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19 Abstract

20  This study demonstrated the predictability of Machine Learning (ML)—and Deep Learning (DL)-based univariate and
21 multivariate predictions of reservoir inflows of Bhumibol (BB) and Sirikit (SK), two major dams in the Chao Phraya
22 River Basin. XGBoost, tree—based ensemble—, and LSTM, deep neural network—based algorithms were selected for
23 development of daily and monthly prediction models. For univariate prediction, the inflows of the BB and SK dams
24 were predicted separately using two individual models. In contrast, for multivariate prediction, a single model was
25 developed to simultaneously predict the inflows of both the BB and SK dams facilitating the integrated decision—
26  making processes. Across all prediction scenarios, ML— and DL-based models demonstrated superior performances
27 in predicting daily reservoir inflows for BB and SK dams compared to monthly predictions, achieving NSE values of
28 0.86 and 0.77, respectively. Since modeling with LSTM algorithm can effectively handle larger datasets, this enables
29 single multivariate prediction model to predict closer results to those individual univariate models performed by
30 XGBoost and LSTM for BB and SK prediction. XGBoost models mostly outperformed LSTM when tested on the
31 datasets for both daily and monthly univariate predictions. Among all prediction scenarios, underprediction of low
32 reservoir inflows and overprediction of high reservoir inflows by both univariate and multivariate models were
33 consistently existed. Therefore, extracting specific and informative insights from the results of each model type,
34 forecasting horizon, and algorithms used can significantly enhance decision—making support for both real-time
35 reservoir operation and long—term reservoir management planning.

37 Keywords: Machine Learning (ML), Deep Learning (DL), Artificial Intelligence (Al), Reservoir Inflow Prediction,
38  Chao Phraya River Basin

39
40 1. Introduction
41 The increased climate variability has intensified the water—related challenges globally making the water

42 resources management more complicated under the changing circumstances (Ngamsanroaj and Tamee, 2019).
43 Consequently, risks of water stress and scarcity exacerbated by reservoir operation and management have substantially
44 increased. A key factor contributing to this is uncertain water supply in the reservoir system. Reservoir inflow is
45 commonly considered as the principal source of water supply in reservoirs. It is significantly influenced by the climate
46 variability and hydrologic phenomena. Accurate and precise reservoir inflow prediction plays a crucial role for
47 effective reservoir planning and management (Suprayogi et al., 2020). During critical climate events, future reservoir
48 inflow forecast informs decision making for instant operational responses to natural disasters like floods and drought.
49 During normal climate conditions, predictive reservoir data is used for establishment of guideline trajectory for proper
50 reservoir operation. Predicting the precise reservoir inflow is inherently stochastic due to uncertainty of hydrological
51 inputs and strong non-linearity of the system (Soncin et al., 2024). For decades, numerous research studies have been
52 dedicated to reservoir inflow predictions to achieve the desired purposes for both reservoir management planning and
53  real-time operation.

54 A wide range of prediction techniques including physically process—based—, conventional stochastic—based—
55 and modern data—driven approaches like Machine Learning (ML) and hybrid models have been widely employed to
56 enhance the model predictability. It is revealed that the process—based hydrological models usually rely on a various
57 number of assumptions and require many physical parameters to resemble the hydrological nature of environment
58 (Firat and Giingdr, 2008; Luo et al., 2020). In addition, the conventional stochastic—based techniques such as ARMA,
59 ARIMA for time series prediction provided good results for only linear data. However, it is not appropriate for non—
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60 linearity phenomenon influenced by climate, natural geography, and human activities (Valipour et al., 2013).
61 Prediction time horizon selected has been generally ranged from short—term (hourly, daily, weekly) to long—term
62 predictions (monthly, seasonal, yearly). Univariate prediction model is generally used to predict future values of single
63 variable using the historical data. While, multivariate prediction model involves predicting the future values of
64  multiple interrelated variables. However, short—term univariate prediction predicting future values of single reservoir
65 inflow has broadly been found particularly for real-time operation and short—term planning. Predicting multiple
66 reservoir inflows using multivariate prediction model by taking the interdependencies of influencing factors of
67 multiple reservoirs has rarely studied and limited.
68 The advancement of Artificial Intelligence (Al) and Machine Learning (ML) approach has revolutionized
69 transformative impacts across the traditional prediction methods and their disciplines. A great deal of data—driven ML
70 approach has enhanced the predictability for hydrological prediction (Zhang et al., 2018) such as rainfall (Chen et al.,
71 2017; Ridwan et al., 2021), streamflow (Latif et al., 2023; Kisi et al., 2024), reservoir inflow (Zhang et al., 2021;
72 Hameed et al., 2022; Latif et al., 2024), reservoir water level (Sapitang et al., 2020; Aquil and Ishak, 2023), river water
73 level (Ahmed et al., 2023; Zakaria et al., 2023), groundwater level (Osman et al., 2020), sediment transport
74 (Almubaidin et al., 2023), water quality prediction (Haghiabi et al., 2018; Shams et al., 2024) and snow water
75  equivalent (Khosravi et al., 2023).
76 Since 1990s, a well-known Artificial Neural Networks (ANNs) inspired by human brain structure and its
77 function has intensively been used for hydrological prediction. It was commonly applied for both univariate and
78 multivariate predictions. For example, univariate time series prediction of reservoir inflow was developed using ANNs
79 to map the non-linear relationships between input and output variables (Kawade et al., 2019). Many studies also
80 revealed that ANNS significantly outperformed than the statistically—stochastic—based prediction models like AR, MA,
81 and ARIMA for the reservoir inflow prediction (Pradeepakumari and Srinivasu, 2019). Additionally, ANNs can be
82 applicable for both parametric and non—parameter data (Pini et al., 2020).
83 The rapid evolution of ML algorithms has been driven by the advancement and succession of computer
84 science and technologies to increase the computational capability and handle large dataset. Consequently, the
85 improved ML algorithms have been progressively developed incorporating supervised learning, unsupervised
86 learning, and reinforcement learning for various tasks. Several conventional ML algorithms have commonly been
87 employed for reservoir inflow prediction such as Support Vector Machines (SVM), K—Nearest Neighbors (KNN),
88 Random Forest (RF), Multi-layer Perceptron (MLP), Gradient Boosting (GB), Extreme Gradient Boosting
89 (XGBoost), and Radial Bias Function (RBF). A comparative study for daily reservoir inflow prediction was conducted
90 using four different approaches; (1) Multiple Linear Regression (MLR), (2) Random Forest (RF), (3) Extreme
91 Learning Machine (ELM), and (4) Regularized Extreme Learning Machine (RELM). The results showed the
92 superiority of RELM approach that yielded higher prediction accuracy with R = 0.955 (Hameed et al., 2022).
93 XGBoost, a relatively recent algorithm, has proven its effectiveness in reservoir inflow prediction. To forecast multi—
94 step ahead daily and monthly reservoir inflows, XGBoost was ranked as the best prediction model compared to MLP,
95 Support Vector Regression (SVR), Adaptive Neuro—Fuzzy Inference System (ANFIS) (Ibrahim et al., 2023). Similarly,
96 XGBoost outperformed RF and an ensemble model combining XGBoost—RF algorithms for daily reservoir inflow
97  prediction (Jan et al., 2024)
98 Recently, achievement of Deep Learning (DL) which is a subset of ML, has renowned incorporating multiple
99 layers artificial neural networks or Deep Neural Networks (DNNs) with automatic feature learning. It is indicated that
100 DL is powerful in extracting complex features hidden in vast amount of hydrological dataset (Huang et al., 2022).
101 Some of the most widely used DL algorithms for time series prediction are Convolutional Neural Networks (CNNs),
102 Recurrent Neural Networks (RNNs), Long—Short Term Memory (LSTM), and Gated Recurrent Unit (GRU). GRU is
103  the simplified form of LSTM well-suited for faster training for time series prediction. While, LSTM is a specific type
104 of RNNs designed to learn the long—term temporal dependency and seasonality of time series data and overcome the
105 vanishing and exploding gradient problems of RNNs (Dtissibe et al., 2024). It is found that RNNs with input delayed
106 time gave better predictive performances for multivariate reservoir inflow prediction than Input Delayed Neural
107 Network (IDNN) (Coulibaly et al., 2001). Real-time reservoir inflow prediction in the case of different climate
108  scenarios and lead time conditions (+1-Hr, +4—Hr, and +6-Hr) with three conventional ML algorithms; (1) SVM, (2)
109  RF, (3) MLP and four DL algorithms; (1) DNNs, (2) RNNs, (3) LSTM, (4) GRU were investigated. In comparation,
110 the results distinctly showed that DNNs outperformed than the conventional ANNs in most scenarios. However, under
111 the extended periods of lead time prediction, underestimation of reservoir inflow by DDNs is more serious compared
112 to ANNs (Huang et al., 2022). Encoder—Decoder LSTM (ED-LSTM) was employed for sub—seasonal reservoir inflow
113 with multiple lead time (+1-D to +30-D) for 30 reservoirs, at 1-D ahead prediction, ED-LSTM could produce good
114  predictive performance of NSE exceeding 0.75 for 29 reservoirs. At 30-D ahead prediction, ED-LSTM achieved NSE
115 of more than 0.5 for most reservoirs (Fan et al., 2023). Furthermore, LSTM exhibited superior performances in
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116 predicting medium to long—term data compared to the conventional ML algorithms as well as RNNs (Khorram and
117  Jehbez, 2023; Rajesh et al., 2023) and CNNs architectures (Herbert et al., 2021).
118 However, the biased performance of overfitting, information saturation, and under—fitting issues of ML—
119 based prediction models has become the challenging issues. It is reviewed that ML models cannot improve the
120  prediction accuracy without including preprocessing techniques for feature engineering (Apaydin and Sibtain, 2021).
121 Data preprocessing is conducted at the first step of ML modeling to ensure the data quality for model training. Data
122 cleaning, transformation, and decomposition are adopted for prediction improvement. In addition, selecting suitable
123 ML algorithms for specific purpose of hydrological prediction is a challenging task.
124 This study employed two powerful ML algorithms; XGBoost and LSTM for univariate and multivariate
125 reservoir inflow prediction of two large storage dams in the Chao Phraya River Basin (CPYRB); (1) Bhumibol (BB)
126  and Sirikit (SK) dams as shown in Fig. 1. Predicting precise and accurate reservoir inflow for these two reservoirs is
127 important to ensure reliable water supply sources and establish proper water allocation plan for the downstream water
128 use in the central region. Furthermore, during the storm seasons from May. to Dec. when the flood risks are likely
129 elevated, future inflow data is informative for the Office of National Water Resources (ONWR), key decision maker
130 to implement effective flood mitigation strategies. Input features selection and configuration design of two different
131 types of daily and monthly reservoir inflow prediction models; (1) univariate prediction with XGBoost and LSTM
132 algorithms and (2) multivariate prediction with LSTM algorithm, were definitely highlighted. In the last step,
133 predictability of predicting low and high reservoir inflow values of these models were accordingly explored to assess
134  their statistical performances.
135
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Fig. 1 Study area in the Chao Phraya River Basin and weather stations
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137 2. Material and methods

