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Abstract. Accurate source apportionment of ozone (Os) precursors is crucial for implementing scientific O3 control strategies.
While traditional approaches rely on complex calculations of volatile organic compounds (VOCs) and meteorological
parameters, their applicability in real-time scenarios remains limited. Taking the Shanghai chemical industrial park as an
example, we propose a novel two-step machine learning (ML) approach that integrates positive matrix factorization (PMF)
with other ML methods to systematically quantify the spatiotemporal impacts of VOCs on O3 formation. Analysis of high-
frequency data from 12 VOC monitoring stations (2021-2023) using six ML models revealed XGBoost as the optimal predictor
(R2=0.644) for local VOC emissions. By combining SHapley Additive exPlanations (SHAP) with ML modeling, we precisely
evaluated VOC-Os relationships and located emission sources. Results identified solvent use (SU) and fuel evaporation (FE)
as primary O3 formation contributors, followed by combustion sources (CS) and vehicle emissions (VE). PMF analysis further
distinguished six VOC sources: petrochemical processes (PP), FE, CS, SU, polymer fabrication (PF), and VE. Temporal
analysis revealed seasonal variations, with CS and FE dominant in spring/summer, while PF prevailed in autumn. This
innovative framework demonstrates exceptional capability for rapid source identification and precise contribution

quantification, establishing a new paradigm for high-resolution Oz source apportionment.

1 Introduction

Ozone (Os) pollution has become a significant environmental issue, posing serious threats to human health and ecosystems
worldwide (Long et al., 2023; Sharma et al., 2023; Masui et al., 2023; Sharma et al., 2024). In particular, industrial parks,
which are characterized by high levels of anthropogenic emissions, serve as critical hotspots for the formation of ground-level
0 due to the abundance of precursor pollutants such as volatile organic compounds (VOCs) and nitrogen oxides (NOx)
(Pinthong et al., 2022; Kim et al., 2023; He et al., 2024). From the current point of view, the pollution characteristics and

sources of VOCs in industrial parks are relatively more complex (Cao et al., 2024). Understanding the contribution of VOCs
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to Os formation is essential for developing effective mitigation strategies aimed at reducing air pollution and improving air
quality.

At present, VOCs source identification technology mainly includes source emission inventory (Lu et al., 2025), chemical
transport models (CTMs) (Choi et al., 2020; Wang et al., 2023) and receptor models (Wu et al., 2023). Traditionally, the
quantification of VOC contributions to Os formation has relied heavily on CTMs, which require detailed knowledge of
atmospheric chemistry and complex computational resources (Li et al., 2014). However, these models often suffer from
uncertainties related to emission inventories and chemical mechanisms (Sharma et al., 2017; Baklanov and Korsholm, 2008).
In addition, the detailed input data and computing power requirements of CTMs leave some areas for improvement (Nelson et
al., 2023). The receptor model has the advantages of fewer hardware requirements, higher precision, and easy configuration,
among which the positive matrix factorization (PMF) model has been widely used to identify VOC emission sources (Tan et
al., 2021; Yang et al., 2023). PMF models are typically combined with the Os formation potential (OFP) calculated by the
maximum incremental reactivity (MIR) value of VOC species (Carter, 2010) to assess the relationship between VOCs and Os
concentrations (Xiao et al., 2024). As the key parameter MIR value used in this method is usually calculated based on 39 cities
in the United States where Os exceeds the standard, whether the MIR value can fully reflect the contribution of VOCs to Os
under complex atmospheric pollution conditions in China is controversial (Zhang et al., 2021a). Furthermore, conventional
methods like PMF, while effective for source categorization, face critical limitations: they cannot differentiate rapid Os
formation via photostationary state perturbations (e.g., alkene depletion) from slower HOx-mediated pathways (e.g., alkane
oxidation) (Sillman, 1999). This mechanistic gap introduces spatiotemporal biases when quantifying source contributions in
chemically complex environments like coastal petrochemical zones. To address these challenges, our study integrates
interpretable machine learning (ML) with PMF, explicitly resolving fast vs. slow Os production pathways while leveraging the
study area’s unique spatial and industrial characteristics.

