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Abstract 19 
This study demonstrated the predictability of Machine Learning (ML)– and Deep Learning (DL)–based univariate and 20 
multivariate predictions of reservoir inflows of Bhumibol (BB) and Sirikit (SK), two major dams in the Chao Phraya 21 
River Basin. XGBoost, tree–based ensemble–, and LSTM, deep neural network–based algorithms were selected for 22 
development of daily and monthly prediction models. For univariate prediction, the inflows of the BB and SK dams 23 
were predicted separately using two individual models. In contrast, for multivariate prediction, a single model was 24 
developed to simultaneously predict the inflows of both the BB and SK dams facilitating the integrated decision–25 
making processes. Across all prediction scenarios, ML– and DL–based models demonstrated superior performances 26 
in predicting daily reservoir inflows for BB and SK dams compared to monthly predictions, achieving NSE values of 27 
0.86 and 0.77, respectively. Since modeling with LSTM algorithm can effectively handle larger datasets, this enables 28 
single multivariate prediction model to predict closer results to those individual univariate models performed by 29 
XGBoost and LSTM for BB and SK prediction. XGBoost models mostly outperformed LSTM when tested on the 30 
datasets for both daily and monthly univariate predictions. Among all prediction scenarios, underprediction of low 31 
reservoir inflows and overprediction of high reservoir inflows by both univariate and multivariate models were 32 
consistently existed. Therefore, extracting specific and informative insights from the results of each model type, 33 
forecasting horizon, and algorithms used can significantly enhance decision–making support for both real–time 34 
reservoir operation and long–term reservoir management planning. 35 
 36 
Keywords: Machine Learning (ML), Deep Learning (DL), Artificial Intelligence (AI), Reservoir Inflow Prediction, 37 
Chao Phraya River Basin 38 
 39 
1. Introduction 40 

The increased climate variability has intensified the water–related challenges globally making the water 41 
resources management more complicated under the changing circumstances (Ngamsanroaj and Tamee, 2019). 42 
Consequently, risks of water stress and scarcity exacerbated by reservoir operation and management have substantially 43 
increased. A key factor contributing to this is uncertain water supply in the reservoir system. Reservoir inflow is 44 
commonly considered as the principal source of water supply in reservoirs. It is significantly influenced by the climate 45 
variability and hydrologic phenomena. Accurate and precise reservoir inflow prediction plays a crucial role for 46 
effective reservoir planning and management (Suprayogi et al., 2020). During critical climate events, future reservoir 47 
inflow forecast informs decision making for instant operational responses to natural disasters like floods and drought. 48 
During normal climate conditions, predictive reservoir data is used for establishment of guideline trajectory for proper 49 
reservoir operation. Predicting the precise reservoir inflow is inherently stochastic due to uncertainty of hydrological 50 
inputs and strong non–linearity of the system (Soncin et al., 2024). For decades, numerous research studies have been 51 
dedicated to reservoir inflow predictions to achieve the desired purposes for both reservoir management planning and 52 
real–time operation.  53 

A wide range of prediction techniques including physically process–based–, conventional stochastic–based– 54 
and modern data–driven approaches like Machine Learning (ML) and hybrid models have been widely employed to 55 
enhance the model predictability. It is revealed that the process–based hydrological models usually rely on a various 56 
number of assumptions and require many physical parameters to resemble the hydrological nature of environment 57 
(Firat and Güngör, 2008; Luo et al., 2020). In addition, the conventional stochastic–based techniques such as ARMA, 58 
ARIMA for time series prediction provided good results for only linear data. However, it is not appropriate for non–59 
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linearity phenomenon influenced by climate, natural geography, and human activities (Valipour et al., 2013). 60 
Prediction time horizon selected has been generally ranged from short–term (hourly, daily, weekly) to long–term 61 
predictions (monthly, seasonal, yearly). Univariate prediction model is generally used to predict future values of single 62 
variable using the historical data. While, multivariate prediction model involves predicting the future values of 63 
multiple interrelated variables. However, short–term univariate prediction predicting future values of single reservoir 64 
inflow has broadly been found particularly for real–time operation and short–term planning. Predicting multiple 65 
reservoir inflows using multivariate prediction model by taking the interdependencies of influencing factors of 66 
multiple reservoirs has rarely studied and limited.  67 

The advancement of Artificial Intelligence (AI) and Machine Learning (ML) approach has revolutionized 68 
transformative impacts across the traditional prediction methods and their disciplines. A great deal of data–driven ML 69 
approach has enhanced the predictability for hydrological prediction (Zhang et al., 2018) such as rainfall (Chen et al., 70 
2017; Ridwan et al., 2021), streamflow (Latif et al., 2023; Kisi et al., 2024), reservoir inflow (Zhang et al., 2021; 71 
Hameed et al., 2022; Latif et al., 2024), reservoir water level (Sapitang et al., 2020; Aquil and Ishak, 2023), river water 72 
level (Ahmed et al., 2023; Zakaria et al., 2023), groundwater level (Osman et al., 2020), sediment transport 73 
(Almubaidin et al., 2023), water quality prediction (Haghiabi et al., 2018; Shams et al., 2024) and snow water 74 
equivalent (Khosravi et al., 2023).  75 

Since 1990s, a well–known Artificial Neural Networks (ANNs) inspired by human brain structure and its 76 
function has intensively been used for hydrological prediction. It was commonly applied for both univariate and 77 
multivariate predictions. For example, univariate time series prediction of reservoir inflow was developed using ANNs 78 
to map the non–linear relationships between input and output variables (Kawade et al., 2019). Many studies also 79 
revealed that ANNs significantly outperformed than the statistically–stochastic–based prediction models like AR, MA, 80 
and ARIMA for the reservoir inflow prediction (Pradeepakumari and Srinivasu, 2019). Additionally, ANNs can be 81 
applicable for both parametric and non–parameter data (Pini et al., 2020). 82 

The rapid evolution of ML algorithms has been driven by the advancement and succession of computer 83 
science and technologies to increase the computational capability and handle large dataset. Consequently, the 84 
improved ML algorithms have been progressively developed incorporating supervised learning, unsupervised 85 
learning, and reinforcement learning for various tasks. Several conventional ML algorithms have commonly been 86 
employed for reservoir inflow prediction such as Support Vector Machines (SVM), K–Nearest Neighbors (KNN), 87 
Random Forest (RF), Multi–layer Perceptron (MLP), Gradient Boosting (GB), Extreme Gradient Boosting 88 
(XGBoost), and Radial Bias Function (RBF). A comparative study for daily reservoir inflow prediction was conducted 89 
using four different approaches; (1) Multiple Linear Regression (MLR), (2) Random Forest (RF), (3) Extreme 90 
Learning Machine (ELM), and (4) Regularized Extreme Learning Machine (RELM). The results showed the 91 
superiority of RELM approach that yielded higher prediction accuracy with R = 0.955 (Hameed et al., 2022). 92 
XGBoost, a relatively recent algorithm, has proven its effectiveness in reservoir inflow prediction. To forecast multi–93 
step ahead daily and monthly reservoir inflows, XGBoost was ranked as the best prediction model compared to MLP, 94 
Support Vector Regression (SVR), Adaptive Neuro–Fuzzy Inference System (ANFIS) (Ibrahim et al., 2023). Similarly, 95 
XGBoost outperformed RF and an ensemble model combining XGBoost–RF algorithms for daily reservoir inflow 96 
prediction (Jan et al., 2024) 97 

Recently, achievement of Deep Learning (DL) which is a subset of ML, has renowned incorporating multiple 98 
layers artificial neural networks or Deep Neural Networks (DNNs) with automatic feature learning. It is indicated that 99 
DL is powerful in extracting complex features hidden in vast amount of hydrological dataset (Huang et al., 2022). 100 
Some of the most widely used DL algorithms for time series prediction are Convolutional Neural Networks (CNNs), 101 
Recurrent Neural Networks (RNNs), Long–Short Term Memory (LSTM), and Gated Recurrent Unit (GRU). GRU is 102 
the simplified form of LSTM well–suited for faster training for time series prediction. While, LSTM is a specific type 103 
of RNNs designed to learn the long–term temporal dependency and seasonality of time series data and overcome the 104 
vanishing and exploding gradient problems of RNNs (Dtissibe et al., 2024). It is found that RNNs with input delayed 105 
time gave better predictive performances for multivariate reservoir inflow prediction than Input Delayed Neural 106 
Network (IDNN) (Coulibaly et al., 2001). Real–time reservoir inflow prediction in the case of different climate 107 
scenarios and lead time conditions (+1–Hr, +4–Hr, and +6–Hr) with three conventional ML algorithms; (1) SVM, (2) 108 
RF, (3) MLP and four DL algorithms; (1) DNNs, (2) RNNs, (3) LSTM, (4) GRU were investigated. In comparation, 109 
the results distinctly showed that DNNs outperformed than the conventional ANNs in most scenarios. However, under 110 
the extended periods of lead time prediction, underestimation of reservoir inflow by DDNs is more serious compared 111 
to ANNs (Huang et al., 2022). Encoder–Decoder LSTM (ED–LSTM) was employed for sub–seasonal reservoir inflow 112 
with multiple lead time (+1–D to +30–D) for 30 reservoirs, at 1–D ahead prediction, ED–LSTM could produce good 113 
predictive performance of NSE exceeding 0.75 for 29 reservoirs. At 30–D ahead prediction, ED–LSTM achieved NSE 114 
of more than 0.5 for most reservoirs (Fan et al., 2023). Furthermore, LSTM exhibited superior performances in 115 
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predicting medium to long–term data compared to the conventional ML algorithms as well as RNNs (Khorram and 116 
Jehbez, 2023; Rajesh et al., 2023) and CNNs architectures (Herbert et al., 2021).      117 

