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Abstract. Accurate source apportionment of ozone (O3) precursors is crucial for implementing scientific O3 control strategies. 

While traditional approaches rely on complex calculations of volatile organic compounds (VOCs) and meteorological 

parameters, their applicability in real-time scenarios remains limited. Taking the Shanghai chemical industrial park as an 

example, we propose a novel two-step machine learning (ML) approach that integrates positive matrix factorization (PMF) 

with other ML methods to systematically quantify the spatiotemporal impacts of VOCs on O3 formation. Analysis of high-15 

frequency data from 12 VOC monitoring stations (2021-2023) using six ML models revealed XGBoost as the optimal predictor 

(R2=0.644) for local VOC emissions. By combining SHapley Additive exPlanations (SHAP) with ML modeling, we precisely 

evaluated VOC-O3 relationships and located emission sources. Results identified solvent use (SU) and fuel evaporation (FE) 

as primary O3 formation contributors, followed by combustion sources (CS) and vehicle emissions (VE). PMF analysis further 

distinguished six VOC sources: petrochemical processes (PP), FE, CS, SU, polymer fabrication (PF), and VE. Temporal 20 

analysis revealed seasonal variations, with CS and FE dominant in spring/summer, while PF prevailed in autumn. This 

innovative framework demonstrates exceptional capability for rapid source identification and precise contribution 

quantification, establishing a new paradigm for high-resolution O3 source apportionment. 

1 Introduction 

Ozone (O₃) pollution has become a significant environmental issue, posing serious threats to human health and ecosystems 25 

worldwide (Long et al., 2023; Sharma et al., 2023; Masui et al., 2023; Sharma et al., 2024). In particular, industrial parks, 

which are characterized by high levels of anthropogenic emissions, serve as critical hotspots for the formation of ground-level 

O₃ due to the abundance of precursor pollutants such as volatile organic compounds (VOCs) and nitrogen oxides (NOₓ) 

(Pinthong et al., 2022; Kim et al., 2023; He et al., 2024). From the current point of view, the pollution characteristics and 

sources of VOCs in industrial parks are relatively more complex (Cao et al., 2024). Understanding the contribution of VOCs 30 

https://doi.org/10.5194/egusphere-2025-160
Preprint. Discussion started: 5 March 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

to O₃ formation is essential for developing effective mitigation strategies aimed at reducing air pollution and improving air 

quality.  

At present, VOCs source identification technology mainly includes source emission inventory (Lu et al., 2025), chemical 

transport models (CTMs) (Choi et al., 2020; Wang et al., 2023) and receptor models (Wu et al., 2023). Traditionally, the 

quantification of VOC contributions to O₃ formation has relied heavily on CTMs, which require detailed knowledge of 35 

atmospheric chemistry and complex computational resources (Li et al., 2014). However, these models often suffer from 

uncertainties related to emission inventories and chemical mechanisms (Sharma et al., 2017; Baklanov and Korsholm, 2008). 

In addition, the detailed input data and computing power requirements of CTMs leave some areas for improvement (Nelson et 

al., 2023). The receptor model has the advantages of fewer hardware requirements, higher precision, and easy configuration, 

among which the positive matrix factorization (PMF) model has been widely used to identify VOC emission sources (Tan et 40 

al., 2021; Yang et al., 2023). PMF models are typically combined with the O₃ formation potential (OFP) calculated by the 

maximum incremental reactivity (MIR) value of VOC species (Carter, 2010) to assess the relationship between VOCs and O₃ 

concentrations (Xiao et al., 2024). As the key parameter MIR value used in this method is usually calculated based on 39 cities 

in the United States where O₃ exceeds the standard, whether the MIR value can fully reflect the contribution of VOCs to O₃ 

under complex atmospheric pollution conditions in China is controversial (Zhang et al., 2021a). Furthermore, conventional 45 

methods like PMF, while effective for source categorization, face critical limitations: they cannot differentiate rapid O₃ 

formation via photostationary state perturbations (e.g., alkene depletion) from slower HOx-mediated pathways (e.g., alkane 

oxidation) (Sillman, 1999). This mechanistic gap introduces spatiotemporal biases when quantifying source contributions in 

chemically complex environments like coastal petrochemical zones. To address these challenges, our study integrates 

interpretable machine learning (ML) with PMF, explicitly resolving fast vs. slow O₃ production pathways while leveraging the 50 

study area’s unique spatial and industrial characteristics.  

