

1 We appreciate the reviewer for the valuable comments and suggestions which have helped
2 improve our manuscript. We addressed all of the specific comments individually. For clarity,
3 the changes are **highlighted (in blue font) in the revised manuscript**. The itemized
4 response/actions made to the manuscript are listed as below.

5 **Reviewer 1**

6 In “Technical Note: Adaptably diagnosing O₃-NO_x-VOC sensitivity evolution with routine
7 pollution and meteorological data” Huang and Liao investigated the sensitivity of O₃ formation
8 at selected sites in China, the US and Europe by applying different fit equations to the datasets.
9 The authors identify most of the studied regions to be dominated by VOC-limited O₃ formation
10 sensitivity.

11 While this is generally an important topic to investigate, unfortunately this study seems
12 incoherent and is often difficult to follow. It remains largely unclear why and how the suggested
13 fit equations are applied to the data and even more important what the added value of this
14 analysis is. The in-situ observations investigated in this study can be used to directly infer the
15 dominating sensitivity instead of using fit functions. Are any generalized conclusions drawn
16 from the fitting? Could it be applied to other regions where observations are not available and
17 how would that be possible considering that crossover points occur at NO_x to VOC ratios that
18 are characteristic to each location?

19 **1. Why the suggested fit equations are applied to the data?**

20 **As introduced in Section 1: Introduction**, the ozone level has increased in most urban areas
21 worldwide, and the O₃-NO_x-VOC sensitivity has likely evolved in response to the divergent
22 trends in precursor emissions. **Elucidating its long-term evolution is critical for effective
23 ozone mitigation.**

24 However, those commonly used methods for ozone formation regime (OFR) diagnosis, such
25 as the Empirical Kinetic Modelling Approach (EKMA) isopleth plot and chemical indicators
26 (e.g., H₂O₂/HNO₃, H₂O₂/NO₂, etc.), heavily rely on observation-based or numerical models,
27 constrained by limited field data and computational demands. They are typically applied in
28 case studies (Sillman and He, 2002; Sillman and West, 2009; Xue et al., 2014; Ou et al., 2016;
29 Li et al., 2018). Although the satellite-derived HCHO/NO₂ ratio (FNR)-based method enables
30 the regional scale long-term O₃-NO_x-VOC sensitivity diagnosis (Jin and Holloway, 2015; Ren
31 et al., 2022; Wang et al., 2021; Zhang et al., 2024), its fixed daily sampling time restricts
32 insights into other hours, and the sensitivity always varies over time. **These constraints
33 highlight the necessity for more flexible and adaptable approaches.**

34 **For a specific VOC reactivity (VOCR), the daytime ozone production (DPO₃) exhibits a
35 characteristic skewed curve when plotted against NO_x or NO₂ (Graphical Abstract),
36 which is transformed from the EKMA plot (Pusede and Cohen, 2012; Romer et al., 2018;
37 Nussbaumer and Cohen, 2020; Guo et al., 2023; Yang et al., 2021). On a DPO₃-NO_x (or NO₂)
38 curve (Graphical Abstract), the partition point and transition point are two key NO_x (or**

39 **NO₂** levels for differentiating the O₃-NO_x-VOC sensitivity. The **partition point** is defined
40 as the peak DPO₃ corresponding NO_x (or NO₂) level, where the ozone formation equals to
41 consumption, distinguishing the NO_x-limited/transition regime (to the left) and the VOC-
42 limited regime (to the right); the **transition point** is defined as the NO_x (or NO₂) level at the
43 position indicating the onset of diminishing ozone production with respect to NO_x, which
44 further differentiates the NO_x-limited and transition regimes. As referred to the study by Yang
45 et al. (2021), we determined the transition point as the position with a half of the maximum
46 curve slope.

47 **Although the in-situ observations investigated in this study can be used to directly infer**
48 **the dominating sensitivity via non-parametric approach** (Huang et al., 2025), **two**
49 **limitations still persist about that method:** (1) a fixed smoothing span, the key configuration
50 for non-parametric smoothing, failed to exhibit robustness in fitting performance across studied
51 sites, which leads to uncertainty in determining the partition point and inhibits the adaptability
52 of this method across a broader spatiotemporal range; (2) the non-parametric approach
53 provided no information on the curve's height and width, which determine the transition point
54 and vary with locations, study periods and environmental factors (e.g., temperature, VOCs,
55 etc.). **The basic contour of the regular DPO₃-NO_x (or NO₂) curve would not vary with the**
56 **relative humidity, temperature, season, altitude, mixing layer height and VOC species**
57 **(Guo et al., 2023). This environmental stability makes it possible to be parametrically**
58 **characterized. Therefore, seeking an effective empirical parametric model is necessary**
59 **for more adaptably characterizing the DPO₃-NO_x (or NO₂) relation and figuring out both**
60 **the partition and transition points.** This is the most important objective of the present study.

61 2. How the suggested fit equations are applied to the data?

62 **As introduced in Section 2: Methodology**, the DPO₃-NO_x (or NO₂) relation was regressed
63 with the five-percentile-binned NO_x (or NO₂) concentrations (or logarithms) and their
64 corresponding average DPO₃ levels. The DPO₃ was defined as the difference between the
65 MDA8-daytime (7:00-19:00 Local Time (LT)) hourly ozone concentration and the ozone
66 concentration at 6:00 LT. A total of seven parametric models (Equations 1-7) were individually
67 applied to characterize the DPO₃-NO_x (or NO₂) relation. As in the bellowing **Response/Action**
68 **1-9** to Specific comment 1-9, we gave a more detail introduction of the rationale for selecting
69 these studied models, which was added in the updated Supplement of the revised manuscript
70 (Text S1).

71 3. What is the **added value** of this analysis?