However, the biased performance of overfitting, information saturation, and under–fitting issues of ML–118 
based prediction models has become the challenging issues. It is reviewed that ML models cannot improve the 119 
prediction accuracy without including preprocessing techniques for feature engineering (Apaydin and Sibtain, 2021). 120 
Data preprocessing is conducted at the first step of ML modeling to ensure the data quality for model training. Data 121 
cleaning, transformation, and decomposition are adopted for prediction improvement. In addition, selecting suitable 122 
ML algorithms for specific purpose of hydrological prediction is a challenging task.  123 

This study employed two powerful ML algorithms; XGBoost and LSTM for univariate and multivariate 124 
reservoir inflow prediction of two large storage dams in the Chao Phraya River Basin (CPYRB); (1) Bhumibol (BB) 125 
and Sirikit (SK) dams as shown in Fig. 1. Predicting precise and accurate reservoir inflow for these two reservoirs is 126 
important to ensure reliable water supply sources and establish proper water allocation plan for the downstream water 127 
use in the central region. Furthermore, during the storm seasons from May. to Dec. when the flood risks are likely 128 
elevated, future inflow data is informative for the Office of National Water Resources (ONWR), key decision maker 129 
to implement effective flood mitigation strategies. Input features selection and configuration design of two different 130 
types of daily and monthly reservoir inflow prediction models; (1) univariate prediction with XGBoost and LSTM 131 
algorithms and (2) multivariate prediction with LSTM algorithm, were definitely highlighted. In the last step, 132 
predictability of predicting low and high reservoir inflow values of these models were accordingly explored to assess 133 
their statistical performances. 134 
  135 

 
 

Fig. 1 Study area in the Chao Phraya River Basin and weather stations  

 136 
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2. Material and methods 137 
  138 
2.1. Input features for reservoir inflow prediction models 139 
 The development of ML prediction models relied on the historical observation data from 2000 to 2020 140 
including reservoir inflows of BB and SK reservoirs, and climate data gathered from the nearest weather stations as 141 
summarized in Table 1. As input feature selection is definitely critical to the success of ML– and DL–based prediction 142 
models, consequently, the statistical correlation analysis was performed to assess the strength and direction of 143 
relationships between climate data from adjacent weather stations and reservoir inflow. By doing this, the daily 144 
observed climate data (air humidity, air pressure, temperature, and rainfall) was collected from six Thai Meteorological 145 
Department (TMD) stations (0002, 0006, 0007, 0015, 0017, and 0019) located in Tak, Sukhothai, and Lampang 146 
provinces near BB dam. Additionally, climate data from the Climate Data Services (CDS) publicly provided by NASA 147 
was gathered for locations with geographic coordinates matching those of the TMD stations. Likewise, the daily 148 
observed climate data near SK dam was collected from three TMD and NASA stations (0003, 0018, and 0095) located 149 
in Phitsanulok, Uttaradit, and Nan provinces, respectively.     150 

For the univariate prediction, single reservoir inflows of BB and SK dams were aimed to individually predict 151 
for both daily and monthly models. A number of daily and monthly prediction scenarios with different model 152 
configuration using XGBoost and LSTM algorithms were accordingly developed. For the multivariate prediction, 153 
reservoir inflows of two main reservoirs, BB–SK dams were expected to achieve simultaneously from single 154 
prediction model for both daily and monthly prediction. Consequently, LSTM was selected for multiple output 155 
prediction as it can learn and capture the complicated relationship of relevant multiple input variables.    156 
 157 
Table 1 Data used for reservoir inflow prediction modelling  158 

Data Description Data Type Unit Data Length 

Reservoir Inflow_BB Reservoir Inflow of BB Dam Daily, Monthly MCM 1/1/2000–31/12/2020 

Reservoir Inflow_SK Reservoir Inflow of PS Dam Daily, Monthly MCM 1/1/2000–31/12/2020 

Weather  Avg. Humidity at 9 Stations Daily, Monthly % 1/1/2000–31/12/2020 

 Avg. Air Pressure at 9 Stations Daily, Monthly hPa 1/1/2000–31/12/2020 

 Avg. Temperature at 9 Stations Daily, Monthly °C 1/1/2000–31/12/2020 

 Rainfall at 9 Stations at 9 Stations Daily, Monthly mm 1/1/2000–31/12/2020 

 Station ID Station Name Location: Lat.–Long. 

 0002_BB Tak N 16๐52’48” – E 99๐08’24” 

 0006_BB Bhumibol Dam N 17๐14’37” – E 99๐00’08” 

 0007_BB Mae Sot N 16๐41’60” – E 98๐32’31” 

 0015_BB Si Samrong N 17๐29’11” – E 99๐31’36” 

 0017_BB Doi Muser N 16๐41’60” – E 98๐56’07” 

 0019_BB Tone N 17๐38’12” – E 99๐14’44” 

 0003_SK Phitsanulok N 16๐47’47” – E 100๐16’33” 

 0018_SK Uttaradit N 17๐37’00” – E 100๐05’60” 

 0095_SK Nan N 18๐46’01” – E 100๐45’47” 

Note:  meter above mean sea level– m. msl.|Million Cubic Meter–MCM|Cubic Meter per Second–CMS 159 
 160 
 Selecting input features for each univariate and multivariate prediction model was based on the physical 161 
river–reservoir system and statistical cross correlation between past reservoir inflow and relevant climate data as 162 
summarized in Table 2. This ensured that the prediction model can effectively capture the strong relationship between 163 
the inputs and predicted outputs.  164 
 165 
 166 
 167 
 168 
 169 
 170 
 171 
 172 
 173 
 174 
 175 
 176 

4

https://doi.org/10.5194/egusphere-2025-16
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 

 

Table 2 Correlation coefficient between climate data and reservoir inflows of the Bhumibol and Sirikit dams 177 
Weather 
Station 

Climate Data TMD Data 
Source 

NASA Data 
Source 

Weather 
Station 

Climate Data TMD Data 
Source 

NASA Data 
Source 

0002_BB Avg. humidity (%) 0.402 0.521 0019_BB Avg. humidity (%) 0.460 0.505 

 Avg. air pressure (hPa) –0.117 –0.148  Avg. air pressure (hPa) –0.090 –0.146 

 Avg. temperature (°C) –0.115 –0.190  Avg. temperature (°C) –0.091 –0.133 

 Rainfall (mm/day) 0.284 0.365  Rainfall (mm/day) 0.191 0.355 

0006_BB Avg. humidity (%) 0.402 0.518 0003_SK Avg. humidity (%) 0.428 0.536 

 Avg. air pressure (hPa) –0.007 –0.146  Avg. air pressure (hPa) –0.328 –0.322 

 Avg. temperature (°C) –0.103 –0.173  Avg. temperature (°C) –0.020 –0.144 

 Rainfall (mm/day) 0.289 0.369  Rainfall (mm/day) 0.038 0.376 

0007_BB Avg. humidity (%) 0.401 0.491 0018_SK Avg. humidity (%) 0.499 0.503 

 Avg. air pressure (hPa) –0.164 –0.179  Avg. air pressure (hPa) –0.023 –0.339 

 Avg. temperature (°C) –0.096 –0.076  Avg. temperature (°C) –0.019 –0.017 

 Rainfall (mm/day) 0.197 0.360  Rainfall (mm/day) 0.167 0.406 

0015_BB Avg. humidity (%) 0.319 0.521 0095_SK Avg. humidity (%) 0.535 0.469 

 Avg. air pressure (hPa) –0.021 –0.139  Avg. air pressure (hPa) –0.379 –0.358 

 Avg. temperature (°C) –0.027 –0.178  Avg. temperature (°C) 0.092 0.101 

 Rainfall (mm/day) 0.162 0.363  Rainfall (mm/day) 0.002 0.392 

0017_BB Avg. humidity (%) 0.212 0.491 Note:  Thai Meteorological Department–TMD| 

 Avg. air pressure (hPa) 0.003 –0.479               National Aeronautics and Space Administration–NASA 

