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Abstract

CO, emissions from peatlands exhibit substantial spatiotemporal variability, presenting challenges for
identifying the underlying drivers and for accurately quantifying and modeling CO, fluxes. Here, we
integrated field measurements with Unmanned Aerial Vehicle (UAV)-based multi-sensor remote sensing
to investigate soil respiration across a temperate peatland landscape. Our research addressed two key
questions: (1) How do environmental factors control the spatiotemporal distribution of soil respiration
across complex landscapes? (2) How do spatial and temporal peaks (i.e., hot spots and hot moments) of
biogeochemical processes influence landscape-level CO; fluxes? We find that dynamic variables (i.e.,
soil temperature and moisture) play significant roles in shaping CO, flux variations, contributing 43 %
to seasonal variability and 29 % to spatial variance, followed by semi-dynamic variables (i.e.,
Normalized Difference Vegetation Index (NDVI) and root biomass) (19 % and 24 %). Relatively static
variables (i.e., soil organic carbon stock and carbon to nitrogen ratio) have a minimal influence on
seasonal variation (2 %) but contribute more to spatial variance (10 %). Additionally, predicting time
series of CO, fluxes is feasible by using key environmental variables (test set: coefficient of
determination (R?) = 0.74, Root Mean Square Error (RMSE) = 0.57 umol m s7!, Kling-Gupta Efficiency
(KGE)=0.77), while UAV remote sensing is an effective tool for mapping daily soil respiration (test set:
R?=0.75, RMSE = 0.56 pmol m™ s™', KGE = 0.83). By the integration of in-situ high-resolution time-
lapse monitoring and spatial mapping, we find that despite occurring in 10 % of the year, hot moments
(i.e., periods of time which have a disproportional high (> 90th percentile) CO, fluxes compared to the
surrounding) contribute 28 %—31 % of the annual CO: fluxes. Meanwhile, hot spots (i.e., locations which
CO; fluxes higher than 90th percentile)—representing 10 % of the area—account for about 20 % of CO:
fluxes across the landscape. Our study demonstrates that integrating UAV-based remote sensing with
field surveys improves the understanding of soil respiration mechanisms across timescales in complex
landscapes. This will provide insights into carbon dynamics and supporting peatland conservation and
climate change mitigation efforts.

Keywords: Peatlands, Soil respiration, Greenhouse gas (CO,) emission, CO> hot spots, CO> hot

moments, Multi-sensor UAV remote sensing, Global warming
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1 Introduction

Peatlands are globally distributed ecosystems that cover an area of 6.75 million km? and store 942.09 +
312 Gt of carbon (Widyastuti et al., 2025). However, rising concerns exist over peatlands shifting from
carbon sinks to carbon sources due to the impact of climate change (Dorrepaal et al., 2009; Huang et al.,
2021; Hopple et al., 2020), land use/cover conversion (Leifeld et al., 2019; Deshmukh et al., 2021;
Prananto et al., 2020), and other disturbances (Wilkinson et al., 2023; Turetsky et al., 2015). In Europe,
it has been reported that nearly half of the peatlands are suffering degradation, primarily due to drainage
for agricultural or forestry activities (Leifeld et al., 2019; Unep, 2022). As a consequence, European
peatlands currently emit up to 580 Mt CO»-eq per year across the continent (Unep, 2022). Given the
critical role of the peatland ecosystem in the terrestrial carbon cycle, it is therefore important to
understand the mechanisms driving carbon fluxes and their responses to climate change and human

disturbances.

Soil respiration, a key ecological process that releases CO; from peatlands into the atmosphere, is
influenced by a combination of biotic and abiotic factors. Among abiotic controls, soil temperature and
moisture play a crucial role in driving microbial activity and root respiration, influencing CO- fluxes
across daily to annual scales (Evans et al., 2021; Fang and Moncrieff, 2001; Hoyt et al., 2019; Juszczak
etal., 2013; Swails et al., 2022). Water table fluctuations alter oxygen availability and distribution within
the soil profile, directly affecting microbial processes and carbon emissions (Evans et al., 2021; Hoyt et
al., 2019). Atmospheric pressure affects the transport of gases between the soil surface and the
atmosphere, thereby modulating the CO, fluxes (Lai et al., 2012; Ryan and Law, 2005). Vegetation, as a
key biotic factor, influences the spatiotemporal variations of soil respiration through phenology, structure,
and community (Acosta et al., 2017; Wang et al., 2021). In addition, soil organic matter provides essential
substrates for microbial activity, with previous studies suggesting that the quality of organic material,
rather than its quantity, primarily regulates CO; fluxes in peatlands (Hoyos-Santillan et al., 2016; Leifeld

etal., 2012).

CO; emissions from peatlands are highly variable over space and time, presenting challenges to
accurately quantify and model carbon fluxes. This may be partially because peatlands are characterized

by a unique microtopography, including features such as hummocks and hollows (Moore et al., 2019).



66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

These small-scale variations create differences in hydrology, temperature, biogeochemistry, and
vegetation (Harris and Baird, 2019), leading to substantial spatial differences in the factors that control
CO: fluxes and the formation of “hot spots” with elevated CO, emissions (Kelly et al., 2021; Becker et
al., 2008; Mcclain et al., 2003; Frei et al., 2012; Kim and Verma, 1992). . In addition, peatlands exhibit
a high sensitivity to meteorological variability, which can trigger periods of disproportionately high CO»
fluxes—often referred to as “hot moments”—in response to transient environmental changes, such as
sudden shifts in temperature, atmospheric pressure, rainfall events, or fluctuations in the water table
(Anthony and Silver, 2023; Fernandez-Bou et al., 2020). High CO, emissions occur from discrete areas
in space (hot spots) and over short periods (hot moments), and may disproportionately contribute to the
overall fluxes (Anthony and Silver, 2023; Fernandez-Bou et al., 2020). Most studies have examined the
mechanisms and contributions of hot spots and hot moments of other greenhouse gases (N2O, CHy) in
agricultural and forestry ecosystems (Krichels and Yang, 2019; Anthony and Silver, 2021; Kannenberg
etal.,2020; Leon et al., 2014; Fernandez-Bou et al., 2020). However, research on CO; emission hot spots
and hot moments in peatlands remains limited (Anthony and Silver, 2023), even though both CO, and

CHj; originate from organic matter decomposition under different redox conditions.

Identifying and quantifying hot spots and hot moments in peatlands is challenging, requiring large-scale,
continuous, long-term observations. Currently, most studies on peatland soil respiration rely on point
measurements taken at intervals of half a month to one month, primarily during daytime (e.g., Wright et
al. (2013); Bubier et al. (2003); Kim and Verma (1992); Danev¢i¢ et al. (2010)). This spatiotemporal
limitation constrains the effective understanding of hot spots and hot moments. Some studies attempted
to extrapolate point data using land-use maps (Van Giersbergen et al., 2024; Webster et al., 2008;
Mcnamara et al., 2008), but uncertainties in landscape-scale fluxes increase as the number of
measurement locations decreases (Arias-Navarro et al., 2017; Wangari et al., 2022; Wangari et al., 2023).
While automated chamber systems improve temporal resolution and help capture hot moments (Hoyt et
al., 2019; Anthony and Silver, 2023), they are typically limited to a few sampling points, and scaling up
is constrained by significant resource demands. Eddy covariance towers can continuously measure net
ecosystem exchange over large areas (Rey-Sanchez et al., 2022; Abdalla et al., 2014), but they are less
effective in capturing the spatial heterogeneity of peatlands (Lees et al., 2018). These limitations

highlight the need for spatially robust, high-resolution methods that can characterize CO; fluxes across

4
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heterogeneous landscapes.