In recent years, more ML techniques have emerged as powerful tools for analyzing complex datasets and predicting
environmental phenomena (Salcedo-Sanz et al., 2024; Essamlali et al., 2024). However, the "black box" nature of ML models
makes their results difficult to interpret and generalize to real scenarios (Guidotti et al., 2018). Recently, the SHapley Additive
Interpretation (SHAP) algorithm has been applied to solve these problems (Louhichi et al., 2023; Li et al., 2024). Novel ML
approaches can provide robust predictions with less reliance on mechanistic details, making them attractive alternatives or
complementary methods to traditional ML models. To address these gaps, we integrate PMF with other advanced ML methods
to develop a two-step ML framework. This approach not only enhances the efficiency and accuracy of data analysis but also
addresses the limitations of traditional PMF methods under complex environmental conditions, providing a more robust
solution for pollution source identification and contribution analysis.

In the past, researchers have used different ML models to study the transformation mechanism of O and its precursors (Cheng
et al., 2024; Kuo and Fu, 2023). More recently, ML-coupled receptor models have been used to better identify and quantify
the drivers of pollutants. For example, Cheng et al. assessed the impact of emission sources on Os formation by combining

PMF with four ML models. Chen et al. used PMF model combined with Category Boosting (CatBoost) model and Shapley
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additive interpretation algorithm to quantify the influence of pollution sources and meteorological factors on VOCs. Ning et
al. constructed a cross-stacked ensemble learning model (CSEM) to predict Os concentrations under different NOx and VOCs
emission reduction scenarios. Our study focuses on a coastal petrochemical industrial zone in Shanghai, where proximity to
the ocean and dense aggregation of ethylene crackers and aromatics plants create a unique microenvironment. High humidity
and solar irradiance amplify atmospheric oxidative capacity (Zhang et al., 2021), while emissions of short-lived unsaturated
VOCs (e.g., propylene, 1,3-butadiene) drive rapid Os formation via alkene-NOy reactions within <50 km under sea-land breezes
(3—5 m/s) (Zhang et al., 2025; Zhao et al., 2022; Wang et al., 2018). Additionally, our study pioneers high-resolution source
attribution (1 km x 1 km) in a coastal petrochemical cluster in Shanghai, a methodology particularly suited to resolve localized
ozone production under elevated regional backgrounds (>80 ppb). By leveraging the unique microenvironment of dense
ethylene crackers and aromatics plants adjacent to the ocean, we isolate rapid photochemical processes driven by short-lived,
highly reactive VOCs (e.g., propylene, 1,3-butadiene; atmospheric lifetime <6 h) that dominate Os formation within <50 km.

Considering the advantages of the diverse types and complex sources of VOCs in chemical industrial parks, this characteristic
enhances model robustness and improves the model's feature extraction capabilities. This study selected a chemical industrial
park in Shanghai as an ideal case for model training. In this study, we present a novel small-scale approach that integrates
multiple ML models to quantify the impact of VOCs on Os formation with unprecedented spatial resolution. Our methodology
harnesses the analytical power of ML algorithms to process high-frequency data from 12 strategically positioned VOC
boundary monitoring stations, enabling rapid and accurate source identification at a fine-grained spatial scale previously
unattainable through conventional methods. The analytical framework consists of three sophisticated components: First, we
conduct a systematic evaluation of diverse ML algorithms to identify the optimal model configuration, ensuring robust
predictive performance at the local scale. Subsequently, we leverage the interpretable ML technique SHAP to quantitatively
assess VOC-Os relationships and precisely pinpoint emission sources with high spatial accuracy. Finally, we develop an
innovative hybrid approach that combines PMF for source apportionment with ML-SHAP analysis to achieve rapid and precise
identification of key pollution sources contributing to Os formation at the facility level. This advanced methodological
framework demonstrates significant advantages in both efficiency and spatial precision: it enables swift identification of
specific emission sources while maintaining high accuracy in quantifying their individual contributions to Os formation. The
approach transcends traditional analytical limitations by offering a powerful tool for high-resolution source traceability, thereby
providing crucial support for implementing targeted and effective Os control strategies at the facility or district level. Moreover,
this novel integration of multiple analytical techniques establishes a new paradigm for addressing complex air quality
challenges through sophisticated data-driven approaches that bridge the gap between regional-scale analysis and facility-level

source identification.