72 In order to address the limitations of those commonly used diagnostic methods (**Line 39-46 in**
73 **revised manuscript**) and the prior non-parametric fitting of DPO₃-NO_x (or NO₂) curve (**Line**
74 **62-77 in the revised manuscript**), the present study aims to seek an effective empirical
75 parametric model for more adaptably characterizing the DPO₃-NO_x (or NO₂) relation and
76 determining the dominating sensitivity of ozone formation. After a series of analyses as in
77 Section 3.2: Which is the most capable parametric model, we identified that the *log-Bragg3*

78 model (Equation 3) performed the best.

79 Therefore, one of the added values of these analyses is that they make it easier for OFR
80 diagnosis that can be adaptable to different locations and different time, even though the
81 crossover points do not always occur at the same NO₂ mixing ratio. This is particularly
82 important for elucidating the evolution of O₃-NO_x-VOC sensitivity on the large
83 spatiotemporal scale. Furthermore, as discussed in Section 3.5: Implications of the *log-Bragg*
84 3 model's parameters (*b*, *d*), the identified model (*log-Bragg3* model, Equation 3) is also
85 able to provide implications of ozone formation intensity and the associated chemical
86 processes, indicating by its parameters.

87 4. Are any generalized conclusions drawn from the fitting?

88 Based on the above responses, the generalized conclusion from the fitting is that the *log-Bragg3*
89 model (Equation 3) performed the best, compared with other models, in adaptably
90 characterizing the DPO₃-NO_x (or NO₂) relation and diagnosing the dominating sensitivity of
91 ozone formation, which is also able to provide the implications of ozone formation intensity
92 and the associated chemical processes.

93 5. Could it be applied to other regions where observations are not available?

94 It could still be applied in other regions where other reliable reanalysis data are available,
95 even though there is no observation.

96 6. How would that be possible considering that crossover points occur at NO_x to VOC ratios
97 that are characteristic to each location?

98 Yes, the crossover points are characteristic to different locations, and they theoretically depend
99 on local condition (e.g., VOCs or other relevant pollutants/radicals, meteorological factors,
100 etc.). However, our identified model can solve this problem by adaptably fitting the data at
101 different locations. This is based on a hypothesis that the daytime ozone production (DPO₃)
102 exhibits a characteristic skewed curve when plotted against NO_x or NO₂ for a specific
103 VOC reactivity (VOCR) (Line 47-48 in the revised manuscript). And indeed, as in Section
104 3.1, the above hypothesized DPO₃-NO_x (or NO₂) relation was empirically validated
105 worldwide, even in regions with severe PM_{2.5} contamination, where the ozone formation is
106 additionally influenced by the aerosol-inhibited photochemical regime, such as BTH, FWP and
107 YRD in China (Ivatt et al., 2022; Geng et al., 2021; Kong et al., 2021; Xiao et al., 2022).

108 From this perspective, the parameters in the identified model (*log-Bragg3*, Equation 3)
109 reflect the local condition to some extent. For example, the fitting parameter *e* varied with
110 regions, as listed in Table S1 and Table S2; higher value indicates higher partition point (or
111 crossover point as referred by the reviewer). Furthermore, as discussed in Section 3.5, the
112 parameter *d* represents the maximum DPO₃ level, exhibiting higher ozone production with
113 higher value; and higher value of parameter *b* characterizes a steeper curve, indicating a
114 condition that favors faster change in ozone production efficiency for a given increment of NO_x.

115 It is further concerning that the authors have published a paper earlier this month (Huang et al.,
116 2025), which they are now referring to have “critical limitations” which “fail” in respect to two
117 different aspects (Line 54f.). This makes me wonder why the authors have not previously fixed
118 these issues, considering that this previous paper was published one month after the submission
119 of this manuscript.

120 We have clarified the distinctions and connections between the current study and our previous
121 work (Huang et al., 2025), as outlined in the bellowing **Response/Action 1-1 to Specific**
122 **comment 1-1.**

123 Some statements are further not backed with the current literature. The authors often use terms
124 that are not commonly known in literature and do not provide sufficient definitions or
125 explanations. The same applies to abbreviations that are not defined when first used. The
126 figures have too many panels, are too small and have a low resolution, which makes them
127 difficult to read and understand the results.

128 1. The issue regarding statements not backed with literatures was addressed as outlined in the
129 bellowing **Response/Action 1-16 to Specific comment 1-16.**

130 2. We speculate that the terms concerned by the reviewer, which are less frequently used in the
131 literatures, might be the two terms "partition point" and "transition point". **The definitions as**
132 **below were added in the revised manuscript (Line 55-62).**

133 “On a theoretically regular DPO_3 - NO_x (or NO_2) curve (Graphical Abstract), the partition point
134 and transition point are two key NO_x (or NO_2) levels for differentiating the O_3 - NO_x -VOC
135 sensitivity. The partition point is defined as the peak DPO_3 corresponding NO_x (or NO_2) level,
136 where the ozone formation equals to consumption, distinguishing the NO_x -limited/transition
137 regime (to the left) and the VOC-limited regime (to the right); the transition point is defined as
138 the NO_x (or NO_2) level at the position indicating the onset of diminishing ozone production
139 with respect to NO_x , which further differentiates the NO_x -limited and transition regimes. As
140 referred to the study by Yang et al. (2021), we determined the transition point as the position
141 with a half of the maximum curve slope in the present study.”

142 3. All abbreviations were defined upon their first use in the revised manuscript, such as the
143 term “OFR” as exemplified in bellowing **Response/Action 1-2 to Specific comment 1-2.**

144 4. The Clearer figures were provided in the revised manuscript.

145 Considering these various drawbacks, unfortunately, I cannot recommend this manuscript for
146 publication in its current state as it does neither meet the scientific nor the methodological
147 standards of an ACP publication. If the authors wish to improve their manuscript in the future,
148 please find more detailed comments and questions in the following, which might be helpful for
149 revising the study.

150 **Specific comment 1-1:** Line 53 ff.: Could the authors describe the study of Huang et al., 2025?