138
139 2.1 Input features for reservoir inflow prediction models
140 The development of ML prediction models relied on the historical observation data from 2000 to 2020

141 including reservoir inflows of BB and SK reservoirs, and climate data gathered from the nearest weather stations as
142 summarized in Table 1. As input feature selection is definitely critical to the success of ML— and DL—based prediction
143 models, consequently, the statistical correlation analysis was performed to assess the strength and direction of
144  relationships between climate data from adjacent weather stations and reservoir inflow. By doing this, the daily
145 observed climate data (air humidity, air pressure, temperature, and rainfall) was collected from six Thai Meteorological
146 Department (TMD) stations (0002, 0006, 0007, 0015, 0017, and 0019) located in Tak, Sukhothai, and Lampang
147 provinces near BB dam. Additionally, climate data from the Climate Data Services (CDS) publicly provided by NASA
148 was gathered for locations with geographic coordinates matching those of the TMD stations. Likewise, the daily
149 observed climate data near SK dam was collected from three TMD and NASA stations (0003, 0018, and 0095) located
150 in Phitsanulok, Uttaradit, and Nan provinces, respectively.

151 For the univariate prediction, single reservoir inflows of BB and SK dams were aimed to individually predict
152 for both daily and monthly models. A number of daily and monthly prediction scenarios with different model
153 configuration using XGBoost and LSTM algorithms were accordingly developed. For the multivariate prediction,
154 reservoir inflows of two main reservoirs, BB-SK dams were expected to achieve simultaneously from single
155 prediction model for both daily and monthly prediction. Consequently, LSTM was selected for multiple output
156 prediction as it can learn and capture the complicated relationship of relevant multiple input variables.

157

158 Table 1 Data used for reservoir inflow prediction modelling

Data Description Data Type Unit Data Length
Reservoir Inflow_BB Reservoir Inflow of BB Dam Daily, Monthly MCM 1/1/2000-31/12/2020
Reservoir Inflow_SK Reservoir Inflow of PS Dam Daily, Monthly MCM 1/1/2000-31/12/2020
Weather Avg. Humidity at 9 Stations Daily, Monthly % 1/1/2000-31/12/2020
Avg. Air Pressure at 9 Stations Daily, Monthly hPa 1/1/2000-31/12/2020
Avg. Temperature at 9 Stations Daily, Monthly °C 1/1/2000-31/12/2020
Rainfall at 9 Stations at 9 Stations Daily, Monthly mm 1/1/2000-31/12/2020
Station ID Station Name Location: Lat.—Long.
0002_BB Tak N 16°52°48” — E 99°08°24”
0006_BB Bhumibol Dam N 17°14°37” — E 99°00°08”
0007_BB Mae Sot N 16°41°60” — E 98°32°31”
0015_BB Si Samrong N 17°29°11” — E 99°31°36”
0017_BB Doi Muser N 16°41°60” — E 98°56°07”
0019_BB Tone N 17°38°12” — E 99°14°44”
0003_SK Phitsanulok N 16°47°47” — E 100°16°33”
0018_SK Uttaradit N 17°37°00” — E 100°05°60”
0095_SK Nan N 18°46°01” — E 100°45°47”
159 Note: meter above mean sea level- m. msl.[Million Cubic Meter—-MCM|Cubic Meter per Second-CMS
160
161 Selecting input features for each univariate and multivariate prediction model was based on the physical

162 river—reservoir system and statistical cross correlation between past reservoir inflow and relevant climate data as
163 summarized in Table 2. This ensured that the prediction model can effectively capture the strong relationship between
164  the inputs and predicted outputs.