Several studies have integrated satellite-based remote sensing datasets with on-site chamber
measurements to model landscape-scale CO, fluxes (e.g., Junttila et al. (2021); Wangari et al. (2023);
Lees et al. (2018); Azevedo et al. (2021)). Remote sensing datasets on topography and vegetation
parameters serve as proxies for soil moisture, vegetation cover, and nutrient availability, enabling large-
scale CO, emission estimates within peatlands (Lees et al., 2018). However, this approach is somewhat
limited by coarse spatial (10 m to 1 km) and temporal (1 to 16 days) resolutions, which may overlook
hot spots and hot moments, leading to potential over- or underestimations of CO, fluxes in heterogeneous
(e.g., complexity in topography, diverse vegetation types, varying thermal-hydrological conditions)
peatlands (Kelly et al., 2021; Simpson, 2023). This shortcoming might be overcome by using unmanned
acrial vehicles (UAVs) equipped with different kinds of sensors such as Red-Green-Blue (RGB),
multispectral, thermal infrared, and Light Detection and Ranging (LiDAR). UAVs offer flexible
deployment and capture high-resolution spatiotemporal data (1 cm to 1 m, minutes to months) (Minasny
et al., 2019) which makes them particularly suitable for monitoring complex peatland dynamics and
detecting hot spots and hot moments. Thus far, UAVs have proven to be reliable tools for peatland
applications, including vegetation mapping (Steenvoorden et al., 2023), topographic reconstruction
(Harris and Baird, 2019), peat depth and carbon storage estimation (Li et al., 2024), ground-water and
surface water interactions (Moore et al., 2024), and moisture monitoring (Henrion et al., 2025). In a
recent study, Kelly et al. (2021) utilized UAV-derived land surface temperature to estimate ecosystem
respiration of a hemi-boreal fen in southern Sweden, and some studies (e.g., Pajula and Purre (2021);
Walcker et al. (2025)) employed UAV-based multispectral vegetation indices to map ecosystem CO; flux
at high resolution. These recent studies demonstrated the great potential of UAVs for linking CO, fluxes
with environmental factors at a very high resolution, although they mainly focused on data from a single
sensor. Few studies have explored the fusion of UAV-derived data from multiple sensors for mapping

soil respiration across peatland landscapes.

In this study, we integrate multi-sensor UAV-based remote sensing with traditional field surveys to
investigate soil respiration across a temperate peatland bog landscape, located in the Belgian Hautes

Fagnes, which represents an important ecosystem for studying peatland carbon fluxes due to its
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sensitivity to climate change and hydrological dynamics. Our research addresses two key questions:

(1) What controls the nature and strength of the relationship between soil respiration and environmental
factors—such as thermal-hydrological conditions, vegetation, carbon stock and quality— across complex
peatland landscapes and across spatiotemporal scales? To address this, we first identify the factors driving
seasonal and spatial variations in soil respiration and then assess the potential for linking environmental
factors to CO» flux at high spatiotemporal resolutions.

(2) How do spatial and temporal peaks (i.e., hot spots and hot moments) of biogeochemical processes
influence landscape-level carbon fluxes? For this purpose, we analyze the locations and timing of hot

spots and hot moments, and assess their contributions to overall CO, flux budgets.

2 Materials and methods

2.1 Study site

The Belgian Hautes Fagnes plateau, part of the Stavelot-Venn Massif, is located in eastern Belgium
(Figure 1a). This elevated landscape experiences a humid climate, with mean annual air temperature and
precipitation being approximately 6.7 °C and 1439.4 mm (period: 1971-2000), respectively (Mormal and
Tricot, 2004). The peatlands in this region cover an area of 37.50 km?, which primarily consist of raised
bogs formed since the Late Pleistocene and grown under both oceanic and continental influences
(Frankard et al., 1998; Goemaere et al., 2016). Our study site (50.49 N, 6.05 E; ~0.30 km?) is located in
the upper valley of the Hoégne River peatland bog region (Figure 1a). This ombrotrophic bog is mainly
fed by precipitation and covers an area of approximately 32 hectares. The landscape exhibits complex
structures, characterized by distinct SE-NW oriented topographic units (i.e., summit, topslope, shoulder,
backslope, and footslope), along with diverse microtopographic features, spatiotemporal varying
thermal-hydrological conditions, differences in peat thickness and carbon storage, and a range of
vegetation types (Sougnez and Vanacker, 2011; Henrion et al., 2024; Li et al., 2024). More specifically,
the summit is a low-relief, southeast-facing plateau at 675 - 680 m elevation, which transitions downslope
into the topslope and concave shoulder slope positions (Figure 1a). The northwest-facing backslope is
relatively steeper (average slope grade: 4.98°; elevation range: 645 - 670 m) compared to these upper

units, while the footslope lies in the northwestern hillslope adjacent to Hoégne River. The peat thickness
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varies spatially from 0.20 to 2.10 m across the landscape, with deeper deposits in the footslope and
shallower peat at the topslope (Henrion et al., 2024; Li et al., 2024). The estimated soil organic carbon
(SOC) stocks (i.e., top 1 m layer) range from 176.13 t ha'' to 856.57 t ha™!, with significantly higher
storage at the summit, shoulder, and footslope (Li et al., 2024). Due to the pronounced topographic
gradients and microtopography, the landscape exhibits great spatiotemporal variability in rootzone soil
volumetric water content (range: 0.1 — 1 cm® cm™) and water table dynamics (range: -80 — 5 cm) (Henrion
et al., 2025). The study site was drained and planted with spruces in 1914 and 1918, while the plantations
were progressively cleared between 2000 and 2016. Since 2017, the site has been under restoration and
now primarily covered by Vaccinium myrtillus, Molinia caerulea, Juncus acutus, and native hardwood
species (e.g., Betula pubescens and Quercus robur), as shown in Figure 1b. An observation station of the
Royal Meteorological Institute of Belgium (Mont Rigi, 50.51 N, 6.07 E) situated 3.07 km northeast of

the study site, records rainfall and atmospheric pressure data every 10 minutes.
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2.2 CO: flux measurement campaigns

Soil surface CO; flux measurements were conducted at five slope positions along the middle part of the
site (Figure 1a). A portable infrared gas analyzer with an automated closed dynamic chamber (LI-8100A
system, LI-COR, United States; accuracy: = 1.5 %) was used to monitor CO; fluxes at 33 sites biweekly
from December 2022 to March 2024 (Figure S1). The dominant vegetation type of each slope position
was recorded. Next, six collars (20 cm diameter) were installed randomly at each position, spaced 1-5
meters apart, to capture small-scale spatial variability. Given the high variability in soil water content at
the shoulder position (Henrion et al., 2025), six collars were installed in drier areas (i.e., Shoulder dry)
and another three in wetter areas (i.e., Shoulder wet). All vegetation within the collars was removed.
During each campaign, monitoring was conducted between 9:00 and 16:00. At each site, the CO, flux
(umol m s') in the chamber was measured for 2.5 minutes per observation. Simultaneously, soil surface
temperature (0—10 cm) and volumetric water content (VWC) during each CO, measurement were
recorded using a T-handled type-E thermocouple sensor (8100-201, LI-COR, United States; accuracy: £
0.5 %) and a portable five-rod, 0.06 m long frequency domain reflectometry (FDR) probe system (ML2x,
Delta-T, United Kingdom; accuracy: + 1 %), respectively. However, CO, measurements were not always
possible due to technical issues and bad weather conditions, resulting in a total of 666 valid measurements.
In addition, a pair of soil CO; forced diffusion probes (eosFD, EOSense, United States; accuracy: + 40
ppm) were installed near LI-8100A collars from 24 April 2024 to 8 November 2024 (Figure S1). These
probes, consisting of a soil node and a reference node, are based on a membrane-based steady-state
approach and can measure CO; flux every 5 minutes (Risk et al., 2011). During this period, the probes
continuously monitored CO, flux at different slope positions (Figure S1), resulting in a total of 39476

valid flux measurements.

2.3 Temperature, soil moisture, and water table monitoring

The temporal evolution of soil temperature and moisture along the middle part was monitored using
Teros12 sensors (Meter Group, Miinchen, Germany; accuracy: + 0.01-0.02 m? m™ for moisture and +
0.5 °C for temperature), with two replicates per slope position, spaced 5 meters apart (Figure 1a) (Henrion
et al., 2025). These sensors recorded data at a depth of 10 cm from 14 October 2022 to 28 October 2024,

every 10 minutes. Between the two replicates of each slope position, a station positioned ~1.4 m above
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the ground recorded air temperature every ten minutes. Additionally, ten soil temperature data loggers
(EL-USB-1-PRO, Lascar, United Kingdom; accuracy: = 0.2 °C) were installed primarily along two
evenly spaced transects parallel to the main slope, at a depth of 10 cm (Figure 1a). These loggers recorded
soil temperatures at the same frequency as Teros12 sensors from 21 March 2023 to 8 November 2024.
Besides, five Levelogger 5 pressure sensors (Solinst, Georgetown, Canada; accuracy: = 0.1 %) were
placed in PVC pipes to capture pressure at the same topographic positions as the Teros12 sensors (Figure
la), which was then used to interpret groundwater-level dynamics (Henrion et al., 2025). These probes

also recorded at 10-minute intervals, from June 2023 through October 2024.