151 What were the methods applied and the findings of this study?

152 **Response/Action 1-1:** Thank you for this valuable comment. The distinctions and connections
153 between the current study and our previous work (Huang et al., 2025), detailed as below, were
154 **added in the revised manuscript (Line 62-84).**

155 “In our previous study (Huang et al., 2025), the DPO_3-NO_x (or NO_2) relation, as depicted in
156 the Scenario A, B or C within a completed skewed curve in Graphical Abstract, was proved
157 widespread based on the routine monitoring data in the Greater Bay Area, South China, which
158 was smoothed by a non-parametric regression technique. The smoothing curve was able to
159 effectively characterize the regional spatial pattern of O_3-NO_x -VOC sensitivity, differentiating
160 the ozone formation regimes (OFRs) into the NO_x -limited/transition regime and the VOC-
161 limited regime, and was further utilized to examine temperature-dependent sensitivities. The
162 non-parametric approach is a commonly used method for smoothing a fluctuating numerical
163 series within local neighbourhoods, enabling the identification of intrinsic DPO_3-NO_x (or NO_2)
164 relation. However, two limitations still persist: (1) a fixed smoothing span, the key
165 configuration for non-parametric smoothing, failed to exhibit robustness in fitting performance
166 across studied sites, which leads to uncertainty in determining the partition point and inhibits
167 the adaptability of this method across a broader spatiotemporal range; (2) the non-parametric
168 approach provided no information on the curve’s height and width, which determine the
169 transition point and vary with locations, study periods and environmental factors (e.g.,
170 temperature, VOCs, etc.). As studied by Guo et al. (2023), the basic contour of the regular
171 DPO_3-NO_x (or NO_2) curve would not vary with the relative humidity, temperature, season,
172 altitude, mixing layer height and VOC species. This environmental stability makes it possible
173 to be parametrically characterized. Therefore, seeking an effective empirical parametric model
174 is necessary for more adaptably characterizing the DPO_3-NO_x (or NO_2) relation and figuring
175 out both the partition and transition points. This is the most important objective of the present
176 study.”

177 However, it remains uncertain whether or not the regular DPO_3-NO_x (or NO_2) relation is
178 globally prevalent. Therefore, it is essential to firstly verify the universality of this relation
179 using data from routine monitoring networks worldwide. Furthermore, based on the non-
180 parametric approach, our previous study (Huang et al., 2025) revealed that the applicability
181 and reliability for OFR diagnosis differed between the DPO_3-NO_x and DPO_3-NO_2 curves at
182 several observation stations in Hong Kong. Accordingly, the present study also attempts to
183 compare the reliability between the two curves in diagnosing O_3-NO_x -VOC sensitivity across
184 a broader spatial range.”

185 **Specific comment 1-2:** Line 53: What is “OFR”? Please define abbreviations when first used.

186 **Response/Action 1-2:** Thank you for pointing it out. OFR is short for the term of ozone
187 formation regime. It has been defined in the revised manuscript (Line 65-66).

188 **Specific comment 1-3:** Line 54: The authors have published the study they are referring to
189 here (Huang et al., 2025) earlier this month and are now referring to critical limitations of their

190 work. I find this a bit irritating. Why do the authors have not implemented the improvements
191 in the previous study?

192 **Response/Action 1-3:** The primary objective of our previous study (Huang et al., 2025) was
193 to investigate whether or not and how the OFRs shift with temperature in the Greater Bay Area,
194 South China. In this region, the theoretical DPO_3-NO_x (or NO_2) curve was firstly convinced
195 regionally prevalent and able to effectively diagnose OFRs' spatial pattern. This encourages us
196 to further verify whether this kind of curve is also globally widespread. In order to do so, we
197 have to spend more time to collect more pollution and meteorological monitoring data
198 worldwide and conduct the data pre-processing. Furthermore, the smoothing span, a key
199 configuration for non-parametric smoothing, failed to exhibit robustness in fitting performance
200 across studied sites, which leads to uncertainty in determining the partition point; therefore, we
201 had spent plenty of time to define the reasonable smoothing spans specific to the individual
202 studied observation stations and the relevant reanalysis data grids in that previous study. In a
203 similar way, we also have to spend sufficient time to firstly define the smoothing spans as
204 reasonable as possible for the stations in the present study, which is for further comparisons of
205 fitting performances between the empirical parametric models and the non-parametric
206 approach (as illustrated in Figures 1-3, Figures S2-S10, and Figures S13).

207 We do acknowledge that it would have been ideal by incorporating all potential improvements
208 into that previous study. However, the limitations of the previous work (outlined in Line 67-71
209 of the revised manuscript) did not hinder our ability to understand the temperature-related shift
210 of OFRs within a limited scope, such as the Greater Bay Area. However, in response to those
211 limits, the present study aims to find out a more adaptable method, the empirical parametric
212 modelling, for characterizing the theoretical DPO_3-NO_x (or NO_2) curve and diagnosing OFRs.

213 **Specific comment 1-4:** Line 55 f.: How do the authors define the NO_x -limited/transition
214 boundary? The transition point is commonly referred to as the crossover from NO_x - to VOC-
215 sensitive chemistry, but there is no exact definition of a transition region in textbook literature.
216 If I read the graphical abstract correctly it is related to the 95th percentile of O_3 production.
217 Where does this definition come from and what's the reasoning for it?