In recent years, more ML techniques have emerged as powerful tools for analyzing complex datasets and predicting 

environmental phenomena (Salcedo-Sanz et al., 2024; Essamlali et al., 2024). However, the "black box" nature of ML models 

makes their results difficult to interpret and generalize to real scenarios (Guidotti et al., 2018). Recently, the SHapley Additive 

Interpretation (SHAP) algorithm has been applied to solve these problems (Louhichi et al., 2023; Li et al., 2024). Novel ML 55 

approaches can provide robust predictions with less reliance on mechanistic details, making them attractive alternatives or 

complementary methods to traditional ML models. To address these gaps, we integrate PMF with other advanced ML methods 

to develop a two-step ML framework. This approach not only enhances the efficiency and accuracy of data analysis but also 

addresses the limitations of traditional PMF methods under complex environmental conditions, providing a more robust 

solution for pollution source identification and contribution analysis. 60 

In the past, researchers have used different ML models to study the transformation mechanism of O₃ and its precursors (Cheng 

et al., 2024; Kuo and Fu, 2023). More recently, ML-coupled receptor models have been used to better identify and quantify 

the drivers of pollutants. For example, Cheng et al. assessed the impact of emission sources on O₃ formation by combining 

PMF with four ML models. Chen et al. used PMF model combined with Category Boosting (CatBoost) model and Shapley 
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additive interpretation algorithm to quantify the influence of pollution sources and meteorological factors on VOCs. Ning et 65 

al. constructed a cross-stacked ensemble learning model (CSEM) to predict O₃ concentrations under different NOx and VOCs 

emission reduction scenarios. Our study focuses on a coastal petrochemical industrial zone in Shanghai, where proximity to 

the ocean and dense aggregation of ethylene crackers and aromatics plants create a unique microenvironment. High humidity 

and solar irradiance amplify atmospheric oxidative capacity (Zhang et al., 2021), while emissions of short-lived unsaturated 

VOCs (e.g., propylene, 1,3-butadiene) drive rapid O₃ formation via alkene-NOₓ reactions within <50 km under sea-land breezes 70 

(3–5 m/s) (Zhang et al., 2025; Zhao et al., 2022; Wang et al., 2018). Additionally, our study pioneers high-resolution source 

attribution (1 km × 1 km) in a coastal petrochemical cluster in Shanghai, a methodology particularly suited to resolve localized 

ozone production under elevated regional backgrounds (>80 ppb). By leveraging the unique microenvironment of dense 

ethylene crackers and aromatics plants adjacent to the ocean, we isolate rapid photochemical processes driven by short-lived, 

highly reactive VOCs (e.g., propylene, 1,3-butadiene; atmospheric lifetime <6 h) that dominate O₃ formation within <50 km. 75 

Considering the advantages of the diverse types and complex sources of VOCs in chemical industrial parks, this characteristic 

enhances model robustness and improves the model's feature extraction capabilities. This study selected a chemical industrial 

park in Shanghai as an ideal case for model training. In this study, we present a novel small-scale approach that integrates 

multiple ML models to quantify the impact of VOCs on O₃ formation with unprecedented spatial resolution. Our methodology 

harnesses the analytical power of ML algorithms to process high-frequency data from 12 strategically positioned VOC 80 

boundary monitoring stations, enabling rapid and accurate source identification at a fine-grained spatial scale previously 

unattainable through conventional methods. The analytical framework consists of three sophisticated components: First, we 

conduct a systematic evaluation of diverse ML algorithms to identify the optimal model configuration, ensuring robust 

predictive performance at the local scale. Subsequently, we leverage the interpretable ML technique SHAP to quantitatively 

assess VOC-O₃ relationships and precisely pinpoint emission sources with high spatial accuracy. Finally, we develop an 85 

innovative hybrid approach that combines PMF for source apportionment with ML-SHAP analysis to achieve rapid and precise 

identification of key pollution sources contributing to O₃ formation at the facility level. This advanced methodological 

framework demonstrates significant advantages in both efficiency and spatial precision: it enables swift identification of 

specific emission sources while maintaining high accuracy in quantifying their individual contributions to O₃ formation. The 

approach transcends traditional analytical limitations by offering a powerful tool for high-resolution source traceability, thereby 90 

providing crucial support for implementing targeted and effective O₃ control strategies at the facility or district level. Moreover, 

this novel integration of multiple analytical techniques establishes a new paradigm for addressing complex air quality 

challenges through sophisticated data-driven approaches that bridge the gap between regional-scale analysis and facility-level 

source identification. 

https://doi.org/10.5194/egusphere-2025-160
Preprint. Discussion started: 5 March 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

2 Material and methods 95 

2.1 Study area and data details 

The Jinshan District is located in the southwestern part of Shanghai, along the northern shore of Hangzhou Bay (HZB) at 

geographical coordinates 30°40′–30°58′N and 121°–121°25′E, covering a total land area of 586.05 km² (Fig. 1). It is recognized 

as an important resource-based city. The Jinshan Industrial Zone, situated in the southeastern part of Jinshan District, serves 

as a fine chemical industrial park. Within and surrounding the industrial zone, 12 monitoring stations have been established to 100 

assess the environmental air quality in the area (as detailed in Table S1). The distribution of these monitoring stations is 

illustrated in Figure 1. Hourly O₃ concentration data utilized in this study were obtained from the Atmospheric Environmental 

Monitoring Routine Data Management System of the Shanghai Environmental Monitoring Station 

(https://10.87.87.122:7890/SemcDataExamine). The concentration data for VOCs were sourced from the 12 monitoring 

stations and can be accessed through the Intelligent Analysis System for VOC Emissions and Pollution Source Tracing in Key 105 

Industrial Parks of Shanghai (https://220.196.88.110:8088/GYQ/index.html#/Login). The dataset covers a collection period 

from January 1, 2021, to December 31, 2023, with measurements recorded on an hourly basis. 