2.4 Soil sampling and laboratory analysis

After completing all gas sampling campaigns, 33 disturbed soil samples (0-10 cm depth) were collected
within LI8100A collars at the five slope positions between 30 July and 15 October 2024. An Emlid Reach
RS 2 GPS device with centimeter-level precision was used to record the sampling site locations, using a
PPK solution with the Belgian WALCORS network, resulting in a mean lateral positioning error of 1.84
cm across all sites. The samples were stored in a refrigerator until laboratory analysis. A subset of the
samples was oven-dried at 80 °C for 24 hours (Dettmann et al., 2021), then crushed and ground into a
fine powder for soil organic carbon (SOC) and total nitrogen content (TN) analysis (928 Series, LEGO,
United States). Roots and litter were removed using tweezers during the pre-processing procedure. We
tested the presence of inorganic carbon of each sample by adding one drop of 10 % HCI but found that
no inorganic carbon was present in the samples. A subset of fresh samples was used for root biomass
analysis. The fresh soil samples were weighed and placed in a 1 mm sieve, then rinsed with water to
collect the roots. The washed roots were dried in an oven at 80 °C for 48 hours and then weighed to

calculate their dry biomass.

2.5 UAV data acquisition

During the CO; flux monitoring period, we conducted regular UAV flights across the study area to collect
high-resolution spatial data (Figure S1). A DJI Matrice 300 RTK was equipped with four different sensors:
(i) a Red-Green-Blue (RGB) camera (DJI Zenmuse P1 camera, 35 mm and 45 MP), (ii) a multispectral

camera (MicaSense RedEdge-M camera with five discrete spectral bands: blue (475 nm), green (560 nm),

10
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red (668 nm), rededge (717 nm), and near-infrared (842 nm), along with a downwelling light sensor),
(iii) a LIDAR scanner (DJI Zenmuse L1, integrated with a 20-MP camera with a 1-inch CMOS sensor)
and (iv) a thermal infrared camera (TeAX, featuring FLIR Tau2 cores and ThermalCapture hardware).
All the UAV flight missions were carried out around noon (10h00-14h00) and the details of UAV
campaigns were presented in support material (Text S1). Due to the variable weather conditions in the
research field, UAV campaigns were not always feasible. In total, one RGB and one LiDAR dataset
collected on 7 June 2023, were used in this study and ten multispectral and ten thermal infrared datasets

collected between 13 April 2023 and 13 May 2024 (Figure S1).

2.6 UAV imagery processing

The raw multispectral images were processed in the Pix4D mapper software (Pix4D S.A., Lausanne,
Switzerland) to generate reflectance maps (resolution: 6 cm) of the five spectral bands of the study area.
We calculated the Normalized Difference Vegetation Index (NDVI) across the 10 maps from the
monitoring period (Table 1). The RGB photos were processed in DJI Terra V4.0.10 (DJI, 2023) to
generate an orthomosaic image with a resolution of 1.26 cm. The raw LiDAR data was processed in DJI
Terra to provide a Digital Terrain Model (DTM,; .tif file) with a resolution of 15 cm. We then calculated
the terrain wetness index (TWI) in SAGA GIS 9.2.0 using the formula presented in Table 1. The variables

derived from the different types of images and their calculation formula were summarized in Table 1.

Table 1. Orthorectified image, topographical, vegetation index, and land surface temperature maps derived from

RGB, LiDAR, multispectral and thermal images.

Index Definition Unit Data source

RGB orthomosaic Orthorectified image mosaicked from RGB / RGB

image collection
DTM Digital Terrain Model, the elevation m LiDAR
TWI Terrain wetness index: / LiDAR

In (As/tan(b)), where As is the specific
contributing area and b is the slope angle (i.e.,

the rate of change in elevation) in radians.

NDVI Normalized Difference Vegetation Index: / Multispectral

(near infrared - red) | (near infrared + red)

11
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LST Land Surface Temperature °C Thermal infrared

The raw thermal infrared video streams were converted into RJPG images using ThermoViewer version
3.0.26 (TeAX, 2022). Subsequently, the thermal images were processed with the Pix4D mapper to
generate land surface temperature (LST) maps (resolution: 12 cm). To calibrate the LST of each date
(Figure 2a), we first applied linear regressions of temperature obtained by camera and temperature of 2
targets on the ground (Text S1, Figure S2a) to create a correction formula (Figure S2b). Next, we mapped
the spatial variations of surface emissivity using the classification-based approach (Snyder et al., 1998;
Li et al., 2013), based on land cover data from our previous work (Figure 1b; Li et al. (2024)) and
emissivity values of each class from literature (Snyder et al., 1998). Finally, we converted the LST to
thermal radiance using Planck’s law, applied an emissivity-based correction, and then converted the

radiance back to obtain calibrated LST.

2.7 Daily soil temperature mapping

The linear mixed-effects model was utilized to predict the spatial distribution of daily mean soil
temperature (10 cm depth) across the landscape from 1 May 2023 to 30 April 2024. This is because
mixed models integrate both fixed and random effects, which provide a robust framework for analyzing
data with non-independent structures (Pinheiro and Bates, 2000). Daily mean air temperature,
Normalized Difference Vegetation Index (NDVI) and calibrated Land Surface Temperature (LST) were
considered as fixed-effect predictors and monitoring sites were included as random effects. The model
was performed in RStudio (v4.1.2) using the Imer function of the Ime4 package (https://CRAN.R-

project.org/package=Ime4) and was defined as:
Yij = Bo+ Baxiyj + -+ Bpxyy + boj + byjzi; + -+ €y 6]
Where:

e y;; isthe dependent variable (i.e., soil temperature at 10 cm, unit: °C) for observations i in group
j.
*  Bo, P1,.--, By are fixed-effect coefficients.

e x;; indicates fixed-effect predictors (independent variables).

12



266 ®  byj, byj,... are random-effect coefficients associated with group j, which account for variability
267 across groups.
268 e z;; indicates predictors associated with random effects.
269 ® ¢ is the residual error term.
270 Soil temperature data were collected from both Teros 12 sensors and data loggers, as described in Section
271 2.3. Air temperature measurements were obtained from five stations positioned at different slope
272 locations. The NDVI and calibrated LST estimates were extracted from maps by retrieving values at the
273 20 soil temperature sensor sites (Figure 1a). These sites were included as random effects in the model to
274 account for repeated measurements at the same locations throughout the monitoring period. For mapping
275 urposes, daily air temperature was statistically downscaled by incorporating the relationship between
purp y p y Y p g p
276  daily air temperature and elevation, followed by downscaling using a Digital Terrain Model (DTM)
277 derived from LiDAR data (Figure 2a). The daily NDVI and LST maps were generated by linearly
278 interpolating the monthly/biweekly maps derived from UAVs. The workflow of soil temperature
279  mapping is illustrated in Figure 2a.
(ﬂ) | UAV campaigns | Field measurements
| Multispectral | Thermal infrared | LiDAR | CO, flux SOC stock
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Raw LST maps Daily TWI
::l ; i maps
Calibration by DTM map Alr temp. \ Dailv soil
LST targets ally so1
@E 1 Precipitation \ temp. maps
Emissivity i osoilvwe | [
calibration R T g Linear mixed-effects
l i model
Time-based linear Calibrated LST Baseline- |
interpolation maps anomaly mapping | Daily CO, flux maps
1 Regression- .
Time-based linear based mapping Soil temp. 90t percentile threshold
interpolation 1 l
}
Linear mixed- Hot spot
280 | Dally NDVI maps | | Daﬂy LST maps | | Dally air temp maps ’__‘ offects model O Spots
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Figure 2. Workflow diagram of daily CO, flux spatial mapping (a) and hourly CO, flux temporal

modeling (b).

2.8 Generation of corrected daily TWI

We generated corrected daily TWI maps to approximate the spatial distribution of daily soil volumetric
water content (VWC) by incorporating both long-term site characteristics and daily precipitation effects
(Figure 2a). First, we calculated the mean VWC for each site over the period from 1 May 2023 to 30
April 2024. Then, we extracted each site’s TWI values from a TWI map generated using the formula in

Table 1. Next, we performed a linear regression with mean VWC as the response and TWI as the predictor:
Baseline = Mean VWC =b +a xTWI 2)

The Baseline represents the soil moisture level at long-term. A baseline map was then created using this

regression model. Daily deviations (anomalies) from the baseline were defined as:
Anomaly, = VWC, — Baseline 3)

Considering the memory and lag effects in soil moisture dynamics, we assumed that the anomaly on any

day is influenced by the previous day's anomaly and precipitation:
Anomaly, = c * Anomaly,_, — d * Precipitation;_, 4

Finally, we generated a “corrected TWI” map for each day by adding the dynamically updated anomaly

to the baseline map:

Corrected TWI, map = Baseline map + Anomaly; 5)
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This approach allows the daily corrected TWI maps to capture both the inherent spatial variability (as
determined by TWI) and the dynamic influence of rainfall, thereby serving as a proxy for the spatial

distribution of soil moisture.

