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Abstract 11 

CO2 emissions from peatlands exhibit substantial spatiotemporal variability, presenting challenges for 12 

identifying the underlying drivers and for accurately quantifying and modeling CO2 fluxes. Here, we 13 

integrated field measurements with Unmanned Aerial Vehicle (UAV)-based multi-sensor remote sensing 14 

to investigate soil respiration across a temperate peatland landscape. Our research addressed two key 15 

questions: (1) How do environmental factors control the spatiotemporal distribution of soil respiration 16 

across complex landscapes? (2) How do spatial and temporal peaks (i.e., hot spots and hot moments) of 17 

biogeochemical processes influence landscape-level CO2 fluxes? We find that dynamic variables (i.e., 18 

soil temperature and moisture) play significant roles in shaping CO2 flux variations, contributing 43 % 19 

to seasonal variability and 29 % to spatial variance, followed by semi-dynamic variables (i.e., 20 

Normalized Difference Vegetation Index (NDVI) and root biomass) (19 % and 24 %). Relatively static 21 

variables (i.e., soil organic carbon stock and carbon to nitrogen ratio) have a minimal influence on 22 

seasonal variation (2 %) but contribute more to spatial variance (10 %). Additionally, predicting time 23 

series of CO2 fluxes is feasible by using key environmental variables (test set: coefficient of 24 

determination (R2) = 0.74, Root Mean Square Error (RMSE) = 0.57 μmol m⁻² s⁻¹, Kling-Gupta Efficiency 25 

(KGE) = 0.77), while UAV remote sensing is an effective tool for mapping daily soil respiration (test set: 26 

R2 = 0.75, RMSE = 0.56 μmol m⁻² s⁻¹, KGE = 0.83). By the integration of in-situ high-resolution time-27 

lapse monitoring and spatial mapping, we find that despite occurring in 10 % of the year, hot moments 28 

(i.e., periods of time which have a disproportional high (> 90th percentile) CO2 fluxes compared to the 29 

surrounding) contribute 28 %–31 % of the annual CO₂ fluxes. Meanwhile, hot spots (i.e., locations which 30 

CO2 fluxes higher than 90th percentile)—representing 10 % of the area—account for about 20 % of CO₂ 31 

fluxes across the landscape. Our study demonstrates that integrating UAV-based remote sensing with 32 

field surveys improves the understanding of soil respiration mechanisms across timescales in complex 33 

landscapes. This will provide insights into carbon dynamics and supporting peatland conservation and 34 

climate change mitigation efforts. 35 

Keywords: Peatlands, Soil respiration, Greenhouse gas (CO2) emission, CO2 hot spots, CO2 hot 36 

moments, Multi-sensor UAV remote sensing, Global warming  37 
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1 Introduction 38 

Peatlands are globally distributed ecosystems that cover an area of 6.75 million km2 and store 942.09 ± 39 

312 Gt of carbon (Widyastuti et al., 2025). However, rising concerns exist over peatlands shifting from 40 

carbon sinks to carbon sources due to the impact of climate change (Dorrepaal et al., 2009; Hopple et al., 41 

2020; Huang et al., 2021), land use/cover conversion (Deshmukh et al., 2021; Leifeld et al., 2019; 42 

Prananto et al., 2020), and other disturbances (Turetsky et al., 2015; Wilkinson et al., 2023). In Europe, 43 

it has been reported that nearly half of the peatlands are suffering degradation, primarily due to drainage 44 

for agricultural or forestry activities (Leifeld et al., 2019; UNEP, 2022). As a consequence, European 45 

peatlands currently emit up to 580 Mt CO2-eq per year across the continent (UNEP, 2022). Given the 46 

critical role of the peatland ecosystem in the terrestrial carbon cycle, it is therefore important to 47 

understand the mechanism driving carbon fluxes and their responses to climate change and human 48 

disturbances. 49 

Soil respiration, a key ecological process that releases CO2 from peatlands into the atmosphere, is 50 

influenced by a combination of biotic and abiotic factors. Among abiotic controls, soil temperature and 51 

moisture play a crucial role in driving microbial activity and root respiration, influencing CO2 fluxes 52 

across daily to annual scales (Evans et al., 2021; Fang and Moncrieff, 2001; Hoyt et al., 2019; Juszczak 53 

et al., 2013; Swails et al., 2022). Water table fluctuations alter oxygen availability and distribution within 54 

the soil profile, directly affecting microbial processes and carbon emissions (Evans et al., 2021; Hoyt et 55 

al., 2019). Atmospheric pressure affects the transport of gases between the soil surface and the 56 

atmosphere, thereby modulating the CO2 fluxes (Lai et al., 2012; Ryan and Law, 2005). Vegetation, as a 57 

key biotic factor, influences the spatiotemporal variations of soil respiration through phenology, structure, 58 

and community (Acosta et al., 2017; Wang et al., 2021). In addition, soil organic matter provides essential 59 

substrates for microbial activity, with previous studies suggesting that the quality of organic material, 60 

rather than its quantity, primarily regulates CO2 fluxes in peatlands (Hoyos-Santillan et al., 2016; Leifeld 61 

et al., 2012). 62 

CO2 emissions from peatlands are highly variable over space and time, presenting challenges to 63 

accurately quantify and model carbon fluxes. This may be partially because peatlands are characterized 64 

by a unique microtopography, including features such as hummocks and hollows (Moore et al., 2019). 65 
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These small-scale variations create differences in hydrology, temperature, biogeochemistry, and 66 

vegetation (Harris and Baird, 2019), leading to substantial spatial differences in the factors that control 67 