95

100

105

110

115

120

125

https://doi.org/10.5194/egusphere-2025-160
Preprint. Discussion started: 5 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

2 Material and methods
2.1 Study area and data details

The Jinshan District is located in the southwestern part of Shanghai, along the northern shore of Hangzhou Bay (HZB) at
geographical coordinates 30°40'—30°58'N and 121°—121°25'E, covering a total land area of 586.05 km? (Fig. 1). It is recognized
as an important resource-based city. The Jinshan Industrial Zone, situated in the southeastern part of Jinshan District, serves
as a fine chemical industrial park. Within and surrounding the industrial zone, 12 monitoring stations have been established to
assess the environmental air quality in the area (as detailed in Table S1). The distribution of these monitoring stations is
illustrated in Figure 1. Hourly Os concentration data utilized in this study were obtained from the Atmospheric Environmental
Monitoring Routine Data Management System of the Shanghai Environmental Monitoring  Station
(https://10.87.87.122:7890/SemcDataExamine). The concentration data for VOCs were sourced from the 12 monitoring
stations and can be accessed through the Intelligent Analysis System for VOC Emissions and Pollution Source Tracing in Key
Industrial Parks of Shanghai (https://220.196.88.110:8088/GY Q/index.html#/Login). The dataset covers a collection period
from January 1, 2021, to December 31, 2023, with measurements recorded on an hourly basis.

Two types of VOC monitoring instruments were deployed at the boundary observation stations. The first type utilized gas
chromatography-flame ionization detector (GC-FID) technology, featuring low-carbon (C2-C5) and high-carbon (C6-C12)
analyzers (Synspec GC955-615/815, Juguang Technology Co., Ltd.; A11000/A21022, Chromatotec Inc., France; Spectra SYS
GC3000-315L/H, Pu Yu Technology Development Co., Ltd.), and enabled automatic hourly measurements of 89 VOC species.
The second type employed a combined GC-FID and mass spectrometry (GC-FID/MS) approach, which included FID detection
for C2-C5 aromatic hydrocarbons and mass spectrometry detection for other compounds. The instrument operated by sampling
at 30 L/min for the initial 10 minutes each hour, utilizing a cryogenic cold trap for sample preservation before separation and
detection on specific chromatographic columns. Quality assurance and quality control (QA/QC) protocols adhered to the
"Technical Specifications for Operation and Quality Control of Continuous Automatic Monitoring Systems for Gaseous
Pollutants in Ambient Air" (HJ 818-2018), issued by China's Ministry of Ecology and Environment. Daily checks ensured data
completeness and chromatogram integrity, with any detected abnormalities prompting immediate on-site maintenance. Routine
data audits involved the removal of abnormal data, while measurement accuracy was verified biweekly, with calibration curves,
method detection limits (MDLs), and instrument precision assessed quarterly. Standard gas accuracy checks showed relative
errors below 20%, and in blank tests, absolute errors were less than 0.3 ppbv. Calibration curves were established using five
standard gases (1, 5, 10, 15, and 20 ppbv), yielding correlation coefficients greater than 0.995, and MDLs for PAMS and TO-
14 species were maintained at or below 0.3 ppbv and 0.5 ppbv, respectively. Throughout the study period, a total of 26,280
sets of VOC data were collected, resulting in the identification of 36 distinct VOC species, comprising 12 alkanes, 7 alkenes,

11 aromatics, and 6 halogenated hydrocarbons after data screening.
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Fig. 1. Study area and sampling sites. The triangles indicate the 12 sites utilized for the evaluation of the model.

2.2 Positive matrix factorization model (PMF)

The PMF 5.0 software, developed by the United States Environmental Protection Agency (EPA), is widely utilized to assess
and quantify the contributions from various sources to samples based on their chemical composition or unique fingerprints.
Initially introduced by Paatero in 1997 at the University of Helsinki, this model decomposes the sample matrix (which is non-
negative) into two distinct matrices: the source contribution matrix (g) and the source component spectral matrix (f). The least
squares method is subsequently employed to estimate the contribution rates and identify major pollution sources, with the
objective of minimizing the discrepancy between the calculated Q-value and the theoretical Q-value. The formulation of the
PMF model is represented by Eq. (1):

€ij = Xij — Yh=1Jik frj 1)
where Xjj represents the concentration of j species in the i sample, gi represents the concentration of k" source in the i
sample, fi; represents the mass percentage of j species in the k™ sample, and ej; represents the residue factor for j" species in

the i sample.
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In the PMF model, factor contributions and source fingerprint spectra are derived by minimizing the objective function (Q),
as described in Eq. (2):

Q = X1y XL ((xyj — Xkt Gurefij) /ui)? (2)
The uncertainty (u;) of the j™ species in the i sample is calculated by considering the minimum detection limit (MDL) and
error scores of each species.

To determine the PMF, equation-based uncertainty is employed in the calculations. Specifically, when the concentration is
equal to or below the method detection limit (MDL), the uncertainty (Unc) is calculated using Eq. (3):

Unc = 5/6 X MDL 3
If the concentration is greater than MDL, it is calculated by Eq. (4):

Unc = \/(EF x concentration)? + (0.5 X MDL)? )

The error score (EF) represents the percentage of uncertainty variables.