218 **Response/Action 1-4:** Thank you for pointing it out. The crossover from NO_x -
219 limited/transition regime to VOC-sensitive regime is the partition point, rather than the
220 transition point. The transition point is the crossover from NO_x -limited regime to transition
221 regime, and it indicates the onset of diminishing ozone production with respect to NO_x . As
222 referred to the study by Yang et al. (2021), we determined the transition point as the NO_x (or
223 NO_2) level corresponding to the position with a half of the maximum curve slope in the present
224 study. **The definition and determination of the two key points were added in the revised
225 manuscript Line (Line 54-59).**

226 **The relation between the 95th percentile of O_3 production and the transition point,
227 detailed as below, was added in the revised manuscript (Line 237-244).**

228 “According to the study by Yang et al. (2021), the transition point for the parametric fitting

229 curve was defined as the NO_x (or NO_2) concentration corresponding to the position with a half
230 of the maximum fitting curve slope (the blue dotted lines in Figures 3 and S13), after which
231 ozone formation became less dependent on NO_x but significantly more dependent on VOCR.
232 This parametric transition point exactly corresponded to the DPO_3 level in the top 4.9% of the
233 *log-Bragg3* model predictions, so that the transition point for the non-parametric smoothing
234 curve was determined as the NO_x (or NO_2) level corresponding to the top 4.9% smoothing
235 DPO_3 level (the red dotted lines in Figures 3 and S13)."

236 **Specific comment 1-5:** Line 56: What do the authors mean by parametric modeling? Is this a
237 reference to parameterizations in atmospheric models or something different?

238 **Response/Action 1-5:** The term "parametric modeling" refers to regression with empirical
239 parametric model (Equations 1-7), which is distinct from the parameterization schemes
240 incorporated in atmospheric models. By fitting data with empirical models, we can adaptively
241 obtain the parameters of these models that are specific to the studied locations. The theoretical
242 meanings of the models' parameters were described in Section 2.1. For instance, by fitting data
243 from different locations with the *log-Bragg3* model (Equation 3), we can obtain different sets
244 of fitting values for its three parameters (b , d , e). The fitting values of parameters b and d
245 determine the transition point (Section 3.4) and respectively imply ozone production intensity
246 and the related chemical processes (Section 3.5), and the parameter e corresponds to the
247 partition point (Section 3.4). Therefore, it is possible to conveniently compare the
248 characteristics of ozone formation amongst different locations using the *log-Bragg3* model
249 (Equation 3).

250 **Specific comment 1-6:** Line 57: What do the authors mean by environmental stability?
251 Whenever using non-textbook terms, I recommend a full definition and explanation.

252 **Response/Action 1-6:** The sentence "The DPO_3 - NO_x (or NO_2) curve shows environmental
253 stability (Guo et al., 2023), enabling the parametric characterization" was rewritten as ".....the
254 basic contour of DPO_3 - NO_x (or NO_2) curve would not vary with the relative humidity,
255 temperature, season, altitude, mixing layer height and VOC species. This environmental
256 stability makes it possible to be parametrically characterized." **This is shown in Line 74-75**
257 **of the revised manuscript.**

258 **Specific comment 1-7:** Line 58: Please elaborate on the "bend" – what is it and where is it
259 coming from? The cited literature Romer et al., 2018 and Guo et al. 2023 do not seem to
260 mention / explain this bend. How can PO_3 have two different values for the same NO_2 ?

261 **Response/Action 1-7:** As referred to the Supplementary Information for Guo et al. (2023), the
262 DPO_3 - NO_2 curve exhibited a bend at the end of the curve for some cases, especially for some
263 VOC species (like alkanes in Fig. S5) and when excluding the reaction of $\text{NO}+\text{NO}+\text{O}_2=2\text{NO}_2$
264 in box model (Fig. S6: $\text{C}\rightarrow(\text{C})$), while the DPO_3 - NO_x curve did not show such bending
265 behavior (Figure 2(b) in Romer et al. 2018).

266 The ends of both curves reflect the relatively low DPO_3/NO_2 ratio and high NO_x level, and this

267 typically indicates a condition that the reaction of OH with NO₂ dominates the fate of HO_x,
268 slowing the oxidation of organic precursor, and gradually terminating the ozone production
269 (Pusede et al., 2015; Romer et al., 2018). When applying the DPO₃-NO₂ curve, the ozone
270 production might decrease with NO₂ under this condition, potentially leading to a pseudo
271 diagnostic result indicative of a NO_x-limited regime under a realistic NO_x-saturated condition.
272 In contrast, when applying the DPO₃-NO_x curve, the ozone production continues to decline
273 with the increasing NO_x level under this low-DPO₃/NO₂-ratio condition, thereby diagnosed as
274 the VOC-limited regime.

275 The above explanation was detailed in Section 3.3: Comparison of reliabilities between the
276 DPO₃-NO₂ and DPO₃-NO_x curves (Line 216-227 in the revised manuscript).

277 **Specific comment 1-8** Line 77 f.: What exactly are parametric vs non-parametric results?

278 **Response/Action 1-8:** The parametric results are the parametric fitting curves (the blue fitting
279 curves in Figure 3, Figure S2-S10, and Figure S13) and their corresponding partition points
280 (the blue dashed dotted vertical lines in Figure 3, Figure S2-S10, and Figure S13), while non-
281 parametric results referred to the non-parametric smoothing curves (the red smoothing curves
282 in Figure 3, Figure S2-S10, and Figure S13) and their corresponding partition points (the red
283 dashed dotted vertical lines in Figure 3, Figure S2-S10, and Figure S13).

284 For more clarity, the sentence “The parametric model validity was confirmed when its curve
285 and partition point aligned well with the non-parametric results” was rewritten as “The
286 parametric model validity was confirmed when its curve (the blue fitting curve in Figure 3,
287 Figure S2-S10, and Figure S13) and partition point (blue dashed dotted vertical line in Figure
288 3, Figure S2-S10, and Figure S13) aligned well with those obtained from non-parametric
289 approach (the red smoothing curve in Figure 3, Figure S2-S10, and Figure S13; red dashed
290 dotted vertical line in Figure 3, Figure S2-S10, and Figure S13)” This is shown in **Line 99-102**
291 **of the revised manuscript.**

292 **Specific comment 1-9:** Line 80 ff.: Did the authors use these equations to fit their data? How
293 were these fits chosen?