CO₂ fluxes and the formation of “hot spots” with elevated CO2 emissions (Becker et al., 2008; Frei et al., 68 

2012; Kelly et al., 2021; Kim and Verma, 1992; McClain et al., 2003).  In addition, peatlands exhibit a 69 

high sensitivity to meteorological variability, which can trigger periods of disproportionately high CO2 70 

fluxes—often referred to as “hot moments”—in response to transient environmental changes, such as 71 

sudden shifts in temperature, atmospheric pressure, rainfall events, or fluctuations in the water table 72 

(Anthony and Silver, 2023; Fernandez-Bou et al., 2020). High CO2 emissions occur from discrete areas 73 

in space (hot spots) and over short periods (hot moments), and may disproportionately contribute to the 74 

overall fluxes (Anthony and Silver, 2023; Fernandez-Bou et al., 2020). Most studies have examined the 75 

mechanisms and contributions of hot spots and hot moments of other greenhouse gases (N2O, CH4) in 76 

agricultural and forestry ecosystems (Anthony and Silver, 2021; Fernandez-Bou et al., 2020; Kannenberg 77 

et al., 2020; Krichels and Yang, 2019; Leon et al., 2014). However, research on CO2 emission hot spots 78 

and hot moments in peatlands remains limited (Anthony and Silver, 2023), even though both CO2 and 79 

CH4 originate from organic matter decomposition under different redox conditions. 80 

Identifying and quantifying hot spots and hot moments in peatlands is challenging, requiring large-scale, 81 

continuous, long-term observations. Currently, most studies on peatland soil respiration rely on point 82 

measurements taken at intervals of half a month to one month, primarily during daytime (e.g., Bubier et 83 

al. (2003); Danevčič et al. (2010); Kim and Verma (1992); Wright et al. (2013)). This spatiotemporal 84 

limitation constrains the effective understanding of hot spots and hot moments. Some studies attempted 85 

to extrapolate point data using land-use maps (McNamara et al., 2008; van Giersbergen et al., 2024; 86 

Webster et al., 2008), but uncertainties in landscape-scale fluxes increase as the number of measurement 87 

locations decreases (Arias-Navarro et al., 2017; Wangari et al., 2022; Wangari et al., 2023). While 88 

automated chamber systems improve temporal resolution and help capture hot moments (Anthony and 89 

Silver, 2023; Hoyt et al., 2019), they are typically limited to a few sampling points, and scaling up is 90 

constrained by significant resource demands. Eddy covariance towers can continuously measure net 91 

ecosystem exchange over large areas (Abdalla et al., 2014; Rey-Sanchez et al., 2022), but they are less 92 

effective in capturing the spatial heterogeneity of peatlands (Lees et al., 2018). These limitations 93 

highlight the need for spatially robust, high-resolution methods that can characterize CO2 fluxes across 94 
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heterogeneous landscapes.  95 

Several studies have integrated satellite-based remote sensing datasets with on-site chamber 96 

measurements to model landscape-scale CO2 fluxes (e.g., Azevedo et al. (2021); Junttila et al. (2021); 97 

Lees et al. (2018); Wangari et al. (2023)). Remote sensing datasets on topography and vegetation 98 

parameters serve as proxies for soil moisture, vegetation cover, and nutrient availability, enabling large-99 

scale CO2 emission estimates within peatlands (Lees et al., 2018). However, this approach is somewhat 100 

limited by coarse spatial (10 m to 1 km) and temporal (1 to 16 days) resolutions, which may overlook 101 

hot spots and hot moments, leading to potential over- or underestimations of CO2 fluxes in heterogeneous 102 

(e.g., complexity in topography, diverse vegetation types, varying thermal-hydrological conditions) 103 

peatlands (Kelly et al., 2021; Simpson, 2023). This shortcoming might be overcome by using unmanned 104 

aerial vehicles (UAVs) equipped with different kinds of sensors such as Red-Green-Blue (RGB), 105 

multispectral, thermal infrared, and Light Detection and Ranging (LiDAR). UAVs offer flexible 106 

deployment and capture high-resolution spatiotemporal data (1 cm to 1 m, minutes to months) (Minasny 107 

et al., 2019) which makes them particularly suitable for monitoring complex peatland dynamics and 108 

detecting hot spots and hot moments. Thus far, UAVs have proven to be reliable tools for peatland 109 

applications, including vegetation mapping (Steenvoorden et al., 2023), topographic reconstruction 110 

