1, yellow rectangle) @

2.2 Ground-based data

Our ground-based dataset consists of automated radiation data, weather data, and snow and ice thickness measure-

ments. All sensors, instruments, and parameters used in this study are listed in Table 1.
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2.2.1 Radiation and weather data

We installed automated measurement stations to capture the local radiation, surface temperature, and weather conditions
and to validate and correct airborne measurements, as well as to calibrate the irradiance model. The radiation station
was outfitted with a pair of Kipp & Zonen CMP22 pyranometers, one facing upward and one facing downward, to measure
the broadband incident (Sw{}) and reflected (Sw1}) solar irradiance in the 200 - 3600 nm wavelength range, and a pair of
Kipp & Zonen CGR4 pyrgeometers, one facing upward and one facing downward, to measure the broadband incoming
(Lwd{}) and outgoing (Lw1}) longwave radiation in the 4500 - 42000 nm wavelength range. The sensors were ventilated, and
according to the manufacturer’s specifications, the nominal accuracy of the Sw and Lw measurements is ~1 % and 3 %,
respectively. The radiation station also included a DeltaT SPN1 radiometer that measured broadband global and diffuse
incident irradiance (Swd} and Swy;isr ) in the 400-2700 nm wavelength range. According to the manufacturer, the nominal
accuracy of both measurements is + 8 %. Inter-calibration studies have shown that an extra factor of 1.05 should be
applied to Swyisrll to compensate for its systematic underestimation (Badosa et al., 2014). A stationary Apogee infrared
radiometer (model SI-121-SS) installed slightly north of the radiation station was pointing at clean snow ("cold target")
with an angle of approximately 45 ° mounted at ~1.2m height, leading to an elliptical footprint of about 1.6 m2. The data
were logged every 10s. A non-stationary Apo%(?eQi%rared radiometer (model SI-121-SS) on a tripod was placed in the
test field and mounted at 1.02 m, pointing vertically downward (nadir view) a sediment patch ("sediment target"), yielding

a near circular footprint of 0.35 m?.
2.2.2 Snow depth

To capture the spatial distribution of snow depth, we conducted MagnaProbe transects (Sturm and Holmgren, 2018).
The MagnaProbe is a user-friendly device that allows for rapid snow depth measurements. The snow depth is measured
by inserting a 1.53 m steel rod with a sliding ring magnet inside a plastic disk into the snow until the tip of the rod hits
the ground. An electronic pulse from a magnetostrictive sensor determines the position of the magnet, converting the
signal into the distance from the rod’s tip to the disk and indicating snow depth. The snow depth and the GPS position
(GARMIN™ receiver and Campbell Scientific antenna) are recorded with a Campbell Scientific CR800 data logger (Sturm
and Holmgren, 2018). The accuracy of the snow depth depends on (1) the hardness of the underlying surface (a too-soft
material will cause compaction and over-probing), (2) the positioning of the plastic disk on the snow surface, and (3) the
correctness of the vertical angle. For our measurement campaign, the uncertainty is mainly influenced by (2) and (3) as
the snow surface is relatively hard and uneven, affecting the insertion of the probe and the ability of the plastic disk to
lie flat on the snow surface. We assume the measurements are within a +0.02 m uncertainty. This is slightly larger than
the 0.01 m assumed for the winter MOSAIC measurements over likely similar roughness (Itkin et al., 2023), to account
for the exceptionally hard snow surface, which made it difficult for the MagnaProbe disc to lay perfectly flat. The GPS

accuracy is +2.5m. Our measurement strategy was to conduct transects along the measurement field borders and a
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cross through the middle, taking a measurement approximately every 1.5 m, which resulted in 813 measurements for this

particular "study field".
2.2.3 Ice thickness

We used the Geonics electromagnetic conductivity meter (EM31) combined with manual drilling to survey the ice thick-
ness. The EM31 is a geophysical instrument that measures sea ice conductivity and in-phase components to detect
subsurface features (Tateyama et al., 2006). It operates based on the principles of electromagnetic induction. The EM31,
consisting of a transmitter and receiver coil, was mounted on a sledge and towed over the snow by a snow machine. The
transmitter coil emits a primary electromagnetic field into the ground, and as the field penetrates the ice, it reaches the
conductive seawater beneath. This causes strong eddy currents to form, generating a secondary electromagnetic field.
The receiver coil detects this secondary field, which is altered by the distance it travels through the ice. The EM31 mea-
sures the apparent conductivity of the subsurface and the phase shift between the primary and secondary fields. These
measurements are recorded continuously as the instrument is moved across the ice. To account for local variations in
ice thickness and device calibration, we took direct ice thickness measurements at various points (approximately every
50 m) using a Covacs ice drill. We used the same survey pattern for the EM31 ice thickness measurements as for snow
depth. While there is a significant platelet ice layer in our survey field, we excluded it from our ice thickness evaluation by
calibrating the EM31-signal to ice and snow thickness only. The snow and ice thickness was calculated following a linear

regression between conductivity and manually measured ice and snow thickness at the CS test field:
hice+snow =—0.0103% +4.2285 (1)

with hicersnow the combined ice and snow thickness and x the conductivity. During our surveys the EM31 was mounted
0.5m above the surface (snow or ice depending on the measurement location) on a sledge that was pulled with a snow
machine. To calculate only the ice thickness, we subtracted the mounting height as well as the average snow depth of
0.16 m from the DEQ®

2.3 Airborne data

We used a DJI Matrice 30T, a multi-rotor (quadcopter) UAV with self-heating batteries, suitable for operations in polar
conditions (temperature range from - 20 to + 50 °C). The UAV has a wide-angle camera (12 megapixels) for RGB images
and a thermal camera (Uncooled Vox Microbolometer, long-wave infrared spectrum 8-14 um, 1.31 megapixels) for TIR
images with an accuracy of +2 °C or &2 % (Da Jiang Innvoations (DJI), 2022). The exact wavelength for the wide angle
and TIR camera is unknown.