166
167
168

170
171

173
174
175
176
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177 Table 2 Correlation coefficient between climate data and reservoir inflows of the Bhumibol and Sirikit dams

Weather Climate Data TMD Data NASA Data | Weather Climate Data TMD Data NASA Data
Station Source Source Station Source Source

0002_BB | Avg. humidity (%) 0.402 0.521 0019_BB | Avg. humidity (%) 0.460 0.505
Avg. air pressure (hPa) -0.117 -0.148 Avg. air pressure (hPa) —0.090 -0.146
Avg. temperature (°C) -0.115 -0.190 Avg. temperature (°C) -0.091 -0.133
Rainfall (mm/day) 0.284 0.365 Rainfall (mm/day) 0.191 0.355

0006_BB | Avg. humidity (%) 0.402 0.518 0003_SK | Avg. humidity (%) 0.428 0.536
Avg. air pressure (hPa) -0.007 -0.146 Avg. air pressure (hPa) —0.328 -0.322
Avg. temperature (°C) -0.103 -0.173 Avg. temperature (°C) -0.020 -0.144
Rainfall (mm/day) 0.289 0.369 Rainfall (mm/day) 0.038 0.376

0007_BB | Avg. humidity (%) 0.401 0.491 0018_SK | Avg. humidity (%) 0.499 0.503
Avg. air pressure (hPa) -0.164 -0.179 Avg. air pressure (hPa) —0.023 —0.339
Avg. temperature (°C) —0.096 -0.076 Avg. temperature (°C) -0.019 -0.017
Rainfall (mm/day) 0.197 0.360 Rainfall (mm/day) 0.167 0.406

0015_BB | Avg. humidity (%) 0.319 0.521 0095_SK | Avg. humidity (%) 0.535 0.469
Avg. air pressure (hPa) -0.021 -0.139 Avg. air pressure (hPa) -0.379 -0.358
Avg. temperature (°C) -0.027 -0.178 Avg. temperature (°C) 0.092 0.101
Rainfall (mm/day) 0.162 0.363 Rainfall (mm/day) 0.002 0.392

0017_BB | Avg. humidity (%) 0.212 0.491 Note: Thai Meteorological Department-TMD|
Avg. air pressure (hPa) 0.003 -0.479 National Aeronautics and Space Administration-NASA
Avg. temperature (°C) 0.006 -0.076
Rainfall (mm/day) 0.034 0.360

178
179 The correlation analysis revealed strong correlations between observed reservoir inflows and both humidity

180 and rainfall at both BB and SK dams. The correlation coefficient between reservoir inflow of BB dam and humidity
181 data at Station 0006 reaches up to 0.402 and 0.518 for TMD and NASA data sources, respectively. Rainfall data from
182 Station 0006 also exhibited a strong correlation with reservoir inflow of BB dam, with correlation coefficients of
183 0.2886 and 0.3693 for TMD and NASA data sources, respectively. The substantial correlation betw een reservoir
184 inflow of SK dam and climate data from Station 0018 particularly from NASA data source, was apparently found
185 with the correlation coefficient of 0.503 and 0.406 for humidity data and precipitation data, respectively. Based on
186 these analysis, humidity and rainfall data were accordingly selected to specify input structures of ML— and DL—
187 based prediction models. Autocorrelation of past reservoir inflow was also analyzed to identify optimal lag times and
188 number of moving average parameters for input feature selection. This analysis revealed the importance of closer lag
189 time (t to t—7) which exhibited high correlation coefficients exceeding 0.67 with the recent reservoir inflow data for
190 both BB and SK dams. Accordingly, information of past reservoir inflows with closer lag time t to t—7 was
191 incorporated into the structure of the prediction models to predict reservoir inflow at lead time t+1.

192 Following this analysis, four daily and monthly univariate prediction scenarios with various model
193 configurations varying input features using XGBoost and LSTM algorithms for each of BB and SK dams; S1-S4,
194  were designed. For the multivariate prediction model, two daily and monthly prediction scenarios; S5-S6, using
195 LSTM algorithm were established. Major inputs of these prediction models are past reservoir inflow at time t, moving
196 average of past reservoir inflow at time t-3 and t—7, rainfall at time t, and humidity at time t as summarized in Table
197 3. Itis illustrated that univariate models structured the specific individual inputs for single reservoir inflow prediction
198 at lead time t+1. For example, the input features of daily reservoir inflow prediction for BB dam are BB past inflow
199 at time t, moving average of BB past inflow at time t-3 and t-7, rainfall and humidity at time t collected from the
200 nearest weather stations to BB dam. In contrast, the multivariate prediction models incorporate inputs of both BB and
201  SK dams to predict two reservoir inflows at lead time t+1.

202
203 Table 3 Input features for univariate and multivariate reservoir inflow prediction models
Prediction Reservoir | Prediction | Model Type and Model No. Input Features
Model Inflow Scenario Prediction Lead Past Past Avg. Past | Avg. Past | Rainfall | Humidity
ID Time Inflow_BB|Inflow_SK| Inflow Inflow
= — — t+1 t t -3 -7 t t
Univariate BB S1: XGBoost| Daily dBB-01, dBB-02, 4 - v v 4 v
Prediction dBB-03
S2: LSTM Daily dBB-01, dBB-02, v - v v v -
dBB-03, dBB-04,
dBB-05, dBB-06
SK S1: XGBoost| Daily dSK-01, dSK-02, - v v v v v
dSK-03
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Prediction Reservoir | Prediction | Model Type and Model No. Input Features
Model Inflow Scenario Prediction Lead Past Past Avg. Past | Avg. Past | Rainfall | Humidity
ID Time Inflow_BB|Inflow_SK| Inflow Inflow
= = = t+1 t t t-3 =7 t t
S2: LSTM Daily dSK-01, dSK-02, - v v v v -
dSK-03, dSK-04,
dSK-05, dSK-06
BB S3: XGBoost| Monthly mBB-01, mBB- v - v v v v
02, mBB-03
S4: LSTM Monthly dBB-01, dBB-02, v - v v v -

dBB-03, dBB-04,
dBB-05, dBB-06

SK S3: XGBoost| Monthly mSK-01, mSK— - v v v v v
02, mSK-03
S4:LSTM Monthly mSK-01, mSK-02, — v v v v —

mSK-03, mSK-04,
mSK-05, mSK-06

Multivariate BB&SK | S5:LSTM Daily dBBSK-01 v v v = v v
Prediction BB&SK | S6:LSTM | Monthly mBBSK-01 v v v - v v
204 Note:  Acronyms—Bhumibol dam—BB|Sirikit dam—SK|Daily Univariate prediction model of BB dam—dBB|Daily univariate prediction model of
%82 SK Dam-dSK|Daily multivariate prediction model of BB&SK dams—dBBSK|Monthly multivariate prediction model of BB&SK dams—
mBBSK

207

208  2.2. Prediction algorithms selected

209  2.2.1. Extreme gradient boosting (XGBoost)

210 Extreme Gradient Boosting (XGBoost), a powerful machine learning algorithm initiated by Tianqi Chen in
211 2014 (Chen and Guestrin, 2016), was used to develop the daily and monthly univariate prediction models for reservoir
212 inflow in CPYRB. XGBoost is a decision—tree—based ensemble machine learning as illustrated its structure in Fig. 2.
213 Its efficiency, scalability, and flexibility have been widely demonstrated and proven in hydrological prediction
214 applications (Rajesh et al., 2022). In general, the supervised XGBoost learning primarily involves minimizing
215 objective function which consists of two main components; (1) loss function and (2) regularization term as expressed
216 in Eq. (1). This loss function measures the discrepancy between the predicted and observed values in the model training
217 process as given mean squared error in Eq. (2). The regularization term in Eq. (3) is crucial in preventing model
218  overfitting and complexity for improved prediction performance.

219
Obj(6) = L(8) + Q(6) 1)
220
1y )
L) =3 i-p
i=1
221
I v ®)
0) =97+ 52 ) Ol
i=1
222
223 where, L(8) is the training loss function term. For robust regression tasks, the common loss functions are

224 Mean Squared Error (MSE), Mean Absolute Error (MAE), and Huber loss which is the combination of MSE and
225 MAE. Q(6) is regularization term. 8 denotes the optimal parameter values that best fits the training inflow data (y;) to
226 the predicted inflow output (p;). y is a hyperparameter controlling the strength of the regularization term which
227  influences the decision to make a further partition on a leaf node of a tree—based model. 7'is a number of leaf nodes
228 in the tree and A is a hyperparameter used to scale the regularization term. A larger number of leaf nodes signifies the
229 model complexity potentially leading to overfitting. A larger 4 indicates the increased penalty to model encouraging
230  the reduction of model complexity. Oaue is a measure of the impurity or heterogeneity of the data points within the
231 leaf node. For tree building process, a prediction for one given data is made by traversing the tree from the root node
232 to a leaf node. The tree is built from a root node and recursively split into left and right child nodes. This process
233 continues until a specific stopping criterion is met as graphically shown in Fig.2. Similarity score (Sim) is used to
234 assess the homogeneity of data within a node to guide for leaf node splitting. The larger value of similarity score
235 signifies the similar data within a leaf node that further splitting might not be necessary. Similarity score is computed

236  to indicate a score of each node by using Eq. (4).
237
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A ivi-p) 4)
Sim = ——————
n+A
238
239 Gain value is termed to measure the accuracy improvement resulted from a specific splitting. It helps assess

240  the optimality of potential splits in a tree structure as expressed in Eq. (5). A higher positive gain value indicates a
241  better split in improving the model predictive performance. When the gain values are negative, the tree branch is
242  removed as shown in Fig. 3.