(Harris and Baird, 2019), peat depth and carbon storage estimation (Li et al., 2024), ground-water and 111 

surface water interactions (Moore et al., 2024), and moisture monitoring (Henrion et al., 2025). In a 112 

recent study, Kelly et al. (2021) utilized UAV-derived land surface temperature to estimate ecosystem 113 

respiration of a hemi-boreal fen in southern Sweden, and some studies (e.g., Pajula and Purre (2021); 114 

Walcker et al. (2025)) employed UAV-based multispectral vegetation indices to map ecosystem CO2 flux 115 

at high resolution. These recent studies demonstrated the great potential of UAVs for linking CO2 fluxes 116 

with environmental factors at a very high resolution, although they mainly focused on data from a single 117 

sensor. Few studies have explored the fusion of UAV-derived data from multiple sensors for mapping 118 

soil respiration across peatland landscapes. 119 

In this study, we integrate multi-sensor UAV-based remote sensing with traditional field surveys to 120 

investigate soil respiration across a temperate peatland bog landscape, located in the Belgian Hautes 121 

Fagnes, which represents an important ecosystem for studying peatland carbon fluxes due to its 122 
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sensitivity to climate change and hydrological dynamics. Our research addresses two key questions:  123 

(1) What controls the nature and strength of the relationship between soil respiration and environmental 124 

factors—such as thermal-hydrological conditions, vegetation, carbon stock and quality— across complex 125 

peatland landscapes and across spatiotemporal scales? To address this, we first identify the factors driving 126 

seasonal and spatial variations in soil respiration and then assess the potential for linking environmental 127 

factors to CO2 flux at high spatiotemporal resolutions.  128 

(2) How do spatial and temporal peaks (i.e., hot spots and hot moments) of biogeochemical processes 129 

influence landscape-level carbon fluxes? For this purpose, we analyze the locations and timing of hot 130 

spots and hot moments, and assess their contributions to overall CO2 flux budgets.  131 

2 Materials and methods 132 

2.1 Study site  133 

The Belgian Hautes Fagnes plateau, part of the Stavelot-Venn Massif, is located in eastern Belgium 134 

(Figure 1a). This elevated landscape experiences a humid climate, with mean annual air temperature and 135 

precipitation being approximately 6.7 °C and 1439.4 mm (period: 1971-2000), respectively (Mormal and 136 

Tricot, 2004). The peatlands in this region cover an area of 37.50 km2, which primarily consist of raised 137 

bogs formed since the Late Pleistocene and grown under both oceanic and continental influences 138 

(Frankard et al., 1998; Goemaere et al., 2016). Our study site (50.49 N, 6.05 E; ~0.30 km2) is located in 139 

the upper valley of the Hoëgne River peatland bog region (Figure 1a). This ombrotrophic bog is mainly 140 

fed by precipitation and covers an area of approximately 32 hectares. The landscape exhibits complex 141 

structures, characterized by distinct SE-NW oriented topographic units (i.e., summit, topslope, shoulder, 142 

backslope, and footslope), along with diverse microtopographic features, spatiotemporal varying 143 

thermal-hydrological conditions, differences in peat thickness and carbon storage, and a range of 144 

vegetation types  (Henrion et al., 2024; Li et al., 2024; Sougnez and Vanacker, 2011). More specifically, 145 

the summit is a low-relief, southeast-facing plateau at 675 - 680 m elevation, which transitions downslope 146 

into the topslope and concave shoulder slope positions (Figure 1a). The northwest-facing backslope is 147 

relatively steeper (average slope grade: 4.98°; elevation range: 645 - 670 m) compared to these upper 148 

units, while the footslope lies in the northwestern hillslope adjacent to Hoëgne River. The peat thickness 149 
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varies spatially from 0.20 to 2.10 m across the landscape, with deeper deposits in the footslope and 150 

shallower peat at the topslope (Henrion et al., 2024; Li et al., 2024). The estimated soil organic carbon 151 

(SOC) stocks (i.e., top 1 m layer) range from 176.13 t ha-1 to 856.57 t ha-1, with significantly higher 152 

storage at the summit, shoulder, and footslope (Li et al., 2024). Due to the pronounced topographic 153 

gradients and microtopography, the landscape exhibits great spatiotemporal variability in rootzone soil 154 

volumetric water content (range: 0.1 – 1 cm3 cm-3) and water table dynamics (range: -80 – 5 cm) (Henrion 155 

et al., 2025). The study site was drained and planted with spruces in 1914 and 1918, while the plantations 156 

were progressively cleared between 2000 and 2016. Since 2017, the site has been under restoration and 157 

now primarily covered by Vaccinium myrtillus, Molinia caerulea, Juncus acutus, and native hardwood 158 

species (e.g., Betula pubescens and Quercus robur), as shown in Figure 1b. An observation station of the 159 

