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Abstract. Hydrological models are typically calibrated against discharge data. However, the resulting parameterization does 

not necessarily lead to a realistic representation of other variables, and multivariate model calibration may overcome this 10 

limitation. It seems reasonable to expect that multivariate calibration leads to reduced hydrograph uncertainty, associated 

with more constrained flux maps (i.e., combinations of streamflow generation mechanisms). However, this expectation 

assumes that an intersection exists within the parameter space between the separate behavioural clouds of the two or more 

variables considered in multivariate calibration.  Here, we tested this assumption in twelve Australian catchments located in 

five different climate zones. We calibrated the SIMHYD model using a Monte Carlo-based approach in which an initially 15 

large sample of parameter sets was constrained using discharge only, actual evapotranspiration only, and a combination of 

both variables (i.e., a single combined objective function). We demonstrated that adding actual evapotranspiration to a 

discharge-based calibration caused hydrograph uncertainty to increase for 11 of the 12 sites. Similarly, flux maps became 

less constrained under multivariate calibration relative to univariate calibration. Analysis of behavioural parameter sets 

suggests that these symptoms could be caused by non-overlapping behavioural parameter distributions among the different 20 

variables. By separately considering both locally observed and remote sensing-based evapotranspiration in the analysis, we 

could demonstrate that the source of the information did not affect our findings. This has implications both for model 

parameterization and model selection, emphasising that the value of non-discharge data in calibration is contingent on the 

suitability of the model structure. 

1 Introduction 25 

Nearly all hydrological models have parameters that cannot be directly measured and need to be calibrated. In calibration, 

model parameter values are estimated so that the model can closely match the observed hydrological behaviour of a 

catchment. Calibration is typically based on discharge, which is an integrated signal of the catchment response. For a given 

model, calibration with discharge can lead to several parameter sets with similar discharge response (known as equifinality; 

Beven, 2006). However, these parameter sets can reach a similar discharge response through different model pathways and 30 

not all of them realistically represent hydrological stores and fluxes other than discharge (Bouaziz et al., 2021; Khatami et 

al., 2019; Pool et al., 2024; Rakovec et al., 2016). 

One way to improve process representation in hydrological models and thus their physical realism is to estimate model 

parameter values using complementary data in addition to discharge (Efstratiadis and Koutsoyiannis, 2010). These could, for 

example, include in-situ or remote sensing-based observations of actual evapotranspiration (Arciniega-Esparza et al., 2022; 35 
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Meyer Oliveira et al., 2021; Széles et al., 2020), soil moisture (López López et al., 2017; Mei et al., 2023; Stisen et al., 

2018), groundwater levels (Kelleher et al., 2017; Pleasants et al., 2023; Seibert and McDonnell, 2002), or total water storage 

(Dembélé et al., 2020a; Demirel et al., 2019; Nijzink et al., 2018). 

Improvements in model realism are often quantified in terms of model performance for different hydrological variables. 

Considering a non‐discharge variable (such as actual evapotranspiration) in addition to discharge in model calibration 40 

strongly improves model performance for that particular variable, while the performance for discharge is typically 

deteriorated (Livneh and Lettenmaier, 2012; Mostafaie et al., 2018; Yassin et al., 2017). Using a large sample of catchments 

in Australia, Pool et al. (2024) showed that such trade-offs between discharge and the other variables get more pronounced 

with increasing catchment wetness. However, there may be benefits for other variables not used in calibration, with recent 

work by Dembélé et al. (2020a) in the Volta Basin and Mei et al. (2023) in Canadian catchments showing the presence of 45 

cross-benefits meaning that the use of a particular variable in calibration also leads to more realistic simulations of other 

variables not used in calibration. 

It is also common to evaluate model realism by considering the behavioural parameter space. An example is the use of 

reduced parameter uncertainty to indicate improved process representation in hydrological models (Blazkova et al., 2002; 

Rajib et al., 2016; Zink et al., 2018). Ideally, there is a physically meaningful link between the parameters with improved 50 

identification and the calibration variables, such as better constrained soil parameter values when adding actual 

evapotranspiration to a discharge-based calibration (Arciniega-Esparza et al., 2022; Demirel et al., 2019). Another 

parameter-based indicator is the final number of parameter sets considered behavioural in Monte Carlo-like calibration 

approaches (an indicator of the size of the behavioural subspace). For example, Hartman et al. (2017) started from a large 

initial sample of randomly generated parameter sets and selected behavioural parameter sets based on performance 55 

thresholds. Model performance was measured using discharge only or by simultaneously evaluating discharge and water 

quality data, and the latter produced less behavioural sets. Similar conclusions were reached by Arciniega-Esparza et al. 

(2022) and Kelleher et al. (2017) who used multiple hydrological variables and a step-wise or hierarchical selection of 

behavioural parameter sets. Such approaches assume that a calibration with a single variable leads to many equifinal 

parameter sets that cover a relatively large area of the parameter space, which can then be further constrained using 60 

additional variables. While several studies have reported that multivariate parameter selection results in a much smaller 

sample of behavioural parameter sets than selection with a single variable, few studies address the possibility and 

implications of constraining to the point where the subspace disappears entirely (i.e., no intersection), an eventuality that is 

discussed further below.  