294 **Response/Action 1-9:** Yes, we use models (Equations 1-7) to fit our data, respectively. The
295 rationale for selecting the studied models, detailed as below, were **added in the updated**
296 **supplement (Text S1).**

297 “The Equation 1 in the article text and the Equations S1-S4 provided here are usually used to
298 describe a phenomenon where the Y variable increases to reach a maximum at a certain level
299 of the X variable, and decreases afterwards. For example, they can be applied to determine the
300 maximum growth rate of plant at its corresponding optimal temperature level, as well as in the
301 cases related to bioassays in toxicology/biology study: low doses of exogenous substances
302 induce irritation effects. Only Equation 1 in the article text is capable to describe a skewed and
303 asymmetric curve with a maximum, whereas Equations S1-S4 provided here are limited to
304 describing the normal and symmetric curves.

305
$$Y = d \times \exp[-b \times (X - e)^2] \quad (S1)$$

306
$$Y = c + (d - c) \times \exp[-b \times (X - e)^2] \quad (S2)$$

307
$$Y = \frac{d}{1+b \times (X - e)} \quad (S3)$$

308
$$Y = c + \frac{d - c}{1+b \times (X - e)} \quad (S4)$$

309 The Poly2 model (Equation S5) provided as below can also be used to describe a symmetric
 310 curve and is ever applied in fitting the relation of O₃-HCHO/NO₂ ratio for diagnosing the O₃-
 311 NO_x-VOC sensitivity (Jin et al., 2020).

312
$$Y = b_0 + b_1 \times X + b_2 \times X^2 \quad (A5)$$

313 In the present study, the DPO₃-NO_x (or NO₂) diagram is hypothesized to be a skewed and
 314 asymmetric curve with a maximum, and thus can be appropriately described by Equation 1. To
 315 explore more alternative fitting approaches, we attempted to reduce the skewness of the DPO₃-
 316 NO_x (or NO₂) curve by logarithmizing the NO_x (or NO₂) concentrations. Therefore, the
 317 Equations 2-7 in the article text are the transformed forms of the Equation 1 and Equations S1-
 318 S5 with the X-coordinate logarithmized.”

319 **Specific comment 1-10:** Line 108: What is the study period?

320 **Response/Action 1-10:** Thank you for pointing it out. The study period was 2014-2019, which
 321 was added in the revised manuscript (Line 136).

322 **Specific comment 1-11:** Line 117: What are “records ≤ 4 ”? Can the authors provide a
 323 reasoning for this “no precipitation” definition? I am not aware of being able to accurately infer
 324 rainfall from cloud cover.

325 **Response/Action 1-11:** Thank you for this question. The explanation, detailed as below, was
 326 added in the revised manuscript (Line 144-151).

327 “The cloud records provided in the NOAA-Integrated Surface Database (ISD), obtained via
 328 the R package *worldmet*, range from 0 (representing no visible cloud cover) to 9 (representing
 329 a completely overcast sky). The cloud records with values ≤ 4 indicate that < 50% of the sky
 330 is obscured by clouds. However, there are limited rainfall recordings in the ISD compared to
 331 cloud cover, especially in the US the studied regions in China (except Hong Kong). Based on
 332 the meteorological data for the Europe and Hong Kong, where both rainfall and cloud cover
 333 recordings are comprehensively available, the precipitation was significantly lower when < 50 %
 334 of the sky is covered by clouds, compared to the instances where > 50% of the sky is obscured.
 335 Therefore, the “no precipitation” scenario for Europe and US was defined as the hours of 50%
 336 cloud cover with the records ≤ 4 in ISD, rather than the zero-precipitation hours.”

337 **Specific comment 1-12:** Line 130: The European Union does not describe a geographical
338 region and some parts of the map in Figures S1 are not part of the EU. I recommend referring
339 to the region as, e.g. Europe.

340 **Response/Action 1-12:** Thank you for this kind recommendation. **It was revised throughout**
341 **the manuscript and the updated supplement.**

342 **Specific comment 1-13:** Figure 1: The panels are too small and the resolution too low. It is
343 difficult to read the legend. It is further difficult to distinguish between any of the stations
344 because the data points are overlapping.

345 **Response/Action 1-13:** Thank you for this comment. We have improved the resolution of this
346 figure in the revised manuscript.

347 **Specific comment 1-14:** Line 170 ff.: It is unclear what exactly the authors are trying to show
348 in Figure 1. What is a parametric y-axis and a non-parametric x-axis approach?

349 **Response/Action 1-14:** The y-axis represents the NO_x (or NO₂) concentrations corresponding
350 to the partition points obtained from the parametric models, while the x-axis represents those
351 obtained from the non-parametric approach.

352 **Specific comment 1-15:** Line 174 f.: What are the definitions of the scenarios the authors are
353 referring to?

354 **Response/Action 1-15:** As illustrated in the graphical abstract, taking the red curve specific to
355 the lower VOC reactivity (VOCR1) as the example, the Scenario A is referred to as the curve
356 portion within the yellow dashed box, while the Scenarios B and C corresponding to the curve
357 portion within the green and blue dashed boxes, respectively. The non-parametric fitting can
358 only feature one of the three scenarios based on the realistic data within a theoretically
359 completed curve

360 **Specific comment 1-16:** Line 180 ff.: Is this the bend that the authors were referring to earlier?
361 The reaction of OH + NO₂ is a termination reaction of the HO_x cycle and its dominance
362 characterizes a VOC-limited O₃ formation regime. Unlike the authors state, the cited studies
363 do not show the existence of a pseudo NO_x limited under a NO_x saturated regime. Further
364 evidence would be required to prove this statement of the authors, which does not agree with
365 our current knowledge of O₃ formation sensitivity.

366 **Response/Action 1-16:** Thank you for this comment. We do acknowledge that the reference
367 citations presented here may lead to potential ambiguity in interpretation.