Royal Meteorological Institute of Belgium (Mont Rigi, 50.51 N, 6.07 E) situated 3.07 km northeast of 160 

the study site, records rainfall and atmospheric pressure data every 10 minutes.  161 

 162 
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 163 

Figure 1. Maps showing the field-sampling locations (a) and land cover types (b) in the study area. Details on the 164 

land cover map are provided in our previous work (Li et al., 2024).  165 
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2.2 CO2 flux measurement campaigns 166 

Soil surface CO2 flux measurements were conducted at five slope positions along the middle part of the 167 

site (Figure 1a). A portable infrared gas analyzer with an automated closed dynamic chamber (LI-8100A 168 

system, LI-COR, United States; accuracy:  ± 1.5 %) was used to monitor CO2 fluxes at 33 sites biweekly 169 

from December 2022 to March 2024 (Figure S1). The dominant vegetation type of each slope position 170 

was recorded. Next, six collars (20 cm diameter) were installed randomly at each position, spaced 1–5 171 

meters apart, to capture small-scale spatial variability. Given the high variability in soil water content at 172 

the shoulder position (Henrion et al., 2025),, six collars were installed in drier areas (i.e., Shoulder dry) 173 

and another three in wetter areas (i.e., Shoulder wet). All vegetation within the collars was removed. 174 

During each campaign, monitoring was conducted between 9:00 and 16:00. At each site, the CO2 flux 175 

(μmol m-2 s-1) in the chamber was measured for 2.5 minutes per observation. Simultaneously, soil surface 176 

temperature (0–10 cm) and volumetric water content (VWC) during each CO2 measurement were 177 

recorded using a T-handled type-E thermocouple sensor (8100-201, LI-COR, United States; accuracy: ± 178 

0.5 %) and a portable five-rod, 0.06 m long frequency domain reflectometry (FDR) probe system (ML2x, 179 

Delta-T, United Kingdom; accuracy: ± 1 %), respectively. However, CO2 measurements were not always 180 

possible due to technical issues and bad weather conditions, resulting in a total of 666 valid measurements. 181 

In addition, a pair of soil CO2 forced diffusion probes (eosFD, EOSense, United States; accuracy: ± 40 182 

ppm) were installed near LI-8100A collars from 24 April 2024 to 8 November 2024 (Figure S1). These 183 

probes, consisting of a soil node and a reference node, are based on a membrane-based steady-state 184 

approach and can measure CO2 flux every 5 minutes (Risk et al., 2011). During this period, the probes 185 

continuously monitored CO2 flux at different slope positions (Figure S1), resulting in a total of 39476 186 

valid flux measurements.  187 

2.3 Temperature, soil moisture, and water table monitoring 188 

The temporal evolution of soil temperature and moisture along the middle part was monitored using 189 

Teros12 sensors (Meter Group, München, Germany; accuracy: ± 0.01–0.02 m3 m-3 for moisture and ± 190 

0.5 °C for temperature), with two replicates per slope position, spaced 5 meters apart (Figure 1a) (Henrion 191 

et al., 2025). These sensors recorded data at a depth of 10 cm from 14 October 2022 to 28 October 2024, 192 

every 10 minutes. Between the two replicates of each slope position, a station positioned ~1.4 m above 193 
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the ground recorded air temperature every ten minutes. Additionally, ten soil temperature data loggers 194 

(EL-USB-1-PRO, Lascar, United Kingdom; accuracy: ± 0.2 °C) were installed primarily along two 195 

evenly spaced transects parallel to the main slope, at a depth of 10 cm (Figure 1a). These loggers recorded 196 

soil temperatures at the same frequency as Teros12 sensors from 21 March 2023 to 8 November 2024. 197 

Besides, five Levelogger 5 pressure sensors (Solinst, Georgetown, Canada; accuracy: ± 0.1 %) were 198 

placed in PVC pipes to capture pressure at the same topographic positions as Teros 12 sensors (Figure 199 

1a), which was then used to interpret groundwater‐level dynamics (Henrion et al., 2025). These probes 200 

also recorded at 10‑minute intervals, from June 2023 through October 2024. 201 

2.4 Soil sampling and laboratory analysis 202 

After completing all gas sampling campaigns, 33 disturbed soil samples (0-10 cm depth) were collected 203 

within LI8100A collars at the five slope positions between 30 July and 15 October 2024. An Emlid Reach 204 

RS 2 GPS device with centimeter-level precision was used to record the sampling site locations, using a 205 

PPK solution with the Belgian WALCORS network, resulting in a mean lateral positioning error of 1.84 206 

cm across all sites. The samples were stored in a refrigerator until laboratory analysis. A subset of the 207 

samples was oven-dried at 80 °C for 24 hours (Dettmann et al., 2021), then crushed and ground into a 208 

fine powder for soil organic carbon (SOC) and total nitrogen content (TN) analysis (928 Series, LEGO, 209 