243

Gain value = (Simleft + Simright) — Simroot (5)
244
245 where, Simleft, Simright, and Simroot denote the similarity score of the left leaf node, right leaf node, and

246 root node of the branch, respectively. The tree structures are iteratively built for T iterations until the desired number
247 of models is reached. In each iteration, the output value (O,une) for all leaf nodes is computed using Eq. (6).

248

Our = 21 vi-p) ©)
value — — .
n+a
249
250 In addition, the precision and speed of convergence of the prediction model is governed by learning rate (¢).

251  Learning rate determines level of model improvement to handle the prediction error made by previous iterations. A
252 larger values of learning rate can accelerate the training process leading to faster convergence. However, overfitting
253 can simply find if not properly fine—tuned. In contrast, the smaller values of learning rate can help reduce overfitting
254 butspeed of convergence is definitely lower. In the final step, XGBoost can make updated prediction (p) by combining
255 the initial prediction (pf) with the gradient of the loss function and the regularization term multiplied with learning
256  rate as expressed in Eq. (7).

257
pf = plo +£[ ?:1L (yi, p? + Ovu/ue) +§/10€alue] (7)
258
Root Node
3
s 2w {
we i Lefi Leat Nd: Ripltt Leaf Node
Gain value is positive
Fig. 2 XGBoost tree—based structure

259
260  2.2.2. Long Short-Term Memory (LSTM)
261 Long Short-Term Memory (LSTM) is a well-suited type of deep learning algorithm designed to process

262  sequential data. It was initially introduced by Hochreiter and Schmidhuber in 1997 (Hochreiter and Schmidhuber,
263 1997). LSTM is an evolution of Recurrent Neural Networks (RNN) which is a type of Artificial Neural Networks
264 (ANNSs) having memory to process sequential inputs. However, the complications to learn and capture long—term
265 dependencies due to vanishing and exploding gradient problems become the significant drawback of RNN. To
266 overcome this, LSTM is specifically developed to learn long—term dependencies and retain previous information over
267 extended periods. The LSTM model is commonly structured as a chain of units as illustrated in Fig. 3. Each LSTM
268 unit is composed of a cell state and three gates namely, (1) input gate, (2) forget gate, and output gate. Cell state is
269  functioned as core component of LSTM to store and carry information through time steps. Input gate regulates new
270 information from current input to be stored in a cell state. Forget gate decides to discard or keep information from
271 previous cell state. Output gate determines which part of cell state should be the current prediction output (Khorram
272 and Jehbez, 2023; Rajesh et al., 2023).
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273 In the initial step, forget gate examines the current input at time t (x;), previous hidden state (4,;) which is
274 the output at previous time t-1, and long—term memory from previous cell state at time t—1 (C,;). It calculates a value
275 in a range of 0 and 1 for each element in the previous cell state as expressed in Eq. (8). Subsequently, the input gate
276 calculates two values; input gate at time t (i,) and cell state input at time t (C)) to regulate the new information into the
277 current cell state as defined in Eq. (9) and Eq. (10). Then, the new cell state at time t (C;) in Eq. (11) is updated by
278 combining the new information of previous cell state at time t—1 (C;), forget gate at time t (f;), and input gate at time
279 t (ir, Cy). Eq. (12) is employed to compute the current prediction output at time t (o,). The hidden state (%) indicating
280  LSTM output at time t, is finally calculated by multiplying the output gate at time t (0,) with the tanh of the new cell
281 state at time t (C;) as shown in Eq. (12) and Eq. (13). By doing this through iteration process, LSTM can handle the
282  sequential data and make accurate and precise prediction.

283

ft = o(Ws * [hea, X + by) (8)

it= o(Wi * [he1, X + bi) 9)

Ci = tanh(Wc * [hey, %] + bc) (10)

Ci=f*Cua+it * é( (ll)

0t = o(Wo * [he1, X + br) (12)

ht = o * tanh(Cy) (13)
284
285 Where Wy is corresponding weight matrix, byic is corresponding bias and o is the sigmoid activation
286  function.
287 _
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Fig. 3 LSTM chain-like structure and its unit

288
289  2.3. Model configuration design and prediction modelling
290 Model configuration design of daily and monthly univariate and multivariate prediction models are presented

201 in Fig. 4 and Table 4-Table 5. The input features as aforementioned in Section 2.1., designated training—testing dataset
292 ratios (60:40, 70:30, 80:20), delayed time of moving average inflow (t-3 and t-7), and learning rates (0.001, 0.01, 0.1)
293  were varied to optimize the model configuration and prediction performance. Implementation of training model for
294 daily and monthly prediction by XGBoost was controlled by the hyperparameter tunning process such as gamma,
295 maximum depth of a tree, number of iterations (nrounds), number of threads (nthreads), learning rate, number of fold
296 (nfolds) and early stopping rounds (early stopping rounds) parameters as presented in Table 4. In this study,
297 maximum depth of a tree was set to 6 in increase deeper tree model complexity. Maximum number of iterations was
298 specified to 10,000 for model training process. Number of threads determining for parallel computation to speed up
299 the training process and number of folds specifying for cross—validation was 10 and 2, respectively. The early stopping
300 rounds were generally used to stop training procedures when the loss on training dataset starts increasing. In this study,
301 the early stopping round was set every 500 iterations if the performance on RMSE was not substantially improved.

302
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Table 4 Model configuration design of daily and monthly univariate prediction models using XGBoost

Model No.| Input Feature |Training:Testing | Learning XGBoost Parameter
Ratio Rate Objective | Gamma | Max. [Evaluation nrounds | nthreads | nfolds Early
Depth stopping
rounds
Daily and Monthly Prediction of BB Reservoir Inflow
dBB-01, | Past Inflow, 60:40, 70:30, 0.001, |regression:| 0O 6 RMSE | 10,000 10 2 500
mBB-01 | Avg. Past 80:20 0.01,0.1 linear
Inflow
dBB-02, | Past Inflow, 60:40, 70:30, 0.001, |regression:| 0 6 RMSE | 10,000 10 2 500
mBB-02 | Avg. Past 80:20 0.01,0.1 linear
Inflow, Rainfall
dBB-03, | Past Inflow, 60:40, 70:30, 0.001, |regression:l 0 6 RMSE | 10,000 10 2 500
mBB-03 | Avg. Past 80:20 0.01,0.1 linear
Inflow, Rainfall,
Humidity
Daily and Monthly Prediction of SK Reservoir Inflow
dSK-01, | Past Inflow, 60:40, 70:30, 0.001, |regression: 0 6 RMSE | 10,000 10 2 500
mSK-01 | Avg. Past 80:20 0.01,0.1 linear
Inflow
dSK-02, | Past Inflow, 60:40, 70:30, 0.001, |regression:l 0 6 RMSE | 10,000 10 2 500
mSK-02 | Avg. Past 80:20 0.01,0.1 linear
Inflow, Rainfall
dSK-03, | Past Inflow, 60:40, 70:30, 0.001, |regression:| 0 6 RMSE | 10,000 10 2 500
mSK-03 | Avg. Past 80:20 0.01,0.1 linear
Inflow, Rainfall,
Humidity
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Similarly, model configuration using LSTM for both univariate and multivariate prediction models was
designed by varying input features and tuning key hyperparameters such as number of layers, number of units per
layer, activation function, optimizer, epoch, and batch size, etc. as summarized in Table 5. In this study, number of
layers was set to 2 and units per layer referring number of neurons in a specific layer of LSTM network was set to 64
or 32. Rectified Linear Unit (ReLU), a famous activation function used in deep neural networks was specified in all
univariate prediction experiments while Sigmoid, a traditional activation function was used for multivariate prediction.
Adam optimizer which is an optimization algorithm, was employed to update weights during training process. MSE
was used as loss function for both univariate and multivariate prediction models. Additionally, number of epochs
involving the passing numbers through the entire training dataset was varied between 50, 100, and 500. Similarly,
batch size incorporating number of samples processed before updating the model’s weights was set to 16, 32, and 64.