To retrieve RGB and TIR imagery, we programmed two missions following a lawnmower cross-grid survey pattern at
two different flight altitudes, and executed them on November 14, 2022. The first flight at 60 m altitude took off at 22:12:00
and finished at 22:31:19 (UTC). We changed the batteries and executed the second flight at 75 m altitude, with the take-
off at 22:44:45 and landing at 23:01:37 (UTC). The frontal overlap of the images was set to the maximum of 95 % and
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the side overlap to 80 %. The high frontal overlap only affects the frequency at which the pictures are taken and does not

affect the flight pattern or flight time. The RGB and TIR images were shot simultaneously.
2.3.1 Georeferencing

To georeference the RGB and TIR images, we used 10 targets as Ground Control Points (GCPs) on the snow surface
across the 200 m x 200 m measurement area before the drone flight. The RGB targets were 0.3 x 0.3 m sheets of yellow
coroplast plastic, with a pink duct-tape cross defining a centre point. For the TIR survey, 0.4x0.4 m black targets were
installed next to the RGB targets. As black (hot) targets, we used thermal insulation material, similar to camping mats,
that was black on the top side, with silver-colored foil as backing (similar to first aid blankets) at the bottom. The location
of each of the RGB targets was measured using dual-frequency GNSS receivers, and post-processing was done using
the Precise Point Positioning kinematic method (Malinowski and Kwiecien, 2016) and the software «teqc» (Estey and
Meertens, 1999).
Q&jn@.@@@&@@@g: Non-Uniformity Correction (NUC)
The proprietary RJPG format used by the thermal camép&&:ains absolute brightness temperatures but cannot be directly
analyzed. We therefore converted the images to TIFF using the Imaged IR UAV plugin (Pereyra lrujo, 2022) before
processing them with the SfM workflow in Agisoft Metashape Pro version 1.8.4 (Wigmore and Molotch, 2023) in Fig. ZQ
The thermal camera of the DJI Matrice 30T uses an uncooled microbolometer, which is prone to non-uniformities in its
sensor array; each pixel responds slightly differently to the same temperature. To correct for measurement drift caused by
these differences, the camera performs periodic internal calibrations known as Non-Uniformity Correction (NUC) events.
This process involves a shutter that blocks the lens, providing a uniform temperature source for calibration. The camera
measures each pixel’s response to this source and adjusts its settings to correct any discrepancies. After calibration, these
adjustments ensure accuracy and uniformity in subsequent images. The frequency of NUC events varies depending on
the camera model and environmental conditions, but it is often not documented and seldom adjustable for off-the-shelf
drones, like the DJI Matrice 30T. Consequently, temperature differences of up to 1.5 °C can occur in consecutive TIR
images taken before and after a NUC event, as shown in Fig. 3a (red and yellow dots, respectively). We introduce a novel
NUC correction algorithm that aligns and compares temperature measurements across frames, mitigating discontinuities

caused by internal NUC events:

Step 1: Read sequential image pairs (RIPG; 1280 x 1024 px)

Step 2: Identify overlapping areas in each image pair (in this dataset, the overlap is at least 70 %). We do this by finding
and extracting unique features to ensure identical regions in each image pair. For this, we use the Oriented FAST
and Rotated BRIEF (ORB algorithm) detector, which combines two key components: FAST (Features from Accel-
erated Segment Test) and BRIEF (Binary Robust Independent Elementary Features Descriptor). FAST identifies

interesting points (corners) in an image, similar to spotting unique landmarks on a city map. BRIEF then describesQ

PPPPPP0PPPP0Q
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(original resolution 5cm/px)

Digital Elevation Model (DEM) upscaled to 9cm/px
to match TIR orthomosaic (original resolution 5¢m/px)

DEM: DETREND
Detrend the DEM and correct offset with groundbased

magnaProbe snow depth measurements

|
DEM: OFFSET CORRECTION

Correct offset with groundbased
magnaProbe snow depth measurements

-

igh
Highq

lity and pointcloud filtering

Triangular irregular network (TIN) mesh generated from the
dense cloud; TIN mesh smoothe:

|

Oval image mask applied to account for the vignette effect (corners of the
image are cooler than the centre) in thermal images due to the lens
properties, sensor characteristics and optical aberrations.

Orthomosaic (9cm/px ); Manually delete corner images that
cause motion blur; Calculate the final orthomosaic for TIR images

—— TIR ORTHO: TEMPERATURE CALIBRATION m—0—qp

Correction of TIR orthomosaic with groundbased radiation datasets

(Eq. 3 and 4)

Ground-based
Global and diffuse
s

downward shortwave
radiation measurementt

Ground-based
Incoming longwave
radiation and
brightness temperature

POST-PROCESSING

) )

Model

Topography-dependent
irradiance modification

SNOW IRRADIANCE
DEPTH MAP
PROXY MAP

)

SURFACE
TEMPERATURE
MAP

FINAL PRODUCT

?—‘igure 2. Workflow for processing and analyzing RGB and TIR images captured with the DJI Matrice 30T during two flights in 60
and 75 m altitude. The process includes converting RJPG images to TIFF format using the Imaged IR UAV plugin, applying the NUC
correction algorithms for the internal camera calibration, and processing both TIR and RGB images through photogrammetry steps
in Metashape. Key steps include sparse point-cloud generation, georeferencing, optimization, dense cloud generation, mesh creation

and the DEM and RGB/TIR orthomosaic production. Then, we apply a final offset correction using ground-based MagnaProbe snow

depth measurements and the surface temperature calibration using ground-based Apogee temperature data.



Text Inserted�
Text
"Figure 2."

Text Deleted�
Text
"Figure 3."

Text Replaced�
Text
[Old]: "magnaprobe" 
[New]: "MagnaProbe"

Text Replaced�
Text
[Old]: "11" 
[New]: "9"


215

these corners using compact binary "fingerprints," analogous to noting a landmark’s distinctive features (e.g., "a
red brick house with a tall chimney"). The ORB algorithm enables efficient and robust feature matching between
images (Rublee et al., 2011; Bradski, 2000). Then, we use the Brute-Force Matcher (Bradski®2000§to calculate
corresponding points and select the 50 best feature matches in each image pair to estimate a homography matrix,

which describes the geometric relationship between the two images.

Step 3: For each pair of successive images, the firstimage is warped to align with the grid of the second image to ensure

accurate overlap and compensate for camera movement.

Step 4: Extraction of brightness temperatures from each pixel. From here on, we use the converted TIFF images (TIFF;

640x 512 px).

220 QStep 5: For each TIFF image, calculation of the mean brightness temperature Tprightess Of the area overlapping with the

225

230

following image. Ideally, the Tbrightness of the same overlapping area in different images should match, as the thermal
images were captured nearly simultaneously. However, due to temperature drift and NUC events, discrepancies

arise and must be corrected.

tep 6: Identification of NUC events. A NUC; event, with i=1,...m (m being the total number of NUC events during the

considered flight), is identified when the absolute differences between the Tyrightness Of Overlap regions in consecu-
tive images is > 0.5 °C (Fig. 3a). NUC events in this study were identified using a fixed threshold of 0.5 °C, chosen
empirically based on the stability of the correction curve (Fig. 8a). We tested different thresholds (1 °C, 0.5 °C, and
a dynamic 99th percentile approach) and found that 0.5 °C visually identified the NUC events most clearly and
consistently at this site. We therefore chose this fixed threshold for the present analysis, while noting that adaptive
approaches may be more appropriate at sites with greater temperature heterogeneity. Between two NUC events,
NUGC; and NUC;.1, there are n images [, with j=1,...n (n being the number of TIR images taken between two
consecutive NUC events). For image |;, Turightness(ij) Fepresents the mean temperature of image l;,1 (in the overlap
region). We do not consider a temperature change > +'0.5 °C to be a NUC event if it affects one image only (e.g.
Fig. 3a: blue dot).