368 The statement “a pseudo diagnostic result indicative of a NO_x-limited regime under a realistic
369 NO_x-saturated condition” is the finding derived from our present study, rather than the
370 conclusions drawn from the cited references of Guo et al., 2023; Romer et al., 2018; Pusede et
371 al., 2015. However, the studies by Guo et al. (2023) and Romer et al. (2018) provided the

372 evidence regarding the diagnostic uncertainty associated with the application of DPO₃-NO₂
373 curve; while the studies by Pusede et al. (2015) and Romer et al. (2018) provide a possible
374 explanation for this kind of uncertainty.

375 More specifically, as referred to the **Supplementary Information for Guo et al. (2023)**, the
376 DPO₃-NO₂ curve exhibited a bend at the end of the curve for some cases, especially for some
377 VOC species (like alkanes in Fig. S5) and when excluding the reaction of NO+NO+O₂=2NO₂
378 in box model (Fig. S6: C→(C)), while the DPO₃-NO_x curve did not display such bending
379 behavior (Figure 2(b) in Romer et al., 2018). The ends of both curves reflect the relatively
380 low DPO₃/NO₂ ratio and high NO_x level, and this typically indicates a condition that the
381 reaction of OH with NO₂ dominates the fate of HO_x, slowing the oxidation of organic precursor,
382 and gradually terminating the ozone production (Pusede et al., 2015; Romer et al., 2018). When
383 applying the DPO₃-NO₂ curve, the ozone production might decrease with NO₂ under this
384 condition, potentially leading to a pseudo diagnostic result indicative of a NO_x-limited regime
385 under a realistic NO_x-saturated condition. In contrast, when applying the DPO₃-NO_x curve, the
386 ozone production continues to decline with the increasing NO_x level under the low-DPO₃/NO₂-
387 ratio condition, thereby diagnosed as the VOC-limited regime.

388 Based on the above interpretation, we have re-organized the discussion and citations **in the**
389 **revised manuscript (Line 214-227)** as below:

390 “The DPO₃/NO₂ ratios at these stations in Hong Kong ranged from 0.1 to 0.6, much lower than
391 other stations/grid (BTH: 1.1-4.0, FWP: 1.3-3.4, YRD: 1.4-4.5, PRD: 1.3-4.5, Macao: 2.1,
392 Europe region/US: 0.3-16.5, other stations in Hong Kong: 0.8-6.5). Such low DPO₃/NO₂ ratios,
393 accompanied by high NO_x level, typically occur at the ends of both DPO₃-NO₂ and DPO₃-NO_x
394 curves. As referred to the Figures S5-S6 in Guo et al. (2023), the DPO₃-NO₂ curve was found
395 to exhibit a bend at the its end in certain cases, especially for specific VOC species (like alkanes)
396 and when the reaction of NO+NO+O₂=2NO₂ is excluded in box model, while the DPO₃-NO_x
397 curve did not display such bending behaviour (Romer et al., 2018). A low DPO₃/NO₂ ratio at
398 high NO_x level typically indicates a condition that the reaction of OH with NO₂ dominates the
399 fate of HO_x, slowing the oxidation of organic precursor, and gradually terminating the ozone
400 production (Pusede et al., 2015; Romer et al., 2018). When applying the DPO₃-NO₂ curve, the
401 ozone production might decrease with NO₂ under this condition, potentially leading to a pseudo
402 diagnostic result indicative of a NO_x-limited regime under a realistic NO_x-saturated condition.
403 In contrast, when applying the DPO₃-NO_x curve, the ozone production continues to decline
404 with the increasing NO_x level under this low-DPO₃/NO₂-ratio condition, thereby diagnosed as
405 the VOC-limited regime. Hence, the DPO₃-NO_x curve is considered more reliable for
406 diagnosing O₃-NO_x-VOC sensitivity at any NO_x level, and it is recommended to check the
407 DPO₃/NO₂ ratio before employing the DPO₃-NO₂ curve. ”

408 **Specific comment 1-17:** Line 193 ff. / Figure 3: What is the added value of these fits? It is
409 possible to determine the dominating sensitivity of O₃ formation based on the observational
410 data of O₃ and NO₂. Why are the fits needed? The individual fit parameters are likely different
411 for each location, as the crossover does not always occur at the same NO₂ mixing ratio

412 (depending on the availability of VOCs).

413 **Response/Action 1-17:** In Figure 3, the blue solid curves represent the parametric fittings
414 based on the *log-Bragg3* model (Equation 3). This model was proved the best to adaptably
415 characterize both the DPO₃-NO₂ and DPO₃-NO_x curves and determine the dominating
416 sensitivity of ozone formation based on the routine recordings of O₃ and NO₂ or O₃ and NO_x.

417 **One of the added values** of these fits shown in Figure 3 is that **they make it easier for OFR**
418 **diagnosis that can be adaptable to different locations and different time**, even though the
419 crossover points does not always occur at the same NO₂ mixing ratio. **This is particularly**
420 **important for elucidating the evolution of O₃-NO_x-VOC sensitivity on the large**
421 **spatiotemporal scale.**

422 Furthermore, as discussed in Section 3.5: Implications of the *log-Bragg 3* model's parameters
423 (*b*, *d*), **the other value** is that the parametric fits in Figure 3 **also provide some implications**
424 **of ozone formation intensity and the associated chemical processes**, indicated by the
425 parameters *b* and *d* (Table S1).

426 However, according to the comparison of diagnostic reliability between the DPO₃-NO₂ and
427 DPO₃-NO_x curves (in Section 3.3), the use of DPO₃-NO₂ curve may introduce significant
428 uncertainty when the DPO₃/NO₂ ratio is excessively low, and it is recommended to evaluate
429 the DPO₃/NO₂ ratio prior to applying this curve. Therefore, before applying the DPO₃-NO₂
430 curve for OFR diagnosis on the regional scale (in Section 3.4), we firstly checked the
431 DPO₃/NO₂ ratios, ranging from 0.88 to 4.98 for our studied regions, which were at the median
432 levels compared with those stations of pseudo-diagnosis in Hong Kong (0.1-0.6). Even for the
433 European region with the lowest ratios amongst out studied regions, the DPO₃-NO₂ curve is
434 still applicable, where the diagnostic results agreed well between the DPO₃-NO₂ and DPO₃-
435 NO_x curves. **In a word, it is conditional to determine the dominating sensitivity of ozone**
436 **formation based on the observational data of O₃ and NO₂.**

437 **Specific comment 1-18:** Line 217 ff.: How was the *log-Bragg 3* fit chosen? Does it provide
438 the best result? How was this evaluated?