At the broadest level, there are two common ways of looking at multivariate calibration, only one of which is in focus here.  65 

The first is that the two (or more) variables are in competition with one another and thus are "traded-off", or alternatively are 

weighted in accordance with their perceived importance so that a single "optimal" solution can be identified (as opposed to a 

set of Pareto-optimal candidates). This paradigm is not the focus in this paper. The other way of looking at multivariate 

calibration is as a restricting of the behavioural parameter space, as discussed above. By behavioural, we mean model 
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simulations are consistent with observations to some standard of performance (an acceptance threshold), where both the 70 

performance metric and the acceptance threshold may be subjectively chosen. The behavioural parameter space, then, is the 

cloud of parameter sets that meet or exceed the acceptance threshold. In this view, multivariate calibration is a way of 

making the cloud smaller, whereby the goal is to seek the intersection between the separate behavioural clouds of two or 

more variables. It seems reasonable to assume that such an intersection exists, and having made this assumption, it follows 

that the intersection is smaller than the individual clouds. Thus, restricting parameter sets to only those within the 75 

intersection should reduce the uncertainty in simulations. To be clear, we are not criticizing this view here - indeed, we feel it 

is advantageous in that it treats the information in the separate variables as complementary and beneficial.   

However, one limitation of the latter view is the assumption that the clouds intersect - this assumption is rarely mentioned, 

let alone explicitly tested. A lack of intersection might be a symptom of problems such as an inadequate model structure 

(Beck, 2005; Fowler et al., 2020; Wagener, 2003) or data that are subject to systematic biases or other errors (Beven and 80 

Westerberg, 2011; Girons Lopez and Seibert, 2016). If no intersection exists, it is possible that the application of multivariate 

calibration may result in the following perverse and rarely reported outcomes: either (i) zero behavioural parameters sets, in 

which case presumably the modelling exercise must be altered or abandoned; or (ii) multivariate calibration might cause 

uncertainty to increase, rather than decrease - this could happen if the assessment of parameter set performance is done 

jointly across variables, such as where a large random cloud is generated and a selection is chosen based on aggregate 85 

performance across variables. In this case, the method is agnostic to the presence or absence of an intersection since it will 

return a result either way. This latter case is demonstrated in this paper. 

There are, however, some exceptions to the above generalizations. It is admittedly more common for studies to focus on 

model performance than uncertainty, and studies focusing on uncertainty sometimes report mixed results.  For example, 

taking a discharge-based calibration as reference, Gallart et al. (2007) reported a more constrained hydrograph in the Can 90 

Vila catchment (Catalan Pyrenees) when considering discharge and water table data in calibration, whereas Blazkova et al. 

(2002) found no significant improvements for the Uhlirska catchment (Czech Republic) when simultaneously using 

discharge and maps of saturated area. Nor is the uncertainty in the hydrograph or in parameter values the only way to express 

uncertainty or equifinality. Recently, Khatami et al. (2019) suggested Flux Mapping to evaluate model equifinality and 

realism of process representations in models. These maps characterize equifinality by considering variation in contribution 95 

between three simulated runoff generating processes (i.e., overland flow, interflow, and baseflow), possibly providing an 

interesting alternative lens through which to assess the effect of multivariate model calibration. 

In summary, based on previous work, we may conclude that many modelers (including, until recently, the authors of this 

study) would expect that adding complementary data to a discharge-based calibration leads to a more constrained parameter 

space and an improved overall process representation. Consequently, a modeler could assume that the model internal runoff 100 

flux space is more constrained leading to a reduced uncertainty of hydrograph simulations. Here, we test these two 

assumptions using the following hypotheses: 
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• H1: Adding complementary data to a discharge-based model calibration reduces model equifinality, leading to 

more constrained clouds of behavioural parameter sets and model internal flux maps. 

• H2:  Hydrograph uncertainty is reduced when adding complementary data to a discharge-based model 105 

calibration. 

With these two hypotheses we explicitly focus on hydrograph uncertainty and runoff flux maps, which complements existing 

multivariate calibration studies that tend to focus their attention on model performance.  

We tested the two hypotheses in twelve Australian catchments located in five different climate zones. We used the SIMHYD 

model, which, while conceptual in nature and spatially lumped, explicitly simulates different runoff processes and is thus a 110 

suitable choice to explore using flux maps as well as considering traditional (parameter and simulation) uncertainty. We 

calibrated SIMHYD for each catchment using discharge only, actual evapotranspiration only, and a combination of both 

variables. The twelve study catchments are located near flux tower monitoring sites, which allowed us to separately consider 

both locally observed and remote sensing-based evapotranspiration to determine if the source of the information influenced 

the outcome. Using these data, we demonstrate that multivariate model calibration can increase equifinality in simulated flux 115 

maps and uncertainty in hydrograph simulations. We show that these symptoms co-occur with non-overlapping behavioural 

parameter distributions for the individual calibration variables, suggesting a possible causative link. The consequence is that 

non-discharge data may have little value unless the model structure is suitable, which indicates that modelers should be 

cautious when using legacy-based approaches to model selection (Addor and Melsen, 2019) and instead apply more rigorous 

and holistic evaluation approaches across a wider pool of candidate models. Thus, this study has implications both for model 120 

selection and for methods currently used to calibrate models for practical applications and decision making. 

Materials and Methods 

2 Materials and methods 

2.1 Study area and data set 

The study was based on twelve Australian catchments with minimal water resource development and land use disturbances. 125 

Although larger samples are desirable, here we restrict ourselves to sites that have nearby flux towers to quantify actual 

evapotranspiration, as discussed below. The catchments cover five Köppen‐Geiger climate zones (Peel et al., 2007) and 

different hydroclimatic regimes (Fig. 1). The tropical catchments in the North have summer-dominated precipitation and 

discharge regimes arising from monsoon rainfall from January to March (Fig. 1bii-iii). The arid catchments in northern 

Australia also have some summer precipitation, but only little results in discharge due to high summer evapotranspiration 130 

rates (Fig. 1bi-iii). Most of the temperate catchments are in the Southeast and Southwest of Australia and for many of them 

precipitation and discharge is more evenly distributed over the year than in the tropical and the arid catchments (Fig. 1bii-

iii). Overall, mean annual values of precipitation and discharge for the twelve study catchments range from 510 mm to 3200 
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mm, and 12 mm to 1720 mm, respectively. The catchments vary in size from 96 km2 to 4794 km2 and are located between 39 

m a.s.l. and 902 m a.s.l.  135 

Daily meteorological and discharge time series were extracted from version 2 of the CAMELS-AUS dataset (Fowler et al., 