Two types of VOC monitoring instruments were deployed at the boundary observation stations. The first type utilized gas 

chromatography-flame ionization detector (GC-FID) technology, featuring low-carbon (C2-C5) and high-carbon (C6-C12) 

analyzers (Synspec GC955-615/815, Juguang Technology Co., Ltd.; A11000/A21022, Chromatotec Inc., France; Spectra SYS 110 

GC3000-315L/H, Pu Yu Technology Development Co., Ltd.), and enabled automatic hourly measurements of 89 VOC species. 

The second type employed a combined GC-FID and mass spectrometry (GC-FID/MS) approach, which included FID detection 

for C2-C5 aromatic hydrocarbons and mass spectrometry detection for other compounds. The instrument operated by sampling 

at 30 L/min for the initial 10 minutes each hour, utilizing a cryogenic cold trap for sample preservation before separation and 

detection on specific chromatographic columns. Quality assurance and quality control (QA/QC) protocols adhered to the 115 

"Technical Specifications for Operation and Quality Control of Continuous Automatic Monitoring Systems for Gaseous 

Pollutants in Ambient Air" (HJ 818-2018), issued by China's Ministry of Ecology and Environment. Daily checks ensured data 

completeness and chromatogram integrity, with any detected abnormalities prompting immediate on-site maintenance. Routine 

data audits involved the removal of abnormal data, while measurement accuracy was verified biweekly, with calibration curves, 

method detection limits (MDLs), and instrument precision assessed quarterly. Standard gas accuracy checks showed relative 120 

errors below 20%, and in blank tests, absolute errors were less than 0.3 ppbv. Calibration curves were established using five 

standard gases (1, 5, 10, 15, and 20 ppbv), yielding correlation coefficients greater than 0.995, and MDLs for PAMS and TO-

14 species were maintained at or below 0.3 ppbv and 0.5 ppbv, respectively. Throughout the study period, a total of 26,280 

sets of VOC data were collected, resulting in the identification of 36 distinct VOC species, comprising 12 alkanes, 7 alkenes, 

11 aromatics, and 6 halogenated hydrocarbons after data screening. 125 
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Fig. 1. Study area and sampling sites. The triangles indicate the 12 sites utilized for the evaluation of the model. 

 

2.2 Positive matrix factorization model (PMF) 

The PMF 5.0 software, developed by the United States Environmental Protection Agency (EPA), is widely utilized to assess 130 

and quantify the contributions from various sources to samples based on their chemical composition or unique fingerprints. 

Initially introduced by Paatero in 1997 at the University of Helsinki, this model decomposes the sample matrix (which is non-

negative) into two distinct matrices: the source contribution matrix (g) and the source component spectral matrix (f). The least 

squares method is subsequently employed to estimate the contribution rates and identify major pollution sources, with the 

objective of minimizing the discrepancy between the calculated Q-value and the theoretical Q-value. The formulation of the 135 

PMF model is represented by Eq. (1): 

𝑒𝑖𝑗 = 𝑥𝑖𝑗 − ∑ 𝑔𝑖𝑘
𝑝
𝑘=1 𝑓𝑘𝑗       (1) 

where Xij represents the concentration of jth species in the ith sample, gik represents the concentration of kth source in the ith 

sample, fkj represents the mass percentage of jth species in the kth sample, and eij represents the residue factor for jth species in 

the ith sample. 140 
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In the PMF model, factor contributions and source fingerprint spectra are derived by minimizing the objective function (Q), 

as described in Eq. (2): 

𝑄 = ∑ ∑ ((𝑥𝑖𝑗 − ∑ 𝑔𝑖𝑘𝑓𝑘𝑗)/𝑢𝑖𝑗
𝑝
𝑘=1 )2𝑚

𝑗=1
𝑛
𝑖=1        (2) 

The uncertainty (uij) of the jth species in the ith sample is calculated by considering the minimum detection limit (MDL) and 

error scores of each species. 145 

To determine the PMF, equation-based uncertainty is employed in the calculations. Specifically, when the concentration is 

equal to or below the method detection limit (MDL), the uncertainty (Unc) is calculated using Eq. (3): 

𝑈𝑛𝑐 = 5/6 × 𝑀𝐷𝐿       (3) 

If the concentration is greater than MDL, it is calculated by Eq. (4): 

𝑈𝑛𝑐 = √(𝐸𝐹 × 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)2 + (0.5 × 𝑀𝐷𝐿)2     (4) 150 

The error score (EF) represents the percentage of uncertainty variables. 