2.3 Machine learning models

To explore data characteristics and select the optimal ML model, we utilized data from the Jinshan Industrial Zone covering
the period from January 2021 to December 2023 for training and evaluating ML models. In this study, hourly data of O3 and
total volatile organic compounds (TVOCSs) concentrations from 12 monitoring stations were input into the ML models.

Subsequently, the ML models were integrated with the SHAP (SHapley Additive exPlanations) (Section S1.2 for model
details) framework to obtain SHAP values for the 12 stations, quantifying their contributions to Os formation. The stations

contributing the most to Os were identified, and the source of characteristic VOC data was recognized using the PMF model.
The emission factors derived from the PMF analysis, along with hourly O3 concentration data, were then input into the ML
models for SHAP analysis. Finally, the optimal ML model and the most severe pollution sources were identified.

In this study, we implemented six ML models, including Decision Tree Regression (DTR), Random Forest Regression (RF),
Support Vector Regression (SVR), XGBoost Model, CatBoost Model, and LightGBM Model (refer to Section S1.1 for model
details). Compared to complex deep learning models, these six ML models are more adept at capturing variations in internal
parameters and providing variable interpretations (Pichler and Hartig, 2023; Kaur et al., 2020). Utilizing a large-scale dataset

from this research, Bayesian Optimization (Robin et al., 2021) was employed to determine the optimal values of a range of
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hyperparameters for the ML models. Ultimately, through iterative adjustments in training strategies and multiple random
experiments, we selected the model with the highest R=2from the six ML models, along with its corresponding parameter
combinations, as the optimal ML model. Additionally, to assess the robustness and stability of the models, we employed Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) as evaluation metrics.

R&s an indicator that measures the overall goodness of fit of a regression model, and its calculation is shown in Eqg. (5):

_ 2 Gi-90?

2 _
k=1 I, i-9)2 ()

where y; represents the actual observed values, y; denotes the predicted values, y is the mean of the actual observed values,
and n indicates the total number of observations.

MAE is the average of the absolute differences between the predicted values and the actual values, as calculated in Eq. (6):
MAE =23y 1y, = 9l (6)
where y; is the actual observed value, 7; is the predicted value, and n is the total number of observations.

RMSE is the square root of the average of the squared differences between the predicted values and the actual values, as shown

in Eq. (7):

RMSE = \/32?:1 i = 912 ()
where y; represents the actual observed values, y; denotes the predicted values, and n is the total number of observations. This
metric provides insight into the model's accuracy by giving a higher weight to larger errors, making it sensitive to outliers.
To ensure data integrity, a thorough check for missing values was conducted on the original observational data prior to its
input into the machine learning models. Subsequently, these missing values were imputed using the RF model, and validation
was performed using the available observational data. The resulting dataset was then transformed into a supervised learning
dataset with time-dependent features. To guarantee the accuracy of the experiments, 70% of the dataset was consistently used
as the training set and 30% as the test set for each ML model. Hyperparameter tuning was performed utilizing the Bayesian
Optimization technique. Furthermore, to mitigate the influence of model randomness on the test set results, all ML models
underwent 10-fold cross-validation experiments.

In this study, the ML models and the SHAP algorithm were primarily implemented using Python 3.6 and Anaconda 4.5
platforms. The research methodology framework used in this study is shown in Fig. 2.
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Fig. 2. Workflow of the development of the model. The framework comprises three sequential phases: (1) Model Training and
Optimization: Multiple machine learning models including Decision Tree (DT), Random Forest (RF) Support Vector Machine
(SVM), Extreme Gradient Boosting (XGBoost), Category Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM)
were trained using TVOCs and Os contribution data from 12 monitoring stations (70% training set/30% testing set). Bayesian
hyperparameter optimization and rigorous model evaluation were implemented to identify the optimal XGBoost model.
Subsequently, SHapley Additive exPlanations (SHAP) analysis was employed to pinpoint critical monitoring stations (e.g., Site C).
(2) VOCs Source Apportionment: Positive Matrix Factorization (PMF) was applied to 32 VOCs species at key stations, resolving six
emission sources: petrochemical processes (PP), fuel evaporation (FE), combustion sources (CS), solvent use (SU), polymer
fabrication (PF), and vehicle emissions (VE). (3) Factor Impact Quantification: SHAP values derived from the XGBoost model were
calculated to dynamically quantify the contributions of source categories, and chemical species to Os formation. This systematic
workflow integrates a cohesive ""data modeling-source identification-attribution analysis' chain, demonstrating strong applicability
for high-resolution pollution source tracing studies.
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3 Results and discussions