Table 5 Model configuration design of daily and monthly univariate and multivariate prediction models using LSTM

Model No.| Input Feature [Standardization| LSTM Parameter in Keras
Technique Steps  |Number of |  Units Activation Loss Optimizer Epoch [Batch Size|
Layers per Function
Layer
Daily Univariate Prediction Models of BB Dam

dBB-01 | Past Inflow, Standard 3 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow

dBB-02 | Past Inflow, Standard 7 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow

dBB-03 | Past Inflow, Standard 14 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow

dBB-04 | Past Inflow, Standard 3 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow,
Rainfall

dBB-05 | Past Inflow, Standard 7 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow
Rainfall

dBB-06 | Past Inflow, Standard 14 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow,
Rainfall

Daily Univariate Prediction Models of SK Dam

dSK-01 | Past Inflow, Standard 3 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow

dSK-02 | Past Inflow, Standard 7 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow

dSK-03 | Past Inflow, Standard 14 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow

dSK-04 | Past Inflow, Standard 3 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow,
Rainfall

dSK-05 | Past Inflow, Standard 7 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow,
Rainfall

dSK-06 | Past Inflow, Standard 14 2 64/32 ReLU MSE Adam 50 16
Avg. Past Inflow,
Rainfall

Monthly Univariate Prediction Models of BB Dam

mBB-01| Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 16
Avg. Past Inflow

mBB-02| Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 32
Avg. Past Inflow

mBB-03| Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 64
Avg. Past Inflow

mBB-04| Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 16
Avg. Past Inflow,
Rainfall

mBB-05| Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 32
Avg. Past Inflow,
Rainfall

mBB-06| Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 64
Avg. Past Inflow,
Rainfall

Monthly Univariate Prediction Models of SK Dam
mSK—01] Past Inflow, [ MinMax 3 | 2 6432 | ReLU [ MSE |  Adam [ 100 16

10
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347
348
349

Model No.| Input Feature [Standardization| LSTM Parameter in Keras

Technique Steps |Number of| Units Activation Loss Optimizer Epoch [Batch Size|
Layers per Function
Layer

Avg. Past Inflow
mSK-02 | Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 32
Avg. Past Inflow
mSK-03| Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 64
Avg. Past Inflow
mSK-04 | Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 16
Avg. Past Inflow,
Rainfall

mSK-05 | Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 32
Avg. Past Inflow,
Rainfall

mSK-06 | Past Inflow, MinMax 3 2 64/32 ReLU MSE Adam 100 64
Avg. Past Inflow,
Rainfall

Daily and Monthly Multivariate Prediction Models of BB-SK Dam
dBBSK—| BB Past Inflow, MinMax 3 2 64 Sigmoid MSE Adam 500 64
01, SK Past Inflow,
mBBSK—- BB Avg. Past
01, Inflow

SK Avg. Past
Inflow, BB
Rainfall, SK
Rainfall, BB
Humidity, SK
Humidity

2.4. Evaluation of predictive performance

The statistical metrics; Coefficient of Determination (R?), Nash—Sutcliffe Efficiency (NSE), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), were used to evaluate the perfect match between the predicted and
observation values of reservoir inflows. R? is statistical measures describing the degree of linear correlation between
two independent variables which ranges from 0 to 1 (Al-Agqeeli et al., 2015). A higher R? value closer to 1 indicates
better fit of the prediction model to the observation values making stronger predictive power. NSE is the normalized
statistical measure that compares the relative magnitude of the model prediction errors to observed data variance
ranging from —oo to 1 (Brownlee, 2018). The prediction accuracy can be classified into three main classes subject to
NSE. When NSE is greater than or equal to 0.90, the prediction accuracy is classified as “Class A—Excellent”, NSE
ranges between 0.70 and 0.90, it is considered as “Class B-Good), and NSE lies between 0.50 and 0.70, it is classified
as “Class C—Moderate” (China National Standardization Management Committee, 2008; Zhang et al., 2021). MSE,
and RMSE metrics quantify the absolute and squared differences between the predicted and actual values, respectively.
A lower value of MSE, and RMSE indicates better model performance. A prediction model is considered as precise
and robust prediction when R? and NSE values are relatively approach to 1, MSE and RMSE values are small.

In the last step, the predictability to predict the low, average, and high daily and monthly reservoir inflows of
BB and SK dams was assessed to leverage the application of ML—and DL-based prediction model for real-time
reservoir operation and planning during the critical periods. The lowest, average, and highest reservoir inflows of the
tested results were compared to the observed reservoir inflows. Finally, percentage error in prediction was computed.

3. Results and Discussion
3.1. Predicted one—day and one—month ahead of BB and SK reservoir inflows

In this study, R? and NSE were prioritized over MSE and RMSE to identify the optimal predictive model
performances on the training and testing datasets. The quantitative and qualitative comparisons between observed and
predicted inflows of the optimal daily and monthly univariate and multivariate prediction models for six scenarios are
presented in Table 6 and illustrated in Fig. 5 and Fig. 6. The qualitative results from 2000 to 2020 demonstrated that
daily and monthly predicted inflows for both BB and SK dams closely matched the observed inflows for both training
and testing datasets when univariate and multivariate prediction models were performed. Even the monthly inflow
pattern obtained from univariate and multivariate prediction models are likely similar to observed values, however,
monthly prediction exhibited larger deviation from the observed values compared to daily prediction particularly the
lowest and highest reservoir inflows.

EGUsphere\
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350 Table 6 The optimal predictive performances of daily and monthly reservoir inflow prediction

Univariate Prediction Model Multivariate Prediction Model
Scenario Model Statistical BB SK Scenario Model Statistical BB SK
Design Building | Metrics Design Building Metrics
S1: Daily - R? 0.922 0.884 | S5: Daily o R? 0.894 0.842
model using £ NSE 0.909 0.871 | model using £ NSE 0.890 0.841
XGBoost 8 MSE 62.919 70.000 | LSTM = MSE 75.698 97.183
algorithm - RMSE 7.932 8.367 | algorithm - RMSE 8.700 9.858
o R? 0.885 0.836 - R2 0.873 0.780
£ NSE 0.862 0.816 £ NSE 0.857 0.767
§ MSE 31.990 81.308 é’ MSE 36.039 92.455
RMSE 5.656 9.017 RMSE 6.003 9.615
S2: Daily o> R? 0.925 0.878 S6: Monthly o> R? 0.542 0.518
model using £ NSE 0.924 0.878 model using £ NSE 0.538 0.512
LSTM 8 MSE 46.898 61.577 | LSTM S MSE 183,353 192,778
algorithm - RMSE 6.848 7.847 | algorithm - RMSE 428 439
o R? 0.827 0.851 o R2 0.526 0.487
£ NSE 0.818 0.851 £ NSE 0.397 0.459
§ MSE 60.770 67.050 § MSE 103,050 130,290
RMSE 7.800 8.190 RMSE 321 361
S3: Monthly - R? 0.452 0.490
model using £ NSE 0.411 0.473
XGBoost s MSE 217,267 | 196,562
algorithm = RMSE 466 443
o R? 0.679 0.520
£ NSE 0.675 0.513
8 MSE 65,836 | 128,363
RMSE 257 358
S4: Monthly o R? 0.519 0.678
model using £ NSE 0.513 0.673
LSTM s MSE 186,719 | 104,617
algorithm - RMSE 432 323
o R2 0.388 0.434
£ NSE 0.353 0.407
K MSE 122,597 | 158,222
RMSE 350 398