235 Step 7: Correction of the temperature drift between two consecutive NUC events. We assume that the temperatures

240

measured immediately after the NUC events are accurate, and that the temperature drift (drift rate d;) over the n

images between two consecutive NUC events (NUC; and NUC,, ) is linear:

di= (Tbrightness(i+1,1) - Tbrightness(i,n))/n @)

where :IQD,;ghmess(i,n) is the mean temperature of the overlap area in the final image n in the series after the NUC;

event (red dots in Fig. 3), and Tprightness(i+1,1) IS the mean temperature of the overlap area in the first image after the

10
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250

255

NUCi,1 event (yellow dots in Fig. 3). d; is then applied to calculate the linear correction ¢;; for the Tbirghtness(i,j) mean

temperatures of the j=1,...n images between NUC; and NUC;,+:

Gij=Jdi 3)
The brightness temperature of each pixel in each TIR image is then corrected by adding c;;.

To understand the improvement achieved with this temperature correction procedure, we analysed the temperature
in 250 random areas of 10x 10 m? taken from the NUC uncorrected and NUC corrected TIR orthomosaics. While our
algorithm to correct the images for NUC events is applied sequentially (it depends on the order of images), we found that
this analysis does not depend on the order in which the images were taken. For each of the 250 areas that contained at
least 10 images, wchalculated the temperature anomaly per image by subtracting the mean areal temperature from the
mean image temperatLﬁ"(-:?fbr;ghtness. By comparing the temperature anomalies in the NUC uncorrected and NUC corrected
TIR orthomosaic, we can assess the algorithm’s impact performance in reducing drift and variability of temperature
anomalies (Fig. 3c, dark grey vs. light grey) across the dataset.

In the NUC uncorrected TIR orthomosaic, the spread of anomalies ranged between + 4 °C due to the temperature
driftQin between NUC events and the consequent variability in Tprightness @Mmong the images capturing the same over-
lapping area. In the NUC corrected TIR orthomosaic, the distribution of temperature anomalies narrowed to the range
+ 2 °C, there were fewer outliers, and the whiskers of the temperature anomaly boxplot shrank (Fig. 3c). This suggests

that our correction improved the repeatability of Tbr,ghtness at each site, reaching an accuracy comparable to the sensor

QQQ%certamty (see Section 2.3). The Root Mean Square (RMSE) of the temperature anomalies across all 250 sampled

260

265

270

areasQwas 1.11 °C in the NUC uncorrected orthomosaic and decreased by 0.53 °C down to 0.58 °C in the NUC corrected

orthomosaic.
2.3.3 TIR orthomosaic

To produce the TIR orthomosaic, we first generated the sparse point cloud through tie-point generation, alignment, and
cloud creation. After georeferencing with GCPs from both RGB and TIR images, we optimized the sparse cloud by re-
moving outliers. We then created a high-quality, dense point cloud, generated a TIN mesh, and applied an oval-shaped
vignette correction mask. The vignette correction mask is applied to remove the areas affected by the temperature dis-
tortion at the edges (corners) of the TIR images, which tend to be cooler than the centre due to lens properties, sensor
characteristics, and optical aberrations (Wigmore and Molotch, 2023). We then calculated the first orthomosaic, we manu-
ally corrected motion blur in the corner areas of the DEM by excluding these images, and produced the final orthomosaic,
which was then calibrated using the ground-based Apogee temperature dataset (see the following Section 2.3.4). The TIR
orthomosaic has a reprojection error of 0.6 px and GCP%rrors in x, y and z-directions of 0.008 m, 0.003 m and 0.001 m.

The workflow is summarized in Fig. 2.
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Figure 3. lllustration of NUC events (a) and their correction (b) for the first flights at 60 m altitude. (a) Mean brightness temperature
(Thrightness) for overlap area per image. Red dots indicate Thrightness before the NUC event, and yellow dots indicate Torightness after the
NUC event. NUC events are temperature jumps of more than 0.5 °C in two consecutive images. The blue dot indicates a temperature
outlier for one image, which is not a NUC event. (b) The same dataset after the correction algorithm (Eqg. 2 and Eq. 8) is applied. (c) The
Kernel Density Estimate (KDE) function showing the distribution of brightness temperature anomalies in the 250 randomly sampled
areas of 10x 10 m? taken from the NUC uncorrected (dark grey) and NUC corrected (light grey) TIR orthomosaics.

2.3.4 TIR orthomosaic: Ground-based temperature calibration

To derive the surface temperature orthomosaic, we calibrated the brightness temperatures of the TIR orthomosaic using
surface temperature data obtained from sea-ice-based observations. We calculated the snow surface temperature from
the brightness temperature measured by the Apogee infrared radiometer, accounting for the contribution of the reflected
fraction of downwelling longwave radiation measured with a Kipp & Zonen CGR4 pyrgeometer (Apogee Instruments‘;{NC.,
2022):

T4 —(1—elwy/o
4 ogee
Tsurface =\/ Apog p (4)

Qwhere Turace is the surface temperature (K), T apogee is the surface brightness temperature measured with the Apogee
sensor (K), e = 0.98 is the snow thermal emissivity, and ¢ is the Stephan-Boltzman constant.
In Fig. 4a, we present the surface temperature time series of the snow surfaces within the footprints of the two Apogee
infrared radiometers during the flights, alongside the Thrightness Of the corresponding TIR images that cover the two foot-
prints (with a RMSE of 0.58 °C quantifying the residual error in the temperature dataset and serving as an uncertainty

estimate for the surface temperature maps). We extracted Thrightness Within the Apogee sensor footprints from the TIR

12
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Figure 4. (a) The time series (line plots) of surface temperatures measured on November 14th, 2022 with the two Apogee sensors
(Table 1) targeting snow with visible sediment particles (yellow), and clean snow without visible sediment particles (blue). The dots
are Thurightness from all TIR images (NUC corrected) that contain the Apogee sensor’s footprint with the temperature anomaly RMSE of
0.58 °C that results from the correction equation (eq. 2 and 8). (b) Scatter plot with ground-based temperatures measured by Apogee
sensors (Tsurface) at the two targets against the Turightness from TIR images that encompass the footprints of these sensors. The black
line is the best linear fit. The error bars indicate the temperature anomaly RMSE of 0.58 °C and the manufacturer’s uncertainty for the

Apogee sensor, respectively.

images and plotted it against the Apogee-measured surface temperatures (Tsurface) in Fig. 4b. We calibrated the airborne
brightness temperatures to surface temperatures by calculating the best (linear) fit between the Apogee-measured, sea
ice-basedqurface temperatures T face and the collocated, simultaneous TIR image brightness temperatures Tprightness-
To match the airborne data points with the temporally higher resolved (10s) sea ice-based measurements, we averaged
the three Tsurrace Measurements taken before and after the Thrightness timestamp. We used this dataset to calculate the

linear fit:

Tealibrated = 0.68 Tbrightnesg, —4.44 (5)

This equation is applied to each pixel in the TIR orthomosaic. The total uncertainty of the derived surface temperature
is calculated as the square root of the sum of the following squared contributions: the RMSE of the linear fit (0.48 °C), the
thermal camera uncertainty (£ 2 °C), and the RMSE associated with the NUC correction (0.58 °C). This results in a total

uncertainty of +2.1 °C fofthe surface temperature derived from airborne thermal imagery.
2.3.5 Digital Elevation Model (DEM)

We derived the DEM from the RGB images following the workflow detailed in Fig. 2. First, we generated the sparse
point cloud through image alignment and tie-point generation. After georeferencing using GCPs from both RGB and TIR
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images, we optimized the sparse cloud by removing outliers with poor accuracy values. We then created a dense point
cloud, generated a triangular irregular network (TIN) mesh and finally calculated the RGB orthomosaic (2 cm/px ground
resolution) and DEM (5 cm/px ground resolution). We upscaled both to 9 cm/px to match the TIR orthomosaic resolution.
The projection error for the RGB orthomosaiind DEM is 0.96 prlnd the GCP errors in x, y, and z directions are 0.05 m,
0.05m and 0.04 m.

As the last processing step, we detrended the DEM by fitting a planar surface to the elevation data and subtracting this
fitted plane from the original DEM. The trend is likely due to the time window of about 3 hours between when the GCP
survey was conducted and when the site was flown, as the site is influenced by tidal variations, which are about 0.2 m for
this 3 -hour time window as shown in Fig. A6. We fitted a plane through the DEM to remove this trend, determined the
best-fit parameters for the plane, and subtracted it from the original DEM, producing a detrended DEM. This allowed us

to focus on analyzing the smaller-scale topographical featuresg‘g'he snow surface, which is the aim of this study.
2.3.6 Snow depth proxy

Mapping snow depth typically requires surveying the area both when it is snow-fr$2d when it is snow-covered. How-
ever, this approach was not feasible in our case because the underlying surface is sea ice, which was never snow-free
(for our field work window) and continuously changed in elevation due to tides, thickening, and thinning processes. To
overcome this limitation and generate a contiﬂﬁ?&ﬁ&w depth estimate, we derived a snow depth proxy from the de-
trended UAV-based DEM, under the assumption that the underlying sea ice surface was smooth and nearly flat (Fig. A2).
Because the DEM and snow thickness share the same vertical scale, a relative change in DEM elevation (e.g., 0.10 m)
corresponds directly to an equivalent change in snow thickness measur&§with the MagnaProbe. Thus, even though the
absolute offset is unknown, the proxy retains the correct variability, which is sufficient for our analyses. The main limitation
is that sea ice is not perfectly flat, which introduces some additional uncertainty.

Instead of spatially aligning individual MagnaProbe measurements to the DEM, we used a single value offset between
the lowest DEM elevation'af§he shallowest measured snow depth to correct the DEM surface. Specifically, the minimum
snow depth measured with the MagnaProbe (0.012 m) and the minimum DEM elevation (- 0.149 m) differ by 0.16 m as
shown in Fig. 5a. We therefore added a uniform 0.16 m offset to the entire DEM to approximate snow depth for each
pixel as illustrated in Fig. 8b. Differences between the distributions are expected because the DEM and MagnaProbe
surveys capture snow depth at different spatial scales and sampling densities. The MagnaProbe transect data (+0.02 m
snow depth error) provided the reference for this offset but could not be used for a direct geospatial match because of
the limited accuracy of the MagnaProbe GNSS positions. As a result, the corrected DEM values should be interpreted
as a proxy for snow depth rather than an exact measurement. The propagated vertical uncertainty (per-pixel vertical
measurement uncertainty), which combines the DEM vertical error (= 0.04 m from GCPs) and the MagnaProbe error, is
estimated at +0.045 m. Since we do not co-locate DEM pixels to exact MagnaProbe points for point-wise validation, we

are not propagating a horizontal offset through a point-by-point comparison.
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Figure 5. (a) Histogram showing the estimated Probability Density Function (PDF) of elevation (m) from the DEM and snow depth (m)
from the MagnaProbe transect. The minimum elevation is offset by 0.16 m relative to the minimum snow depth. (b) Histogram (PDF)
of the offset-corrected DEM elevation (m), used as a proxy for snow depth, and the measured snow depth (m) from the MagnaProbe

transect.

This approach, while simplified, is supported by field observations indicating smooth, flat ice surface conditions across
the study site as shown in Fig. A2. However, it does not represent an absolute snow depth, or capture any localized
sea-ice surface roughness that was not sampled, which should be considered when interpreting the proxy snow depths.

The test field was situated on sea ice with an average thickness of 2.4 +0.04 m across 2449 measurements. The
relative variability in sea ice thickness was calculated as the mean absolute deviation of all measurements expressed as
a percentage of the mean thickness, yielding 1 % (Fig. 6). Thickness ranged from 2.28 m to 2.52 m with a measurement
uncertainty of 0.1 m (Table 1). Since sea ice is buoyant, changes in thickness lead to only minor surface elevation varia-
tions, as most of the ice mass remains submerged. In contrast, snow depth varied significantly more at 32 % (see Table

2), even on this "flat" field, highlighting the snow cover’s heterogeneity driven by wind processes.

400
>.300 1 Table 2. Mean thickness and Standard Deviation (STD) for the sea
g ice thickness (m), snow depth proxy (m) derived from the DEM and
(@)
C37200 1 snow depth (m) measured with the MagnaProbe, the number of
2 data points (n) and the relative change (%) for each dataset.
L 100 1
QMean Rel.
0 - +STD Change
2.2 2.3 2.4 2.5 2.6 Thickness n (m) (%)
Thickn m
S5 (i) Seaice 2449 2.4+0.04 1
Figure 6. Sea ice thickness (m) distribution for 2449 measurements Snow (DEM) 6211943 0.16+0.06 30
Snow (Magna) 813 0.1+0.04 32

points surveyed with the EM31. The bandwidth parameter for the
KDE function is 2.
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To show that a direct correlation of the DEM elevation values and MagnaProbe measurements is not feasible, we
extracted DEM values within a 2.5 m radius around 6 randomly selected MagnaProbe measurement locations to mimic
the effect of positioning uncertainty (Tab. 1). For each point, we plotted histograms of the DEM-derived snow depths

alongside the measured MagnaProbe depth (Fig. /A8).
2.3.7 Irradiance calculation

We calculated surface irradiance on each DEM grid cell by combining UAV-derived topography (slope and aspect) with
solar position at the time of the flight. We based the irradiance calculation on the SPN1 values because they allow
partitioning into direct and diffuse components, which is required to apply the geometric slope correction. The radiation
values are scaled to match the full-spectrum CMP22 pyranometer This approach follows established methods such as
those described by Dozier'and 'Frew (1989). We computed the direct irradiance on a sloped snow surface using the

incidence angle between the Sun and local surface normal:

cos© = cos B cosh, +sinB sinh, cos (ps — @) (6)

with © the angle of incidence (°), 8 the surface slope (°), ¢ the surface aspect (°), 6, the solar zenith angle (°), and ¢s
the solar azimuth angle (°) at the time of the UAV flight. Self-shaded cells are assigned a value of cos © = 0 and received
zero direct radiation.