 Avg. temperature (°C) 0.006 –0.076     

 Rainfall (mm/day) 0.034 0.360     

 178 
The correlation analysis revealed strong correlations between observed reservoir inflows and both humidity 179 

and rainfall at both BB and SK dams. The correlation coefficient between reservoir inflow of BB dam and humidity 180 
data at Station 0006 reaches up to 0.402 and 0.518 for TMD and NASA data sources, respectively. Rainfall data from 181 
Station 0006 also exhibited a strong correlation with reservoir inflow of BB dam, with correlation coefficients of 182 
0.2886 and 0.3693 for TMD and NASA data sources, respectively. The substantial correlation between reservoir 183 
inflow of SK dam and climate data from Station 0018 particularly from NASA data source, was apparently found 184 
with the correlation coefficient of 0.503 and 0.406 for humidity data and precipitation data, respectively. Based on 185 
these analysis, humidity and rainfall data were accordingly selected to specify input structures of ML– and DL–186 
based prediction models. Autocorrelation of past reservoir inflow was also analyzed to identify optimal lag times and 187 
number of moving average parameters for input feature selection. This analysis revealed the importance of closer lag 188 
time (t to t–7) which exhibited high correlation coefficients exceeding 0.67 with the recent reservoir inflow data for 189 
both BB and SK dams. Accordingly, information of past reservoir inflows with closer lag time t to t–7 was 190 
incorporated into the structure of the prediction models to predict reservoir inflow at lead time t+1.  191 

Following this analysis, four daily and monthly univariate prediction scenarios with various model 192 
configurations varying input features using XGBoost and LSTM algorithms for each of BB and SK dams; S1–S4, 193 
were designed. For the multivariate prediction model, two daily and monthly prediction scenarios; S5–S6, using 194 
LSTM algorithm were established. Major inputs of these prediction models are past reservoir inflow at time t, moving 195 
average of past reservoir inflow at time t–3 and t–7, rainfall at time t, and humidity at time t as summarized in Table 196 
3. It is illustrated that univariate models structured the specific individual inputs for single reservoir inflow prediction 197 
at lead time t+1. For example, the input features of daily reservoir inflow prediction for BB dam are BB past inflow 198 
at time t, moving average of BB past inflow at time t–3 and t–7, rainfall and humidity at time t collected from the 199 
nearest weather stations to BB dam. In contrast, the multivariate prediction models incorporate inputs of both BB and 200 
SK dams to predict two reservoir inflows at lead time t+1. 201 
 202 
Table 3 Input features for univariate and multivariate reservoir inflow prediction models 203 

Prediction 

Model 

Reservoir 

Inflow 

ID 

Prediction 

Scenario 

Model Type and 

Prediction Lead 

Time 

Model No. Input Features 

Past 

Inflow_BB 

Past   

Inflow_SK 

Avg. Past 

Inflow 

Avg. Past 

Inflow 

Rainfall Humidity 

– – – t+1  t t t–3 t–7 t t 

Univariate 

Prediction  

BB S1: XGBoost Daily dBB–01, dBB–02, 

dBB–03 

✓ – ✓ ✓ ✓ ✓ 

 S2: LSTM Daily dBB–01, dBB–02, 

dBB–03, dBB–04, 
dBB–05, dBB–06 

✓ – ✓ ✓ ✓ – 

SK S1: XGBoost Daily dSK–01, dSK–02, 

dSK–03 

– ✓ ✓ ✓ ✓ ✓ 
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Prediction 

Model 

Reservoir 

Inflow 

ID 

Prediction 

Scenario 

Model Type and 

Prediction Lead 

Time 

Model No. Input Features 

Past 
Inflow_BB 

Past   
Inflow_SK 

Avg. Past 
Inflow 

Avg. Past 
Inflow 

Rainfall Humidity 

– – – t+1  t t t–3 t–7 t t 

 S2: LSTM Daily dSK–01, dSK–02, 

dSK–03, dSK–04, 
dSK–05, dSK–06 

– ✓ ✓ ✓ ✓ – 

BB S3: XGBoost Monthly mBB–01, mBB–

02, mBB–03 

✓ – ✓ ✓ ✓ ✓ 

 S4: LSTM Monthly dBB–01, dBB–02, 
dBB–03, dBB–04, 

dBB–05, dBB–06 

✓ – ✓ ✓ ✓ – 

SK S3: XGBoost Monthly mSK–01, mSK–
02, mSK–03 

– ✓ ✓ ✓ ✓ ✓ 

 S4: LSTM Monthly mSK–01, mSK–02, 

mSK–03, mSK–04, 

mSK–05, mSK–06 

– ✓ ✓ ✓ ✓ – 

Multivariate 

Prediction 

BB&SK S5: LSTM Daily dBBSK–01 ✓ ✓ ✓ – ✓ ✓ 

BB&SK S6: LSTM Monthly mBBSK–01 ✓ ✓ ✓ – ✓ ✓ 

Note:  Acronyms–Bhumibol dam–BB|Sirikit dam–SK|Daily Univariate prediction model of BB dam–dBB|Daily univariate prediction model of 204 
SK Dam–dSK|Daily multivariate prediction model of BB&SK dams–dBBSK|Monthly multivariate prediction model of BB&SK dams–205 
mBBSK 206 

 207 
2.2. Prediction algorithms selected 208 
2.2.1. Extreme gradient boosting (XGBoost) 209 

Extreme Gradient Boosting (XGBoost), a powerful machine learning algorithm initiated by Tianqi Chen in 210 
2014 (Chen and Guestrin, 2016), was used to develop the daily and monthly univariate prediction models for reservoir 211 
inflow in CPYRB. XGBoost is a decision–tree–based ensemble machine learning as illustrated its structure in Fig. 2. 212 
Its efficiency, scalability, and flexibility have been widely demonstrated and proven in hydrological prediction 213 
applications (Rajesh et al., 2022). In general, the supervised XGBoost learning primarily involves minimizing 214 
objective function which consists of two main components; (1) loss function and (2) regularization term as expressed 215 
in Eq. (1). This loss function measures the discrepancy between the predicted and observed values in the model training 216 
process as given mean squared error in Eq. (2). The regularization term in Eq. (3) is crucial in preventing model 217 
overfitting and complexity for improved prediction performance.   218 

 219 
 Obj(θ) = L(θ) + Ω(θ)               (1) 

 220 
 

L(θ) = 
1

2
∑ (yi – pi)2 

n

i = 1

 
(2) 

 221 
 

Ω(θ) = γT + 
1

2
λ ∑ Ovalue

2

T

i = 1

 

(3) 

 222 
where, L(θ) is the training loss function term. For robust regression tasks, the common loss functions are 223 

Mean Squared Error (MSE), Mean Absolute Error (MAE), and Huber loss which is the combination of MSE and 224 
MAE. Ω(θ) is regularization term. θ denotes the optimal parameter values that best fits the training inflow data (yi) to 225 
the predicted inflow output (pi). γ is a hyperparameter controlling the strength of the regularization term which 226 
influences the decision to make a further partition on a leaf node of a tree–based model. T is a number of leaf nodes 227 
in the tree and λ is a hyperparameter used to scale the regularization term. A larger number of leaf nodes signifies the 228 
model complexity potentially leading to overfitting. A larger λ indicates the increased penalty to model encouraging 229 
the reduction of model complexity. Ovalue is a measure of the impurity or heterogeneity of the data points within the 230 
leaf node. For tree building process, a prediction for one given data is made by traversing the tree from the root node 231 
to a leaf node. The tree is built from a root node and recursively split into left and right child nodes. This process 232 
continues until a specific stopping criterion is met as graphically shown in Fig.2. Similarity score (Sim) is used to 233 
assess the homogeneity of data within a node to guide for leaf node splitting. The larger value of similarity score 234 
signifies the similar data within a leaf node that further splitting might not be necessary. Similarity score is computed 235 
to indicate a score of each node by using Eq. (4). 236 
 237 
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Sim = 

∑ (yi – pi)2  n  
i = 1

n + λ
 

(4) 

 238 
 Gain value is termed to measure the accuracy improvement resulted from a specific splitting. It helps assess 239 
the optimality of potential splits in a tree structure as expressed in Eq. (5). A higher positive gain value indicates a 240 
better split in improving the model predictive performance. When the gain values are negative, the tree branch is 241 
removed as shown in Fig. 3. 242 
 243 

 Gain value = (Simleft + Simright) – Simroot (5) 

 244 
where, Simleft, Simright, and Simroot denote the similarity score of the left leaf node, right leaf node, and 245 

root node of the branch, respectively. The tree structures are iteratively built for T iterations until the desired number 246 
of models is reached. In each iteration, the output value (Ovalue) for all leaf nodes is computed using Eq. (6). 247 