United States). Roots and litter were removed using tweezers during the pre-processing procedure. We 210 

tested the presence of inorganic carbon of each sample by adding one drop of 10 % HCl but found that 211 

no inorganic carbon was present in the samples. A subset of fresh samples was used for root biomass 212 

analysis. The fresh soil samples were weighed and placed in a 1 mm sieve, then rinsed with water to 213 

collect the roots. The washed roots were dried in an oven at 80 °C for 48 hours and then weighed to 214 

calculate their dry biomass. 215 

2.5 UAV data acquisition 216 

During the CO2 flux monitoring period, we conducted regular UAV flights across the study area to collect 217 

high-resolution spatial data (Figure S1). A DJI Matrice 300 RTK was equipped with four different sensors: 218 

(i) a Red-Green-Blue (RGB) camera (DJI Zenmuse P1 camera, 35 mm and 45 MP), (ii) a multispectral 219 

camera (MicaSense RedEdge-M camera with five discrete spectral bands: blue (475 nm), green (560 nm), 220 
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red (668 nm), rededge (717 nm), and near-infrared (842 nm), along with a downwelling light sensor), 221 

(iii) a LiDAR scanner (DJI Zenmuse L1, integrated with a 20-MP camera with a 1-inch CMOS sensor) 222 

and (iv) a thermal infrared camera (TeAX, featuring FLIR Tau2 cores and ThermalCapture hardware). 223 

All the UAV flight missions were carried out around noon (10h00-14h00) and the details of UAV 224 

campaigns were presented in support material (Text S1). Due to the variable weather conditions in the 225 

research field, UAV campaigns were not always feasible. In total, one RGB and one LiDAR dataset 226 

collected on 7 June 2023, were used in this study and ten multispectral and ten thermal infrared datasets 227 

collected between 13 April 2023 and 13 May 2024 (Figure S1). 228 

2.6 UAV imagery processing 229 

The raw multispectral images were processed in the Pix4D mapper software (Pix4D S.A., Lausanne, 230 

Switzerland) to generate reflectance maps (resolution: 6 cm) of the five spectral bands of the study area. 231 

We calculated the Normalized Difference Vegetation Index (NDVI) across the 10 maps from the 232 

monitoring period (Table 1). The RGB photos were processed in DJI Terra V4.0.10 (DJI, 2023) to 233 

generate an orthomosaic image with a resolution of 1.26 cm. The raw LiDAR data was processed in DJI 234 

Terra to provide a Digital Terrain Model (DTM; .tif file) with a resolution of 15 cm. We then calculated 235 

the terrain wetness index (TWI) in SAGA GIS 9.2.0 using the formula presented in Table 1. The variables 236 

derived from the different types of images and their calculation formula were summarized in Table 1. 237 

Table 1. Orthorectified image, topographical, vegetation index, and land surface temperature maps derived from 238 

RGB, LiDAR, multispectral and thermal images. 239 

Index Definition Unit Data source 

RGB orthomosaic Orthorectified image mosaicked from RGB 

image collection 

/ RGB 

DTM Digital Terrain Model, the elevation  m LiDAR 

TWI Terrain wetness index: 

ln (As/tan(b)), where As is the specific 

contributing area and b is the slope angle (i.e., 

the rate of change in elevation) in radians. 

/ LiDAR 

NDVI Normalized Difference Vegetation Index: 

(near infrared - red) / (near infrared + red) 

/ Multispectral 

LST Land Surface Temperature  °C Thermal infrared 
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The raw thermal infrared video streams were converted into RJPG images using ThermoViewer version 240 

3.0.26 (TeAX, 2022). Subsequently, the thermal images were processed with the Pix4D mapper to 241 

generate land surface temperature (LST) maps (resolution: 12 cm). To calibrate the LST of each date 242 

(Figure 2a), we first applied linear regressions of temperature obtained by camera and temperature of 2 243 

targets on the ground (Text S1) to create a correction formula. Next, we mapped the spatial variations of 244 

surface emissivity using the classification-based approach (Li et al., 2013; Snyder et al., 1998), based on 245 

land cover data from our previous work (Figure 1b; Li et al. (2024)) and emissivity values of each class 246 

from literature (Snyder et al., 1998). Finally, we converted the LST to thermal radiance using Planck’s 247 

law, applied an emissivity-based correction, and then converted the radiance back to obtain calibrated 248 

LST. 249 

2.7 Daily soil temperature mapping 250 

The linear mixed-effects model was utilized to predict the spatial distribution of daily mean soil 251 

temperature (10 cm depth) across the landscape from 1 May 2023 to 30 April 2024. This is because 252 

mixed models integrate both fixed and random effects, which provide a robust framework for analyzing 253 

data with non-independent structures (Pinheiro and Bates, 2000). Daily mean air temperature, 254 