We scaled the SPN1 radiometer measurements (total I, = 543 Wm~—2 and diffuse lgir = 62 Wm~2 at the time of flight)
using the full-spectrum pyranometer (Isyw = 593 Wm—2) to account for spectral bias using x = lsw /I;, then separated total

and diffuse components, correcting the diffuse radiation with a factor 1.05 following Badosaetal: (2014):

lgir = K (It — 1.05 lgifr) (7)

where lg;, is the direct beam irradiance corrected for spectral bias. The slope- and shading-corrected surface irradiance

for each DEM grid cell was then calculated as:

| = lgir Mcos © +1.05k lyif &)

where © is the incidence angle between the Sun and the local surface normal, and M is the shade mask (0 for shaded
cells, 1 for sunlit cells) following Corripio (2003). We note that multiple scattering between snow facets can enhance
irradiance, particularly in steep and complex terrain (Robledano et al., 2022). However, given the relatively shallow slopes

at our site, we assume this effect is minor and do not account for it in our model.
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3 Results and Discussion
3.1 Airborne maps: red band orthomosaic, show depth proxy and surface temperature

Our airborne products are shown in Fig. 7. The upper row contains the orthomosaics for red band values, the snow
depth proxy (DEM) and surface temperatures€lhe red band orthomosaic (Fig. 7a) provides an overview of the study
area and allows us to identify areas with visible sediment deposition as they are visible by the eye as darker regions
(Fig. 7d). We use the red band (wavelengths > 0.6 um) of the RGB orthomosaic to detect visible sediment deposition
on snow. Snow albedo is most sensitive to impurities in the visible wavelengths (Warren and Wiscombe, 1980), and we
found the most contrast in the red band, where, qualitatively, sediment patches stand out more clearly against the bright
snow background. The lower panel shows a close-up of a region with site-specific surface features. In the close-up two
main features stand out: the sediment deposition in the upper left corner and the snow dunes in the lower part. The sun-
exposed sites of of the snow dunes look "brighter", which could be due to snow thickness or due to irradiance and shading
effects. Both features, the sediment and the dunes, are visually distinguishable and provide information for understanding
the drivers of surface temperature.

Fig. 7b shows the DEM. The snow depth proxy derived from this DEM ranges from 0.01 to 0.65m, with a mean of
0.16 and a standard deviation (STD) of £0.06 m (Fig. 8a). We identified values exceeding 0.4 m as snow drifts around
obstacles, such as measurement stations, solar panels, and flags based on Fig. 8e and Fig:8i. The DEM reveals relatively
high variability in the snow depth proxy values, mainly due to wind-induced snow dunes (e.g. Fig. 7e, lower left). Although
we expected dunes to align with the predominantly southerly winds during our campaign (Fig. A1b), the local aspects
of snow slopes (i.e., dune slopes, Fig. 10c) showed no clear preferential orientation. This random distribution suggests
that prevailing winds had limited influence on dune alignment during the measurement period. While dune orientation is
outside the scope of this study, evaluating a longer period of wind data preceding our field campaign would be necessary
to understand dune alignment©

In Fig. 7c, we present the TIR orthomosaic with surface temperatures ranging from -17.5 to -5 °C. The mean temper-
ature is - 14.7 + 0.4 °C (Fig. 8b). Temperatures exceeding -4 °C are caused by the measurement infrastructure and are
masked in the TIR orthomosaic. TRS¥@diment patches identified in FI@ @& &e warmer than areas with cleaner snow as
sediment has a lower albedo and absorbs more shortwave radiation (Fig. 7f). We also observe that the shaded sides of

the snow dunes have lower temperatures (Fig. 7f, lower left) and are also darker in red band orthomosaic (Fig. 7d) 9

3.2 Possible drivers of small-scale surface temperature variations: snow depth, sediment deposition or

irradiance?

@n this section, we use the UAV-derived maps of snow depth, surface temperature, and red bad values, as well as the
modeled map of solar irradiance, to try and disentangle the relevant drivers of local surface temperature variations. All

statistical correlations are shown in Table A1.
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Figure 7?Airborne products: Red band orthomosaic, snow depth proxy (DEM) and surface temperature orthomosaic of the CS test
field) with 9 cm/px resolution. White spots are masked stations and targets (see Fig. A4). The yellow arrow indicates the Sun’s position
in the north-east. (a) Red band (0 to 255) orthomosaic, with dark patches showing areas with sediment deposition. (b) DEM of the CS
showing the snow depth proxy (m). The color bar is set from 0 to 0.6 m to minimize the impact of remaining measurement stations
and flags to better show the spatial variability of the snow cover. The minimum snow depth proxy is 0.01 m as shown in Fig. 8a, hence
there is now bare ice present at this site. (c) TIR orthomosaic with surface temperature in °C. The color bar is set from -8 to - 16 °C
to minimize the impact of remaining measurement stations, targets and flags and display the spatial variability of the snow surface
temperature. (d) Close-up of the white framed area in (a) with red band values. (e) Close-up of the snow depth proxy in the same area
as (d). (f) Close-up of the surface temperature in the same area as (d) and (@Q
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3.2.1 The role of show depth

To test if snow surface temperatures are driven by snow depth (given relatively uniform sea ice thickness), we first explore
the correlation between the snow depth proxy and snow surface tempera@@£E@n the visible sediment patches and
their strong effect on albedo (Warren and Wiscombe, 1980)§ve split the data into three sub-datasets: 1) the "entire field"
dataset, containing 6,211,943 data points (approximately 99.9 % of the original dataset), 2) the "sediment" dataset, which
includes 285,396 data points (approximately 5 %) from areas with visible sediment and some clean sn&@md 3) the "no
sediment" dataset, containing 341,473 data points (approximately 6 %) representing areas with visible clean snow only©

QNe delineated sediment patches by manually drawing polygonal areas around visible'sediment deposits with the QGIS
Geographic Information System (Fig. A4). We tested various automatic RGB thresholds to identify impurities, but the
results were unsatisfactory, partly because distinguishing between impurities and shaded areas proved challenging. For
the "no sediment" dataset, we randomly selected rectangular patches where no visible sediment was apparent, ensuring
a similar sized area for comparability.