3.1 Spatiotemporal characterization of ozone and VOCs Concentrations: a multi-scale analysis for enhanced ML
performance

A comprehensive understanding of the spatiotemporal characteristics of the input dataset is fundamental for optimizing
machine learning model interpretability and performance. Our analysis of VOC and Os concentrations across multiple
monitoring sites from 2021 to 2023 reveals distinct patterns that inform our ML-based source attribution approach. The
temporal evolution of Os concentrations shows a notable progression, with mean values of 64.45 pg/m?, 68.79 pg/m?, and
68.90 pg/m? recorded in 2021, 2022, and 2023, respectively (Fig. 3a). The relatively lower Os levels observed in 2021 coincide
with the COVID-19 pandemic period, when reduced anthropogenic activities, particularly decreased vehicular traffic and
industrial operations, significantly altered urban emission patterns in Shanghai (Lu et al., 2023). A marked reduction in VOC
concentrations was observed across all monitoring sites in 2022, primarily attributed to the implementation of stringent
emission control measures by local regulatory authorities (Xiao et al., 2024). The seasonal analysis reveals distinctive Os
formation patterns in the study area (Fig. 3b). Os concentrations exhibit a rapid acceleration during spring, reaching maximum
levels in May, followed by a notable decline during the summer months (June-August). This pattern differs from typical urban
environments, as Shanghai's unique high-pressure meteorological conditions drive peak daytime O; levels in late May with
unprecedented rates of increase (Chang et al., 2021). Notably, elevated VOC concentrations coincide with the June industrial
maintenance period, providing critical temporal markers for our ML-based source attribution.

The diurnal profile analysis (Fig. 3c) reveals sophisticated photochemical patterns that enhance our ML model's temporal
resolution. Os concentrations follow a characteristic curve, initiating a rapid increase at 08:00, sustaining growth until reaching
peak levels at 15:00, followed by a gradual decline. This pattern aligns with the intensification of photochemical reactions
driven by increasing solar radiation. The observed dual-peak pattern in VOC concentrations (06:00-08:00 and 19:00-22:00)
corresponds to industrial operational cycles, providing essential precursor availability for daytime Os formation. This rich
temporal diversity in our dataset significantly enhances the ML model's capability to capture complex source-receptor
relationships.

The correlation analysis provides crucial insights for optimizing our ML framework's feature selection and interpretation
capabilities (Fig. 3d). The heterogeneous correlations between VOCs and Os across monitoring sites reveal complex source-
receptor relationships: while most sites exhibit negative correlations, Sites D and K show positive associations. Notably, Sites
C (r=-0.12) and L (r = -0.081) demonstrate the strongest negative correlations, marking them as critical locations for detailed
feature importance analysis in our ML framework. These diverse correlation patterns enhance our model's ability to capture

local-scale emission-concentration relationships, crucial for precise source attribution.
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Fig. 3 Temporal and spatial dynamics of VOCs and Os, along with their correlations, as observed at 12 monitoring stations. (a) Mean
concentration variations of Os and VOCs from 2021 to 2023. (b) Monthly profiles of Oz and VOC concentrations. (c) Daily profiles
of Oz and VOC concentrations. (d) The correlation matrix between Oz and VOCs measurements at the 12 monitoring sites.

3.2 Comparison of ML models
3.2.1 Model performance evaluation and selection of optimal ML algorithm

The selection and evaluation of appropriate machine learning algorithms are fundamental to ensuring robust and reliable
analytical outcomes, particularly when dealing with complex environmental datasets (Liu et al., 2022). In this investigation,
we implemented and systematically evaluated six state-of-the-art machine learning algorithms: DT, RF, SVM, XGBoost,
CatBoost, and LightGBM. These models were rigorously trained and tested using spatially distributed VOC and Os monitoring
data from multiple sampling sites.

The comparative performance metrics of these models are comprehensively presented in Table 1. Notably, R=values obtained
through ten-fold cross-validation demonstrated remarkable consistency with those derived from the independent test dataset.
This concordance strongly indicates the robust generalization capabilities of our machine learning framework, suggesting
effective pattern recognition within the data while avoiding overfitting issues. Among the evaluated algorithms, the XGBoost

model demonstrated superior predictive performance across all assessment metrics. Specifically, it achieved the lowest MAE
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of 13.828, Mean Absolute Percentage Error (MAPE) of 0.445, and RMSE of 11.620, coupled with the highest R=value of
0.637.