2024). It provides for all twelve study catchments data from at least 1977 to 2022. Among the multiple options provided 

within CAMELS-AUS, we chose the meteorological time series representing catchment averages calculated from the 

gridded precipitation product (∼5 × 5 km) of Evans et al.  (2020) and the gridded Morton’s wet environmental areal potential 

evapotranspiration estimates (∼5 × 5 km) of Jeffrey et al.  (2001). 140 

Actual evapotranspiration time series were used from two different sources to consider both remote sensing-based data and 

locally observed field data. The remote sensing-based time series were retrieved from the global gridded product (∼8 × 8 

km) of the Numerical Terradynamic Simulation Group (NTSG) at the University of Montana (Zhang et al., 2010), which is 

available for the years 1982 to 2013. Their estimates of monthly actual evapotranspiration are based on biome-specific 

transpiration and soil evaporation calculated from a modified Penman-Monteith equation. For our study, we calculated a 145 

monthly catchment average value using the area‐weighted mean of all grid cells covering a particular catchment. The 

catchment boundaries were taken from the CAMELS-AUS v2 dataset. The dataset was chosen because it has been a 

commonly used product in Australia (Gardiya Weligamage et al., 2023).  

The locally observed time series of actual evapotranspiration were obtained from the OzFlux Research and Monitoring 

network (Beringer et al., 2016), part of the international Fluxnet program (Baldocchi et al., 2001), which maintains tower-150 

based eddy covariance systems to collect data on energy, carbon, and water fluxes in Australia and New Zealand. Not all 

OzFlux sites are located within the boundaries of catchments with discharge gaugings. Thus, we matched each of the twelve 

OzFlux sites used in this study with the catchment having the closest catchment centroid within CAMELS-AUS v2. Table 

S1 provides the OzFlux site name and the corresponding catchment ID in the CAMELS-AUS dataset. The field-based daily 

actual evapotranspiration values were transferred to the catchments without modification assuming that they are a reasonable 155 

estimate of catchment average evapotranspiration (note that the objective function used is insensitive to bias, for reasons 

discussed in Section 2.3.1). The length of the available time series varies among the twelve OzFlux sites, spanning the most 

recent 7 to 21 years. 

The temporal coverage differs between the three datasets described above, whereby the time periods of the remote sensing-

based and field-based actual evapotranspiration datasets don’t overlap. To make modelling results from the two actual 160 

evapotranspiration products more comparable, we created two separate model evaluation datasets using the following 

criteria: i) the data period should ideally cover ten years, and ii) only hydrological years with a complete discharge and 

actual evapotranspiration record are used. The start of the hydrological year depends on the hydroclimatic conditions of a 

catchment and was defined as the month with lowest average long‐term monthly discharge (Wasko et al., 2020). A 

hydrological year was considered complete if less than 5% of time steps were missing. As a result, the first model evaluation 165 

dataset (DETa.RS) including meteorological data, discharge, and remote sensing-based actual evapotranspiration covered the 

period 2003 to 2014 with nine out of twelve catchments having the full ten-year record. The second model evaluation dataset 
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(DETa.Field) including meteorological data, discharge, and field-based actual evapotranspiration broadly covered the period 

2011 to 2022. Time series length for the twelve catchments ranged between three and ten years with five out of twelve 

catchments having ten years of data. 170 

 

Figure 1. Location and characteristics of the twelve study catchments. (a) Location and Köppen‐Geiger climate zone (Peel et al., 

2007) of the study catchments. (b) Regime curves for (i) actual evapotranspiration (remote-sensing based data), (ii) precipitation, 

and (iii) discharge. The regime curve is calculated as the mean value at each day of the year using the hydrological years 2004-

2013. Regime curves were smoothed with a fifteen-day moving average. 175 

2.2 Hydrological model 

SIMHYD is a lumped bucket-type hydrological model that has been applied in different hydroclimatic regions of Australia 

(Chiew et al., 2002; Fowler et al., 2020; Khatami et al., 2019). The model takes daily precipitation and potential 

evapotranspiration as inputs and simulates a catchment’s rainfall-runoff response using three stores and seven parameters 

(Fig. S1). The three stores represent interception by vegetation, soil water, and groundwater. The model parameters affect 180 

how the state of the stores varies as a function of rainfall, actual evapotranspiration, infiltration, recharge, and runoff 

generation. The streamflow generation mechanisms modelled by SIMHYD are infiltration excess flow, interflow and 

saturation excess flow, and baseflow. The three streamflow generation mechanisms are hereafter referred to as overland 

flow, interflow, and baseflow, and are used to create the runoff flux maps. A more detailed description of SIMHYD can be 

found in Chiew et al. (2002). The model code for SIMHYD is publicly available from the Modular Assessment of Rainfall‐185 

Runoff Models Toolbox (MARRMoT). We used MARRMoT version 2.1 (Trotter et al., 2022). 
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2.3 Modelling experiment 

We defined three calibration cases to systematically analyse the impact of multivariate model calibration on simulated runoff 

generation and hydrographs. Note that we use the word “calibration” here to denote the process of selecting an ensemble of 

parameter sets based on their match with observed data. This is different to common usage in which a single “optimum” 190 

parameter set, not an ensemble, is chosen. The three calibration cases included a calibration to i) daily discharge only, ii) 

monthly actual evapotranspiration only, and iii) a combination of both variables. Below we describe the objective functions 

used in calibration, followed by the calibration process in which parameter values were estimated, and the analysis of the 

modelling results. 