439 **Response/Action 1-18:** Yes, the *log-Bragg3* model (Equation 3) provided the best fitting result,
440 compared to other models (Equations 1-2 and 4-7). In the present study, the parametric model
441 validity was confirmed when its curve and partition point aligned well with those obtained
442 from non-parametric approach, which revealed the intrinsic DPO₃-NO_x (or NO₂) relation by
443 smoothing a numerical series within local neighborhoods. The studied parametric models were
444 individually applied to regress the DPO₃-NO_x (or NO₂) relation for all the studied stations and
445 the Macao grid (494 fits).

446 Firstly, we identified that the models of *log-Bragg3*, *log-Bragg4*, *log-Lorentz3*, *log-Lorentz4*
447 and *log-Poly2* (Equations 3-7) exhibited **the highest fitting convergence**, with all 494
448 parametric fits successfully converging. However, not all the convergent fits were able to
449 characterize the regular diagram as in Graphical Abstract to effectively partition the O₃-NO_x-

450 VOC sensitivity.

451 Secondly, we further observed that the models of *log-poly2* (Equation 7), *log-Bragg3*
452 (**Equation 3**) and *log-Lorentz3* (**Equation 5**) were able to regress **the largest number of**
453 **convergent and effective fits** (*log-poly2*: 142/142 DPO₃-NO_x fits, 494/494 DPO₃-NO₂ fits;
454 *log-Bragg3*: 141/142 DPO₃-NO_x fits, 490/494 DPO₃-NO₂ fits; *log-Lorentz3*: 141/142 DPO₃-
455 NO_x fits, 489/494 DPO₃-NO₂ fits).

456 Although all the *log-Poly2* fits (Equation 7) were convergent and effective, quite certain portion
457 of them did not achieve the statistical significance ($p > 0.1$) (Figures S11-S12 (g)). Amongst
458 all models, **the *log-Bragg3* (Equation 3) and *log-Lorentz3* (Equation 5) models performed**
459 **the best fitting significance**, with over 95% of fits achieving the statistical significance ($p <$
460 0.1) (Figures S11-S12 (c, e)).

461 Furthermore, we compared the partition points identified between the parametric and non-
462 parametric fits. It also showed that **only the *log-Bragg3* (Equation 3) and *log-Lorentz3***
463 (**Equation 5**) **models were able to identify the partition points for all fits under Scenario**
464 **B as illustrated in Graphical Abstract (Figure 1 (c, e, j, l)).**

465 Despite comparable performance in terms of amounts of convergent and effective fits, fitting
466 statistical significance, and ability to identify partition point between the *log-Bragg3* and *log-*
467 *Lorentz3* models, **the *log-Bragg3* model is finally preferred due to the generally inferior**
468 **statistical properties exhibited by *Lorentz* models** (Ratkowsky, 1990)

469 Technical:

470 **Specific comment 1-19:** Line 29.: Please check the author of this reference (“Collaborators”).

471 **Response/Action 1-19:** Thank you for pointing it out. This citing was corrected as “GBD 2019
472 Risk Factors Collaborators, 2020” (**Line 30**), and the relevant reference was corrected as “GBD
473 2019 Risk Factors Collaborators.: Global burden of 87 risk factors in 204 countries and
474 territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019,
475 Lancet, 396, 1223-1249, 10.1016/s0140-6736(20)30752-2, 2020.” (**Line 365**) **in the revised**
476 **manuscript.**

477 **Specific comment 1-20:** Line 49 f.: There seems to be a part of the sentence missing “As NO_x
478 increases.”

479 **Response/Action 1-20:** Thank you for pointing it out. This is a repetitive statement, and it was
480 removed in the revised manuscript.

481

482 **References:**

483 Geng, G., Xiao, Q., Liu, S., Liu, X., Cheng, J., Zheng, Y., Xue, T., Tong, D., Zheng, B., Peng,
484 Y., Huang, X., He, K., and Zhang, Q.: Tracking Air Pollution in China: Near Real-Time PM2.5
485 Retrievals from Multisource Data Fusion, *Environmental Science & Technology*, 55, 12106-
486 12115, 10.1021/acs.est.1c01863, 2021.

487 Guo, J., Zhang, X., Gao, Y., Wang, Z., Zhang, M., Xue, W., Herrmann, H., Brasseur, G. P.,
488 Wang, T., and Wang, Z.: Evolution of Ozone Pollution in China: What Track Will It Follow?,
489 *Environmental Science & Technology*, 57, 109-117, 10.1021/acs.est.2c08205, 2023.

490 Huang, M., Feng, Z., and Liao, T.: Shift of surface O₃-NO_x-VOC sensitivity with temperature
491 in the Guangdong-Hong Kong-Macao Greater Bay Area, South China, *Environmental*
492 *Pollution*, 125974, <https://doi.org/10.1016/j.envpol.2025.125974>, 2025.

493 Ivatt, P., Evans, M., and Lewis, A.: Suppression of surface ozone by an aerosol-inhibited
494 photochemical ozone regime, *Nature Geoscience*, 15, 1-5, 10.1038/s41561-022-00972-9, 2022.

495 Jin, X., Fiore, A., Boersma, K. F., Smedt, I. D., and Valin, L.: Inferring Changes in Summertime
496 Surface Ozone–NO_x–VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite
497 and Ground-Based Observations, *Environmental Science & Technology*, 54, 6518-6529,
498 10.1021/acs.est.9b07785, 2020.