Further validation through scatter plot analysis (Fig. S1) revealed that the XGBoost model exhibited significantly smaller
deviations between predicted and observed values compared to other algorithms, confirming its enhanced predictive accuracy.
Based on these comprehensive evaluation results, the XGBoost model was selected as the optimal algorithm for O
concentration prediction. Consequently, the subsequent SHAP analysis was conducted exclusively on the XGBoost model to
ensure the highest level of interpretability and reliability in source attribution results.

Table 1 Comparison of six ML models based on different evaluation metrics.

10-fold Cross-validation

Model R= MAE MAPE RMSE
RF

DT 0.167 0.187 23.142 0.589 29.980

RF 0.345 0.383 21579 2,918 28.155
SVM 0.330 0.328 25.359 0.618 34.309
XGBoost 0.637 0.644 13.828 0.445 11.620
CatBoost 0.689 0.630 15.601 0.495 17.216
LightGBM 0.675 0.624 14.603 0.493 17.352

(MAE: Mean Absolute Error, MAPE: Mean Absolute Percentage Error, RMSE: Root Mean Squared Error, DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, XGBoost: Extreme Gradient Boosting, CatBoost: Category Boosting,
LightGBM: Light Gradient Boosting Machine)

3.2.2 Spatial distribution analysis of TVOC contributions using SHAP interpretation

To quantitatively assess the spatial heterogeneity of TVOC contributions to Os formation, we conducted a comprehensive
SHAP analysis across all monitoring sites within the established CatBoost regression model (Fig. 4). The analysis revealed
distinct patterns of TVOC influence, with Site C demonstrating notably dispersed sample distribution patterns, indicating its
predominant influence on Os formation dynamics. The analysis identified a significant negative correlation between TVOC
concentrations at Site C and model predictions, evidenced by the high-magnitude SHAP values concentrated in the negative
region. Conversely, Site K exhibited a strong positive correlation, characterized by elevated SHAP values consistently
distributed in the positive region, corroborating the correlation analysis findings presented in Section 3.1.

The pronounced influence of Site C can be attributed to its strategic location within the southeastern sector of the Jinshan
Chemical Zone, where it is surrounded by diverse industrial activities. The site's immediate vicinity encompasses plastic
manufacturing facilities to the east, a petroleum products transportation port to the south, chemical production facilities to the
west, and a public transportation hub featuring five gas stations to the north. This complex industrial landscape surrounding
Site C facilitates intensive Os formation while presenting significant challenges for precise source attribution of TVOC

emissions.
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To validate the robustness of these findings, we extended the SHAP analysis to encompass five additional ML models (Fig.
S2). The results consistently identified Site C as the most influential monitoring location across all model analyses,
substantiating its critical role in local Os formation processes. This convergence of results across multiple ML platforms
reinforces the reliability of our spatial analysis and highlights the importance of Site C in understanding regional Os pollution

patterns.
High
Site C
Site E
Site F
Site B
Site K

Site |

Site L

Feature value

Site A

Site |

Site D

Site G
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30 -20 -10 0 10 20 30 40 50
SHAP value (impact on model output)

Fig. 4 Feature importance of total volatile organic compounds (TVOC) drivers obtained by XGBoost model. Blue points indicate
negative contributions to the prediction, while red points represent positive contributions.

3.3 Source apportionment and temporal-sspatial characterization of VOCs based on the PMF model
3.3.1 Analysis process and results of the PMF model

The application of the PMF model for the analysis of VOCs at Site C offers valuable insights into source apportionment and
pollution characteristics. The species selection process adhered to specific criteria (Liu et al., 2016; Hui et al., 2019): (1)
species with missing sample rates exceeding 25% or concentrations below 35% of the method detection limits (MDLs) were
excluded; (2) highly reactive compounds were omitted unless serving as specific tracers for particular sources. Ultimately, 36
VVOC species were selected for model input. Based on their signal-to-noise ratio (S/N) and model fit, species were classified

nn

as "strong," "weak," or "bad" in terms of their computational significance. Specifically, species with S/N < 0.2 were labeled
as "bad," those with 0.2 < S/N < 0.6 or poor fit as "weak," and S/N > 0.6 as "strong." In total, 30 species were deemed "strong,"
2 "weak," and 4 "bad." The "bad" species were excluded from model calculations due to their concentration uncertainty, while