351
352
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Fig. 7 and Fig. 8 quantitatively illustrate the performance metrics of all scenarios of 1-day ahead and 1—
month ahead reservoir inflow predictions for both univariate and multivariate predictions. For the daily univariate
prediction using XGBoost on the training dataset, Scenario 1 (S1) achieved R? and NSE values of 0.922 and 0.909 for
BB dam and 0.884 and 0.871 for SK dam, respectively. However, R? and NSE values were slightly lower on the testing
dataset with the values of 0.885 and 0.862 for BB dam and 0.836 and 0.816 for SK dam, respectively. MSE and RMSE
values for BB dam were likely lower by —49.16% and —28.68% when 20% of dataset was accordingly tested. In
contrast, these two values were slightly increased on the testing dataset for SK dam by +16.15% and +7.77%. It is
revealed that the daily univariate prediction using LSTM (Scenario 2, S2) on the training dataset mostly demonstrated
higher R? and NSE values of 0.925 and 0.924 for BB dam and 0.878 and 0.878 for SK dam, respectively indicating
slightly higher predictive performances than XGBoost. Similar to XGBoost, R? and NSE values slightly decreased on
the testing dataset achieving 0.827 and 818 for BB dam. For SK dam, these two statistical metrics considerably
increased to 0.851 and 0.851 for SK dam, respectively. However, MSE and RMSE values performed by LSTM were
+29.58% and +13.90% for BB dam and +8.89% and +4.37% for SK dam which were lower than XGBoost,
respectively. For the Scenario 5 (S5) when daily multivariate prediction model was executed using LSTM to predict
reservoir inflow for both BB and SK dams, R? and NSE values of training dataset were 0.894 and 0.890 for BB dam
and 0.842 and 0.841 for SK dam, respectively. These values were slightly lower than those trained by daily univariate
prediction model using both XGBoost and LSTM. On the testing dataset with daily multivariate prediction model, R
and NSE values for BB dam were slightly higher than those obtained by daily univariate prediction model for both
XGBoost and LSTM, reaching 0.873 and 0.857, respectively. However, these values decreased considerably to 0.780
and 0.767, respectively for SK dam. In terms of MSE and RMSE, there was an insubstantial difference between
univariate and multivariate prediction models.

The predictive results exhibited that the predictability of daily univariate prediction models is slightly
superior than multivariate models, as they were developed independently to extract the specific input features of each
dam. However, the daily multivariate prediction model could provide two predictive outputs relatively closer to daily
univariate prediction model which is beneficial for real-time operational applications in the river basin. Due to the
high complexity of all input features and larger dataset used in the daily multivariate prediction model, however, DL—
based prediction model with LSTM algorithm could perform well in learning and capturing the input—output relation
and features, resulting in providing predictive performance closer to those achieved by the daily univariate prediction
model. Training larger datasets with LSTM for both daily univariate and multivariate prediction models gave the better
predictive performances than XGBoost. However, when smaller testing datasets were tested by LSTM, statistical
performance was slightly decreased compared to training dataset as obviously presented in Scenario 2 and Scenario
5. It is also revealed that daily reservoir inflow predictions for BB dam demonstrated higher performance compared
to SK dam, for both daily univariate and multivariate models. In comparison between XGBoost and LSTM for daily
reservoir inflow prediction on tested datasets, individual XGBoost model outperformed LSTM models across both
univariate and multivariate predictions for BB dam. For SK dam, the individual LSTM prediction model could predict
better results than the individual XGBoost model and the LSTM multivariate prediction model.
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Fig. 7 Radar chart illustrating the performance metrics of all scenarios of 1-day ahead reservoir inflow prediction
(Legend: Red-BB, Blue-SK)

For ML-based monthly univariate prediction using XGBoost, Scenario 3 (S3) achieved R? and NSE values
of 0.452 and 0.411 for BB dam and 0.490 and 0.473 for SK dam, respectively on the training dataset. In contrast to
daily prediction models with XGBoost, R? and NSE values were slightly higher on the testing dataset with the values
0f'0.679 and 0.675 for BB dam and 0.520 and 0.513 for SK dam, respectively. However, MSE and RMSE values were
significantly decreased by —69.70% and —44.85% for BB dam and —34.70% and —19.19% for SK dam when testing
dataset was accordingly employed. DL—based monthly univariate prediction using LSTM in Scenario 4 (S4) exhibited
higher statistical performances in terms of R? and NSE values of 0.519 and 0.513 for BB dam and 0.678 and 0.673 for
SK dam, respectively. However, these performance metrics considerably decreased to 0.388 and 0.353 for BB dam
and 0.434 and 0.407 for SK dam when the testing datasets were investigated. The MSE and RMSE values performed
by monthly prediction model with LSTM were significantly decreased by —34.34% and —18.98% for BB dam. In
contrast, it showed the substantial increase in MSE and RMSE values by +53.24% and +23.23% for SK dam when
testing dataset was accordingly employed. Compared to the individual monthly prediction by LSTM on testing
datasets, LSTM-based monthly multivariate prediction in Scenario 6 (S6) could predict better results achieving R?
and NSE values of 0.526 and 0.397 for BB dam and 0.487 and 0.459 for SK dam, respectively. However, it showed
lower R? and NSE values compared to those obtained by individual monthly prediction using XGBoost.

In comparison between daily and monthly prediction models, the results demonstrated that ML— and DL—
based prediction models achieved higher statistical metrics in predicting daily reservoir inflow compared to monthly
predictions. This is because prediction modeling with ML and DL algorithms can handle and leverage larger datasets
available in daily prediction model, enabling them to learn and capture patterns more effectively. Similarly, training
larger datasets with LSTM for both daily and monthly univariate and multivariate prediction models mostly
outperformed XGBoost. However, slight decrease in statistical metrics is found when dealing with the smaller testing
datasets. To improve the robustness and precision of LSTM-based forecasts for both univariate and multivariate
predictions, it is recommended to increase the testing dataset size during model validation. Importantly, cross—
validation should be conducted to assess model overfitting and ensure its generalizability.
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Fig. 8 Radar chart illustrating the performance metrics of all scenarios of 1-month ahead reservoir inflow
prediction (Legend: Red—BB, Blue-SK)