The scatter plot in Fig. 9a reveals a very weak but statistically significant correlation between surface temperature and
snow depth proxy (rs =0.16, Table A1) for the "entire field" data set. The mean snow surface temperature and snow depth
proxy are - 14.7 0.4 °C and 0.16 £ 0.06 m, respectively (Fig. 8b, a). In the "sediment" dataset the correlation is slightly
stronger (rs =0.QQ.QQ . 9d). This suggests that sediment deposition is influenced by the same wind processes as snow
depth, with both snow and impurities accumulating in the same areas. The "sediment" dataset has a higher mean surface
temperature and grea%?\griability (-13.97 £0.82 °C; Fig PO Qe larger temperature variability shows that the delineated
sediment patches include both clean and "dirty" snow, likely reflecting variations in sediment concentration (Fig. 89€¥he
"sediment" dataset also shows a higher mean snow depth proxy (0.21 £ 0.07 m, Fig. 8e).

The "no sediment" dataset shows the weakest positive correlation between surface temperature and snow depth proxy
(rs=0.06, Fig. 99). It also has the lowest mean temperature (- 14.84 + 0.28 °C; Fig. 8j) — likely caused by the absence of
the (visible) warmer sediment patches — and the lowest mean snow depth proxy (0.14 +0.05 ©¢Fig. 8i).

In summary, we conclude that the positive correlation between snow depth and snow surface temperatures is primarily
driven by sediment deposition rather than snow depth itself. This emphasizes the role of sediment on albedo and radiation
absorption rather than the role of snow depth on thermal resistance. The sediment will have the effect that, when air
temperatures rise later in the season, the increased solar radiation absorption by the sediment will reduce the snow
specific surface area and accelerate snow melt, further decreasing the albedo and triggering the albedo feedback (Ledley
and Pfirman, 1997; Skiles et al., 2018). While snow depth plays an important role in the energy balance of sea ice through
albedo and thermal conductivity effects (Warren'and Wiscombe, 1980), our data show that it is not the primary driver of

surface temperatures in our case, even when excluding visible surface impurities.
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Figure 8. Histograms with PDFs for the snow depth proxy, surface temperature, red band values and irradiance for the three sub-
datasets. The first row is the "entire field" dataset, the second row is the "sediment" dataset, and the last row is the "no sediment"
dataset. The snow depth bin size (a, e and i) is 2cm. The temperature bin size (b, f and j) is 0.5 °C. The red band bin size (c,g and k)

is 5. The irradiance bin size (d, h, and I) is 10Wm 2.

3.2.2 The role of "darker" areas: sediment or shadows?

Building on our finding that sediment strongly influences surface temperatures, we correlated the surface temperature

with the red band values from the orthomosaic. Sediment particles — like dust, soot, or organic matter — absorb more
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sunlight in the visible spectrum than clean snow (Tuzet' et al:, 2019; Cui'et'al, 2021). These surface impurities largely
influence the snow albedo and, consequently, surface temperatures (Warren and Wiscombe, 1980; Doherty et al., 2010;
Réveillet et al., 2022).

We use the red banonrthomosaic as a proxy for "surface sediment darkness". While red band intensity is not a perfect
quantitative indicator of sediment concentration — and is also influenced by shading, sun illumination or variations in thin
snow covel@- we also must consider the effects of the RGB camera’s automatic settings (ISO, aperture, shutte?speed).
These settinggPadjusted in response to changing scene features and illumination. Although we applied an averaging
blending mode to reduce exposure inconsistencies, thistdoes not fully eliminate differences in camera response across
flight legs. Such factors may contribute to the spread in the red band values and affect correlation strength. However, in
areas with high sediment concentrations, we expect theirimpact on red band "brightness" to be minimal. As in the previous
section, we assess the correlation between surface temperature and red band values f%rQ[he "entire field" dataset (Fig.
9b), for the "sediment" dataset (Fig. 9¢e) and for the "no sediment" dataset (Fig. 9h).

For the "entire field" data set, surface temperature and red band intensity show a moderate correlation (rs =0.35, Table
A1). The corresponding scatterplot (Fig. 9b) reveals two clusters, which we disentangle by analyzing the "sediment" and
"no-sediment" subsets separately. The "sediment” dataset shows a weak yet significant negative correlation between the
red band intensity (lower values represent "darker" pixels) and surface temperature (rs =-0.23, Fig. 9e). This pattern is
consistent witthxpectations, as impurities typically increase radiation absorption (Ledley and Pfirman, 1997; Réveillet
et al., 2022).

Surprisingly, the "no sediment" dataset showed the same moderate, but positive correlation (rs = 0.4, Fig. 9h) between
red band values and surface temperature as observed for the "entire field" dataset. In this casefparker areas were colder
— opposite to the relationship found in the "sediment" dataset. This result was initially puzzling, since even under the
consideration that clean snow most likely contains small amounts of impurities, there is no clear reason why lower red
band values should correspond to lower temperatures.

A closer look suggests that variations in red band intensity within the "no sediment" dataset are primarily driven by
differences in solar exposure and illumination, caused by small-scale topography such as snow dunes (Fig. 7d, e, f). In
this case, the positive correlation reflects the influence of solar illumination and shading: shaded areas appear darker
and colder, while sunlit areas are brighter and warmer. By contrast, in the "sediment" dataset, red band values capture
both sediment concentration (which drives a negative correlation with surface temperature) and local irradiance variations
(which drive a positive correlation). The overlap results of these competing influences yield the weak overall correlation
(rs=-0.28). Nevertheless, the negative relationship dominates, indicating that in regions with higher sediment concentra-
tions, the warming effect of impurities outweighs variations caused by local irradiance 9

We can now interpret the pattern in Fig. 9b as the combined effect of the "sediment" and "no sediment” dataset.
The positive correlation for the "entire field" dataset is largely driven by the "no sediment" (clean snow) areas, since
the "sediment" dataset is about 20 times smaller and contributes little to the overall statistics. The stronger correlation

in the "no sediment" dataset indicates that, in snowpacks without (visible) sediment deposition, surface temperature is
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Figure 9. (a), (d) and (g) show the correlation between surface temperature and the snow depth proxy (the color bar is based on the
red band values). (b), (e) and (h) show the surface temperature and irradiance (the color bar is based on the red band values). (c), (f)
and (i) show the surface temperature and red band values (the color bar is based on the snow depth proxy). The first row is the "entire
field" dataset, excluding targets and measurement stations. The second row is te "sediment" dataset, which only contains data points
within areas of visible sediment deposition. The last row displays the "no sediment" data;QQ@ areas of clean snow without visible

sediment deposition. Dataset and correlation statistics details are Fig. A4 and in Table A1l
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controlled more directly by irradiance and shading than by the likely small "imperceptible" impurities. Thus, for clean
snowpacks without significant sediment deposition, our results emphasize the dominant role of solar illumination and
local topographic shading in driving surface temperature and, by extension, the near-surface energy balance.