2.3.1 Objective functions 195 

The objective functions used in calibration differed for discharge and actual evapotranspiration and were chosen based on 

recent work conducted with SIMHYD in Australian catchments. Discharge simulations were evaluated using an objective 

function OQ that is designed to ensure that high flows and the very low flows often occurring in some of the study 

catchments are well simulated while minimizing total volume bias (Trotter et al., 2023). The objective function OQ is defined 

in Equation 1, whereby KGE is the Kling-Gupta efficiency (Gupta et al., 2009) once calculated using direct flows and once 200 

using the fifth root of the flows, and B is the volume bias. 

𝑂𝑄 = 0.5(𝐾𝐺𝐸 + 𝐾𝐺𝐸0.2) − 5 ∗ |ln⁡(𝐵 + 1)|2.5 (1) 

Simulated actual evapotranspiration was evaluated with an objective function OETa that emphasizes small to medium fluxes 

(Gardiya Weligamage, 2024). Additionally, the chosen objective function explicitly does not evaluate volume bias as many 

evapotranspiration products suffer from considerable volume bias. This is true both for remotely sensed products, where the 

bias arises from the uncertainty in converting observable radiation into evaporative fluxes (Elnashar et al., 2021; 205 

Wartenburger et al., 2018; Zhang et al., 2020) and in the case of flux towers where bias may arise because the flux tower ET 

is not representative of the catchment as a whole. In both cases, we assume here that the temporal pattern of ET (as captured 

by the variability and correlation components of the KGE) is valid as a calibration target even if the overall timeseries is 

biased too high or too low (Pool et al., 2024). The objective function used to compare simulated with observed actual 

evapotranspiration is defined in Equation 2, whereby KGE.mod is the Kling-Gupta efficiency without the bias component 210 

calculated on square root-transformed fluxes. 

𝑂𝐸𝑇𝑎 = 𝐾𝐺𝐸.𝑚𝑜𝑑0.5 (2) 

When using both discharge and actual evapotranspiration in model calibration, the objective functions OQ and OETa were 

combined using the Euclidean distance (Equation 3).  

𝑂𝑄,𝐸𝑇𝑎 = 1 − √(𝑂𝑄 − 1)2 + (𝑂𝐸𝑇𝑎 − 1)2 
(3) 
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2.3.2 Model calibration 

For model calibration, we chose a Monte Carlo-based approach in which calibration was used to constrain an initially large 215 

sample of parameter sets. By keeping a predefined number of best performing parameter sets for each calibration case, one 

can evaluate model uncertainty under different data considerations. More specifically, we started model calibration by 

drawing an initial sample of 100,000 parameter values from a predefined uniform parameter distribution (Peel et al., 2000) 

using Latin Hypercube Sampling. For each catchment, the model was set up with a two-year warm-up period and then run 

with each parameter set using the daily meteorological input from the DETa.RS model evaluation dataset. The resulting 220 

100,000 simulations were evaluated against observed discharge and actual evapotranspiration using the objective functions 

OQ, OETa, and OQ,ETa. In a final step, the 100 best performing parameter sets were selected for each calibration case. We 

repeated the identical procedure for the second model evaluation dataset DETa.Field. Note that for the purpose of this study the 

entire evaluation dataset was used for calibration and no evaluation in an independent period was conducted. 

2.3.3 Flux map and hydrograph uncertainty 225 

A flux map is a ternary plot where each axis represents a streamflow generation mechanism that is simulated in the model 

(Khatami et al., 2019). For the SIMHYD model, a point on the flux map shows the contribution of overland flow, interflow, 

and baseflow to total streamflow for a particular model run. Here, we plotted the flux contributions of all 100 best 

simulations. Cloud patterns filling a large space on the flux map indicate higher degrees of model flux equifinality. We 

quantified the fraction of the flux map area filled after calibration by calculating the fraction of triangles (i.e., flux map grid 230 

cells) covered by the 100 best simulations.  

Hydrograph uncertainty was defined as the range in discharge values simulated by the 100 best parameter sets at each time 

step. To investigate uncertainties in different parts of the hydrograph, we calculated uncertainty at different flow quantiles 

ranging from Q5 (low flow) to Q100 (high flow). The use of flow quantiles rather than absolute flow values made the results 

for catchments with different hydroclimatic regimes more comparable. 235 

4 Results 

As mentioned, the impact of adding complementary data to a discharge-based model calibration was explored for two 

different datasets, the first using discharge and remote sensing-based actual evapotranspiration (DETa.RS) and the second 

using discharge and field-based actual evapotranspiration (DETa.Field). The results and the conclusions from the two datasets 

were similar and for reasons of brevity, results for the first dataset (DETa.RS) are presented in detail, while the results for the 240 

second dataset (DETa.Field) can be found in the supporting information (Figs. S5-S11). 
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4.1 Effect of adding complementary data to a discharge-based model calibration 

Significant differences were found in terms of model performance when calibrating with discharge only versus discharge and 

evapotranspiration. The 100 best parameter sets selected in the discharge-based calibration clearly outperformed the 

uncalibrated model (i.e., median of all randomly sampled parameter sets) when evaluating discharge. However, the same 245 

parameter sets were only marginally better than the uncalibrated model when evaluated for actual evapotranspiration. 

Considering actual evapotranspiration in addition to discharge in model calibration strongly improved the performance for 

actual evapotranspiration, which can be attributed to more constrained interception and soil parameters that directly affect 

the simulation of actual evapotranspiration. While the improved simulation of actual evapotranspiration comes at the 

expense of a slightly decreased performance for discharge, overall model performance was highest when considering both 250 

variables in model calibration. For brevity, we do not provide plots of model performance and parameter sensitivity here, but 

these can be viewed at Figs. S2 and S3. Our results are consistent with findings of previous work, which concluded that 

multivariate calibration improves the overall realism of model simulations based on model performance and parameter 

sensitivity. 