2.3 Machine learning models 

To explore data characteristics and select the optimal ML model, we utilized data from the Jinshan Industrial Zone covering 

the period from January 2021 to December 2023 for training and evaluating ML models. In this study, hourly data of O3 and 

total volatile organic compounds (TVOCs) concentrations from 12 monitoring stations were input into the ML models. 155 

Subsequently, the ML models were integrated with the SHAP (SHapley Additive exPlanations) （Section S1.2 for model 

details） framework to obtain SHAP values for the 12 stations, quantifying their contributions to O₃ formation. The stations 

contributing the most to O₃ were identified, and the source of characteristic VOC data was recognized using the PMF model. 

The emission factors derived from the PMF analysis, along with hourly O3 concentration data, were then input into the ML 

models for SHAP analysis. Finally, the optimal ML model and the most severe pollution sources were identified. 160 

In this study, we implemented six ML models, including Decision Tree Regression (DTR), Random Forest Regression (RF), 

Support Vector Regression (SVR), XGBoost Model, CatBoost Model, and LightGBM Model (refer to Section S1.1 for model 

details). Compared to complex deep learning models, these six ML models are more adept at capturing variations in internal 

parameters and providing variable interpretations (Pichler and Hartig, 2023; Kaur et al., 2020). Utilizing a large-scale dataset 

from this research, Bayesian Optimization (Robin et al., 2021) was employed to determine the optimal values of a range of 165 
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hyperparameters for the ML models. Ultimately, through iterative adjustments in training strategies and multiple random 

experiments, we selected the model with the highest R² from the six ML models, along with its corresponding parameter 

combinations, as the optimal ML model. Additionally, to assess the robustness and stability of the models, we employed Mean 

Absolute Error (MAE) and Root Mean Squared Error (RMSE) as evaluation metrics. 

R² is an indicator that measures the overall goodness of fit of a regression model, and its calculation is shown in Eq. (5): 170 

𝑅2 = 1 −
∑  𝑛
𝑖=1 (𝑦𝑖−𝑦̂𝑖)

2

∑  𝑛
𝑖=1 (𝑦𝑖−𝑦̅)

2         (5) 

where 𝑦𝑖 represents the actual observed values, 𝑦̂𝑖 denotes the predicted values, 𝑦‾ is the mean of the actual observed values, 

and 𝑛 indicates the total number of observations. 

MAE is the average of the absolute differences between the predicted values and the actual values, as calculated in Eq. (6): 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛
𝑖=1 |𝑦𝑖 − 𝑦̂𝑖|       (6) 175 

where 𝑦𝑖 is the actual observed value, 𝑦̂𝑖 is the predicted value, and 𝑛 is the total number of observations. 

RMSE is the square root of the average of the squared differences between the predicted values and the actual values, as shown 

in Eq. (7): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛
𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)

2       (7) 

where 𝑦𝑖 represents the actual observed values, 𝑦̂𝑖 denotes the predicted values, and 𝑛 is the total number of observations. This 180 

metric provides insight into the model's accuracy by giving a higher weight to larger errors, making it sensitive to outliers. 

To ensure data integrity, a thorough check for missing values was conducted on the original observational data prior to its 

input into the machine learning models. Subsequently, these missing values were imputed using the RF model, and validation 

was performed using the available observational data. The resulting dataset was then transformed into a supervised learning 

dataset with time-dependent features. To guarantee the accuracy of the experiments, 70% of the dataset was consistently used 185 

as the training set and 30% as the test set for each ML model. Hyperparameter tuning was performed utilizing the Bayesian 

Optimization technique. Furthermore, to mitigate the influence of model randomness on the test set results, all ML models 

underwent 10-fold cross-validation experiments.  

In this study, the ML models and the SHAP algorithm were primarily implemented using Python 3.6 and Anaconda 4.5 

platforms. The research methodology framework used in this study is shown in Fig. 2. 190 
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Fig. 2. Workflow of the development of the model. The framework comprises three sequential phases: (1) Model Training and 

Optimization: Multiple machine learning models including Decision Tree (DT), Random Forest (RF) Support Vector Machine 

(SVM), Extreme Gradient Boosting (XGBoost), Category Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM) 

were trained using TVOCs and O₃ contribution data from 12 monitoring stations (70% training set/30% testing set). Bayesian 195 
hyperparameter optimization and rigorous model evaluation were implemented to identify the optimal XGBoost model. 

Subsequently, SHapley Additive exPlanations (SHAP) analysis was employed to pinpoint critical monitoring stations (e.g., Site C). 