In summary, we find that the correlation between red band values and surface temperature is stronger than the corre-
lation between the snow depth proxy and surface temperature across all three sub-datasets. This indicates that the red
band intensity — influenced by 1) impurity concentration, 2) illumination variations, and 3) optical snow depth differences
— serves as a better predictor of local surface temperatures. As shown in the previous subsection, snow depth variations
are not the primary driver. The contrasting correlations between the "no sediment" dataset (r; =0.4) and the "sediment"
dataset (rs =-0.23) suggest that local illumination conditions, driven by small-scale surface topography, play a major role

in shaping surface temperatures where sediment is absent.
3.2.3 The role of irradiance

Building on the previous section’s findings that solar irradiance may play an important role in driving local temperature
differences, we examined the correlation between modeled, topography-dependent irradiance and surface temperatures
across all three sub-datasets (Fig. 9c, f, i). Each sub-dataset shows a significant, though weak, positive correlation
between surface temperature and irradiance ("entire field": r, =0.22, "sediment"; rs =0.22, "no-sediment": rs = 0.24). While
the mean irradiance is nearly identical across all three sub-datasets (Fig. 8d, h, 1), the variation (STD) is largest in the
"sediment" dataset, likely reflecting higher snow depth and a rougher surface (Fig. 8e).

To investigate whether local irradiance influences the red band intensity (through illumination and shading) — which
could explain the observed connection between red band values and surface temperature — we calculated the correlation
between these two parameters. Across all three datasets, we found a moderate correlation between the red band values
and irradiance (Table A1), confirming that variations in red band intensity are at least partially driven by irradiance (Fig.
11). In the "no sediment" dataset, the correlation between red band values and irradiance (rs=0.44) is comparable to
the correlation between red band values and surface temperature (rs=0.4), supporting our hypothesis that irradiance
is an important driver of surface temperature. While the correlation between red band values and irradiance is similar
for the "sediment" dataset — because irradiance depends only on topography — sediment deposition has a stronger
influence on surface temperature (Fig. 9e). This suggests that, in areas with sediment, impurities dominate surface
heating, outweighing the effect of shading and local irradiance.
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Figure 10. Scatter plot showing the relationship between slope and irradiance for the entire field, excluding stations and targets (a).
(b) Histogram for the irradiance, the slope (c) and the aspect (d), each across the CS test field.

In Fig. 10a, we show the spread of modeled irradiance against the local slope at each pixel. Slope serves as a proxy for
surface orientation, capturing variations in the local incidence angle and, consequently, in effective irradiance. The cluster
of points around 71 Wm—2 represents shaded areas receiving only diffuse shortwave radiation. The spatially averaged
modeled irradiance — calculated using the measured snow topography (slope and aspect) to adjust the solar effective
zenith angle — is 5924+ 45Wm—2, with a range from 71 to 1167 Wm—2. This modeled mean closely matches with the
measured irradiance of 593 Wm~2 at the time of calculation, as we used observed shortwave radiation to determine
atmospheric transmissivity and the fraction of the diffuse radiation?Over the entire flight period (about 40 minutes), the

temporal mean measured irradiance was 593+ 10 Wm—2,
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Figure 11. Correlation between irradiance (Wm2) and red band intensif\/Qfor "entire field" dataset (rs = 0.44) (a), "sediment" dataset
(rs=0.41) (b) and "no sediment" dataset (rs = 0.44) (c). We cannot with cegainty explain the horizontal cluster from about 140 to 160 red
band intensity that stretches across a larger range of irradiances than the rest of the data. However, the only connection we found for
this cluster is snow depth, because the cluster disappears for higher snow depths, as discussed in A5 (Fig. AS). This cluster, however,

has a low data density (Fig. ASd) and is therefore outside of the scope of our study.

The uniform distribution of slope and aspects in the DEM (Fig. 10c, d) indicates a near-random terrain pattern, with
no preferred alignment of roughness features. This explains the approximately normal distribution of the locally modeled
irradiance (Fig. 10b). While the measured irradiance — representing irradiance on a flat plane — and the spatially average
modeled irradiance (Fig. 10a, red and blue lines, respectively) are nearly identical, reflecting that the total incoming energy
over the area remains constant, accounting for topography reveals a much wider range of values. The min-max spread
and variability (STD) in modeled irradiance increase substantially when surface topography is considered, highlighting
the strong influence of small-scale topography on local irradiance patterns.

Even at our relatively flat site, topography-dependent irradiance exhibits spatial variability (Fig. 10) with 95% of values
(£2 STD) ranging from 502 to 682 Wm~2— roughly +20% of the areal mean. This variability arises from seemingly
small changes in local topography, which primarily alter the apparent solar zenith angle and thus affect local surface
temperatures (Wiscombe and Warren, 1980). While these small-scale topographic variations do not change the mean
areal irradiance — since the total incoming energy over the area remains constant — they can nonlinearly influence the
local snowpack energy balance (Weller, 1969; Hao et al., 2022), producing localized temperature gradients both vertically
and horizontally. For example, temperature differences between Sun-exposed and shaded sides of snow dunes can drive
lateral heat fluxes (Sturm and Holmgren, 1994), modifying snow microstructure and affecting albedo and thermal con-
ductivity (Clemens-Sewall et al., 2024). In more exireme cases, this lateral heat transfer and associated metamorphism
can alter snow height and surface topography through sublimation (Gow, 1965; Orheim, 1968; Weller, 1969). Later in the
season, as surface temperatures approach 0 °C, even small variations in local irradiance may trigger differential melting,
freezing and densification, further amplifying spatial variability within the snowpack.
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Moreover, surface topography — even from modest slopes — can distort the spectral shape of albedo via multiple
reflections, leading to errors in estimating intercepted solar radiation (Picard et al., 2020; Manninen et al., 2021). Slopes as
small as 1°can produce such distortions, with their complexity increasing with steeper terrain. Accurate albedo estimates,
therefore, require accounting for surrounding topography at the full range of spatial scales (Picard et al., 2020; Manninen
et al., 2021; Larue et al., 2020).

3.2.4 Integrating predictors via Linear Mixed-effects Modeling (LMM)

To complement the pairwise correlation analyses and better quantify the relative influence of snow depth, irradiance, and
sediment, we combined the "sediment" and "no sediment" datasets (626,869 data points) and applied a linear mixed-
effects model. This approach allows us to assess the independent contribution of each predictor to surface temperature
while accounting for grouping effects in the data. The LMM provides a formal, integrated evaluation of the drivers identified
in the previous sections and enables a comparison of their practical impact over the observed range of variability.