Normalized Difference Vegetation Index (NDVI) and calibrated Land Surface Temperature (LST) were 255 

considered as fixed-effect predictors and monitoring sites were included as random effects. The model 256 

was performed in RStudio (v4.1.2) using the lmer function of the lme4 package (https://CRAN.R-257 

project.org/package=lme4) and was defined as: 258 

𝑦𝑖𝑗  =  𝛽0 +  𝛽1𝑥𝑖𝑗 + ⋯ + 𝛽𝑝𝑥𝑖𝑗 + 𝑏0𝑗 + 𝑏1𝑗𝑧𝑖𝑗 + ⋯ + 𝜖𝑖𝑗                (1) 259 

Where: 260 

• 𝑦𝑖𝑗 is the dependent variable (i.e., soil temperature at 10 cm; °C) for observations 𝑖 in group 𝑗. 261 

• 𝛽0, 𝛽1,…, 𝛽𝑝 are fixed-effect coefficients.  262 

• 𝑥𝑖𝑗  indicates fixed-effect predictors (independent variables). 263 

• 𝑏0𝑗, 𝑏1𝑗,… are random-effect coefficients associated with group 𝑗, which account for variability 264 

across groups.  265 

• 𝑧𝑖𝑗  indicates predictors associated with random effects. 266 

• 𝜖𝑖𝑗  is the residual error term. 267 
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Soil temperature data were collected from both Teros 12 sensors and data loggers, as described in Section 268 

2.3. Air temperature measurements were obtained from five stations positioned at different slope 269 

locations. The NDVI and calibrated LST estimates were extracted from maps by retrieving values at the 270 

20 soil temperature sensor sites (Figure 1a). These sites were included as random effects in the model to 271 

account for repeated measurements at the same locations throughout the monitoring period. For mapping 272 

purposes, daily air temperature was statistically downscaled by incorporating the relationship between 273 

daily air temperature and elevation, followed by downscaling using a Digital Terrain Model (DTM) 274 

derived from LiDAR data (Figure 2a). The daily NDVI and LST maps were generated by linearly 275 

interpolating the monthly/biweekly maps derived from UAVs. The workflow of soil temperature 276 

mapping is illustrated in Figure 2a. 277 

 278 

 279 

Figure 2. Workflow diagram of daily CO2 flux spatial mapping (a) and hourly CO2 flux temporal 280 
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modeling (b). 281 

 282 

2.8 Generation of corrected daily TWI  283 

We generated corrected daily TWI maps to approximate the spatial distribution of daily soil volumetric 284 

water content (VWC) by incorporating both long-term site characteristics and daily precipitation effects 285 

(Figure 2a). First, we calculated the mean VWC for each site over the period from 1 May 2023 to 30 286 

April 2024. Then, we extracted each site’s TWI values from a TWI map generated using the formula in 287 

Table 1. Next, we performed a linear regression with mean VWC as the response and TWI as the predictor: 288 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑀𝑒𝑎𝑛 𝑉𝑊𝐶 = 𝑏 + 𝑎 ∗ 𝑇𝑊𝐼                                            (2) 289 

The Baseline represents the soil moisture level at long-term. A baseline map was then created using this 290 

regression model. Daily deviations (anomalies) from the baseline were defined as: 291 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑡 =  𝑉𝑊𝐶𝑡 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒                                                        (3) 292 

Considering the memory and lag effects in soil moisture dynamics, we assumed that the anomaly on any 293 

day is influenced by the previous day's anomaly and precipitation: 294 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑡 =  𝑐 ∗ 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑡−1 −  𝑑 ∗ 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡−1                  (4) 295 

Finally, we generated a “corrected TWI” map for each day by adding the dynamically updated anomaly 296 

to the baseline map: 297 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑇𝑊𝐼𝑡  𝑚𝑎𝑝 =  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑚𝑎𝑝 + 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑡                    (5) 298 

This approach allows the daily corrected TWI maps to capture both the inherent spatial variability (as 299 

determined by TWI) and the dynamic influence of rainfall, thereby serving as a proxy for the spatial 300 

distribution of soil moisture. 301 

2.9 Statistical analysis 302 

All data analyses were conducted in RStudio (v4.1.2). All timestamps in this study were converted to 303 