(2) VOCs Source Apportionment: Positive Matrix Factorization (PMF) was applied to 32 VOCs species at key stations, resolving six 

emission sources: petrochemical processes (PP), fuel evaporation (FE), combustion sources (CS), solvent use (SU), polymer 

fabrication (PF), and vehicle emissions (VE). (3) Factor Impact Quantification: SHAP values derived from the XGBoost model were 200 
calculated to dynamically quantify the contributions of source categories, and chemical species to O₃ formation. This systematic 

workflow integrates a cohesive "data modeling-source identification-attribution analysis" chain, demonstrating strong applicability 

for high-resolution pollution source tracing studies. 
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3 Results and discussions 

3.1 Spatiotemporal characterization of ozone and VOCs Concentrations: a multi-scale analysis for enhanced ML 205 

performance 

A comprehensive understanding of the spatiotemporal characteristics of the input dataset is fundamental for optimizing 

machine learning model interpretability and performance. Our analysis of VOC and O₃ concentrations across multiple 

monitoring sites from 2021 to 2023 reveals distinct patterns that inform our ML-based source attribution approach. The 

temporal evolution of O₃ concentrations shows a notable progression, with mean values of 64.45 μg/m³, 68.79 μg/m³, and 210 

68.90 μg/m³ recorded in 2021, 2022, and 2023, respectively (Fig. 3a). The relatively lower O₃ levels observed in 2021 coincide 

with the COVID-19 pandemic period, when reduced anthropogenic activities, particularly decreased vehicular traffic and 

industrial operations, significantly altered urban emission patterns in Shanghai (Lu et al., 2023). A marked reduction in VOC 

concentrations was observed across all monitoring sites in 2022, primarily attributed to the implementation of stringent 

emission control measures by local regulatory authorities (Xiao et al., 2024). The seasonal analysis reveals distinctive O₃ 215 

formation patterns in the study area (Fig. 3b). O₃ concentrations exhibit a rapid acceleration during spring, reaching maximum 

levels in May, followed by a notable decline during the summer months (June-August). This pattern differs from typical urban 

environments, as Shanghai's unique high-pressure meteorological conditions drive peak daytime O₃ levels in late May with 

unprecedented rates of increase (Chang et al., 2021). Notably, elevated VOC concentrations coincide with the June industrial 

maintenance period, providing critical temporal markers for our ML-based source attribution. 220 

The diurnal profile analysis (Fig. 3c) reveals sophisticated photochemical patterns that enhance our ML model's temporal 

resolution. O₃ concentrations follow a characteristic curve, initiating a rapid increase at 08:00, sustaining growth until reaching 

peak levels at 15:00, followed by a gradual decline. This pattern aligns with the intensification of photochemical reactions 

driven by increasing solar radiation. The observed dual-peak pattern in VOC concentrations (06:00-08:00 and 19:00-22:00) 

corresponds to industrial operational cycles, providing essential precursor availability for daytime O₃ formation. This rich 225 

temporal diversity in our dataset significantly enhances the ML model's capability to capture complex source-receptor 

relationships. 

The correlation analysis provides crucial insights for optimizing our ML framework's feature selection and interpretation 

capabilities (Fig. 3d). The heterogeneous correlations between VOCs and O₃ across monitoring sites reveal complex source-

receptor relationships: while most sites exhibit negative correlations, Sites D and K show positive associations. Notably, Sites 230 

C (r = -0.12) and L (r = -0.081) demonstrate the strongest negative correlations, marking them as critical locations for detailed 

feature importance analysis in our ML framework. These diverse correlation patterns enhance our model's ability to capture 

local-scale emission-concentration relationships, crucial for precise source attribution. 
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 235 

Fig. 3 Temporal and spatial dynamics of VOCs and O3, along with their correlations, as observed at 12 monitoring stations. (a) Mean 

concentration variations of O3 and VOCs from 2021 to 2023. (b) Monthly profiles of O3 and VOC concentrations. (c) Daily profiles 

of O3 and VOC concentrations. (d) The correlation matrix between O3 and VOCs measurements at the 12 monitoring sites. 

3.2 Comparison of ML models 

3.2.1 Model performance evaluation and selection of optimal ML algorithm 240 

The selection and evaluation of appropriate machine learning algorithms are fundamental to ensuring robust and reliable 

analytical outcomes, particularly when dealing with complex environmental datasets (Liu et al., 2022). In this investigation, 

we implemented and systematically evaluated six state-of-the-art machine learning algorithms: DT, RF, SVM, XGBoost, 

CatBoost, and LightGBM. These models were rigorously trained and tested using spatially distributed VOC and O₃ monitoring 

data from multiple sampling sites. 245 

The comparative performance metrics of these models are comprehensively presented in Table 1. Notably, R² values obtained 

through ten-fold cross-validation demonstrated remarkable consistency with those derived from the independent test dataset. 