2.9 Statistical analysis

All data analyses were conducted in RStudio (v4.1.2). All timestamps in this study were converted to
Coordinated Universal Time (UTC) to ensure consistency across datasets. Group differences were
assessed by the Kruskal-Wallis test, a non-parametric alternative to the one-way analysis of variance, and
suitable for non-normally distributed data (Dunn, 1964). When the Kruskal-Wallis test detected a
significant overall effect (p < 0.05), Dunn's post-hoc test was performed to determine which groups
differed significantly from each other. Pearson correlation analysis was performed using the corrplot
package (Murdoch and Chow, 1996). The linear mixed-effects models used to identify factors controlling
spatial- temporal variations of CO, flux, as well as time series simulation and mapping are introduced

below.

2.9.1 Models to explain spatiotemporal variations in CO2 flux

We also utilized linear mixed-effects modeling framework (i.e., as shown in section 2.7) to assess the
impacts of both static and dynamic environmental factors on the spatial and seasonal variability of CO,
fluxes. Unlike the soil temperature model, the natural logarithm of CO> flux observations was utilized as
aresponse. The CO; fluxes data are often characterized by extreme values and right-skewed distribution,
and a lognormal assumption for CO, fluxes could better account for the influences of extreme values on
the overall distribution (Wutzler et al., 2020). The fixed-effect predictors were categorized into three

groups:

o Static variables: SOC stock, and the ratio of SOC content to nitrogen content (C/N ratio).
o Semi-dynamic variables: root biomass and NDVI.
¢ Dynamic variables: soil temperature and soil moisture at 0—10 cm depth, as well as water table

and atmospheric pressure (the latter two variables are shown in the support material).

Estimates for NDVI were extracted from the NDVI maps by retrieving the value of the 33 CO, flux

observation sites and the SOC stock values were extracted from the a local high resolution (0.15 m) SOC

15



327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

stock map (Li et al., 2024). The sites were included as random effects in the seasonal pattern model to
account for repeated measurements at the same locations during the monitoring period, whereas slope

positions were treated as random effects in the spatial pattern model.

2.9.2 Modelling hourly CO: flux

The mixed-effects model was utilized to simulate the time series of CO, fluxes at different slope positions
(Figure 2b). Here, the slope position was included as random variable, and the natural logarithm of CO»
flux (hourly) was set as a response. We utilized CO, fluxes data measured by both the LIS100A system
and eosFD probes. Specifically, we randomly selected a number of 30 observations from the eosFD
probes at each slope position to reduce data redundancy from high-frequency sampling. Afterwards, we
applied weighting to adjust the remaining imbalance in data density between the high-frequency eosFD
monitoring and low-frequency LIS100A measurements, ensuring both data sources contributed
proportionally to the model. The independent variables included hourly soil temperature (10 cm depth),
volumetric soil moisture (VWC, 10 cm depth), and air temperature (1.4 m height), considering their
importance in explaining the seasonal and diurnal patterns of CO; flux. We made simulations of the time
series of hourly CO, flux for different slope positions from 1 May 2023 to 30 April 2024. Furthermore,

we identified CO, emission hot moments based on the description in Section 2.9.4.

2.9.3 Mapping daily CO: flux

The linear mixed-effects model was utilized to map the spatial distribution of daily CO, fluxes across the
landscape, with daily soil temperature (10 cm depth), corrected daily TWI, and SOC stock being
considered as fixed-effect variables and gas sampling sites being included as random variables (Figure
2a). We predicted the daily CO; flux of the landscape from 1 May 2023 to 30 April 2024. Additionally,
we calculated the mean daily soil CO; flux maps for each season and the entire year. Based on these

predictions, we identified hot spots for each day by the methods described below.

2.9.4 Quantifying hot moments and hot spots of CO: flux

In previous studies, percentiles have been used as thresholds for identifying heat waves (e.g., (Meehl and

Tebaldi, 2004): 97.5th percentile), soil heat extremes (e.g., Garcia-Garcia et al. (2023): 90th percentile),
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hot spots of N,O emissions (e.g., Mason et al. (2017): median plus three times the interquartile range),
and hot spots of CO» emissions (e.g., Wangari et al. (2023): median plus the interquartile range). In this
study, we tested different methods and selected the 90th percentile as the threshold of both hot moments
and hot spots to balance capturing extreme CO: emissions while maintaining a sufficient sample size. To
capture the hot moments, we calculated a threshold for each slope position separately using its own

dataset (Figure 2b). For hot spots, we determined a daily threshold based on each map (Figure 2a).

2.10 Model performance evaluation

Independent variable coefficients, Intraclass Correlation Coefficient (/CC), coefficients of determination
(marginal R? and conditional R?), Root Mean Square Error (RMSE), and Akaike Information Criterion
(AIC) were extracted using the modelsummary package after running each model described in section
2.7 and section 2.9.1. The /CC quantifies the proportion of variance explained by a grouping (random)
factor in multilevel data; values close to 1 indicate high similarity within groups, while values near 0
suggest that grouping conveys little to no information (Nakagawa et al., 2017; Shrout and Fleiss, 1979).
The marginal R? represents the variance explained by fixed effects alone, and the conditional R’
represents the variance explained by both fixed and random effects (Pinheiro and Bates, 2000). The
Kling-Gupta Efficiency (KGE) between observations and predictions was also calculated, with values
closer to 1 indicating good model performance (Gupta et al., 2009). The relative importance of each
predictor was obtained using the g/mm.hp package (Lai et al., 2023; Lai et al., 2022). To assess
multicollinearity in regression analysis, the car package was used to calculate the variance inflation factor

(VIF) (Fox and Monette, 1992).

For modelling daily soil temperature (i.e., section 2.7) and daily/hourly CO, flux (i.e., sections 2.9.2 and
2.9.3), we divided the corresponding dataset into a training set (70 %) and a test set (30 %) using K-
means clustering, following the methodology of our previous work (Li et al., 2024), to minimize biases
that could arise from random sampling (Hair et al., 2010). The models were trained on the training set,
and the simulation accuracy was validated using the test dataset. The coefficient of determination (R?),
RMSE and KGE were used to assess the quality of all model fits. The daily soil temperature model yielded
R?, RMSE, and KGE values of 0.89, 1.33 °C, and 0.94, respectively (Figures S2c, S2d). Detailed results

on model coefficients and performance are summarised in Table S1.
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3 Results

3.1 Peat soil surface and subsurface properties

Table 2 presents an overview of soil surface and subsurface properties at different slope positions. The
air temperature above ground ~1.4 m shows great temporal variability, ranging from -8.76 to 24.79 °C
within one year. Soil temperatures have smaller temporal variations (0.75 - 17.48 °C), while the mean
daily soil temperature (+ one standard deviation (SD)) at the topslope (8.86 + 3.69 °C) is relatively lower
than at other positions. Soil volumetric water content (VWC) across the landscape also exhibits
significant spatial heterogeneity. The backslope has the highest mean daily VWC (0.94 + 0.04 cm® cm®
3), followed by the footslope (0.86 = 0.06 cm? cm™), shoulder wet (0.85 + 0.01 cm? cm™), and summit
(0.82 £ 0.04 cm? cm™). The water table at the topslope showed large fluctuations throughout the year
(range: -77.41-0.38 cm; mean + SD: -21.76 + 25.17 ¢cm), as shown in Table 2. In contrast, the water table
at the shoulder wet slope position remained close to the surface and relatively stable within one year
(range: -20.21-4.17 cm; mean + SD: -2.17 £ 5.62 cm). No significant differences in dry root biomass
were observed among the various slope positions, which may be attributed to substantial small-scale
variations within each position, particularly at the shoulder, where the biomass ranged from 0.70 to 8.46
g/100g soil. The SOC content values for summit and shoulder wet areas are 47.38 + 2.06 g/100g and
47.00 £ 1.41 g/100g, respectively. The SOC content in the shoulder and backslope positions is similar,
approximately 42 g/100g, while the carbon content in the footslope and topslope positions is
comparatively lower. In addition, the TN content at the topslope (1.61 £ 0.48 g/100g) is significantly
lower than at other positions (p < 0.05). The C/N ratio at the footslope (17.41 £ 1.57) was significantly
lower than at the summit, topslope, and backslope (p < 0.05), while no significant differences in C/N

ratios were observed among the other places.
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Table 2. Summary of the mean daily air temperature (4ir temp.), soil temperature (Soil temp.), soil volumetric water
content (VWC), and water table in one year at different slope positions. Soil subsurface properties at 10 cm depth,

i.e, dry root biomass, soil organic carbon (SOC) content, total nitrogen (TN) content, and C/N ratio, at different slope