417
418 3.2. Optimal model configuration for univariate and multivariate reservoir inflow prediction models
419 Based on the optimization criteria of maximizing R? and NSE values as optimal prediction model,
420  accordingly the optimal input features, training and testing dataset ratio, and optimal hyperparameter of prediction
421  models were explored. The results of optimal model configuration are summarized in Table 7.
422
423 Table 7 Optimal model configuration for reservoir inflow prediction models
Input Features & S1: Daily S2: Daily S3: Monthly S4: Monthly S5: Daily S6: Monthly
Training: Testing Ratio Univariate Univariate Univariate Univariate Multivariate multivariate
& Hyperparameter Model_XGBoost Model LSTM Model_XGBoost Model LSTM Model LSTM | Model LSTM
BB SK BB SK BB SK BB SK BB-SK BB-SK
Past Inflow at Time t v v v v v v v v v v
Avg. Past Inflow at t-3 v v - - v - v v v v
Avg. Past Inflow at t-7 = = v v = v = = = =
Rainfall at Time t - - - - v v - - v v
Humidity at Time t - - - - v - - - v v
Training: Testing Ratio | 80:20 80:20 70:30 70:30 80:20 70:30 60:40 60:40 70:30 60:40
XGBoost: Learning Ratq 0.1 0.1 = — 0.001 0.001 = = = —
XGBoost: Nrounds 10,000 | 10,000 - - 10,000 | 10,000 - - - -
XGBoost: Max Depth 6 6 - - 6 6 - - - -
LSTM: Learning Rate = = 0.1 0.1 = — 0.1 0.1 0.1 0.1
LSTM: No. of Layers - - 2 2 - - 2 2 2 2
LSTM: No. of Units — - 64 64 — — 64 64 64 64
424
425 It is emphasized that information on past reservoir inflow including the previous time step and its moving
426 average was observed to be a significant predictor to predict future inflow for all prediction scenarios. For daily and
427 monthly multivariate predictions by LSTM, rainfall and humidity data was incorporated as input features which
428 demonstrated a substantial impact on predictive performances. Since XGBoost can work effectively with smaller
429 datasets compared to LSTM for both univariate and multivariate prediction models, it is crucial to select key predictors
430 that are highly correlated with reservoir inflow for the model development. Conversely, LSTM is specifically designed
431 for larger sequential datasets, a broad range of potential input features can be included in the prediction models.
432 Moreover, altering optimal training and testing ratios by increasing the testing datasets into 70:30 and 60:40 can
433 significantly enhance the predictive performances of optimal LSTM-based prediction models. However, handling the
434 larger datasets require more computational resource to capture relevant data features making LSTM-based prediction
435  models computationally expensive than XGBoost. Furthermore, multivariate prediction models generally consume
436  more computational resources than univariate prediction models.
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It is revealed from the model configuration experiment that learning rate of 0.1 and 0.001 significantly
impacts stability and convergence of both XGBoost and LSTM algorithms during model training. The number of
boosting rounds (nrounds) of 10,000 in all scenarios of XGBoost—based prediction models can improve the statistical
performance metrics substantially. However, overfitting risk due to increased number of boosting rounds should be
carefully investigated through model validation. In this study, to control complexity of individual tree and capture
complex data pattern from deeper tress, maximum depth was set to 6 for all scenarios of univariate prediction. For the
LSTM-based prediction models, learning rate of 0.1 of both univariate and multivariate prediction models is a
significant hyperparameter in achieving model stability and convergence. Number of layers was set to 2 across all
prediction scenarios to identify model complexity. Furthermore, the optimal number of LSTM units was observed to
be 64 across all scenarios exhibiting increased predictive performances.

3.3. Evaluation of Percentage Error of Low, Average and High Reservoir Inflow Prediction

The percentage error of low, average and high reservoir inflow prediction, was computed to diagnose the
predictability of ML— and DL—based prediction models as summarized the results in Table 8. It is revealed that the
daily minimum and average reservoir inflows performed by XGBoost univariate model (S1) on the training and testing
datasets were very close to the observed values. On the training datasets, a small discrepancy of daily minimum and
average reservoir inflows was +0.17 MCM and —0.81 MCM (—4.62% error), respectively for BB dam and +3.03 MCM
and —0.62 MCM or —3.58%, respectively for SK dam. Similarly, it showed small discrepancy of daily minimum and
average reservoir inflows on the testing datasets was +0.17 MCM and +0.03 MCM (+0.27% error), respectively for
BB dam and +3.03 MCM and —0.34 MCM or —2.38%, respectively for SK dam. Importantly, this analysis exhibited
a consistent overprediction of minimum reservoir inflows for these two dams on both training and testing datasets. In
contrast, larger percentage error in underprediction of maximum reservoir inflows on both training and testing datasets
were observed ranging —36.73% and —6.93%, respectively for BB dam and —33.77% and —46.78%, respectively for
SK dam. While, the small percentage error of average reservoir inflows predicted by XGBoost univariate model varied
positively and negatively relative to observed values indicating both under—and overprediction.

Similar to XGBoost, the predictive results performed using LSTM (S2) for daily univariate prediction showed
the small discrepancy in minimum and average reservoir inflows of BB and SK dams. However, bigger discrepancy
was observed in maximum inflow prediction for these two dams. On the training datasets, discrepancy error in
minimum, average, and maximum reservoir inflows were +0.27 MCM, +0.26 MCM (+1.74% error), and —9.87 MCM
(—3.17% error), respectively, for BB dam, and +1.62 MCM, —0.05 MCM (-0.32% error), and —11.71 MCM (-5.46%),
respectively, for SK dam. On testing datasets, LSTM model exhibited small discrepancy error in minimum, average,
and maximum reservoir inflows by +0.27 MCM, +0.65 MCM (+6.00% error), and +18.05 MCM (+9.63% error),
respectively, for BB dam, and +1.14 MCM, +0.04 MCM (+0.30% error), and —11.14 MCM (-5.09%), respectively,
for SK dam.

For the daily multivariate prediction model using LSTM (S5), the discrepancy of minimum, average, and
maximum reservoir inflows of two dams were definitely close to those obtained from univariate prediction models
using two algorithms; XGBoost and LSTM. The daily minimum reservoir inflows performed by multivariate
prediction model for BB and SK dams were +0.20 MCM and +2.65 MCM, respectively on training datasets, and +0.21
MCM and +2.65 MCM, respectively on testing datasets. These predictive results were slightly overpredicted
compared to the minimum observed values. In addition, the daily average inflows for BB and SK dams on the training
datasets, were slightly underpredicted by —2.74% and —2.50%, respectively. On the testing datasets, overprediction
was observed, with values of +4.37% and +6.48%, respectively. Similar to the univariate models, multivariate
prediction models consistently underpredicted maximum reservoir inflows for both BB and SK dams, as obviously
found in both training and testing datasets.