This concordance strongly indicates the robust generalization capabilities of our machine learning framework, suggesting 

effective pattern recognition within the data while avoiding overfitting issues. Among the evaluated algorithms, the XGBoost 

model demonstrated superior predictive performance across all assessment metrics. Specifically, it achieved the lowest MAE 250 
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of 13.828, Mean Absolute Percentage Error (MAPE) of 0.445, and RMSE of 11.620, coupled with the highest R² value of 

0.637. 

Further validation through scatter plot analysis (Fig. S1) revealed that the XGBoost model exhibited significantly smaller 

deviations between predicted and observed values compared to other algorithms, confirming its enhanced predictive accuracy. 

Based on these comprehensive evaluation results, the XGBoost model was selected as the optimal algorithm for O₃ 255 

concentration prediction. Consequently, the subsequent SHAP analysis was conducted exclusively on the XGBoost model to 

ensure the highest level of interpretability and reliability in source attribution results. 

Table 1 Comparison of six ML models based on different evaluation metrics. 

Model 
10-fold Cross-validation 

(R²) 
R² MAE MAPE RMSE 

DT 
0.167 0.187 23.142 0.589 29.980 

RF 
0.345 0.383 21.579 2.918 28.155 

SVM 
0.330 0.328 25.359 0.618 34.309 

XGBoost 
0.637 0.644 13.828 0.445 11.620 

CatBoost 
0.689 0.630 15.601 0.495 17.216 

LightGBM 
0.675 0.624 14.603 0.493 17.352 

(MAE: Mean Absolute Error, MAPE: Mean Absolute Percentage Error, RMSE: Root Mean Squared Error, DT: Decision Tree, 

RF: Random Forest, SVM: Support Vector Machine, XGBoost: Extreme Gradient Boosting, CatBoost: Category Boosting, 260 

LightGBM: Light Gradient Boosting Machine) 

3.2.2 Spatial distribution analysis of TVOC contributions using SHAP interpretation 

To quantitatively assess the spatial heterogeneity of TVOC contributions to O₃ formation, we conducted a comprehensive 

SHAP analysis across all monitoring sites within the established CatBoost regression model (Fig. 4). The analysis revealed 

distinct patterns of TVOC influence, with Site C demonstrating notably dispersed sample distribution patterns, indicating its 265 

predominant influence on O₃ formation dynamics. The analysis identified a significant negative correlation between TVOC 

concentrations at Site C and model predictions, evidenced by the high-magnitude SHAP values concentrated in the negative 

region. Conversely, Site K exhibited a strong positive correlation, characterized by elevated SHAP values consistently 

distributed in the positive region, corroborating the correlation analysis findings presented in Section 3.1. 

The pronounced influence of Site C can be attributed to its strategic location within the southeastern sector of the Jinshan 270 

Chemical Zone, where it is surrounded by diverse industrial activities. The site's immediate vicinity encompasses plastic 

manufacturing facilities to the east, a petroleum products transportation port to the south, chemical production facilities to the 

west, and a public transportation hub featuring five gas stations to the north. This complex industrial landscape surrounding 

Site C facilitates intensive O₃ formation while presenting significant challenges for precise source attribution of TVOC 

emissions. 275 

https://doi.org/10.5194/egusphere-2025-160
Preprint. Discussion started: 5 March 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

To validate the robustness of these findings, we extended the SHAP analysis to encompass five additional ML models (Fig. 

S2). The results consistently identified Site C as the most influential monitoring location across all model analyses, 

substantiating its critical role in local O₃ formation processes. This convergence of results across multiple ML platforms 

reinforces the reliability of our spatial analysis and highlights the importance of Site C in understanding regional O₃ pollution 

patterns. 280 

 

Fig. 4 Feature importance of total volatile organic compounds (TVOC) drivers obtained by XGBoost model. Blue points indicate 

negative contributions to the prediction, while red points represent positive contributions. 

3.3 Source apportionment and temporal-sspatial characterization of VOCs based on the PMF model 

3.3.1 Analysis process and results of the PMF model 285 

The application of the PMF model for the analysis of VOCs at Site C offers valuable insights into source apportionment and 

pollution characteristics. The species selection process adhered to specific criteria (Liu et al., 2016; Hui et al., 2019): (1) 

species with missing sample rates exceeding 25% or concentrations below 35% of the method detection limits (MDLs) were 

excluded; (2) highly reactive compounds were omitted unless serving as specific tracers for particular sources. Ultimately, 36 

VOC species were selected for model input. Based on their signal-to-noise ratio (S/N) and model fit, species were classified 290 

as "strong," "weak," or "bad" in terms of their computational significance. Specifically, species with S/N ≤ 0.2 were labeled 

as "bad," those with 0.2 < S/N ≤ 0.6 or poor fit as "weak," and S/N > 0.6 as "strong." In total, 30 species were deemed "strong," 