 248 
 

Ovalue = 
∑ (yi – pi) 

 n
i = 1

n + λ
 

(6) 

 249 
In addition, the precision and speed of convergence of the prediction model is governed by learning rate (ε). 250 

Learning rate determines level of model improvement to handle the prediction error made by previous iterations. A 251 
larger values of learning rate can accelerate the training process leading to faster convergence. However, overfitting 252 
can simply find if not properly fine–tuned. In contrast, the smaller values of learning rate can help reduce overfitting 253 
but speed of convergence is definitely lower. In the final step, XGBoost can make updated prediction (p

i
t) by combining 254 

the initial prediction (p
i
0) with the gradient of the loss function and the regularization term multiplied with learning 255 

rate as expressed in Eq. (7).    256 
 257 

 p
i
t =  p

i
0 + 𝜀[ ∑ L (yi, pi

0 + Ovalue)
n
i = 1 +

1

2
λOvalue

2 ] (7) 

 258 

 
 

Fig. 2 XGBoost tree–based structure 

 259 
2.2.2. Long Short–Term Memory (LSTM) 260 
 Long Short–Term Memory (LSTM) is a well–suited type of deep learning algorithm designed to process 261 
sequential data. It was initially introduced by Hochreiter and Schmidhuber in 1997 (Hochreiter and Schmidhuber, 262 
1997). LSTM is an evolution of Recurrent Neural Networks (RNN) which is a type of Artificial Neural Networks 263 
(ANNs) having memory to process sequential inputs. However, the complications to learn and capture long–term 264 
dependencies due to vanishing and exploding gradient problems become the significant drawback of RNN. To 265 
overcome this, LSTM is specifically developed to learn long–term dependencies and retain previous information over 266 
extended periods. The LSTM model is commonly structured as a chain of units as illustrated in Fig. 3. Each LSTM 267 
unit is composed of a cell state and three gates namely, (1) input gate, (2) forget gate, and output gate. Cell state is 268 
functioned as core component of LSTM to store and carry information through time steps. Input gate regulates new 269 
information from current input to be stored in a cell state. Forget gate decides to discard or keep information from 270 
previous cell state. Output gate determines which part of cell state should be the current prediction output (Khorram 271 
and Jehbez, 2023; Rajesh et al., 2023).  272 
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 In the initial step, forget gate examines the current input at time t (xt), previous hidden state (ht–1) which is 273 
the output at previous time t–1, and long–term memory from previous cell state at time t–1 (Ct–1). It calculates a value 274 
in a range of 0 and 1 for each element in the previous cell state as expressed in Eq. (8). Subsequently, the input gate 275 
calculates two values; input gate at time t (it) and cell state input at time t (Čt) to regulate the new information into the 276 
current cell state as defined in Eq. (9) and Eq. (10). Then, the new cell state at time t (Ct) in Eq. (11) is updated by 277 
combining the new information of previous cell state at time t–1 (Ct–1), forget gate at time t (ft), and input gate at time 278 
t (it, Čt). Eq. (12) is employed to compute the current prediction output at time t (ot). The hidden state (ht) indicating 279 
LSTM output at time t, is finally calculated by multiplying the output gate at time t (ot) with the tanh of the new cell 280 
state at time t (Ct) as shown in Eq. (12) and Eq. (13). By doing this through iteration process, LSTM can handle the 281 
sequential data and make accurate and precise prediction. 282 
 283 

 ft = (Wf * [ht–1, xt] + bf) (8) 

   

 it = (Wi * [ht–1, xt] + bi) (9) 

   

 Čt = tanh(WC * [ht–1, xt] + bC) (10) 

   

 Ct = ft * Ct–1 + it * Čt (11) 

   

 ot = (Wo * [ht–1, xt] + bf) (12) 

   

 ht = ot * tanh(Ct) (13) 

 284 
Where Wf/i/C is corresponding weight matrix, bf/i/C is corresponding bias and  is the sigmoid activation 285 

function.   286 
 287 

 
 

Fig. 3 LSTM chain–like structure and its unit 

 288 
2.3. Model configuration design and prediction modelling 289 

Model configuration design of daily and monthly univariate and multivariate prediction models are presented 290 
in Fig. 4 and Table 4–Table 5. The input features as aforementioned in Section 2.1., designated training–testing dataset 291 
ratios (60:40, 70:30, 80:20), delayed time of moving average inflow (t–3 and t–7), and learning rates (0.001, 0.01, 0.1) 292 
were varied to optimize the model configuration and prediction performance. Implementation of training model for 293 
daily and monthly prediction by XGBoost was controlled by the hyperparameter tunning process such as gamma, 294 
maximum depth of a tree, number of iterations (nrounds), number of threads (nthreads), learning rate, number of fold 295 
(nfolds) and early stopping rounds (early_stopping_rounds) parameters as presented in Table 4. In this study, 296 
maximum depth of a tree was set to 6 in increase deeper tree model complexity. Maximum number of iterations was 297 
specified to 10,000 for model training process. Number of threads determining for parallel computation to speed up 298 
the training process and number of folds specifying for cross–validation was 10 and 2, respectively. The early stopping 299 
rounds were generally used to stop training procedures when the loss on training dataset starts increasing. In this study, 300 
the early stopping round was set every 500 iterations if the performance on RMSE was not substantially improved. 301 
 302 
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Fig. 4 Workflow diagram of this study 

 303 
Table 4 Model configuration design of daily and monthly univariate prediction models using XGBoost 304 
Model No. Input Feature Training:Testing 

Ratio 
Learning 

Rate 
XGBoost Parameter  

Objective Gamma Max. 

Depth 

Evaluation nrounds nthreads nfolds Early 

stopping 

rounds 

Daily and Monthly Prediction of BB Reservoir Inflow 

dBB–01, 

mBB–01  

Past Inflow,  

Avg. Past 

Inflow 

60:40, 70:30, 

80:20 

0.001, 

0.01, 0.1 

regression:

linear 

0 6 RMSE 10,000 10 2 500 

dBB–02, 
mBB–02 

Past Inflow,  
Avg. Past 

Inflow, Rainfall 

60:40, 70:30, 
80:20 

0.001, 
0.01, 0.1 

regression:
linear 

0 6 RMSE 10,000 10 2 500 

dBB–03, 
mBB–03 

Past Inflow,  
Avg. Past 

Inflow, Rainfall, 

Humidity 

60:40, 70:30, 
80:20 

0.001, 
0.01, 0.1 

regression:
linear 

0 6 RMSE 10,000 10 2 500 

Daily and Monthly Prediction of SK Reservoir Inflow 

dSK–01, 

mSK–01 

Past Inflow,  

Avg. Past 

Inflow 

60:40, 70:30, 

80:20 

0.001, 

0.01, 0.1 

regression:

linear 

0 6 RMSE 10,000 10 2 500 

dSK–02, 
mSK–02 

Past Inflow,  
Avg. Past 

Inflow, Rainfall 

60:40, 70:30, 
80:20 

0.001, 
0.01, 0.1 

regression:
linear 

0 6 RMSE 10,000 10 2 500 

dSK–03, 
mSK–03 

Past Inflow,  
Avg. Past 

Inflow, Rainfall, 

Humidity 

60:40, 70:30, 
80:20 

0.001, 
0.01, 0.1 

regression:
linear 

0 6 RMSE 10,000 10 2 500 

 305 
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Similarly, model configuration using LSTM for both univariate and multivariate prediction models was 306 
designed by varying input features and tuning key hyperparameters such as number of layers, number of units per 307 
layer, activation function, optimizer, epoch, and batch size, etc. as summarized in Table 5. In this study, number of 308 
layers was set to 2 and units per layer referring number of neurons in a specific layer of LSTM network was set to 64 309 
or 32. Rectified Linear Unit (ReLU), a famous activation function used in deep neural networks was specified in all 310 
univariate prediction experiments while Sigmoid, a traditional activation function was used for multivariate prediction. 311 
Adam optimizer which is an optimization algorithm, was employed to update weights during training process. MSE 312 
was used as loss function for both univariate and multivariate prediction models. Additionally, number of epochs 313 
involving the passing numbers through the entire training dataset was varied between 50, 100, and 500. Similarly, 314 
batch size incorporating number of samples processed before updating the model’s weights was set to 16, 32, and 64.  315 

 316 
Table 5 Model configuration design of daily and monthly univariate and multivariate prediction models using LSTM 317 
Model No. Input Feature Standardization 