By exploring flux maps and hydrograph uncertainties, however, we get a more nuanced and different view of the effect of 255 

multivariate calibration on model realism. Figure 2a shows the flux map after different calibration cases for the Litchfield 

catchment. While interflow and baseflow were the main streamflow generation mechanisms when calibrating to discharge 

(OQ), overland flow gained importance when also considering actual evapotranspiration in calibration (OQ,ETa). 

Consequently, the percentage of the flux map area filled by the 100 best simulations increased from 14% after a discharge-

only calibration to 41% when adding actual evapotranspiration to a discharge-based calibration. Such an increase in flux map 260 

area was observed for ten out of twelve catchments with flux map areas increasing between 2% and 27% (Fig. 2b). This 

suggests that multivariate calibration can increase simulated flux equifinality regardless of local conditions such as climate 

type. 
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Figure 2. Flux map when calibrating the model with discharge (OQ) or discharge and actual evapotranspiration (OQ,ETa). (a) The 265 
flux map is shown for the 100 best parameter sets in terms of OQ and OQ,ETa for the Litchfield catchment. (b) Percentage of flux 

map area filled by the ensemble of 100 best parameter sets in terms of OQ and OQ,ETa. Values are shown for all twelve study 

catchments. The catchment Cow Bay (CB) is marked due to its different flux map area. 

In terms of hydrograph uncertainty we found that the simulated hydrograph uncertainty of the Litchfield catchment 

considerably increased for many flow conditions when not only calibrating to discharge (OQ) but also considering actual 270 

evapotranspiration in calibration (OQ,ETa; Fig. 3a). This observation was common to all study catchments, whereby the 

increase in hydrograph uncertainty generally tended to be larger for low flows than high flows (Fig. 3b). Averaging over all 

flow conditions (i.e., simulated time steps), uncertainty increased in eleven out of twelve catchments. The only catchment 

experiencing a lower average hydrograph uncertainty after multivariate model calibration was Cow Bay. Interestingly, Cow 

Bay was also the only catchment with a much-reduced flux equifinality when adding actual evapotranspiration to a 275 

discharge-based calibration (Fig. 2b). 
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Figure 3. Hydrograph uncertainty when calibrating the model with discharge (OQ) or discharge and actual evapotranspiration 

(OQ,ETa). (a) Observed and simulated hydrograph for the Litchfield catchment in a year with close to mean annual discharge. The 

range in hydrograph simulations indicates the minimum and maximum value of all 100 best simulations in terms of OQ and OQ,ETa. 280 
(b) Change in uncertainty of the simulated hydrographs at different flow quantiles (Q5 (low flow) to Q100 (high flows)). Change is 

defined as the ratio of the simulated range from a calibration with OQ,ETa to the simulated range from a calibration with OQ. 

Values smaller than 1 (purple color) indicate a reduction in uncertainty when adding actual evapotranspiration to a discharge-

based calibration. Values are shown for all twelve study catchments. 

4.2 Comparing results from univariate calibration with discharge and actual evapotranspiration 285 

To explore why multivariate model calibration increased flux map area and hydrograph uncertainty, we first analysed the 

model parameter space after calibration. As mentioned previously, Monte Carlo-based multivariable calibration is a way of 

making an initially large parameter space smaller, whereby the goal is to seek the intersection between the separate 

behavioural clouds of two or more variables (here, discharge and actual evapotranspiration). It is therefore assumed that such 

an intersection exists. Here, we looked for these intersections between two clouds by comparing the parameter value 290 

distribution when calibrating SIMHYD solely to discharge and solely to actual evapotranspiration. Given SIMHYD has 

seven parameters, it is possible to assess the intersection of clouds in any number of dimensions between one (i.e., assessing 

overlap of histograms for each parameter individually) and seven (which is difficult to visualize but technically possible).  

Here, we focus on two-dimensional plots since they allow some consideration of parameter interactions but are still easy to 

visualize. The disadvantage is that there are many pairwise combinations that could be viewed, namely 21 (7C2).  We 295 

examined parameter distributions for all such combinations, but present for each catchment the result for only one of the 21 

parameter pairs (unique combinations of seven model parameters), selected to show the lack of overlap (if any) between the 

separate clouds. 

Starting again with the Litchfield catchment as an example, Fig. 4a shows the values of the 100 best parameter sets for two 

model parameters, namely infiltration loss exponent (x axis) and maximum infiltration loss (y axis), when calibrating 300 
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SIMHYD with discharge (OQ) and with actual evapotranspiration (OETa). We found that there was a strong separation 

between the two point clouds of behavioural parameter sets for the given parameter pair and no evidence of intersection as 

often assumed. Similar results, although with different separation patterns and different parameter pairs, were observed for 

the other study catchments (Fig. 4b). We expect that the separation patterns would get even more pronounced when moving 

from the two-dimensional parameter space to a higher dimensional space, but having demonstrated non-overlap in two 305 

dimensions for most catchments, we did not explicitly test this in higher dimensions, save by exception. An example of that 

is the Robson Creek catchment for which the point clouds of behavioural parameter sets overlapped in the two-dimensional 

parameter space (Fig. 4b) but became separated when analysed in the three-dimensional parameter space (not shown here). 

While we focused on presenting one example of separation pattern for each catchment, the patterns were typically present for 

several parameter pairs. 310 

 

Figure 4. Parameter distribution when calibrating the model with discharge (OQ) or actual evapotranspiration (OETa). (a) 

Distribution of two parameters for the 100 best parameter sets in terms of OQ and OETa for the Litchfield catchment. In this 

example, parameter 1 is infiltration loss exponent [-] and parameter 2 is maximum infiltration loss [mm d-1]. (b) Same as in (a) but 

with an example for the other eleven catchments. Note that parameter 1 and parameter 2 represent different SIMHYD parameters 315 
in each case. Parameter combinations were chosen to show different separation patterns. Robson Creek is the only catchment 

without a point cloud separation in a two-dimensional parameter space when calibrating with OQ and OETa. 