All in all, the LSTM univariate model (S2) exhibited the smallest percentage errors in predicting minimum,
average, and maximum reservoir inflows for daily predictions compared to the XGBoost model (S1) and multivariate
prediction using LSTM (S5). Among all ML— and DL-based prediction models (S1, S2, and S5) for daily prediction,
underprediction of low reservoir inflows and overprediction of high reservoir inflows by both univariate and
multivariate prediction models were consistently emerged. However, LSTM-based individual prediction model is
recommended for high inflow prediction.
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Table 8 Percentage error of low, average and high reservoir inflow prediction
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Model Optimal Prediction Model Min. Reservoir Inflow Avg. Reservoir Inflow Max. Reservoir Inflow
Type (MCM) (MCM) (MCM)
Algorithm| Training: | Learning | Dam Dataset Obs. Pred. | A (%) Obs. Pred. | A (%) Obs. Pred. | A (%)
Testing Rate
S1: Daily |XGBoost| 80:20 0.1 BB Training 0.00 0.17 +0.17 17.52 16.71 -0.81 | 311.46 | 197.05 |-114.41
Univariate (-4.62) (=36.73)
Prediction BB | Testing 0.00 0.17 +0.17 | 10.99 | 11.02 | +0.03 | 156.57 | 145.71 | -10.86
(+0.27) (-6.94)
XGBoost| 80:20 0.1 SK | Training 0.00 3.03 +3.03 | 17.32 | 16.70 | -0.62 | 221.87 | 146.95 | -74.92
(-3.58) (=33.77)
SK | Testing 0.00 3.03 +3.03 | 14.26 | 13.92 | -0.34 | 218.70 | 116.39 |-102.31
(=2.38) (-46.78)
S2: Daily | LSTM 70:30 0.1 BB | Training 0.00 0.27 +0.27 | 14.90 | 1516 | +0.26 | 311.46 | 301.59 | -9.87
Univariate (+1.74) (=3.17)
Prediction BB | Testing 0.00 0.27 +0.27 | 10.83 | 11.48 | +0.65 | 187.34 | 205.39 | +18.05
(+6.00) (+9.63)
LST™M 70:30 0.1 SK | Training 0.00 1.62 +1.62 | 1581 | 1576 | -0.05 | 214.42 | 202.71 | -11.71
(-=0.32) (=5.46)
SK | Testing 0.00 1.14 +1.14 | 1325 | 13.29 | +0.04 | 218.70 | 207.56 | -11.14
(+0.30) (-5.09)
S3: XGBoost| 80:20 0.001 BB | Training 0.00 8.05 +8.05 | 476.49 | 360.10 |-116.39|2,990.21|1,811.99}-1,178.22
Monthly (=24.43) (=39.40)
Univariate BB | Testing 12.99 | 10.87 | -2.12 | 370.31 | 359.75 | —-10.56 |2,373.51|1,740.76 | -632.75
Prediction (-16.32) (=2.85) (=26.66)
70:30 0.001 SK | Training 61.48 | 78.04 | +16.56 | 543.94 | 479.97 | —63.97 [3,095.97|2,076.67 |-1,019.30
(+26.94) (-11.76) (=32.92)
SK | Testing 40.30 | 83.60 | +43.30 | 429.62 | 437.75 | +8.123 |2,026.29|1,432.32| -593.97
(+107.44 (+1.89) (=29.31)
S4: LSTM 70:30 0.1 BB | Training 0.00 56.53 | +56.53 | 460.61 | 479.25 | +18.64 |2,877.23|2,373.81|-503.42
Monthly (+4.05) (-17.50)
Univariate BB | Testing 9.03 | 116.48 [+107.45| 336.64 | 410.65 | +74.01 |1,944.38|1,469.24 | -475.14
Prediction (+1,190) (+21.98) (=24.44)
70:30 0.1 SK | Training 46.50 | 110.20 | +63.70 | 486.21 | 495.34 | +9.14 |3,095.97(2,477.07|-618.90
(+136.99 (+1.88) (=19.99)
SK | Testing 40.30 | 112.55 | +72.25 | 410.14 | 460.03 | +49.89 |2,026.29(1,845.41| -180.88
(+179.28 (+12.17) (-8.93)
S5: Daily | LSTM 60:40 0.1 BB | Training 0.00 -0.20 | -0.20 | 1752 | 17.04 | -0.48 | 311.46 | 161.51 |-149.95
Multivariat (=2.74) (-48.14)
Prediction BB | Testing 0.00 -021 | -0.21 | 10.99 | 1147 | +0.48 | 156.57 | 151.09 | -5.48
(+4.37) (=3.50)
60:40 0.1 SK | Training 0.00 2.65 +2.65 | 1838 | 17.92 | -0.46 | 221.87 | 121.05 |-100.82
(=2.50) (-45.44)
SK | Testing 0.00 2.65 +2.65 | 1420 | 15.12 | +0.92 | 218.70 | 118.95 | —99.75
(+6.48) (—45.61)
S6: Monthly LSTM 70:30 0.1 BB | Training 0.00 17.92 | +17.92 | 510.59 | 551.76 | +41.17 |2,990.21|1,984.74-1,005.47
Multivariatq (+8.06) (=33.63)
Prediction BB | Testing 157 16.09 | +14.52 | 323.19 | 455.97 |+132.78|2,373.51(1,481.92|-891.59
(+924.84 (+41.08) (=37.56)
60:40 0.1 SK | Training 61.48 | 38.49 | -22.99 | 563.63 | 551.53 |-12.097 |3,095.97|2,258.06 | -837.91
(=37.39) (=2.15) (=27.06)
SK | Testing 40.30 | 54.61 |+14.309 | 428.26 | 485.17 | +56.91 |2,026.29|1,688.66 |-337.631
(+35.51) (+13.29) (-16.66)

In view of the crucial role of accurate long—term reservoir inflow predictions in effective reservoir
management planning, this study focuses on developing robust monthly inflow prediction models. Even both
monthly univariate and multivariate prediction models efficiently learned and captured the inflow patterns, exhibiting
similarities to observed values, monthly prediction models (S3, S4, and S6) demonstrated larger deviations from
observed values with higher percentage errors compared to daily predictions (S1, S2, and S5). On the training
datasets of S3, a bigger discrepancy of monthly minimum reservoir inflows was +8.05 MCM and +16.56 MCM for
BB and SK dams, respectively. While, the monthly average and maximum reservoir inflows were —24.43% and
—39.40%, respectively for BB dam and —11.76% and —39.92%, respectively for SK dam. Base on the testing datasets,
the percentage errors particularly in monthly minimum and maximum inflows were found to be underpredicted by
—16.32% for BB dam and overpredicted by +107.44% for SK dam. The maximum reservoir inflows of both BB and
SK dams were underpredicted with the errors of —26.66% and —29.31%, respectively. Analysis of monthly minimum
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and average inflows for both training and testing datasets of S4 and S6 revealed overprediction primarily for BB and
SK dams. Conversely, monthly maximum reservoir inflows were consistently underpredicted, exhibiting larger
percentage errors.

4. Conclusion

This study demonstrated the ability of ML—and DL-based univariate and multivariate prediction models to
predict daily and monthly reservoir inflows of BB and SK dams. Due to a wide range of successful applications of
ML and DL algorithms for hydrological prediction, XGBoost, a tree—based ensemble method, and LSTM, a deep
neural network, were selected for this study. To support real-time reservoir operation for the BB and SK dams, two
short—term prediction scenarios (S1 and S2) of daily univariate models and one scenario (S5) of daily multivariate
models were developed. In addition, two long—term prediction scenarios (S3 and S4) of monthly univariate models
and one scenario (S6) of monthly multivariate models were developed to support reservoir management planning. For
univariate prediction, the inflows of the BB and SK dams were predicted separately using two individual models. In
contrast, for multivariate prediction, a single model was developed to simultaneously predict the inflows of both the
BB and SK dams facilitating the integrated decision—making processes in the river basin. The results of all prediction
scenarios demonstrated that ML— and DL-based prediction models achieved higher statistical metrics evaluated in
terms of R?, NSE, MSE, and RMSE in predicting daily reservoir inflow compared to monthly predictions. This is
because prediction modeling with ML and DL algorithms can handle and leverage larger datasets available in daily
prediction model, enabling them to learn and capture patterns more effectively. Based on a number of model
configuration experiments, individual XGBoost models mostly outperformed LSTM when tested on the datasets for
both daily and monthly univariate predictions. LSTM models consistently outperformed XGBoost when mostly
trained on larger datasets for both daily and monthly univariate and multivariate predictions. However, a slight
decrease in statistical metrics was apparently observed with smaller testing datasets. To enhance the robustness and
precision of LSTM-based forecasts, it is recommended to increase the testing dataset size during model validation
and employ cross-validation techniques to check for model overfitting. For input feature selection, the information on
past reservoir inflow including the previous time step and its moving average was considered as a significant predictor
to predict future inflow for all prediction scenarios. As LSTM can handle large datasets effectively, consequently,
rainfall and humidity data were also incorporated as additional input features indicating a substantial impact on
improved predictive performance. Ability to predict low, average, and high reservoir inflow by ML— and DL—based
prediction models were also assessed. Overall, LSTM-based univariate model distinctively exhibited the smallest
percentage errors in predicting minimum, average, and maximum reservoir inflows for daily and monthly predictions
compared to the XGBoost model and multivariate prediction using LSTM. Consequently, LSTM-based individual
daily and monthly prediction models are recommended for predicting low and high values of reservoir inflow during
critical events. In addition, monthly prediction models demonstrated larger discrepancy from observed values with
higher percentage errors compared to daily predictions. Among all ML— and DL-based prediction models for daily
and monthly predictions, underprediction of low reservoir inflows and overprediction of high reservoir inflows by
both univariate and multivariate prediction models were consistently existed. Therefore, extracting specific and
informative insights from the results of each prediction model and forecasting horizon can significantly enhance
decision—making support for both real-time reservoir operation and long—term reservoir management planning.
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Review statement

This study demonstrated the predictability of Machine Learning (ML)- and Deep Learning (DL)-based
univariate and multivariate predictions of reservoir inflows of Bhumibol (BB) and Sirikit (SK), two major dams in the
Chao Phraya River Basin. XGBoost, tree—based ensemble—, and LSTM, deep neural network—based algorithms were
selected for development of daily and monthly prediction models. Input features selection and configuration design
of two different types of daily and monthly reservoir inflow prediction models; (1) univariate prediction with XGBoost
and LSTM algorithms and (2) multivariate prediction with LSTM algorithm, were definitely highlighted. In the last
step, predictability of predicting low and high reservoir inflow values of these models were accordingly explored to
assess their statistical performances.
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