Technique  
LSTM Parameter in Keras  

Steps Number of 
Layers 

Units 
per 

Layer 

Activation Loss 
Function 

Optimizer Epoch Batch Size 

Daily Univariate Prediction Models of BB Dam  

dBB–01 Past Inflow,  
Avg. Past Inflow 

Standard 3 2 64/32 ReLU MSE Adam 50 16 

dBB–02 Past Inflow,  

Avg. Past Inflow 

Standard 7 2 64/32 ReLU MSE Adam 50 16 

dBB–03 Past Inflow,  
Avg. Past Inflow 

Standard 14 2 64/32 ReLU MSE Adam 50 16 

dBB–04 Past Inflow,  

Avg. Past Inflow, 
Rainfall  

Standard 3 2 64/32 ReLU MSE Adam 50 16 

dBB–05 Past Inflow,  

Avg. Past Inflow, 
Rainfall 

Standard 7 2 64/32 ReLU MSE Adam 50 16 

dBB–06 Past Inflow,  

Avg. Past Inflow, 

Rainfall 

Standard 14 2 64/32 ReLU MSE Adam 50 16 

Daily Univariate Prediction Models of SK Dam 

dSK–01 Past Inflow,  

Avg. Past Inflow 

Standard 3 2 64/32 ReLU MSE Adam 50 16 

dSK–02 Past Inflow,  
Avg. Past Inflow 

Standard 7 2 64/32 ReLU MSE Adam 50 16 

dSK–03 Past Inflow,  

Avg. Past Inflow 

Standard 14 2 64/32 ReLU MSE Adam 50 16 

dSK–04 Past Inflow,  
Avg. Past Inflow, 

Rainfall 

Standard 3 2 64/32 ReLU MSE Adam 50 16 

dSK–05 Past Inflow,  

Avg. Past Inflow, 
Rainfall 

Standard 7 2 64/32 ReLU MSE Adam 50 16 

dSK–06 Past Inflow,  

Avg. Past Inflow, 
Rainfall 

Standard 14 2 64/32 ReLU MSE Adam 50 16 

Monthly Univariate Prediction Models of BB Dam 

mBB–01 Past Inflow,  

Avg. Past Inflow 

MinMax 3 2 64/32 ReLU MSE Adam 100 16 

mBB–02 Past Inflow,  

Avg. Past Inflow 

MinMax 3 2 64/32 ReLU MSE Adam 100 32 

mBB–03 Past Inflow,  

Avg. Past Inflow 

MinMax 3 2 64/32 ReLU MSE Adam 100 64 

mBB–04 Past Inflow,  

Avg. Past Inflow, 

Rainfall 

MinMax 3 2 64/32 ReLU MSE Adam 100 16 

mBB–05 Past Inflow,  
Avg. Past Inflow, 

Rainfall 

MinMax 3 2 64/32 ReLU MSE Adam 100 32 

mBB–06 Past Inflow,  
Avg. Past Inflow, 

Rainfall 

MinMax 3 2 64/32 ReLU MSE Adam 100 64 

Monthly Univariate Prediction Models of SK Dam 

mSK–01 Past Inflow,  MinMax 3 2 64/32 ReLU MSE Adam 100 16 
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Model No. Input Feature Standardization 

Technique  

LSTM Parameter in Keras  

Steps Number of 
Layers 

Units 
per 

Layer 

Activation Loss 
Function 

Optimizer Epoch Batch Size 

Avg. Past Inflow 

mSK–02 Past Inflow,  
Avg. Past Inflow 

MinMax 3 2 64/32 ReLU MSE Adam 100 32 

mSK–03 Past Inflow,  

Avg. Past Inflow 

MinMax 3 2 64/32 ReLU MSE Adam 100 64 

mSK–04 Past Inflow,  
Avg. Past Inflow, 

Rainfall 

MinMax 3 2 64/32 ReLU MSE Adam 100 16 

mSK–05 Past Inflow,  
Avg. Past Inflow, 

Rainfall 

MinMax 3 2 64/32 ReLU MSE Adam 100 32 

mSK–06 Past Inflow,  

Avg. Past Inflow, 
Rainfall 

MinMax 3 2 64/32 ReLU MSE Adam 100 64 

Daily and Monthly Multivariate Prediction Models of BB–SK Dam  

dBBSK–

01, 
mBBSK–

01, 

BB Past Inflow, 

SK Past Inflow,  
BB Avg. Past 

Inflow 

SK Avg. Past 
Inflow, BB 

Rainfall, SK 
Rainfall, BB 

Humidity, SK 

Humidity 

MinMax 3 2 64 Sigmoid MSE Adam 500 64 

 318 
2.4. Evaluation of predictive performance  319 

The statistical metrics; Coefficient of Determination (R2), Nash–Sutcliffe Efficiency (NSE), Mean Squared 320 
Error (MSE), Root Mean Squared Error (RMSE), were used to evaluate the perfect match between the predicted and 321 
observation values of reservoir inflows. R2 is statistical measures describing the degree of linear correlation between 322 
two independent variables which ranges from 0 to 1 (Al–Aqeeli et al., 2015). A higher R2 value closer to 1 indicates 323 
better fit of the prediction model to the observation values making stronger predictive power. NSE is the normalized 324 
statistical measure that compares the relative magnitude of the model prediction errors to observed data variance 325 
ranging from –∞ to 1 (Brownlee, 2018). The prediction accuracy can be classified into three main classes subject to 326 
NSE. When NSE is greater than or equal to 0.90, the prediction accuracy is classified as “Class A–Excellent”, NSE 327 
ranges between 0.70 and 0.90, it is considered as “Class B–Good), and NSE lies between 0.50 and 0.70, it is classified 328 
as “Class C–Moderate” (China National Standardization Management Committee, 2008; Zhang et al., 2021). MSE, 329 
and RMSE metrics quantify the absolute and squared differences between the predicted and actual values, respectively. 330 
A lower value of MSE, and RMSE indicates better model performance. A prediction model is considered as precise 331 
and robust prediction when R2 and NSE values are relatively approach to 1, MSE and RMSE values are small. 332 

In the last step, the predictability to predict the low, average, and high daily and monthly reservoir inflows of 333 
BB and SK dams was assessed to leverage the application of ML–and DL–based prediction model for real–time 334 
reservoir operation and planning during the critical periods. The lowest, average, and highest reservoir inflows of the 335 
tested results were compared to the observed reservoir inflows. Finally, percentage error in prediction was computed.  336 
 337 
3. Results and Discussion 338 
3.1. Predicted one–day and one–month ahead of BB and SK reservoir inflows 339 
 In this study, R2 and NSE were prioritized over MSE and RMSE to identify the optimal predictive model 340 
performances on the training and testing datasets. The quantitative and qualitative comparisons between observed and 341 
predicted inflows of the optimal daily and monthly univariate and multivariate prediction models for six scenarios are 342 
presented in Table 6 and illustrated in Fig. 5 and Fig. 6. The qualitative results from 2000 to 2020 demonstrated that 343 
daily and monthly predicted inflows for both BB and SK dams closely matched the observed inflows for both training 344 
and testing datasets when univariate and multivariate prediction models were performed. Even the monthly inflow 345 
pattern obtained from univariate and multivariate prediction models are likely similar to observed values, however, 346 
monthly prediction exhibited larger deviation from the observed values compared to daily prediction particularly the 347 
lowest and highest reservoir inflows. 348 
 349 
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Table 6 The optimal predictive performances of daily and monthly reservoir inflow prediction 350 
Univariate Prediction Model Multivariate Prediction Model 

Scenario 

Design 

Model 

Building 

Statistical 

Metrics 

BB SK Scenario 

Design 

Model 

Building 

Statistical 

Metrics 

BB SK 

S1: Daily 

model using 
XGBoost 

algorithm 

 
 

T
ra

in
in

g
 R2 0.922 0.884 S5: Daily 

model using 
LSTM 

algorithm 

 

T
ra

in
in

g
  R2 0.894 0.842 

NSE 0.909 0.871 NSE 0.890 0.841 

MSE 62.919 70.000 MSE 75.698 97.183 

RMSE 7.932 8.367 RMSE 8.700 9.858 

T
es

ti
n
g
 R2 0.885 0.836 

T
es

ti
n
g
  R2 0.873 0.780 

NSE 0.862 0.816 NSE 0.857 0.767 

MSE 31.990 81.308 MSE 36.039 92.455 

RMSE 5.656 9.017 RMSE 6.003 9.615 

S2: Daily 
model using 

LSTM 

algorithm 
 

 

T
ra

in
in

g
 R2 0.925 0.878 S6: Monthly 

model using 

LSTM 

algorithm 
 

T
ra

in
in

g
  R2 0.542 0.518 

NSE 0.924 0.878 NSE 0.538 0.512 

MSE 46.898 61.577 MSE 183,353 192,778 

RMSE 6.848 7.847 RMSE 428 439 

T
es

ti
n
g
 R2 0.827 0.851 

T
es

ti
n
g
  R2 0.526 0.487 

NSE 0.818 0.851 NSE 0.397 0.459 

MSE 60.770 67.050 MSE 103,050 130,290 

RMSE 7.800 8.190 RMSE 321 361 

S3: Monthly 

model using 

XGBoost 
algorithm 

 