We further analysed how a calibration with discharge and a calibration with actual evapotranspiration affected the simulated 

contribution of streamflow generation mechanisms. In the case of the Litchfield catchment (Fig. 5a), a calibration with 

discharge (OQ) favoured parameter sets for which streamflow was largely composed of interflow and baseflow. In contrast, 320 

much of the total streamflow originated from overland flow when calibrating solely to actual evapotranspiration (OETa). Such 

considerable discrepancies in streamflow generation mechanisms were also observed for other study catchments (Fig. 5b). 

They could eventually lead to a larger flux map equifinality when simultaneously calibrating to discharge and actual 

evapotranspiration, which was indeed observed in Fig. 2. 
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 325 

Figure 5. Flux map when calibrating the model with discharge (OQ) or actual evapotranspiration (OETa). (a) The flux map is shown 

for the 100 best parameter sets in terms of OQ and OETa for the Litchfield catchment. (b) Same as in (a) but for the other eleven 

catchments. 

5 Discussion 

5.1 Why did multivariate calibration increase discharge uncertainty? 330 

Our results for twelve hydrologically contrasting catchments in Australia suggest that multivariate model calibration can lead 

to less constrained flux maps (i.e., streamflow generation mechanisms) and increased hydrograph uncertainties relative to a 

discharge-based calibration (Figs. 2 and 3). These results may seem counterintuitive given the large number of studies 

showing improved overall model performance and reporting improved realism for a range of simulated variables and 

processes after multivariate calibration (Demirel et al., 2019; López López et al., 2017; Mei et al., 2023). Thus, why does the 335 

inclusion of additional information not result in more constrained flux maps and hydrographs? The parameter distributions 

shown in Fig. 4 suggest that these symptoms could be caused by non-overlapping behavioural parameter distributions for the 

individual calibration variables. When simultaneously calibrating the model against discharge and actual evapotranspiration, 

overall model performance (i.e., the average performance over both variables) increases (by definition, since this is the 

objective function used).  However, in the absence of an intersection between the individual behavioural clouds, the selected 340 

parameter sets represent compromise solutions that get spread across or between the two individual clouds (Fig. S4 and S11), 

sometimes covering a wider space, which increases equifinality and finally leads to increased discharge uncertainty. 

Under ideal conditions, there would, for each catchment, be one single parameter set resulting in a perfect match between 

several observed and simulated variables. However, the process of setting up a model for a catchment involves a large 

number of (subjective) decisions, including the choice of data, calibration procedure, and model structure, which all affect 345 
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the study outcome (Ceola et al., 2015). Below we discuss some aspects of these decisions, which we think are relevant in the 

context of our work. 

We used actual evapotranspiration data from two different sources. Field-based actual evapotranspiration data from flux 

towers are considered to be more accurate than remote sensing-based data and are used to benchmark the latter (Martens et 

al., 2017; Zhang et al., 2010). The near-point-scale nature of flux tower data means they are not necessarily representative of 350 

the entire (sub-) catchment, a fact known to affect the suitability of local observations to select catchment-scale parameter 

values (Gallart et al., 2007; Staudinger et al., 2021; Széles et al., 2020). Remote sensing-based actual evapotranspiration data 

may have a larger footprint and while many data products show reasonable seasonal dynamics, they can suffer from large 

volume bias (Elnashar et al., 2021; Wartenburger et al., 2018; Zhang et al., 2020). The choice of an evapotranspiration data 

product can significantly influence the selection of model parameter values even if a bias insensitive metric was used in 355 

calibration (Dembélé et al., 2020b; Nijzink et al., 2018). Interestingly, the remote sensing-based data and the field-based flux 

tower data resulted in similar flux map patterns for the twelve study catchments despite their different data characteristics. 

We take this as an indication that issues with actual evapotranspiration data are not the root cause of the results. Thus, 

changing the actual evapotranspiration datasets would be unlikely to result in significantly different conclusions. While 

gauging errors in discharge data influence results, these errors might be expected to differ from one station to the next, 360 

whereas the issues here occur across all twelve catchments tested. Thus, it appears data quality alone cannot explain the 

increased discharge uncertainty following multivariate calibration.  

Another potential factor influencing our results is the calibration process. For example, the choice of an objective function 

defines which aspects of a time series receive most weight during calibration (Kiesel et al., 2017; Pool et al., 2017) and thus 

changes the distribution of the calibrated model parameter values (Garcia et al., 2017). We used objective functions that tend 365 

to simultaneously evaluate a range of data aspects as we were interested in a model being able to simulate multiple facets of 

catchment response. Both objective functions were based on the Kling-Gupta efficiency and represent a choice done in many 

modelling studies. Another commonly used objective function, the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), is in 

many aspects similar to KGE and its use should result in similar findings as made in this study. A probably more impactful 

factor in our study was the decision to define the 0.1% best performing parameter sets as behavioural. Loosening this 370 

threshold may increase the chance of finding overlapping parameter distributions for univariate calibrations with discharge 

and actual evapotranspiration. This would come at the expense of accepting lower model performance values for the 

calibration variables. However, performance thresholds are only one relevant factor in a broad set of methodological choices 

that contributed to the result seen here, as discussed below in more detail in subsections 5.2.   

5.2 Methodological choices contributing to the study result 375 

Although unplanned, the combination of two key methodological decisions led directly to the observed result being possible. 