2 "weak," and 4 "bad." The "bad" species were excluded from model calculations due to their concentration uncertainty, while 

the uncertainty for "weak" species was tripled to reduce their influence. Ultimately, 32 pollutants were included in the model.  
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To ascertain the optimal number of sources, 20 iterations with varying random seeds were conducted to evaluate the stability 295 

of the Q value across solutions ranging from 3 to 10 factors. A 6-factor solution was selected as the rate of Q value reduction 

significantly diminished beyond this point, and the model results remained interpretable. The Q (true)/Q (robust) value of 1.23 

fell within the acceptable range of <1.5 (Hui et al., 2020), while the Q (robust)/Q (theoretical) value of 1.1 indicated proximity 

to 1. The standardized residuals for each factor ranged from -3 to 3, demonstrating a satisfactory fit between the model 

predictions and observed data. The six sources identified using the PMF model are as follows: petrochemical process (PP), 300 

fuel evaporation (FE), combustion source (CS), solvent use (SU), polymer fabrication (PF), and vehicle emission (VE). The 

source profiles are illustrated in Fig. 5. 

Factor 1 exhibited the highest concentration of propylene (60.60%), suggesting its predominant source is local petrochemical 

processes. This finding aligns with previous studies that link propylene emissions to petrochemical activities in industrial zones 

(Washenfelder et al., 2010; Ragothaman and Anderson, 2017). Therefore, Factor 1 was determined to be PP. Factor 2 was 305 

characterized mainly by C2-C5 alkanes (47%) and toluene (13.68%); they are typical components of gasoline and diesel (Mu 

et al., 2023). Thus, Factor 2 is defined as a FE. 

Factor 3 had a high percentage of propane (69.36%), ethene (12.17%), and ethane (5.12%), which conformed to the emission 

characteristics of CS (Song et al., 2021; Chen et al., 2024). The relative contribution rate of aromatic hydrocarbons in Factor 

4 reached 69.12%. Currently, aromatic hydrocarbons are widely used as solvents in industrial production (Zhang et al., 2021b; 310 

Mukhamatdinov et al., 2020). Factor 4 was defined as SU. 

Factor 5 was primarily characterized by ethene (92.59%), with its concentration far exceeding that of other species. It indicated 

that its source was closely related to the polymer manufacturing processes commonly found in nearby production facilities. 

Previous studies had identified ethene as a major pollutant associated with such industrial activities (Burdett and Eisinger, 

2017). Therefore, Factor 5 was identified as originating from PF. Factor 6 was characterized by relatively high proportions of 315 

C4-C6 alkanes (37.63%) and 1,2-dichloroethane (12.01%), which are important indicators of VE (Song et al., 2021; Chen et 

al., 2024). 

The PMF analysis revealed distinct temporal patterns in source contributions to VOC emissions throughout the study period 

(Fig. 6). On an annual basis, CS and FE emerged as the primary contributors, accounting for 16.94% and 16.89% of total VOC 

emissions, respectively. The remaining sources exhibited comparable contributions: SU (16.56%), PF (16.54%), VE (16.54%), 320 

and PP (16.52%), indicating a relatively balanced distribution of emission sources in the industrial park. 
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Fig. 5 Source profiles calculated using the PMF model in site C. 

3.3.2 Seasonal variation and contributing factors of VOC source distribution 

Seasonal analysis unveiled significant temporal variations in source contributions. During spring, CS dominated the VOC 325 

emissions with a 22.39% contribution, followed by PP (19.59%), PF (16.07%), and VE (14.76%), while FE showed a relatively 

lower contribution of 12.83%. This pattern shifted notably in summer, where FE became the predominant source (21.68%), 

accompanied by substantial contributions from SU (18.21%) and VE (17.59%). The autumn period witnessed PF emerging as 

the primary contributor (22.47%), with CS maintaining a significant presence (16.95%). Winter emissions were primarily 

attributed to VE (18.64%), SU (18.61%), and FE (18.02%). 330 

The observed seasonal variations align with regional industrial activities and meteorological conditions. The pronounced CS 

contributions during spring coincide with increased biomass burning activities across industrial parks in China, corroborating 

findings from previous studies (Yang et al., 2023; Yao et al., 2021; Chen et al., 2022). The elevated FE contributions in summer 

can be attributed to enhanced fuel volatilization under high temperatures characteristic of the Yangtze River Delta region, 

subsequently promoting O₃ formation (Xu et al., 2023). The autumn dominance of PF emissions reflects the operational 335 

patterns of polymer manufacturing facilities, while the significant winter contribution from VE aligns with previously 

documented patterns of vehicular emissions in Shanghai's urban areas (Liu et al., 2021; Wang et al., 2022). 
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Fig. 6 Influence of various sources on atmospheric VOCs across different seasons. 