T
ra

in
in

g
 R2 0.452 0.490 

NSE 0.411 0.473 

MSE 217,267 196,562 

RMSE 466 443 

T
es

ti
n
g
 R2 0.679 0.520 

NSE 0.675 0.513 

MSE 65,836 128,363 

RMSE 257 358 

S4: Monthly 
model using 

LSTM 

algorithm 
 

 

T
ra

in
in

g
 R2 0.519 0.678 

NSE 0.513 0.673 

MSE 186,719 104,617 

RMSE 432 323 

T
es

ti
n
g
 R2 0.388 0.434 

NSE 0.353 0.407 

MSE 122,597 158,222 

RMSE 350 398 

 351 
 352 
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Fig. 5 Optimal predictive performances of one–day and one–month ahead univariate prediction models of BB  

              and SK reservoir inflows 

 

 
 

Fig. 6 Optimal predictive performances of one–day and one–month ahead multivariate prediction models of  

           BB and SK reservoir inflows 
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 Fig. 7 and Fig. 8 quantitatively illustrate the performance metrics of all scenarios of 1–day ahead and 1–353 
month ahead reservoir inflow predictions for both univariate and multivariate predictions. For the daily univariate 354 
prediction using XGBoost on the training dataset, Scenario 1 (S1) achieved R2 and NSE values of 0.922 and 0.909 for 355 
BB dam and 0.884 and 0.871 for SK dam, respectively. However, R2 and NSE values were slightly lower on the testing 356 
dataset with the values of 0.885 and 0.862 for BB dam and 0.836 and 0.816 for SK dam, respectively. MSE and RMSE 357 
values for BB dam were likely lower by –49.16% and –28.68% when 20% of dataset was accordingly tested. In 358 
contrast, these two values were slightly increased on the testing dataset for SK dam by +16.15% and +7.77%. It is 359 
revealed that the daily univariate prediction using LSTM (Scenario 2, S2) on the training dataset mostly demonstrated 360 
higher R2 and NSE values of 0.925 and 0.924 for BB dam and 0.878 and 0.878 for SK dam, respectively indicating 361 
slightly higher predictive performances than XGBoost. Similar to XGBoost, R2 and NSE values slightly decreased on 362 
the testing dataset achieving 0.827 and 818 for BB dam. For SK dam, these two statistical metrics considerably 363 
increased to 0.851 and 0.851 for SK dam, respectively. However, MSE and RMSE values performed by LSTM were 364 
+29.58% and +13.90% for BB dam and +8.89% and +4.37% for SK dam which were lower than XGBoost, 365 
respectively. For the Scenario 5 (S5) when daily multivariate prediction model was executed using LSTM to predict 366 
reservoir inflow for both BB and SK dams, R2 and NSE values of training dataset were 0.894 and 0.890 for BB dam 367 
and 0.842 and 0.841 for SK dam, respectively. These values were slightly lower than those trained by daily univariate 368 
prediction model using both XGBoost and LSTM. On the testing dataset with daily multivariate prediction model, R2 369 
and NSE values for BB dam were slightly higher than those obtained by daily univariate prediction model for both 370 
XGBoost and LSTM, reaching 0.873 and 0.857, respectively. However, these values decreased considerably to 0.780 371 
and 0.767, respectively for SK dam. In terms of MSE and RMSE, there was an insubstantial difference between 372 
univariate and multivariate prediction models.  373 
 The predictive results exhibited that the predictability of daily univariate prediction models is slightly 374 
superior than multivariate models, as they were developed independently to extract the specific input features of each 375 
dam. However, the daily multivariate prediction model could provide two predictive outputs relatively closer to daily 376 
univariate prediction model which is beneficial for real–time operational applications in the river basin. Due to the 377 
high complexity of all input features and larger dataset used in the daily multivariate prediction model, however, DL–378 
based prediction model with LSTM algorithm could perform well in learning and capturing the input–output relation 379 
and features, resulting in providing predictive performance closer to those achieved by the daily univariate prediction 380 
model. Training larger datasets with LSTM for both daily univariate and multivariate prediction models gave the better 381 
predictive performances than XGBoost. However, when smaller testing datasets were tested by LSTM, statistical 382 
performance was slightly decreased compared to training dataset as obviously presented in Scenario 2 and Scenario 383 
5. It is also revealed that daily reservoir inflow predictions for BB dam demonstrated higher performance compared 384 
to SK dam, for both daily univariate and multivariate models. In comparison between XGBoost and LSTM for daily 385 
reservoir inflow prediction on tested datasets, individual XGBoost model outperformed LSTM models across both 386 
univariate and multivariate predictions for BB dam. For SK dam, the individual LSTM prediction model could predict 387 
better results than the individual XGBoost model and the LSTM multivariate prediction model.  388 
 389 
 390 
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Fig. 7 Radar chart illustrating the performance metrics of all scenarios of 1–day ahead reservoir inflow prediction 

           (Legend: Red–BB, Blue–SK) 

 391 

 For ML–based monthly univariate prediction using XGBoost, Scenario 3 (S3) achieved R2 and NSE values 392 
of 0.452 and 0.411 for BB dam and 0.490 and 0.473 for SK dam, respectively on the training dataset. In contrast to 393 
daily prediction models with XGBoost, R2 and NSE values were slightly higher on the testing dataset with the values 394 
of 0.679 and 0.675 for BB dam and 0.520 and 0.513 for SK dam, respectively. However, MSE and RMSE values were 395 
significantly decreased by –69.70% and –44.85% for BB dam and –34.70% and –19.19% for SK dam when testing 396 
dataset was accordingly employed. DL–based monthly univariate prediction using LSTM in Scenario 4 (S4) exhibited 397 
higher statistical performances in terms of R2 and NSE values of 0.519 and 0.513 for BB dam and 0.678 and 0.673 for 398 
SK dam, respectively. However, these performance metrics considerably decreased to 0.388 and 0.353 for BB dam 399 
and 0.434 and 0.407 for SK dam when the testing datasets were investigated. The MSE and RMSE values performed 400 
by monthly prediction model with LSTM were significantly decreased by –34.34% and –18.98% for BB dam. In 401 
contrast, it showed the substantial increase in MSE and RMSE values by +53.24% and +23.23% for SK dam when 402 
testing dataset was accordingly employed. Compared to the individual monthly prediction by LSTM on testing 403 
datasets, LSTM–based monthly multivariate prediction in Scenario 6 (S6) could predict better results achieving R2 404 
and NSE values of 0.526 and 0.397 for BB dam and 0.487 and 0.459 for SK dam, respectively. However, it showed 405 
lower R2 and NSE values compared to those obtained by individual monthly prediction using XGBoost. 406 
 In comparison between daily and monthly prediction models, the results demonstrated that ML– and DL–407 
based prediction models achieved higher statistical metrics in predicting daily reservoir inflow compared to monthly 408 
predictions. This is because prediction modeling with ML and DL algorithms can handle and leverage larger datasets 409 
available in daily prediction model, enabling them to learn and capture patterns more effectively. Similarly, training 410 
larger datasets with LSTM for both daily and monthly univariate and multivariate prediction models mostly 411 
outperformed XGBoost. However, slight decrease in statistical metrics is found when dealing with the smaller testing 412 
datasets. To improve the robustness and precision of LSTM–based forecasts for both univariate and multivariate 413 
predictions, it is recommended to increase the testing dataset size during model validation. Importantly, cross–414 
validation should be conducted to assess model overfitting and ensure its generalizability. 415 
 416 
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Fig. 8 Radar chart illustrating the performance metrics of all scenarios of 1–month ahead reservoir inflow  

                 prediction (Legend: Red–BB, Blue–SK) 

 417 
3.2. Optimal model configuration for univariate and multivariate reservoir inflow prediction models 418 
 Based on the optimization criteria of maximizing R2 and NSE values as optimal prediction model, 419 
accordingly the optimal input features, training and testing dataset ratio, and optimal hyperparameter of prediction 420 
models were explored. The results of optimal model configuration are summarized in Table 7.  421 
 422 
Table 7 Optimal model configuration for reservoir inflow prediction models 423 

Input Features & 

Training:Testing Ratio 

& Hyperparameter 

S1: Daily 

Univariate 

Model_XGBoost 

S2: Daily 

Univariate 

Model_LSTM  

S3: Monthly 

Univariate 

Model_XGBoost 

S4: Monthly 

Univariate 

Model_LSTM 

S5: Daily 

Multivariate 

Model_LSTM 

S6: Monthly 

multivariate 

Model_LSTM 

BB SK BB SK BB SK BB SK BB–SK BB–SK 

Past Inflow at Time t ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Avg. Past Inflow at t–3 ✓ ✓ – – ✓ – ✓ ✓ ✓ ✓ 