Had either decision been made differently, the non-overlap of the individual parameter clouds (Fig. 4) would have presented 

with different symptoms. The two key methodological decisions are explained in Fig. 6. The first decision was whether to 
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require parameter sets to fulfil acceptance criteria for both variables separately (horizontal axis in Fig. 6), which we did not 

do. Instead, acceptance was assessed based on average performance across variables. Had this decision gone the other way, 380 

no parameter set in the top 100 for discharge would have also been in the top 100 for actual evapotranspiration, and vice 

versa. In this case, the symptom of non-overlapping clouds would be that no behavioural parameter sets would be found. The 

second decision was whether to require a pre-defined performance threshold to be met (vertical axis in Fig. 6), which we did 

not do. Instead, the top 100 parameter sets were accepted, whatever their performance may be. Had this decision gone the 

other way, it is unlikely that any parameter set would have met the threshold because, at best, they might be located in one 385 

behavioural cloud but not the other, and never both.  Thus, they would all have a poor average score across the two variables, 

and (once again) the symptom of non-overlapping clouds would be that no behavioural parameter sets would be found. 

Consequently, all methodological options except the one adopted would lead to no behavioural sets and make the observed 

result impossible. It is, however, important to note that (i) we are not advocating one of these methods over the others, but 

rather reflecting on the circumstances that gave rise to the results; and (ii) the issue of non-overlapping parameter clouds is 390 

present irrespective of the chosen calibration approach or whether the non-overlap is detected during calibration or not.   

It is possible that many prior studies have also come across the problem of non-overlapping clouds using one of the other 

three methods outlined above, and thus they identified no behavioural parameter sets. This null result is sufficient to scuttle a 

study before it has even begun, and so it is likely that those authors altered the parameters of their study until a workaround 

was found. If this is true, it would explain why few papers have reported similar findings. However, we recommend that 395 

future studies recognise such problems, report them, and attempt to tackle them directly rather than seeking workarounds 

that leave the core problem unresolved and unreported. This is particularly important in the case of model structural 

inadequacy, whereby we need greater insights to distinguish among candidate models and provide evidence-based reasons to 

move away from legacy-based model selection (Addor & Melsen, 2019). These ideas are expanded further in the following 

subsections. 400 
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Figure 6. Matrix of possible design choices for this modelling experiment, showing the distinct combination that made the 

observed result possible. 

5.3 Increased uncertainty as a sign of model structural inadequacy 

Differences in parameter distributions or trade-offs in model performance when using multiple calibration variables can be a 405 

sign of model structural limitations. For example, Meyer Oliveira et al. (2021) found contrasting soil water storage capacity 

values after calibrating the MCB model with discharge or actual evapotranspiration for the Amazonas. They attributed the 

large differences to parameter compensation effects caused by a misrepresentation of processes related to deep root water 

uptake during the dry season. Vervoort et al. (2014) modelled four Australian sub-catchments with the CMD model and 

showed that adding actual evapotranspiration to a discharge-based calibration improved the simulated water balance, but 410 

negatively affected the timing of discharge simulations. They argued that multivariate calibration left less room for the 

parameters to compensate for structural errors in the conceptualization of potential flow paths. In our work, the non-

overlapping (but often rather well constrained) parameter distributions and contrasting flux maps suggest very different 

hydrological responses for the same catchment when calibrating with discharge or actual evapotranspiration. A common 

observation among many catchments was that a calibration with actual evapotranspiration resulted in a large fraction of 415 

(infiltration excess) overland flow, whereas a calibration with discharge resulted in a combination of interflow and baseflow. 

Such a contrasting behaviour could potentially be caused by limitations in the conceptualization of the soil store. However, 
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to better identify and understand structural limitations of the SIMHYD model, a much more comprehensive analysis targeted 

to detect limitations would be needed. 

5.4 Multivariate model calibration - an insightful test for evaluating hydrological models 420 

Given the wide range of available models and their application for diverse purposes, it is desirable to apply tests to identify 

their suitability, and we believe the multivariate methods shown here could inform such a model testing. Some of the most 

widely applied model testing frameworks are based on the four-level testing scheme proposed by Klemeš (1986) in which 

the model’s transposability is tested in time and space. Various variants of the split sample test (SST), such as the 

generalized SST (GSST; Coron et al., 2012) or a generalized differential SST (GDSST; Dakhlaoui et al., 2017), have been 425 

developed to thoroughly test the temporal robustness of models under changing conditions. There is also a long history of 

large sample catchment studies, which were conducted to better understand the applicability of a model across 

hydrologically contrasting catchments (Knoben et al., 2020; Merz and Blöschl, 2004; Perrin et al., 2001; Seibert et al., 2018). 

These tests are typically conducted using locally observed discharge data although they are applicable to any type and 

number of hydrological data. For example, one can test a model by calibrating it with one variable (e.g., discharge) and 430 

evaluating it with withheld data (e.g., actual evapotranspiration), as done in this study. Thus, the calibration and evaluation 

with multiple hydrological variables can be seen as an additional dimension of the tests proposed by Klemeš (1986). 

Interestingly, the benefits of multivariate calibration are rarely evaluated in the context of testing (as outlined above) and 

potentially rejecting a model structure. Multivariate calibration studies are more often motivated by the specific need for 

discharge simulations in ungauged basins (Hulsman et al., 2020; Liu et al., 2022; Zhang et al., 2020) or the more general 435 

interest in improving model realism within the limits of a chosen model structure (Demirel et al., 2019; Finger et al., 2015; 

Széles et al., 2020). Our work suggests that the value of multivariate model calibration goes beyond estimating parameter 

values, and we think multivariate calibration can serve as an insightful test of a model’s capacity to represent hydrological 

behaviour, especially if a range of modelled aspects are considered. Indeed, by evaluating model performance values, we 

would have concluded that multivariate calibration improves the overall realism of the SIMHYD model (Fig. S2). However, 440 

the flux maps and the parameter distributions (Figs. 4 and 5) provided important insights into model structural issues and 

perverse outcomes such as some adopted parameter sets being “compromise” solutions in subregions not associated with 

either variable’s behavioural subspace. 