Coordinated Universal Time (UTC) to ensure consistency across datasets. Group differences were 304 

assessed by the Kruskal-Wallis test, a non-parametric alternative to the one-way analysis of variance, and 305 

suitable for non-normally distributed data (Dunn, 1964). When the Kruskal-Wallis test detected a 306 
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significant overall effect (p < 0.05), Dunn’s post-hoc test was performed to determine which groups 307 

differed significantly from each other. Pearson correlation analysis was performed using the corrplot 308 

package (Murdoch and Chow, 1996). The linear mixed-effects models used to identify factors controlling 309 

spatial- temporal variations of CO2 flux, as well as time series simulation and mapping are introduced 310 

below.  311 

2.9.1 Models to explain spatiotemporal variations in CO2 flux  312 

We also utilized linear mixed-effects modeling framework (i.e., as shown in section 2.7) to assess the 313 

impacts of both static and dynamic environmental factors on the spatial and seasonal variability of CO2 314 

fluxes. Unlike the soil temperature model, the natural logarithm of CO2 flux observations was utilized as 315 

a response. The CO2 fluxes data are often characterized by extreme values and right-skewed distribution, 316 

and a lognormal assumption for CO2 fluxes could better account for the influences of extreme values on 317 

the overall distribution (Wutzler et al., 2020). The fixed-effect predictors were categorized into three 318 

groups: 319 

• Static variables: SOC stock, and the ratio of SOC content to nitrogen content (C/N ratio). 320 

• Semi-dynamic variables: root biomass and NDVI. 321 

• Dynamic variables: soil temperature and soil moisture at 0–10 cm depth, as well as water table 322 

and atmospheric pressure (the latter two variables are shown in the support material). 323 

Estimates for NDVI were extracted from the NDVI maps by retrieving the value of the 33 CO2 flux 324 

observation sites and the SOC stock values were extracted from the a local high resolution (0.15 m) SOC 325 

stock map (Li et al., 2024). The sites were included as random effects in the seasonal pattern model to 326 

account for repeated measurements at the same locations during the monitoring period, whereas slope 327 

positions were treated as random effects in the spatial pattern model.  328 

2.9.2 Modelling hourly CO2 flux  329 

The mixed-effects model was utilized to simulate the time series of CO2 fluxes at different slope positions 330 

(Figure 2b). Here, the slope position was included as random variable, and the natural logarithm of CO2 331 

flux (hourly) was set as a response. We utilized CO2 fluxes data measured by both the LI8100A system 332 

and eosFD probes. Specifically, we randomly selected a number of 30 observations from the eosFD 333 
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probes at each slope position to reduce data redundancy from high-frequency sampling. Afterwards, we 334 

applied weighting to adjust the remaining imbalance in data density between the high-frequency eosFD 335 

monitoring and low-frequency LI8100A measurements, ensuring both data sources contributed 336 

proportionally to the model. The independent variables included hourly mean soil temperature (10 cm 337 

depth), volumetric soil moisture (VWC, 10 cm depth), and air temperature (1.4 m height) of each slope 338 

position, considering their importance in explaining the seasonal and diurnal patterns of CO2 flux. We 339 

made simulations of the time series of hourly CO2 flux for different slope positions from 1 May 2023 to 340 

30 April 2024. Furthermore, we identified CO2 emission hot moments based on the description in Section 341 

2.9.4. 342 

2.9.3 Mapping daily CO2 flux  343 

The linear mixed-effects model was utilized to map the spatial distribution of daily CO2 fluxes across the 344 

landscape, with daily soil temperature (10 cm depth), corrected daily TWI, and SOC stock being 345 

considered as fixed-effect variables and gas sampling sites being included as random variables (Figure 346 

2a). We predicted the daily CO2 flux of the landscape from 1 May 2023 to 30 April 2024. Additionally, 347 

we calculated the mean daily soil CO2 flux maps for each season and the entire year. Based on these 348 

predictions, we identified hot spots for each day by the methods described below. 349 

2.9.4 Quantifying hot moments and hot spots of CO2 flux 350 

In previous studies, percentiles have been used as thresholds for identifying heat waves (e.g., (Meehl and 351 

Tebaldi, 2004): 97.5th percentile), soil heat extremes (e.g., García-García et al. (2023): 90th percentile), 352 

hot spots of N2O emissions (e.g., Mason et al. (2017): median plus three times the interquartile range), 353 

and hot spots of CO2 emissions (e.g., Wangari et al. (2023): median plus the interquartile range). In this 354 

study, we tested different methods and selected the 90th percentile as the threshold of both hot moments 355 

and hot spots to balance capturing extreme CO₂ emissions while maintaining a sufficient sample size. To 356 

capture the hot moments, we calculated a threshold for each slope position separately using its own 357 

dataset (Figure 2b). For hot spots, we determined a daily threshold based on each map (Figure 2a). 358 

2.10 Model performance evaluation 359 

Independent variable coefficients, Intraclass Correlation Coefficient (ICC), coefficients of determination 360 
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(marginal R² and conditional R²), Root Mean Square Error (RMSE), and Akaike Information Criterion 361 

(AIC) were extracted using the modelsummary package after running each model described in section 362 

2.7 and section 2.9.1. The ICC quantifies the proportion of variance explained by a grouping (random) 363 

factor in multilevel data; values close to 1 indicate high similarity within groups, while values near 0 364 

suggest that grouping conveys little to no information (Nakagawa et al., 2017; Shrout and Fleiss, 1979). 365 