the uncertainty for "weak" species was tripled to reduce their influence. Ultimately, 32 pollutants were included in the model.
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To ascertain the optimal number of sources, 20 iterations with varying random seeds were conducted to evaluate the stability
of the Q value across solutions ranging from 3 to 10 factors. A 6-factor solution was selected as the rate of Q value reduction
significantly diminished beyond this point, and the model results remained interpretable. The Q (true)/Q (robust) value of 1.23
fell within the acceptable range of <1.5 (Hui et al., 2020), while the Q (robust)/Q (theoretical) value of 1.1 indicated proximity
to 1. The standardized residuals for each factor ranged from -3 to 3, demonstrating a satisfactory fit between the model
predictions and observed data. The six sources identified using the PMF model are as follows: petrochemical process (PP),
fuel evaporation (FE), combustion source (CS), solvent use (SU), polymer fabrication (PF), and vehicle emission (VE). The
source profiles are illustrated in Fig. 5.

Factor 1 exhibited the highest concentration of propylene (60.60%), suggesting its predominant source is local petrochemical
processes. This finding aligns with previous studies that link propylene emissions to petrochemical activities in industrial zones
(Washenfelder et al., 2010; Ragothaman and Anderson, 2017). Therefore, Factor 1 was determined to be PP. Factor 2 was
characterized mainly by C2-C5 alkanes (47%) and toluene (13.68%); they are typical components of gasoline and diesel (Mu
et al., 2023). Thus, Factor 2 is defined as a FE.

Factor 3 had a high percentage of propane (69.36%), ethene (12.17%), and ethane (5.12%), which conformed to the emission
characteristics of CS (Song et al., 2021; Chen et al., 2024). The relative contribution rate of aromatic hydrocarbons in Factor
4 reached 69.12%. Currently, aromatic hydrocarbons are widely used as solvents in industrial production (Zhang et al., 2021b;
Mukhamatdinov et al., 2020). Factor 4 was defined as SU.

Factor 5 was primarily characterized by ethene (92.59%), with its concentration far exceeding that of other species. It indicated
that its source was closely related to the polymer manufacturing processes commonly found in nearby production facilities.
Previous studies had identified ethene as a major pollutant associated with such industrial activities (Burdett and Eisinger,
2017). Therefore, Factor 5 was identified as originating from PF. Factor 6 was characterized by relatively high proportions of
C4-C6 alkanes (37.63%) and 1,2-dichloroethane (12.01%), which are important indicators of VE (Song et al., 2021; Chen et
al., 2024).

The PMF analysis revealed distinct temporal patterns in source contributions to VOC emissions throughout the study period
(Fig. 6). On an annual basis, CS and FE emerged as the primary contributors, accounting for 16.94% and 16.89% of total VOC
emissions, respectively. The remaining sources exhibited comparable contributions: SU (16.56%), PF (16.54%), VE (16.54%),

and PP (16.52%), indicating a relatively balanced distribution of emission sources in the industrial park.
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Fig. 5 Source profiles calculated using the PMF model in site C.

3.3.2 Seasonal variation and contributing factors of VOC source distribution

Seasonal analysis unveiled significant temporal variations in source contributions. During spring, CS dominated the VOC
emissions with a 22.39% contribution, followed by PP (19.59%), PF (16.07%), and VE (14.76%), while FE showed a relatively
lower contribution of 12.83%. This pattern shifted notably in summer, where FE became the predominant source (21.68%),
accompanied by substantial contributions from SU (18.21%) and VE (17.59%). The autumn period witnessed PF emerging as
the primary contributor (22.47%), with CS maintaining a significant presence (16.95%). Winter emissions were primarily
attributed to VE (18.64%), SU (18.61%), and FE (18.02%).

The observed seasonal variations align with regional industrial activities and meteorological conditions. The pronounced CS
contributions during spring coincide with increased biomass burning activities across industrial parks in China, corroborating
findings from previous studies (Yang et al., 2023; Yao et al., 2021; Chen et al., 2022). The elevated FE contributions in summer
can be attributed to enhanced fuel volatilization under high temperatures characteristic of the Yangtze River Delta region,
subsequently promoting Os formation (Xu et al., 2023). The autumn dominance of PF emissions reflects the operational
patterns of polymer manufacturing facilities, while the significant winter contribution from VE aligns with previously

documented patterns of vehicular emissions in Shanghai's urban areas (Liu et al., 2021; Wang et al., 2022).
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Fig. 6 Influence of various sources on atmospheric VOCs across different seasons.
3.4 Quantitative assessment of source-specific contributions to Os formation