The LMM results (Table 8) confirm and quantify the patterns observed in the previous correlation analyses. All three
predictors - snow depth, irradiance, and red band intensity — were significant, with irradiance producing the largest po-
tential change in surface temperature (AT = +4.3 °C), followed by red band reflectance (AT ~ — 3.1 °C) and snow depth
(AT ~ +0.75 °C). The results remain consistent even when accounting for propagated errors in snow depth and surface
temperature (+0.045m and + 2.41 °C respectively). These results reinforce our earlier findings: while snow depth has a
measurable effect on surface temperature, the dominant controls on local surface temperature are irradiance and sedi-
ment (as captured by red band values), consistent with the spatial patterns and correlations discussed in the preceding
sections. However, it needs to be kept in mind that irradiance and red band intensity are not independent parameters,

because, obviously, shaded areas are darker than sun-exposed areas.

Table 3. LMM results for the prediction of snow surface temperature (predictors: snow depth proxy, irradiance, red band). The model
included 626,869 observations across two datasets ("sediment” and "no sediment") with group variance = 0.292. Model fit: Restricted
Maximum Likelihood (REML), variance of error term = 0.2916. All predictors were significant (p <0.001). AT shows the impact of each
predictor over its observed range; Bmean and AT ise Show results after introducing + 0.045 m error in snow depth and 4+ 2.41 °C error

in temperature (Monte Carlo, 100 iterations).

Predictor Coeff (3) Coeffmean (Bmean) Range AT (°C) ATheise (°C)
Snow depth proxy 1.77 1.16 0.42m 0.75 0.74
Irradiance 0.004 0.004 1067Wm™2  4.27 4.70

Red band -0.023 -0.023 134 -3.08 -3.14

3.2.5 Technical considerations for high-resolution mapping of snow topography and snow surface

temperature

Producing accurate maps of these variables requires three key technical considerations:
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545 1. Precise georeferencing is essential for reliable spatial accuracy, requiring high-accuracy GPS and a sufficient
number of visible and thermal targets to co-locate RGB and thermal images. We recommend at least 10 GCPs for
a study site of 200 m x 200 m.

2. Rigorous post-processing of TIR images is critical to ensure accurate temperature data. We developed a cor-
rection algorithm that automatically detects and reduces temperature jumps caused by NUC correction events,
550 minimizing sensor temperature drift and improving data accuracy. Our algorithm can be applied to various camera

models, offering broad utility for studies beyond polar research.

3. Ground-based temperature measurements are necessary to validate airborne temperature surveys. Airborne

Q temperature measurements should ideally be taken near local solar noon to capture peak solar radiation, minimize
radiation variability, and maintain a high Sun angle to reduce shading. Clear skies are preferable to avoid cloud

555 shadows that alter the surface temperature, though consistent high cloud cover can also be acceptable. The "best"
conditions depend on the specific purpose of the survey, but random intermittent cloud cover should always be

avoided as it is problematic.

QAt least two non-contact infrared radiometers (e.g., Apogee sensors or equivalent) should be set up during the flight
to measure snow surface temperature and calibrate the airborne measurements. To ensure accurate calibration,
560 there should be a significant temperature difference between targets (e.g. a hot target like sediment, sea ice or a

temperature-controlled target with known emissivity, and a cold target like clean snow).

4. Ground-based snow depth measurements are necessary to validate and bias-correct airborne snow depth sur-
veys (on flat sea ice) and calculate the snow depth proxy. These measurements should be taken in the flight area,

though not necessarily during flight.

565 A balance between area coverage and flight duration was necessary to avoid changes in local irradiance (e.g., the
measured irradiance during the entire flight increased from 575 to 609 Wm—2). Validation was challenging due to the
non-uniform snow cover and the imprecision of the MagnaProbe measurement positiong. We used the MagnaProbe
measurements to correct the offset of the airborne DEM (Fig. 5), an approach that is valid primarily because of the small
range of variability in the sea ice thickness and the smoothness of the ice surface. Our findings are based on a test

570 site with smooth, approximately 2.4 m thick sea ice and a relatively flat snowcover of 0.1 £ 0.04m, representing a limited
spatial scale. In areas with heterogeneous sea ice thickness and greater surface roughness — such as pack ice (Haas,
2004) or ridged ice (ltkin et al., 2023) — the DEM would reflect the combined topography of variable sea ice thickness,
ridging, and snow depth, and our snow depth proxy would not be applicable. Future studies should extend these methods
to more complex ice conditions@ fLiH ,?éjate their sensitivity in energy balance models. High-resolution UAV observations

575 remain a valuable tool for improving our understanding of snow-ice interactions and informing both regional models and

satellite-based remote sensing applications.
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4 Summary and Conclusions

This study demonstrat&¥hat UAV-based remote sensing provides an effective approach for mapping snow topography,
depth and surface temperatures on relatively uniform Ia?@&&@&&g’?the Ross Sea, Antarctica. A key technical advance

BROAPEPalgorithm to correct NUC camera calibration events, which ensures accurate airborne temperature measurements
and has broader applicability beyond polar research.

Our high-resolution data reveal how small-scale spatial variability in snow surface topography strongly influences irra-
dianceég‘g%@ce temperatures. Assumingf flat iceésurface underestimates irradiance variability, potentially affecting
non-linear energy balance processes such as localized melting and sediment transport. We founcshat in€diance and

585 surface impurities dominate surface temperature patterns, while snow depth plays a secondary role.

Although our snow depth proxy works only on flat, smooth sea ice, the methods for retrieving@opography and surface
temperature are valid fofa wider rangegnf ice types. Applyi 7C’.ﬁ’ese techniques to heterogeneous or deformed sea ice
will require careful adaptation but could provide critical insights into local energy balance dynamics. Overall, our work
highlights the feasibili?ergd importance of high-resolution airborne measurements for understanding snow on sea ice

590 processes afffs potent@Q@improve snow parameterizatﬂ?ﬁ%%;limate models and remote sensing&&’@@@?@@??@

QQQQQV?&?&%onStrate that if models do not account for snow sjr’fgce roughness — either due to the lack of availability of local
topography data or insufficient model resolution — they tend to underestimate the variability in irradiance and simplify the
amount of energy available for localized snow metamorphism and melt processes, particularly in areas with pronounced
topography variations.

595 Taken together, our findings highlight that both small-scale topography and surface impurities are key controls on local
snow surface energy balance, and their combined effects should be carefully represented in models to improve predictions
of snowpack evolution and sea ice @OQ"QQ

A

ppendix A: Additional figures and statistics

(a) -=== TempPmean

-==- Speedmean W\\M\ﬂw/\/ - 15
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Figure A1. (a) Hourly air temperature and wind speed average during field campaign at CS test field. The vertical yellow bar indicates
the UAV mission. (b) The prevailing wind directions at the CS test field during the field campaign.
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Figure AZ?Sea ice surface at two different snowpit locations (AS006, AS002) inside the 200 m x200 m CS test field during our field
campaign showing the flat and smooth sea ice surface.
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Figure A3. Distribution of offset-uncorrected (black) and offset-corrected (gray) elevation within a 2.5 m radius of six randomly selected

MagnaProbe locations. The red dashed line indicates the snow depth measured with the MagnaP