positions.
Slope Shoulder Shoulder .
. Footslope Backslope Topslope Summit
positions wet dry
. Molinia Vaccinium Juncus Molinia Vaccinium Molinia
Vegetation ) ]
caerulea myrtillus acutus caerulea myrtillus caerulea
9.74 +£ 6.73
. 9.04 £ 6.792 9.25+6.892
Air temp. 9.70 £6.77% a 9.66 £ 6.80°
(-8.76, N.A. (-8.44,
(°C) (-7.68,24.79)  (-7.77, (-7.83, 24.66)
23.75) 24.52)
24.60)
9.65 +4.27
. 9.18 + 4.07
Soil temp. 9.67+£4.622 9.55+427% a 8.89+4.15% 886+3.69°¢ abe
°C 1.29,17.48 1.40, 16.98 1.62, 0.75, 15.52 1.55,15.18
(°0) ( ) ( )« ( ) ( ) (1.82.16.00)
16.74)
0.85 £ 0.01
VWC 0.86+£0.06° 0.94+0.042 . NA 0.68+£0.08¢ 0.82+0.044¢
3em3 0.68,0.91 0.81,0.98 o 0.44,0.73 0.70, 0.85
(cm’ cm™) ( ) ) (0.83.0.87) ( ) ( )
-27.15 + -2.17 + -20.18 +
-21.76 +
Water table 8.31¢ -21.07+7.51°  5.622 11.80¢
N.A. 25.174
(cm) (-49.14, - (-3591,-9.68) (-20.21, (-49.23, -
(-77.41, 0.38)
18.53) 4.17) 9.20)
. 4.02 £2.10
root biomass 1.43+1.11* 0.97+0.872 . 297+3.00* 0.98+0.992 0.69+0.272
100g™! 0.20, 3.37 0.27,2.65 0.70, 8.46 0.18,2.84 0.31,0.96
(g 100g™) ( ) ) (1,98, 6.17) ( ) ( ) ( )
3848 £ 1.71 47.00 + 42.53 +£2.51 47.38 £2.06
SOC content 4236+2.46% 141% ab 3226+1081> =
(g 100g™) (36.55, (37.60,44.30)  (45.95, (39.75, (13.5,42.1) (43.95,
40.80) 48.60) 45.95) 49.15)
235+0.17
TN content 222+0.132  2.02+0.11% . 2.04+£0.24%® 1.61+0.48" 2.13+0.14?
100g™! 2.03,2.37 1.89,2.16 1.71,2.36 0.75,2.19 1.99,2.34
(g 100g™) ( ) ( ) (2.16.2.47) ( ) ( ) ( )
20.03 + 2232+ 1.79
17.41 £ 1.57 20.98 £1.95
. 2098 £1.422 1.26% 19.76 £2.012> 2
C/N ratio b a
(19.23,22.70)  (18.81, (18.08, 23.36)  (20.21,
(15.59, 20.1) (18.6, 24.06)
21.32) 24.51)

Note. The air temperature was monitored at a height of ~1.4 m above the ground. The soil temperature and VWC
were monitored at a depth of 10 cm by Teros12 sensors. The results are presented as the mean + one standard
deviation (SD) and values in brackets indicate the minimum and maximum values. The Kruskal-Wallis and Dunn s

tests were conducted within each class with different superscript letters indicating significant differences (p < 0.05).
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3.2 Spatiotemporal patterns of CO: flux

During the monitoring period, the CO, emissions show large spatial and seasonal variations across the
landscape. The CO; fluxes at the footslope (1.25 + 1.00 pmol m s™!) and backslope (1.11 =+ 1.03 pmol
m? s7') were significantly lower than that of other slope positions (p < 0.05) (Figure 3a). Furthermore,
significant differences were observed when grouping the data into three vegetation covers: CO,
emissions from Vaccinium myrtillus were lower than those from Juncus acutus, with mean = SD values
of 1.59 £ 1.43 pmol m? s}, and 2.33 + 2.36 umol m? s™!, respectively (Figure 3b) (p < 0.05). However,
the CO, fluxes under Molinia caerulea displayed large variations (0.02~20.1 pmol m? s™), and no
significant differences were found compared to the other two vegetation types. The CO, flux data
indicated large CO, emissions from June to September (3.65 = 2.68 pumol m> s™'), which can be 8.11
times higher than that from winter and early spring (0.45 + 0.40 umol m s!) (Figure 3c). CO; emissions

in May and October were at a moderate level.
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Figure 3. Boxplot of CO2 flux (umol m™ s'!) across different slope positions (a), vegetation types (b), and sampling
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dates (c), using data from the LI8100 A system recorded between 2023-02-13 and 2024-03-13. (a), CO: flux data of
each box were from all dates, and Shoulder (w) and Shoulder (d) indicate shoulder wet and shoulder dry areas,
respectively. (b), COz flux data of each box were from all dates, and Myrtillus, Molinia and Juncus indicate
Vaccinium myrtillus, Molinia caerulea and Juncus acutus, respectively. (c), CO: flux data of each box were from all
slope positions. The edges of each box represent the first quartile (Q1) and third quartile (Q3), while the line inside
the box indicates the median CO; flux. Whiskers extend from the box to the smallest and largest values within 1.5
times the interquartile range, and points outside the whiskers are considered extreme values. The Kruskal-Wallis and
Dunn's tests were performed within slope positions and vegetation types, with different letters indicating significant

differences among groups (p < 0.05).

At the daily scale, the soil respiration displayed a clear diurnal trend from April to August (Figure S3),
particularly at the footslope (Figure S3a), backslope (Figure S3b), and shoulder (Figures S3c, 3d) slope
positions, with higher CO, emissions observed in the late afternoon (14:00—18:00) and lower emissions
in the morning (04:00-08:00). In contrast, the diurnal trend of CO; flux at the topslope (Figure S3¢) and
summit (Figure S3f) in autumn was less pronounced. Figure 4a presents examples of time series data for
CO; fluxes and environmental factors at the footslope, topslope, and summit from August to October
2024. In August, clear diurnal patterns with variation magnitudes of 2-3 pmol m s*!, and reduced CO>
emissions following precipitation events on 13 August and 17 August were observed at the footslope
(Figures 4a, 4b). Since the middle of September, the diurnal variation was less than 1 umol m? s! and

there was no obvious pattern in daily changes (Figures 4a, 4c).
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Figure 4. Examples showing time series data of air pressure (kPa), precipitation (mm), soil volumetric water content
(VWC, cm? cm®), water table (cm), soil temperature (Soil temp., °C), air temperature (Air temp., °C), and CO2 flux
(umol m s”!', measured by eosFD probes) from 1 August 2024 to 31 October 2024 (a), from 8 August 2024 to 15
August 2024 at the footslope (b), and from 8 October 2024 to 15 October 2024 at the topslope slope position (c).
The black vertical dashed lines in Figure a indicate the two periods shown in Figures b and c. The red vertical dashed

lines in Figures b and ¢ indicate the precipitation events.

3.3 Factors contributing to spatiotemporal variability

Three types of environmental factors explain 64 % of the observed seasonal variance in CO: emissions,
with contributions of 33 % from soil temperature, 10 % from VWC, 19 % from vegetation (i.e., NDVI,
root biomass), 2 % from relatively static factors (i.e., SOC stock, C/N ratio), and 6 % from random effects
(i.e., 33 sampling sites) (Table 3). This suggests that long-term stable environmental factors have minimal
direct influence on seasonal CO: flux patterns. Interestingly, the contribution of these relatively stable
factors is nearly 6 times higher in explaining overall spatial variations, although soil temperature is still
the dominant factor (Table 3). The low ICC values in both spatial and seasonal models highlight

significant small-scale heterogeneity in soil respiration. Water table contributed 10 % of seasonal

23



468

469

470

471

472

473

474

475

476

477

478

479

480

variation and atmospheric pressure was not important (1 %), as shown in Table S2 of the support material.

The relationships between each environmental factor and CO, fluxes are shown in Figure S4.

Table 3. Coefficients and relative contributions of three types of input variables (static, semi-dynamic, dynamic) of
mixed linear regression models for modelling CO:2 flux. Random effects were evaluated by /CC and model

performance was evaluated by Marginal R?, Conditional R’, AIC, RMSE, and KGE.