Avg. Past Inflow at t–7 – – ✓ ✓ – ✓ – – – – 

Rainfall at Time t – – – – ✓ ✓ – – ✓ ✓ 

Humidity at Time t – – – – ✓ – – – ✓ ✓ 

Training:Testing Ratio 80:20 80:20 70:30 70:30 80:20 70:30 60:40 60:40 70:30 60:40 

XGBoost: Learning Rate 0.1 0.1 – – 0.001 0.001 – – – – 

XGBoost: Nrounds 10,000 10,000 – – 10,000 10,000 – – – – 

XGBoost: Max Depth 6 6 – – 6 6 – – – – 

LSTM: Learning Rate – – 0.1 0.1 – – 0.1 0.1 0.1 0.1 

LSTM: No. of Layers – – 2 2 – – 2 2 2 2 

LSTM: No. of Units – – 64 64 – – 64 64 64 64 

 424 
 It is emphasized that information on past reservoir inflow including the previous time step and its moving 425 
average was observed to be a significant predictor to predict future inflow for all prediction scenarios. For daily and 426 
monthly multivariate predictions by LSTM, rainfall and humidity data was incorporated as input features which 427 
demonstrated a substantial impact on predictive performances. Since XGBoost can work effectively with smaller 428 
datasets compared to LSTM for both univariate and multivariate prediction models, it is crucial to select key predictors 429 
that are highly correlated with reservoir inflow for the model development. Conversely, LSTM is specifically designed 430 
for larger sequential datasets, a broad range of potential input features can be included in the prediction models. 431 
Moreover, altering optimal training and testing ratios by increasing the testing datasets into 70:30 and 60:40 can 432 
significantly enhance the predictive performances of optimal LSTM–based prediction models. However, handling the 433 
larger datasets require more computational resource to capture relevant data features making LSTM–based prediction 434 
models computationally expensive than XGBoost. Furthermore, multivariate prediction models generally consume 435 
more computational resources than univariate prediction models.   436 
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 It is revealed from the model configuration experiment that learning rate of 0.1 and 0.001 significantly 437 
impacts stability and convergence of both XGBoost and LSTM algorithms during model training. The number of 438 
boosting rounds (nrounds) of 10,000 in all scenarios of XGBoost–based prediction models can improve the statistical 439 
performance metrics substantially. However, overfitting risk due to increased number of boosting rounds should be 440 
carefully investigated through model validation. In this study, to control complexity of individual tree and capture 441 
complex data pattern from deeper tress, maximum depth was set to 6 for all scenarios of univariate prediction. For the 442 
LSTM–based prediction models, learning rate of 0.1 of both univariate and multivariate prediction models is a 443 
significant hyperparameter in achieving model stability and convergence. Number of layers was set to 2 across all 444 
prediction scenarios to identify model complexity. Furthermore, the optimal number of LSTM units was observed to 445 
be 64 across all scenarios exhibiting increased predictive performances. 446 
  447 
3.3. Evaluation of Percentage Error of Low, Average and High Reservoir Inflow Prediction 448 

The percentage error of low, average and high reservoir inflow prediction, was computed to diagnose the 449 
predictability of ML– and DL–based prediction models as summarized the results in Table 8. It is revealed that the 450 
daily minimum and average reservoir inflows performed by XGBoost univariate model (S1) on the training and testing 451 
datasets were very close to the observed values. On the training datasets, a small discrepancy of daily minimum and 452 
average reservoir inflows was +0.17 MCM and –0.81 MCM (–4.62% error), respectively for BB dam and +3.03 MCM 453 
and –0.62 MCM or –3.58%, respectively for SK dam. Similarly, it showed small discrepancy of daily minimum and 454 
average reservoir inflows on the testing datasets was +0.17 MCM and +0.03 MCM (+0.27% error), respectively for 455 
BB dam and +3.03 MCM and –0.34 MCM or –2.38%, respectively for SK dam. Importantly, this analysis exhibited 456 
a consistent overprediction of minimum reservoir inflows for these two dams on both training and testing datasets. In 457 
contrast, larger percentage error in underprediction of maximum reservoir inflows on both training and testing datasets 458 
were observed ranging –36.73% and –6.93%, respectively for BB dam and –33.77% and –46.78%, respectively for 459 
SK dam. While, the small percentage error of average reservoir inflows predicted by XGBoost univariate model varied 460 
positively and negatively relative to observed values indicating both under–and overprediction.   461 

Similar to XGBoost, the predictive results performed using LSTM (S2) for daily univariate prediction showed 462 
the small discrepancy in minimum and average reservoir inflows of BB and SK dams. However, bigger discrepancy 463 
was observed in maximum inflow prediction for these two dams. On the training datasets, discrepancy error in 464 
minimum, average, and maximum reservoir inflows were +0.27 MCM, +0.26 MCM (+1.74% error), and –9.87 MCM 465 
(–3.17% error), respectively, for BB dam, and +1.62 MCM, –0.05 MCM (–0.32% error), and –11.71 MCM (–5.46%), 466 
respectively, for SK dam. On testing datasets, LSTM model exhibited small discrepancy error in minimum, average, 467 
and maximum reservoir inflows by +0.27 MCM, +0.65 MCM (+6.00% error), and +18.05 MCM (+9.63% error), 468 
respectively, for BB dam, and +1.14 MCM, +0.04 MCM (+0.30% error), and –11.14 MCM (–5.09%), respectively, 469 
for SK dam.  470 

For the daily multivariate prediction model using LSTM (S5), the discrepancy of minimum, average, and 471 
maximum reservoir inflows of two dams were definitely close to those obtained from univariate prediction models 472 
using two algorithms; XGBoost and LSTM. The daily minimum reservoir inflows performed by multivariate 473 
prediction model for BB and SK dams were +0.20 MCM and +2.65 MCM, respectively on training datasets, and +0.21 474 
MCM and +2.65 MCM, respectively on testing datasets. These predictive results were slightly overpredicted 475 
compared to the minimum observed values. In addition, the daily average inflows for BB and SK dams on the training 476 
datasets, were slightly underpredicted by –2.74% and –2.50%, respectively. On the testing datasets, overprediction 477 
was observed, with values of +4.37% and +6.48%, respectively. Similar to the univariate models, multivariate 478 
prediction models consistently underpredicted maximum reservoir inflows for both BB and SK dams, as obviously 479 
found in both training and testing datasets.  480 

All in all, the LSTM univariate model (S2) exhibited the smallest percentage errors in predicting minimum, 481 
average, and maximum reservoir inflows for daily predictions compared to the XGBoost model (S1) and multivariate 482 
prediction using LSTM (S5). Among all ML– and DL–based prediction models (S1, S2, and S5) for daily prediction, 483 
underprediction of low reservoir inflows and overprediction of high reservoir inflows by both univariate and 484 
multivariate prediction models were consistently emerged. However, LSTM–based individual prediction model is 485 
recommended for high inflow prediction. 486 
 487 
 488 
 489 
 490 
 491 
 492 
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Table 8 Percentage error of low, average and high reservoir inflow prediction 493 
Model 
Type 

Optimal Prediction Model Min. Reservoir Inflow 
(MCM) 

Avg. Reservoir Inflow 
(MCM) 

Max. Reservoir Inflow 
(MCM) 

 Algorithm Training: 

Testing 

Learning 

Rate 

Dam Dataset Obs. Pred.  (%) Obs. Pred.  (%) Obs. Pred.  (%) 

S1: Daily 
Univariate 

Prediction 

XGBoost 80:20 0.1 BB Training 0.00 0.17 +0.17 
 

17.52 16.71 –0.81 
(–4.62) 

311.46 197.05 –114.41  
(–36.73) 

   BB Testing 0.00 0.17 +0.17 

 

10.99 11.02 +0.03 

(+0.27) 

156.57 145.71 –10.86 

(–6.94) 

XGBoost 80:20 0.1 SK Training 0.00 3.03 +3.03  17.32 16.70 –0.62 
(–3.58) 

221.87 146.95 –74.92 
(–33.77) 

   SK Testing 0.00 3.03 +3.03  14.26 13.92 –0.34 

(–2.38) 

218.70 116.39 –102.31 

(–46.78) 

S2: Daily 
Univariate 

Prediction 

LSTM 70:30 0.1 BB Training 0.00 0.27 +0.27 14.90 15.16 +0.26 
(+1.74) 

311.46 301.59 –9.87  
(–3.17) 

   BB Testing 0.00 0.27 +0.27 10.83 11.48 +0.65 

(+6.00) 

187.34 205.39 +18.05 

(+9.63) 

LSTM 70:30 0.1 SK Training 0.00 1.62 +1.62 15.81 15.76 –0.05  

(–0.32) 

214.42 202.71 –11.71  

(–5.46) 

   SK Testing 0.00 1.14 +1.14 13.25 13.29 +0.04 

(+0.30) 