The integrated PMF-SHAP framework was employed to quantitatively evaluate the source-specific contributions to Os
formation in the Jinshan industrial complex during 2021-2023. Through the coupling of XGBoost-SHAP modeling with
corresponding SHAP values, we systematically assessed the relative importance of various emission sources in driving Os
pollution dynamics (Fig. 7). The analysis revealed that SU and FE were the predominant contributors to Os formation,
exhibiting SHAP values of 3.00 and 2.77, respectively. This finding underscores the critical role of solvent usage and fuel-
related emissions in industrial processes as primary drivers of Os generation. CS demonstrated moderate influence with a
SHAP value of 2.19, followed by VE (1.92) and PP (0.55), while PF exhibited the lowest impact (0.16). These results
emphasize the particular significance of SU and FE in Os pollution control strategies within industrial contexts.

The seasonal decomposition of source contributions through SHAP analysis demonstrated strong concordance with PMF-
derived temporal patterns (Fig. 8). CS emerged as the dominant contributor during spring (30.51%), while summer was
characterized by substantial contributions from FE (27.25%) and SU (24.48%). The autumn period was dominated by PF
emissions (27.83%), whereas SU showed peak influence during winter (31.23%). This temporal heterogeneity in source
contributions, particularly the significant TVOC emissions associated with Site C, provides crucial insights for targeted Os
management strategies.

These findings have significant implications for policy development and implementation. The results suggest that regulatory

attention should prioritize emission controls around Site C, with particular emphasis on seasonal variation in source
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contributions. Implementation of season-specific control strategies, especially targeting predominant sources during high-Os

periods, would optimize the effectiveness of Os pollution mitigation efforts in industrial areas.
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Fig. 8 Proportional contributions of six pollution sources to ozone levels, represented by SHAP values across different seasons.
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4. Conclusions

This study presents a novel methodological framework for quantifying VOC contributions to Os formation in industrial park
environments, integrating advanced ML techniques with traditional source apportionment methods. Through the synergistic
combination of ML algorithms, SHAP interpretation, and PMF modeling, we have developed a robust analytical approach that
provides unprecedented spatial and temporal resolution in source identification and contribution assessment.

The investigation revealed distinct patterns in VOC-Os relationships, with solvent utilization and fuel evaporation emerging
as primary drivers of Os formation in the industrial complex. The XGBoost model demonstrated superior predictive
performance (R== 0.644) among the evaluated ML algorithms, while SHAP analysis enabled precise quantification of source-
specific contributions. The PMF analysis further delineated six distinct emission sources, exhibiting pronounced seasonal
variations in their relative contributions to Os formation.

Notably, combustion sources dominated spring emissions (30.51%), while fuel evaporation (27.25%) and solvent use (24.48%)
were predominant during summer months. This temporal heterogeneity in source contributions underscores the necessity for
season-specific control strategies tailored to industrial operational patterns and meteorological conditions. The significant
influence of Site C, characterized by diverse industrial activities, highlights the importance of targeted emission controls in
areas with complex source profiles.

These findings provide crucial insights for evidence-based policy development in industrial air quality management. The
methodology established herein offers a powerful tool for rapid source identification and precise contribution quantification,
enabling the implementation of targeted control strategies at facility-level resolution. Future research directions should focus
on expanding the temporal and spatial coverage of monitoring networks, and exploring the application of this framework

across diverse industrial settings to enhance its generalizability and predictive capabilities.

5. Appendix A: Acronym glossary

Abbreviation Full Name

CatBoost Category Boosting

Cs combustion sources

CSEM cross-stacked ensemble learning model

CTMs chemical transport models

DTR Decision Tree Regression

EF error score

FE fuel evaporation

GC-FID gas chromatography-flame ionization detector

GC-FID/MS gas chromatography-flame ionization detector and mass spectrometry
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LightGBM Light Gradient Boosting Machine
MAE Mean Absolute Error

MDL minimum detection limit

MDLs method detection limits

MIR maximum incremental reactivity
ML machine learning

NOy nitrogen oxides

O3 ozone

OFP ozone formation potential

PF polymer fabrication

PMF positive matrix factorization

PP petrochemical processes

RF Random Forest

RMSE Root Mean Squared Error
SHAP SHapley Additive exPlanations
SuU solvent use

SVM Support Vector Machine

SVR Support Vector Regression
TVOCs total volatile organic compounds
VE vehicle emissions

VOCs volatile organic compounds
XGBoost Extreme Gradient Boosting
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