Input variables Seasonal patterns Spatial patterns
Fixed effects: Static SOC stock 0.003 -0.003
coefficient (tha') (1 %) (0.06 %)
(contribution) C/N ratio 0.05 0.07*
(1%) (10 %)
Semi root biomass 0.06 0.09*
dynamic (g 100g™) (0.36 %) (12 %)
NDVI 0.90*** -3.35%*
(18 %) (12 %)
Dynamic Soil temp. 0.127%%* 0.39%#%*
°O) (33 %) (18 %)
VwC -0.77%** -1.37%*
(cm® cm) (10 %) (11 %)
Random effects  /CC 0.18 0.06
(contribution) (6 %) 3 %)
Model Marginal R® 0.64 0.63
performance Conditional R’ 0.70 0.66
AIC 1386.00 50.10
RMSE 0.64 0.25
KGE 0.78 0.78

Note. Significance level: *** p <0.001, ** p <0.01, * p <0.05. All CO: fluxes (unit: umol m2 s!), soil temperature,
and VWC data for spatial and seasonal patterns were from the LI§100 A system. To investigate the factors controlling
spatial variations of CO> flux, we calculated the mean values of CO2 flux, NDVI, soil temperature, and VWC of

each site during the monitoring time.

3.4 Continuous hourly time series of CO: flux and hot moments

Three dynamic variables (i.e., soil temp., VWC, air temp.) were taken into account to predict the time
series of hourly CO; flux at different slope positions. These input variables were selected due to their

influential roles in explaining the diurnal (Figure S3, Figure 4) and seasonal (Table 3) fluctuations of
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CO; emissions. As shown in Table 4, the temporal model yielded a robust performance in both training
and testing dataset, achieving R?, RMSE, and KGE values of 0.86,0.39 pmol m2s™*, 0.90, and 0.74, 0.57

pmol m2 71, (.77, respectively.

Table 4. Model performance for simulating time series of hourly CO: flux (umol m2 s™') and mapping daily CO-

flux (umol m™ s™') across the landscape.

Training dataset Testing dataset
Models

RMSE R? KGE RMSE R? KGE
Temporal model 0.39 0.86 0.90 0.57 0.74 0.77
Spatial model 0.49 0.81 0.85 0.56 0.75 0.83

Note. Temporal model used the natural logarithm of CO: flux data from LI8100 A and eosFD probes, whereas spatial

model used the natural logarithm of CO: flux data only from LI8100 A.

The modelled CO, emissions at all slope positions display a clear seasonal trend, with higher CO; fluxes
from June to September and lower estimates in other months, in line with the observed fluxes shown in
brown dots (Figures 5d-51). The total CO, fluxes (Table 5) at the summit (19.50 t ha") and the shoulder
(dry: 19.47 t ha'!, wet: 16.31 t ha'!) slope positions were higher than that of topslope (14.45 t ha™'),
followed by footslope (13.94 t ha'') and backslope (11.54 t ha!), consistent with the spatial patterns of
our observations (Figure 3a). Most hot moments occurred from June to September 2023, whereas few
hot moments were observed from late July to the early August (Figures 5d-5i). Although these hot
moments of different slope positions only accounted for 10 % across the year, they could contribute

28 %-31 % to the annual total CO: emissions (Table 5).
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499 Figure 5. Time series of hourly precipitation (blue bar) and atmospheric pressure (light green line) (a), hourly mean
500 VWC (blue line) and water table (red line) (b), hourly mean air temperature (orange line) and soil temperature (black

501 line) (c), modelled hourly CO: flux (purple lines) and in-situ measurements (brown dots) at different slope positions
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(d-i). Precipitation (mm) and atmospheric pressure (kPa) data was from the nearby meteorological observation
station (50.51 N, 6.07 E). The water table (cm) data were derived from the Solinist probes. The VWC (cm? cm)
and soil temperature (°C) were mean values from five slope positions monitored by Teros12 sensors at a depth of 10
cm. Air temperatures (°C) were mean values from 5 stations at 1.4 m height above ground. Measured CO2 fluxes

(umol m2 s7') were from the LI§100A system.

Table 5. Summary of modelled mean + SD CO: fluxes, thresholds for identifying hot moments, total CO: flux, and

the contribution of hot moments to total flux at different slope positions.

Slope position Footslope Backslope Shoulder Shoulder Topslope Summit
wet dry
Mean +£sd COz2 flux  1.00£091 0.83+0.73 1.21+0.99 144+122 1.04+086 1.41+1.22

(umol m2 s

Total CO: flux 13.94 11.54 16.31 19.47 14.45 19.50
(thal)
Threshold 2.22 1.80 2.55 3.07 2.19 3.04

(umol m? s
Contribution 30.74 % 3031 % 28.99 % 28.41 % 28.91 % 29.93 %

of hot moments

3.5 Daily CO: flux maps and hot spots

A linear mixed-effects model was utilized to map daily CO: flux from 1 May 2023 to 30 April 2024,
incorporating soil temperature, corrected TWI, and SOC stock as predictors due to their significant role
in explaining the spatial-seasonal variability of CO: flux and their availability as spatial data. The
mapping model yielded robust performance metrics (Table 4), with R?, RMSE, and KGE values of 0.81,
0.49 pmol m2 s! , and 0.85 in the training dataset, and 0.75, 0.56 pmol m™2 s™', and 0.83 in the test

dataset, respectively.

Consistent with our observations, the modelled soil respiration also displayed substantial spatiotemporal
heterogeneity (Figures 6a-6d). More specifically, the mean CO, fluxes ranged from 0.09 pmol m? s™! to
8.23 umol m? s! in spring (Figure 6a), 0.31 umol m? s™!' to 33.83 umol m? s' in summer (Figure 6b),
0.15 pmol m?2 s to 16.88 pmol m? 57! in autumn (Figure 6¢), and 0.03 pmol m? s to 2.47 umol m™
1

s” in winter (Figure 6d). Many modelled mean CO, fluxes at the footslope and backslope (elevation <

660 m) remained below 2 umol m s*!' (Figure 6¢). In contrast, the modelled CO, emissions remained
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527
528

higher throughout the year at the shoulder (660 m < elevation < 670 m) and east of summit (elevation >
675 m) with high vegetation cover (Figure 1b). About 10 % of the area were identified as hot spots, with
a high frequency of hot spots occurring in these regions, while the locations of sporadic hot spots varied
over time (Figure 6f). Overall, the landscape emitted approximately 24.81 t ha! CO, to the atmosphere

during the simulation period, with 20.41 % £ 0.61 % of the CO; fluxes coming from the hot spots.
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533 map. The hot spots area proportion and CO: flux contribution from the hot spots of each season and across the year

534 are summarized in the corresponding maps.
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4 Discussion

4.1 Drivers of spatiotemporal heterogeneity in CO: emission

Consistent with prior temperate peatland studies (Juszczak et al., 2013; Wilson et al., 2015; Danev¢ic et
al., 2010; Swails et al., 2022), our results indicate that seasonal variations in soil CO: flux across the
landscape are highly related to soil temperature, which could account for 33 % of the seasonal variability
(Table 3). This relationship is likely due to the influence of temperature on microbial activity, as well as
the distinct seasonal patterns in temperature observed in our study (Figure 5c), which in turn drive
corresponding fluctuations in soil respiration throughout the year (Figure 3c). Moreover, spatial
heterogeneity in soil temperature further shaped landscape-scale CO2 emission patterns (Table 3). For
instance, the south-facing summit slopes, which receive more solar radiation in the daytime, consistently
show higher CO: fluxes (Figure 3a). Conversely, the north-facing footslope and backslope, situated on
the windward side, experience lower temperatures, resulting in generally lower soil respiration rates
throughout the observation period (Figure 3a). At the daily scale, clear soil temperature oscillations were
observed in the surface peat, while these diurnal cycles were damped and delayed with depth, with
temperature peaks typically occurring at night and valleys around midday (Figures 4, S3). In contrast,
the diurnal pattern of soil respiration during growing season (i.e., April to August; Figures 4, S3) was
more closely aligned with air temperature, highlighting the important role of air temperature in regulating

short-term variations in soil respiration.

Soil water content influences oxygen availability and nutrients transport within the peat profile, thereby
regulating microbial decomposition, plant root activity, and ultimately CO: production (Hatala et al.,
2012; Knox et al., 2015; Zou et al., 2022; Huang et al., 2021; Deshmukh et al., 2021). Previous studies
reported nonlinear relationships between soil moisture and soil respiration (Kechavarzi et al., 2010;
Marwanto and Agus, 2014; Wood et al., 2013), as both excessively dry and overly saturated conditions
can limit microbial decomposition. In our study case, we observed a negative correlation between soil
volumetric water content (VWC) and CO, fluxes (Table 3, Figure S4), with VWC explaining
approximately 10 % of the spatial and seasonal variability in soil respiration (Table 3). This may partially
explain the slightly higher CO, fluxes in drier shoulder positions compared to wetter areas (Figure 3a).