218.70 207.56 –11.14  

(–5.09) 

S3: 
Monthly 

Univariate 

Prediction 

XGBoost 80:20 0.001 BB Training 0.00 8.05 +8.05 476.49 360.10 –116.39 
(–24.43) 

2,990.21 1,811.99 –1,178.22 
(–39.40) 

   BB Testing 12.99 10.87 –2.12     

(–16.32) 

370.31 359.75 –10.56 

(–2.85) 

2,373.51 1,740.76 –632.75 

(–26.66) 

 70:30 0.001 SK Training 61.48 78.04 +16.56 

(+26.94) 

543.94 479.97 –63.97 

(–11.76) 

3,095.97 2,076.67 –1,019.30 

(–32.92) 

   SK Testing 40.30 83.60 +43.30 

(+107.44) 

429.62 437.75 +8.123 

(+1.89) 

2,026.29 1,432.32 –593.97 

(–29.31) 

S4: 

Monthly 

Univariate 
Prediction 

LSTM 70:30 0.1 BB Training 0.00 56.53 +56.53 460.61 479.25 +18.64 

(+4.05) 

2,877.23 2,373.81 –503.42  

(–17.50) 

   BB Testing 9.03 116.48 +107.45 

(+1,190) 

336.64 410.65 +74.01 

(+21.98) 

1,944.38 1,469.24 –475.14  

(–24.44) 

 70:30 0.1 SK Training 46.50 110.20 +63.70 

(+136.99) 

486.21 495.34 +9.14 

(+1.88) 

3,095.97 2,477.07 –618.90  

(–19.99) 

   SK Testing 40.30 112.55 +72.25 

(+179.28) 

410.14 460.03 +49.89 

(+12.17) 

2,026.29 1,845.41 –180.88  

(–8.93) 

S5: Daily 

Multivariate 

Prediction 

LSTM 60:40 0.1 BB Training 0.00 –0.20 –0.20 17.52 17.04 –0.48 

(–2.74) 

311.46 161.51 –149.95 

(–48.14) 

   BB Testing 0.00 –0.21 –0.21 10.99 11.47 +0.48 

(+4.37) 

156.57 151.09 –5.48 

(–3.50) 

 60:40 0.1 SK Training 0.00 2.65 +2.65 18.38 17.92 –0.46  

(–2.50) 

221.87 121.05 –100.82 

(–45.44) 

   SK Testing 0.00 2.65 +2.65 14.20 15.12 +0.92 

(+6.48) 

218.70 118.95 –99.75 

(–45.61) 

S6: Monthly 

Multivariate 

Prediction 

LSTM 70:30 0.1 BB Training 0.00 17.92 +17.92 510.59 551.76 +41.17 

(+8.06) 

2,990.21 1,984.74 –1,005.47 

(–33.63) 

   BB Testing 1.57 16.09 +14.52 

(+924.84) 

323.19 455.97 +132.78 

(+41.08) 

2,373.51 1,481.92 –891.59 

(–37.56) 

 60:40 0.1 SK Training 61.48 38.49 –22.99   

(–37.39) 

563.63 551.53 –12.097  

(–2.15) 

3,095.97 2,258.06 –837.91  

(–27.06) 

   SK Testing 40.30 54.61 +14.309 
(+35.51) 

428.26 485.17 +56.91 
(+13.29) 

2,026.29 1,688.66 –337.631  
(–16.66) 

 494 
In view of the crucial role of accurate long–term reservoir inflow predictions in effective reservoir 495 

management planning, this study focuses on developing robust monthly inflow prediction models. Even both 496 
monthly univariate and multivariate prediction models efficiently learned and captured the inflow patterns, exhibiting 497 
similarities to observed values, monthly prediction models (S3, S4, and S6) demonstrated larger deviations from 498 
observed values with higher percentage errors compared to daily predictions  (S1, S2, and S5). On the training 499 
datasets of S3, a bigger discrepancy of monthly minimum reservoir inflows was +8.05 MCM and +16.56 MCM for 500 
BB and SK dams, respectively. While, the monthly average and maximum reservoir inflows were –24.43% and         501 
–39.40%, respectively for BB dam and –11.76% and –39.92%, respectively for SK dam. Base on the testing datasets, 502 
the percentage errors particularly in monthly minimum and maximum inflows were found to be underpredicted by   503 
–16.32% for BB dam and overpredicted by +107.44% for SK dam. The maximum reservoir inflows of both BB and 504 
SK dams were underpredicted with the errors of –26.66% and –29.31%, respectively. Analysis of monthly minimum 505 
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and average inflows for both training and testing datasets of S4 and S6 revealed overprediction primarily for BB and 506 
SK dams. Conversely, monthly maximum reservoir inflows were consistently underpredicted, exhibiting larger 507 
percentage errors. 508 
 509 
4. Conclusion 510 

This study demonstrated the ability of ML–and DL–based univariate and multivariate prediction models to 511 
predict daily and monthly reservoir inflows of BB and SK dams. Due to a wide range of successful applications of 512 
ML and DL algorithms for hydrological prediction, XGBoost, a tree–based ensemble method, and LSTM, a deep 513 
neural network, were selected for this study. To support real–time reservoir operation for the BB and SK dams, two 514 
short–term prediction scenarios (S1 and S2) of daily univariate models and one scenario (S5) of daily multivariate 515 
models were developed. In addition, two long–term prediction scenarios (S3 and S4) of monthly univariate models 516 
and one scenario (S6) of monthly multivariate models were developed to support reservoir management planning. For 517 
univariate prediction, the inflows of the BB and SK dams were predicted separately using two individual models. In 518 
contrast, for multivariate prediction, a single model was developed to simultaneously predict the inflows of both the 519 
BB and SK dams facilitating the integrated decision–making processes in the river basin. The results of all prediction 520 
scenarios demonstrated that ML– and DL–based prediction models achieved higher statistical metrics evaluated in 521 
terms of R2, NSE, MSE, and RMSE in predicting daily reservoir inflow compared to monthly predictions. This is 522 
because prediction modeling with ML and DL algorithms can handle and leverage larger datasets available in daily 523 
prediction model, enabling them to learn and capture patterns more effectively. Based on a number of model 524 
configuration experiments, individual XGBoost models mostly outperformed LSTM when tested on the datasets for 525 
both daily and monthly univariate predictions. LSTM models consistently outperformed XGBoost when mostly 526 
trained on larger datasets for both daily and monthly univariate and multivariate predictions. However, a slight 527 
decrease in statistical metrics was apparently observed with smaller testing datasets. To enhance the robustness and 528 
precision of LSTM–based forecasts, it is recommended to increase the testing dataset size during model validation 529 
and employ cross-validation techniques to check for model overfitting. For input feature selection, the information on 530 
past reservoir inflow including the previous time step and its moving average was considered as a significant predictor 531 
to predict future inflow for all prediction scenarios. As LSTM can handle large datasets effectively, consequently, 532 
rainfall and humidity data were also incorporated as additional input features indicating a substantial impact on 533 
improved predictive performance. Ability to predict low, average, and high reservoir inflow by ML– and DL–based 534 
prediction models were also assessed. Overall, LSTM–based univariate model distinctively exhibited the smallest 535 
percentage errors in predicting minimum, average, and maximum reservoir inflows for daily and monthly predictions 536 
compared to the XGBoost model and multivariate prediction using LSTM. Consequently, LSTM–based individual 537 
daily and monthly prediction models are recommended for predicting low and high values of reservoir inflow during 538 
critical events. In addition, monthly prediction models demonstrated larger discrepancy from observed values with 539 
higher percentage errors compared to daily predictions. Among all ML– and DL–based prediction models for daily 540 
and monthly predictions, underprediction of low reservoir inflows and overprediction of high reservoir inflows by 541 
both univariate and multivariate prediction models were consistently existed. Therefore, extracting specific and 542 
informative insights from the results of each prediction model and forecasting horizon can significantly enhance 543 
decision–making support for both real–time reservoir operation and long–term reservoir management planning. 544 
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Review statement 578 
 This study demonstrated the predictability of Machine Learning (ML)– and Deep Learning (DL)–based 579 
univariate and multivariate predictions of reservoir inflows of Bhumibol (BB) and Sirikit (SK), two major dams in the 580 
Chao Phraya River Basin. XGBoost, tree–based ensemble–, and LSTM, deep neural network–based algorithms were 581 
selected for development of daily and monthly prediction models. Input features selection and configuration design 582 
of two different types of daily and monthly reservoir inflow prediction models; (1) univariate prediction with XGBoost 583 
and LSTM algorithms and (2) multivariate prediction with LSTM algorithm, were definitely highlighted. In the last 584 
step, predictability of predicting low and high reservoir inflow values of these models were accordingly explored to 585 
assess their statistical performances. 586 
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