Our results were based on a few catchments in Australia and a single model structure. Yet, the chosen modelling set-up 

allowed us to test and falsify the two, often implicitly assumed, hypotheses motivating this study. As discussed by the 445 

philosopher Karl Popper (Popper, 2002), the observation of a single example contradicting a hypothesis is sufficient to reject 

it. To additionally evaluate the generalizability of our findings, we encourage modellers to further explore the potential of 

multivariate model calibration for testing models on a larger catchment data set, a wider set of different models, and other 

types of data. Open-source model collections like MARRMoT (Trotter et al., 2022) facilitate the testing and comparison of 

several existing model structures. Data to set-up, run, and evaluate hydrological models for many catchments across the 450 
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world have also become easily accessible in recent years through the publication of data sets such as CAMELS (Addor et al., 

2017; Alvarez-Garreton et al., 2018; Coxon et al., 2020; Fowler et al., 2024). The preparation of remote sensing-based 

hydrological variables other than discharge for hydrological modelling is still more tedious, but modelers can often choose 

between several publicly available products for a particular variable (Awasthi and Varade, 2021; Beck et al., 2021; Elnashar 

et al., 2021). The more recent combined availability of models and data provides a great opportunity to evaluate the 455 

appropriateness and limitations of a particular model structure or its parameter values. While we used discharge and actual 

evapotranspiration to select behavioural parameter sets in a Monte Carlo-based approach, a similar concept can be applied 

with any variable of interest. In fact, a detailed model testing with multivariate calibration will be most insightful if 

conducted for variables most relevant for a particular scientific or operational purpose, such as the use of groundwater or 

terrestrial water storage in catchments showing multi-year “memory” (Fowler et al., 2020) or the need to match vegetation 460 

dynamics that might be driving catchment behaviour (Gardiya Weligamage et al., 2023; Peterson et al., 2021). As discussed 

by Andréassian et al. (2009), we need to be merciless towards our own models by applying demanding crash-tests. 

Calibrating with multiple variables, aside from being motivated by model realism, can be a powerful additional crash test for 

our models. 

6 Conclusions 465 

The main goal of this study was to assess the impact of multivariate model calibration on uncertainty in simulated flux maps 

(i.e., streamflow generation mechanism) and hydrographs. We used a Monte Carlo-based approach in which an initially large 

sample of 100,000 parameter sets was constrained using discharge only, actual evapotranspiration only, and a combination 

of both variables. For each of these three calibration cases, the 100 best parameter sets were retained and the related 

parameter distributions, flux maps, and hydrographs were analysed. Our modelling experiment was based on twelve 470 

Australian catchments covering a range of hydroclimatic conditions. 

We found that calibration with both discharge and actual evapotranspiration rather than discharge only led to a less 

constrained flux map and thus a wider range of potential streamflow generation mechanisms for a given catchment. This 

eventuated in increased hydrograph uncertainty for many different flow conditions and for 11 of 12 study catchments. Our 

results suggest that these symptoms could be caused by non-overlapping behavioural parameter distributions (or parameter 475 

clouds when visualized in the two-dimensional parameter space) following a calibration with the individual variables. Thus, 

when simultaneously calibrating the model against discharge and actual evapotranspiration, the selected behavioural 

parameter sets represented compromise solutions that were often part of neither behavioural cloud and that were spread 

widely through the parameter space, which increased flux equifinality and discharge uncertainty. While there can be various 

reasons why behavioural parameter distributions from different calibration variables don’t overlap, in our study context, they 480 

likely point towards model structural limitations. The observation of non-overlapping behavioural parameter clouds has 

rarely been reported in the literature and may contradict the expectations commonly found within the hydrological modelling 
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community. We recommend that future studies recognise such problems and report them to contribute to an improved 

understanding of the value of data for model calibration and selection. 

Our findings can contribute to good modelling practices in two ways. First, multivariate calibration is an important tool for 485 

selecting more realistic model parameter values. However, our results suggest that model realism should not purely be 

assessed with a performance criterion. Instead, we recommend to carefully analyse the distribution of behavioural parameter 

values for each calibration variable and to test the assumption of overlapping behavioural parameter clouds before drawing 

conclusions on model realism. Second, non-overlapping behavioural parameter clouds suggest that the value of non-

discharge data for model calibration is contingent on the suitability of the model structure. By evaluating the overlap in the 490 

parameter space, multivariate model evaluation can be a powerful way to test a model structure and thus support the decision 

to either accept or reject it. We recommend research to develop such ideas for model rejection further. 

 

Code availability. The code for the SIMHYD model is part of MARRMoT, version v2.1 (Trotter et al., 2022) and is 

available at Zenodo via https://doi.org/10.5281/zenodo.6484372, last accessed in December 2022. 495 

 

Data availability. The hydrometeorological time series used as model input and to calibrate the model are from version 2 of 

the CAMELS-AUS dataset (Fowler et al., 2024) and are available at Zenodo via https://doi.org/10.5281/zenodo.12575680, 

last accessed in September 2024. The remote sensing-based actual evapotranspiration time series used to calibrate the model 

are available at the Numerical Terradynamic Simulation Group (NTSG) public data repository of the University of Montana 500 

(Zhang et al., 2010) via http://files.ntsg.umt.edu/data/ET_global_monthly/Global_8kmResolution, last accessed in January 

2023. The field-based actual evapotranspiration time series used to calibrate the model are from the OzFlux Research and 

Monitoring network (Beringer et al., 2016) and are available at the Terrestrial Ecosystem Research Network via 

https://portal.tern.org.au/results?topicTerm=flux&datagroupFilter=water+evapotranspiration+, last accessed in June 2023. 
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