Numerous studies have demonstrated that water table levels play a crucial role on soil respiration
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(Berglund and Berglund, 2011; Evans et al., 2021; Hoyt et al., 2019; Knox et al., 2015). For example,
Knox et al. (2015) demonstrated that a declining water table caused by drainage increases oxygen
penetration into the peat, resulting in higher CO: flux compared to restored peatlands. Our study also
observed negative correlations between the water table and CO, fluxes (Figures 4a, S4), whereas the
water table accounted for only 10 % of CO- flux seasonal variations (Table S2). This relatively modest
contribution may be attributed to (i) the limited number of observation sites (i.e., 5 sites along the
hillslope), (ii) short duration of water table monitoring that matched the CO, flux measurement periods,
and (iii) the generally low water table throughout the year (Table 2), particularly at the footslope,
backslope, and summit, where maximum water tables remained > 9 cm below the ground. This
maintained aerobic layers that support soil respiration, thereby reducing the influence of water table
fluctuations on CO, fluxes. Increasing spatial coverage and temporal resolution of water table
observations across the landscape would likely improve our ability to examine its influence on CO;

emissions.

Atmospheric pressure can influence gas fluxes via pressure pumping (Ryan and Law, 2005), and thus we
examined its influence on CO, emission. However, when atmospheric pressure was included as a
predictor in our model, it only accounted for 1 % of seasonal variability in CO, fluxes (Table S2).
Examination of high-frequency time series data (i.e., hourly CO; flux from the eosFD probes) showed
that at the daily scale, the diurnal pattern of CO> fluxes did not follow atmospheric pressure fluctuation
(Figure 4). At longer time scales, the two variables displayed only weak correlations. Moreover, we
observed that declines in atmospheric pressure were often followed by precipitation events, which in turn
were associated with decreases in both air temperature and CO; flux, or slight CO, fluxes increases
(Figure 4). This suggests that atmospheric pressure may indirectly influence soil respiration by affecting
precipitation patterns, rather than exerting a strong direct control. In saturated peatlands, falling
atmospheric pressure has been shown to trigger methane (CH4) ebullition by releasing trapped gas
bubbles (Tokida et al., 2007; Tokida et al., 2005; Baird et al., 2004), while in our study site, which is a
hillslope where the surface peat remains aerobic most of the time (Table 2), such bubble formation and
ebullition are likely minimal. Another contributing factor maybe the limitations of our observations that

may have limited our ability to detect short-lived CO: flux responses to atmospheric pressure fluctuations.
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Previous studies have shown that vegetation mediates soil respiration through root respiration, exudates,
litter inputs, and rhizosphere priming effects (Acosta et al., 2017; Wang et al., 2015a; Walker et al., 2016;
Jovani-Sancho et al., 2021; Bragazza et al., 2013). Root respiration, which is closely linked to plant
photosynthetic activity, contributes directly to the overall soil CO» fluxes (Crow and Wieder, 2005). In
our study, the contribution from root biomass becomes more substantial in the spatial model (i.e., 12 %)
than in the seasonal model (< 1 %, Table 3). This discrepancy is likely because root biomass was
measured only once during the entire CO» monitoring period, thereby missing its seasonal dynamics. The
monthly/biweekly NDVI is the second-most influential predictor for CO, seasonal fluctuations (Table 3),
explaining 18 % of variability, as NDVI reveals vegetation phenology during the monitoring period.
Accordingly, positive correlation was observed between CO» flux and NDVT at the seasonal scale (Table
3, Figure S4). In the spatial-pattern model, however, the annual mean NDVI explained 12 % of the spatial
variability in CO; fluxes (Table 3) and the relationship became negative (» = - 0.29, p = 0.11). This shift
in correlation may be due to differences in vegetation structure and composition across the landscape.
Slope positions with higher mean NDVI values (i.e., topslope and backslope) are mainly covered by
dwarf shrubs (i.e., Vaccinium myrtillus), which exhibit lower CO; fluxes compared to other vegetation
types (Figure 3b). The lower CO, fluxes in dwarf shrub areas are likely associated with their lower root
biomass (Table 2). Furthermore, it has been shown that dwarf shrubs in northern peatlands produce high-
phenolic litter with higher resistance to breakdown and introduce more water-soluble phenolics into the
soil compared to Sphagnum moss/herbs (Bragazza et al., 2013; Wang et al., 2015a), which further
constrains microbial activity and CO: production. In addition, vegetation cover may indirectly influence
soil respiration by regulating surface microclimate conditions such as humidity and temperature (Nichols,

1998; Stoy et al., 2012).

As shown in Table 3, the SOC stock and C/N ratio have limited explanatory power for the seasonal
variability of CO; flux, in line with findings of Danev¢ic et al. (2010). However, when analyzing drivers
of average soil CO; flux rate across the entire monitoring period, the importance of C/N ratio increased
nearly 11 times (Table 3). This likely reflects how long-term averaging integrates short-term dynamic
variability, thereby amplifying the role of spatial heterogeneity mediated by the C/N ratio. Prior studies
suggesting that the quality of organic material, rather than its quantity, primarily regulates CO> fluxes in

peatlands (Hoyos-Santillan et al., 2016; Leifeld et al., 2012). Specifically, the soil C/N ratio is known to
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regulate microbial community functionality and respiration intensity (Leifeld et al., 2020; Briones et al.,

2014; Ishikura et al., 2018; Wang et al., 2015D).

4.2 CO: emission hot moments and hot spots: identification, implications, and importance

4.2.1 Temporal analysis and hot moments

During past decades, efforts have been made to model CO; flux over time based on its relationship with
environmental factors such as hydrology, temperature, substrate quality, microbial community, and
vegetation (Hoyt et al., 2019; Junttila et al., 2021; Schubert et al., 2010; Rowson et al., 2012; Abdalla et
al., 2014; Farmer et al., 2011; Anthony and Silver, 2021). In our study, diurnal cycles of CO; fluxes are
closely related to air temperature (Figure 4, Figure S3), while soil temperature and moisture are important
factors in explaining the seasonal patterns of CO> flux (Table 3). Hence, the three dynamic environment
variables were incorporated into the model to simulate the hourly CO, flux across the entire monitoring
period. Overall, the temporal model demonstrated robust performance in both the training and testing
datasets (Table 4) and effectively captured seasonal and diurnal trends at most sites (Figures 5d-51).
However, the modelled peak values are lower than the observations at shoulder and summit slope
positions (Figures 5g, 5f, 5i), which may be partially due to the limited number of high-value
observations in these areas. Consequently, the model is more influenced by the more frequent lower CO»
fluxes, leading to an overall underestimation of the peak. In addition, two types of gas analyzers were
employed to monitor CO, flux with different sampling frequency and time: the LI-8100A sensor was
used biweekly or monthly to capture seasonal trends, while eosFD probes collected data every five
minutes to track diurnal fluctuations. The integration of these datasets for modelling temporal dynamics

improved estimation accuracy but might also introduce uncertainties into the model.

Anthony and Silver (2023) demonstrated that identifying hot moments of CO> flux in peatland requires
intensive continuous measurements, while as an alternative, our robust simulation of hourly CO; flux
enabled the identification of hot moments in a complex landscape. We found that most of these hot
moments occurred during the summer and early autumn seasons (Figures 5d-51), in agreement with our
in-situ observations (Figure 3c). The frequent high CO, emissions in June and July can be attributed to

the low precipitation and water table level, decreased soil moisture, and high temperatures (Figures Sa-
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5¢). In water-limited ecosystems or during the dry season of tropical peatlands, precipitation pulses can
trigger hot moments of CO, gas emissions, as precipitation regulates soil moisture and infiltrating water
physically displaces CO> from soil pores (Fernandez-Bou et al., 2020; Leon et al., 2014; Wright et al.,
2013). This occurs when rainwater rapidly infiltrates dry soil, filling air-filled pores and forcing CO--
rich air out due to hydraulic pressure. In this study, CO, fluxes showed both decreases and increases in
response to precipitation events (Figure 4). The observed decreases may be attributed to the high water
content of the surface peat, and prolonged and intense rainfall led to lower temperatures, increased soil
moisture, and higher water table (Figures 4, 5b, 5c¢), thereby suppressing microbial and root respiration.
Consequently, a few hot moments were captured during late July and early August during the heavy
rainfall events (Figure 5). Following this period, CO, emissions reached values that exceeded the 'hot
moments' threshold in mid-August, aligning with declining rainfall and rising temperatures (Figures 5d-
51). The hot moments observed in September are linked to seasonal fluctuations in atmospheric pressure,

precipitation, water table, and temperature (Figures 5a-5c¢).