3.4 Quantitative assessment of source-specific contributions to O₃ formation 340 

The integrated PMF-SHAP framework was employed to quantitatively evaluate the source-specific contributions to O₃ 

formation in the Jinshan industrial complex during 2021-2023. Through the coupling of XGBoost-SHAP modeling with 

corresponding SHAP values, we systematically assessed the relative importance of various emission sources in driving O₃ 

pollution dynamics (Fig. 7). The analysis revealed that SU and FE were the predominant contributors to O₃ formation, 

exhibiting SHAP values of 3.00 and 2.77, respectively. This finding underscores the critical role of solvent usage and fuel-345 

related emissions in industrial processes as primary drivers of O₃ generation. CS demonstrated moderate influence with a 

SHAP value of 2.19, followed by VE (1.92) and PP (0.55), while PF exhibited the lowest impact (0.16). These results 

emphasize the particular significance of SU and FE in O₃ pollution control strategies within industrial contexts. 

The seasonal decomposition of source contributions through SHAP analysis demonstrated strong concordance with PMF-

derived temporal patterns (Fig. 8). CS emerged as the dominant contributor during spring (30.51%), while summer was 350 

characterized by substantial contributions from FE (27.25%) and SU (24.48%). The autumn period was dominated by PF 

emissions (27.83%), whereas SU showed peak influence during winter (31.23%). This temporal heterogeneity in source 

contributions, particularly the significant TVOC emissions associated with Site C, provides crucial insights for targeted O₃ 

management strategies. 

These findings have significant implications for policy development and implementation. The results suggest that regulatory 355 

attention should prioritize emission controls around Site C, with particular emphasis on seasonal variation in source 
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contributions. Implementation of season-specific control strategies, especially targeting predominant sources during high-O₃ 

periods, would optimize the effectiveness of O₃ pollution mitigation efforts in industrial areas. 

 

Fig. 7 Mean SHAP values for six pollution sources affecting ozone levels. 360 

 

Fig. 8 Proportional contributions of six pollution sources to ozone levels, represented by SHAP values across different seasons. 
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4. Conclusions 

This study presents a novel methodological framework for quantifying VOC contributions to O₃ formation in industrial park 

environments, integrating advanced ML techniques with traditional source apportionment methods. Through the synergistic 365 

combination of ML algorithms, SHAP interpretation, and PMF modeling, we have developed a robust analytical approach that 

provides unprecedented spatial and temporal resolution in source identification and contribution assessment. 

The investigation revealed distinct patterns in VOC-O₃ relationships, with solvent utilization and fuel evaporation emerging 

as primary drivers of O₃ formation in the industrial complex. The XGBoost model demonstrated superior predictive 

performance (R² = 0.644) among the evaluated ML algorithms, while SHAP analysis enabled precise quantification of source-370 

specific contributions. The PMF analysis further delineated six distinct emission sources, exhibiting pronounced seasonal 

variations in their relative contributions to O₃ formation. 

Notably, combustion sources dominated spring emissions (30.51%), while fuel evaporation (27.25%) and solvent use (24.48%) 

were predominant during summer months. This temporal heterogeneity in source contributions underscores the necessity for 

season-specific control strategies tailored to industrial operational patterns and meteorological conditions. The significant 375 

influence of Site C, characterized by diverse industrial activities, highlights the importance of targeted emission controls in 

areas with complex source profiles. 

These findings provide crucial insights for evidence-based policy development in industrial air quality management. The 

methodology established herein offers a powerful tool for rapid source identification and precise contribution quantification, 

enabling the implementation of targeted control strategies at facility-level resolution. Future research directions should focus 380 

on expanding the temporal and spatial coverage of monitoring networks, and exploring the application of this framework 

across diverse industrial settings to enhance its generalizability and predictive capabilities. 

5. Appendix A: Acronym glossary 

Abbreviation Full Name 

CatBoost Category Boosting  

CS combustion sources  

CSEM cross-stacked ensemble learning model  

CTMs chemical transport models  

DTR Decision Tree Regression  

EF error score  

FE fuel evaporation  

GC-FID gas chromatography-flame ionization detector  

GC-FID/MS gas chromatography-flame ionization detector and mass spectrometry  
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LightGBM Light Gradient Boosting Machine 

MAE Mean Absolute Error  

MDL minimum detection limit  

MDLs method detection limits  

MIR maximum incremental reactivity  

ML machine learning  

NOₓ nitrogen oxides  

O3 ozone 

OFP ozone formation potential  

PF polymer fabrication  

PMF positive matrix factorization  

PP petrochemical processes  

RF Random Forest  

RMSE Root Mean Squared Error  

SHAP SHapley Additive exPlanations  

SU solvent use  

SVM Support Vector Machine 

SVR Support Vector Regression  

TVOCs total volatile organic compounds  

VE vehicle emissions  

VOCs volatile organic compounds  

XGBoost Extreme Gradient Boosting 
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