499 Jin, X. and Holloway, T.: Spatial and temporal variability of ozone sensitivity over China
500 observed from the Ozone Monitoring Instrument, *Journal of Geophysical Research: Atmospheres*, 120, 7229-7246, <https://doi.org/10.1002/2015JD023250>, 2015.

502 Kong, L., Tang, X., Zhu, J., Wang, Z., Li, J., Wu, H., Wu, Q., Chen, H., Zhu, L., Wang, W., Liu,
503 B., Wang, Q., Chen, D., Pan, Y., Song, T., Li, F., Zheng, H., Jia, G., Lu, M., Wu, L., and
504 Carmichael, G. R.: A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in
505 China based on the assimilation of surface observations from CNEMC, *Earth Syst. Sci. Data*,
506 13, 529-570, 10.5194/essd-13-529-2021, 2021.

507 Li, Q., Zhang, L., Wang, T., Wang, Z., Fu, X., and Zhang, Q.: “New” Reactive Nitrogen
508 Chemistry Reshapes the Relationship of Ozone to Its Precursors, *Environmental Science &*
509 *Technology*, 52, 2810-2818, 10.1021/acs.est.7b05771, 2018.

510 Nussbaumer, C. M. and Cohen, R. C.: The Role of Temperature and NO_x in Ozone Trends in
511 the Los Angeles Basin, *Environmental Science & Technology*, 54, 15652-15659,
512 10.1021/acs.est.0c04910, 2020.

513 Ou, J., Yuan, Z., Zheng, J., Huang, Z., Shao, M., Li, Z., Huang, X., Guo, H., and Louie, P. K.
514 K.: Ambient Ozone Control in a Photochemically Active Region: Short-Term Despiking or
515 Long-Term Attainment? *Environmental Science & Technology*, 50, 5720-5728,
516 10.1021/acs.est.6b00345, 2016.

517 Pusede, S. E. and Cohen, R. C.: On the observed response of ozone to NO_x and

518 VOC reactivity reductions in San Joaquin Valley California 1995–present, *Atmos. Chem. Phys.*,
519 12, 8323-8339, 10.5194/acp-12-8323-2012, 2012.

520 Pusede, S. E., Steiner, A. L., and Cohen, R. C.: Temperature and Recent Trends in the
521 Chemistry of Continental Surface Ozone, *Chemical Reviews*, 115, 3898-3918,
522 10.1021/cr5006815, 2015.

523 Ratkowsky, D. A.: Ratkowsky, D.A., 1990. *Handbook of nonlinear regression models*, Marcel
524 Dekker Inc., New York, USA.1990.

525 Ren, J., Guo, F., and Xie, S.: Diagnosing ozone–NO_x–VOC sensitivity and revealing causes of
526 ozone increases in China based on 2013–2021 satellite retrievals, *Atmos. Chem. Phys.*, 22,
527 15035-15047, 10.5194/acp-22-15035-2022, 2022.

528 Romer, P. S., Duffey, K. C., Wooldridge, P. J., Edgerton, E., Baumann, K., Feiner, P. A., Miller,
529 D. O., Brune, W. H., Koss, A. R., de Gouw, J. A., Misztal, P. K., Goldstein, A. H., and Cohen,
530 R. C.: Effects of temperature-dependent NO_x emissions on continental ozone production,
531 *Atmos. Chem. Phys.*, 18, 2601-2614, 10.5194/acp-18-2601-2018, 2018.

532 Sillman, S. and He, D.: Some theoretical results concerning O₃-NO_x-VOC chemistry and
533 NO_x-VOC indicators, *Journal of Geophysical Research: Atmospheres*, 107, ACH 26-21-ACH
534 26-15, <https://doi.org/10.1029/2001JD001123>, 2002.

535 Sillman, S. and West, J. J.: Reactive nitrogen in Mexico City and its relation to ozone-precursor
536 sensitivity: results from photochemical models, *Atmos. Chem. Phys.*, 9, 3477-3489,
537 10.5194/acp-9-3477-2009, 2009.

538 Wang, W., van der A, R., Ding, J., van Weele, M., and Cheng, T.: Spatial and temporal changes
539 of the ozone sensitivity in China based on satellite and ground-based observations, *Atmos.*
540 *Chem. Phys.*, 21, 7253-7269, 10.5194/acp-21-7253-2021, 2021.

541 Xiao, Q., Geng, G., Liu, S., Liu, J., Meng, X., and Zhang, Q.: Spatiotemporal continuous
542 estimates of daily 1 km PM2.5 from 2000 to present under the Tracking Air Pollution in China
543 (TAP) framework, *Atmos. Chem. Phys.*, 22, 13229-13242, 10.5194/acp-22-13229-2022, 2022.

544 Xue, L., Wang, T., Louie, P. K. K., Luk, C. W. Y., Blake, D. R., and Xu, Z.: Increasing External
545 Effects Negate Local Efforts to Control Ozone Air Pollution: A Case Study of Hong Kong and
546 Implications for Other Chinese Cities, *Environmental Science & Technology*, 48, 10769-10775,
547 10.1021/es503278g, 2014.

548 Yang, L., Yuan, Z., Luo, H., Wang, Y., Xu, Y., Duan, Y., and Fu, Q.: Identification of long-term
549 evolution of ozone sensitivity to precursors based on two-dimensional mutual verification,
550 *Science of The Total Environment*, 760, 143401,
551 <https://doi.org/10.1016/j.scitotenv.2020.143401>, 2021.

552 Zhang, J., Shen, A., Jin, Y., Cui, Y., Xu, Y., Lu, X., Liu, Y., and Fan, Q.: Evolution of ozone
553 formation regimes during different periods in representative regions of China, *Atmospheric*
554 *Environment*, 338, 120830, <https://doi.org/10.1016/j.atmosenv.2024.120830>, 2024.