Similar to the findings of Anthony and Silver (2021) and Kannenberg et al. (2020), these hot moments
accounted for approximately 10 % throughout the year, while they contributed significantly to the annual
total CO; emissions (28 %-31 %, Table 3), highlighting the important role of short-term high-emission
events in the overall carbon emission. Therefore, missing hot moments may lead to significant
underestimates of total peat soil respiration budgets. Despite continuous automated chamber or eddy
covariance measurements that are ideal for capturing hot moments of CO, emissions (Anthony and Silver,
2023; Hoyt et al., 2019; Anthony and Silver, 2021), long-term continuous monitoring is still labor-
intensive and cost-prohibitive in many locations within the complex peatland ecosystems. Given that we
observed a concentration of hot moments in the summer and autumn, we recommend increasing
monitoring frequency during these seasons for temperate peatlands. This strategy would help capture
carbon emission dynamics more effectively, reduce uncertainties in annual carbon flux estimates, and

provide more representative peatland CO, flux data.

4.2.2 Spatial analysis of CO2 fluxes and hot spots

Our mapping of daily CO> flux across the landscape yielded a model performance of R?=0.75, KGE =

0.83, and RMSE = 0.56 pmol m? s for the test dataset (Table 4). This can be attributed to the
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incorporation of key environmental factors that drive the spatiotemporal heterogeneity of soil respiration
into the model inputs. These factors — including soil temperature, corrected TWI, and SOC stock — can
be estimated using high spatiotemporal resolution UAV data. Previous studies upscaled spatial carbon
fluxes using area-weighted methods, extrapolating point data from CO, chamber flux measurements to
adjacent or larger areas based on land cover maps (Van Giersbergen et al., 2024; Webster et al., 2008;
Leon et al., 2014). However, this approach can lead to over- or underestimation (Wangari et al., 2023;
Leifeld and Menichetti, 2018), because our findings reveal that even within the same vegetation cover,
such as Molinia caerulea, CO, emissions exhibit significant spatiotemporal variability (Figure 3b). In
recent years, spatial upscaling of CO, fluxes has increasingly relied on satellite-based remote sensing
data (e.g., Junttila et al. (2021); Wangari et al. (2023); Zhang et al. (2020); Azevedo et al. (2021); Huang
et al. (2015). While this method covers larger areas, it is often constrained by coarse temporal and spatial
resolutions. The peatland ecosystem is characterized by great temporal and spatial heterogeneity at small
scales, and ignoring these variations can introduce significant uncertainties in CO, emission estimates.
Our study demonstrates that multi-sensor and multi-date UAV remote sensing has great potential in
modeling CO; fluxes with high resolution (i.e., spatial: 15 cm; temporal: daily interval), thereby reducing

uncertainties in spatiotemporal predictions of CO, fluxes.

However, the key environmental variables used for mapping soil respiration were estimated by UAV data,
which inevitably introduce uncertainties into the prediction processes. For instance, because daily UAV
imagery was unavailable, the predictors (i.e., air temperature, LST, and NDVI) for modelling the
spatiotemporal dynamics of soil temperature were linearly interpolated between acquisition dates,
potentially adding uncertainty to the model results. Moreover, flight conditions and preprocessing of the
raw UAV data (e.g., georeferencing, resampling, the calibration of LST, downscaling air temperature)
may have further introduced errors into the soil temperature estimates. The corrected daily TWI maps
were also subject to uncertainty, as they relied on in-situ soil VWC observations, which were only
available in the middle transect of the landscape. Similarly, uncertainties in SOC stock mapping arose
from the peat thickness estimation and soil sampling strategy, as discussed in our previous work (Li et
al., 2024). Nevertheless, these reliable high-resolution CO; flux maps allowed for the identification of
hot spot areas across the landscape. We found that most of the hot spots occurred to the west of shoulder

areas and to the east of the summit which is covered by dense vegetation (Figure 1b, Figure 6f). Some

36



704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

sporadic hot spots were found at the backslope and footslope positions. Spatial variability in the factors
controlling biogeochemical processes, such as soil temperature, moisture, water table depth, vegetation
type, and substrate quality, is likely driving these differences (Anthony and Silver, 2023; Kuzyakov and
Blagodatskaya, 2015; Mcnamara et al., 2008). For instance, the persistent hot spots that occurred at the
shoulder might be due to their relatively drier conditions and higher carbon stocks compared to other
areas (Li et al., 2024). The tree-covered areas at the summit likely contribute substantial root respiration,
which could sustain hot spot formation throughout the year. Besides, litterfall beneath trees insulates the
peat soil and provides an abundant resource for microbial activity even during the non-growing season.
While at other places, such as the footslope and backslope, which are mainly covered by dwarf shrubs
and Molinia caerulea (Figure 1b) with pronounced seasonal phenology, they potentially form sporadic
soil respiration hot spots at specific times of the year. Furthermore, surface peat beneath relatively short
vegetation can receive higher direct solar radiation in summer, leading to elevated soil temperatures and

the emergence of carbon emission hot spots.

High-emission events from hot spots play a crucial role in overall CO; fluxes (Anthony and Silver, 2023),
hence, neglecting these areas could lead to substantial underestimation of peatland carbon emissions. In
our study, although less than 10 % of area was identified as hot spots, their CO; flux contribution
accounted for nearly 20 % across the year (Figure 6). However, research specifically focusing on
peatland CO; emission hot spots remains limited (Anthony and Silver, 2023), despite increased
exploration of greenhouse gas emission hot spots in other ecosystems (e.g., agricultural field (Krichels
and Yang, 2019; Rey-Sanchez et al., 2022; Leifeld et al., 2020); wetland (Rey-Sanchez et al., 2022);
water-limited Mediterranean ecosystem (Leon et al., 2014); forest (Wangari et al., 2023)). Hence, to
improve the accuracy of CO: spatial budgeting for peatlands, there is a need for enhanced high-resolution
dynamic monitoring of hot spot areas (Becker et al., 2008). Our study demonstrates the great potential
of UAV technology for peatland hot spot identification and quantification, offering new insights into
studying soil respiration within heterogeneous ecosystems as well as optimizing peatland management

and CO, emission reduction strategies.
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5 Conclusion

In this study, we monitored the dynamics of peatland surface and subsurface environments using both
field surveys and multi-sensor UAVs at high spatiotemporal resolution. We investigated the influence of
dynamic and static environmental factors on soil respiration rates across different scales, thereby
enhancing our understanding of peatland carbon cycling. Additionally, we simulated CO, flux with high
spatiotemporal resolution by integrating field measurements and UAV data. These reliable modelling
allow us to identify and quantify CO, emission hot spots and hot moments across the landscape. To

summarize, the main findings of our study are as follows:

(1) Soil respiration rates vary significantly across space and time, influenced by both dynamic and
relatively static environmental factors at different scales. Temperature is the primary driver of CO; flux
variations, explaining 33 % CO; seasonal variability and 18 % spatial variability. Soil moisture
negatively affects both seasonal and spatial variations, accounting for 10 % - 11 % of the variance. Water
table dynamics also play a role (10 %), but more observations are needed to explore its influence.
Atmospheric pressure may indirectly influence soil respiration by affecting precipitation patterns, rather
than exerting a strong direct control. Semi-dynamic factors (i.e., NDVI and root biomass) contribute 19 %
to seasonal variability and 24 % to spatial variability. While relative static factors (i.e., the C/N and SOC
stock) have little impact on the seasonal CO, flux variability, the contribution of the C/N ratio increases

nearly 11 times for spatial variability.

(2) Predicting temporal series of hourly CO; flux can be effectively achieved (test set: R = 0.74, RMSE
=0.57 umol m2 s, KGE = 0.77) by considering its relationship with key environmental variables such
as air temperature, soil temperature and soil moisture, all of which are relatively straightforward to
monitor. These reliable time series data provide a foundation for capturing respiration pulses occurring

over short periods, with hot moments primarily occurring in summer and early autumn.

(3) The UAV remote sensing offers great potential in monitoring and estimating key environmental
variables that control soil respiration across heterogeneous landscapes. Our model using UAV-derived
predictors yielded robust spatial mapping of soil respiration rates across heterogeneous landscapes, with
RMSE, KGE, and R’ values of 0.56 pmol m™ s7!, 0.83, and 0.75 in the test dataset, respectively. These

high-resolution CO» flux maps enable us to locate hot spots as well as providing a valuable tool for
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assessing peatland management strategies, such as evaluating conditions before and after restoration.

(4) Despite representing 10 % of time within one year, CO; fluxes from hot moments contribute 28 %-
31 % to the overall CO; flux budgets. Approximately 10 % areas are identified as hot spots, while
contributing 20.41 % + 0.61 % of total CO: fluxes. The locations of high-frequency hot spots remain

consistent, while the locations of sporadic hot spots vary over time.

Code and data availability
The field measurements of CO; fluxes, climate data, and soil properties are available on HydroShare:

https.://www.hydroshare.org/resource/adefceSd4d114b939f0d92al18b3168¢6/. UAV data will be made

available on request.
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