The marginal R² represents the variance explained by fixed effects alone, and the conditional R² 366 

represents the variance explained by both fixed and random effects (Pinheiro and Bates, 2000). The 367 

Kling-Gupta Efficiency (KGE) between observations and predictions was also calculated, with values 368 

closer to 1 indicating good model performance (Gupta et al., 2009). The relative importance of each 369 

predictor was obtained using the glmm.hp package (Lai et al., 2023; Lai et al., 2022). To assess 370 

multicollinearity in regression analysis, the car package was used to calculate the variance inflation factor 371 

(VIF) (Fox and Monette, 1992). 372 

For modelling daily soil temperature (i.e., section 2.7) and daily/hourly CO2 flux (i.e., sections 2.9.2 and 373 

2.9.3), we divided the corresponding dataset into a training set (70 %) and a test set (30 %) using K-374 

means clustering, following the methodology of our previous work (Li et al., 2024), to minimize biases 375 

that could arise from random sampling (Hair et al., 2010). The models were trained on the training set, 376 

and the simulation accuracy was validated using the test dataset. The coefficient of determination (R2), 377 

RMSE, and KGE were used to assess the quality of all model fits. The daily soil temperature model 378 

yielded R2, RMSE, and KGE values of 0.89, 1.33 °C, and 0.94, respectively (Figure S2). Detailed results 379 

on model coefficients and performance are summarised in Table S1.  380 
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3 Results 381 

3.1 Peat soil surface and subsurface properties 382 

Table 2 presents an overview of soil surface and subsurface properties at different slope positions. The 383 

air temperature above ground ~1.4 m shows great temporal variability, ranging from -8.76 to 24.79 °C 384 

within one year. Soil temperatures have smaller temporal variations (0.75 - 17.48 °C), while the mean 385 

daily soil temperature (± one standard deviation (SD)) at the topslope (8.86 ± 3.69 °C) is relatively lower 386 

than at other positions. Soil volumetric water content (VWC) across the landscape also exhibits 387 

significant spatial heterogeneity. The backslope has the highest mean daily VWC (0.94 ± 0.04 cm3 cm-388 

3), followed by the footslope (0.86 ± 0.06 cm3 cm-3), shoulder wet (0.85 ± 0.01 cm3 cm-3), and summit 389 

(0.82 ± 0.04 cm3 cm-3). The water table at the topslope showed large fluctuations throughout the year 390 

(range: -77.41-0.38 cm; mean ± SD: -21.76 ± 25.17 cm), as shown in Table 2. In contrast, the water table 391 

at the shoulder wet slope position remained close to the surface and relatively stable within one year 392 

(range: -20.21-4.17 cm; mean ± SD: -2.17 ± 5.62 cm). No significant differences in dry root biomass 393 

were observed among the various slope positions, which may be attributed to substantial small-scale 394 

variations within each position, particularly at the shoulder, where the biomass ranged from 0.70 to 8.46 395 

g/100g soil. The SOC content values for summit and shoulder wet areas are 47.38 ± 2.06 g/100g and 396 

47.00 ± 1.41 g/100g, respectively. The SOC content in the shoulder and backslope positions is similar, 397 

approximately 42 g/100g, while the carbon content in the footslope and topslope positions is 398 

comparatively lower. In addition, the TN content at the topslope (1.61 ± 0.48 g/100g) is significantly 399 

lower than at other positions (p < 0.05). The C/N ratio at the footslope (17.41 ± 1.57) was significantly 400 

lower than at the summit, topslope, and backslope (p < 0.05), while no significant differences in C/N 401 

ratios were observed among the other places.  402 

 403 

 404 

 405 

 406 
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Table 2. Summary of the mean daily air temperature (Air temp.), soil temperature (Soil temp.), soil volumetric water 407 

content (VWC), and water table in one year at different slope positions. Soil subsurface properties at 10 cm depth, 408 

i.e, dry root biomass, soil organic carbon (SOC) content, total nitrogen (TN) content, and C/N ratio, at different slope 409 

positions.  410 

Slope 

positions 
Footslope Backslope 

Shoulder 

wet 

Shoulder 

dry 
Topslope Summit 

Vegetation 
Molinia 

caerulea 

Vaccinium 

myrtillus 

Juncus 

acutus 

Molinia 

caerulea 

Vaccinium 

myrtillus 

Molinia 

caerulea 

Air temp. 

(°C) 

9.04 ± 6.79 a  

(-8.76, 

23.75) 

9.70 ± 6.77 a  

(-7.68, 24.79) 

9.74 ± 6.73 

a  

(-7.77, 

24.60) 

N.A. 
9.66 ± 6.80 a  

(-7.83, 24.66) 

9.25 ± 6.89 a  

(-8.44, 

24.52) 

Soil temp. 

(°C) 

9.67 ± 4.62 a 

(1.29, 17.48) 

9.55 ± 4.27 ab 

(1.40, 16.98) 

9.65 ± 4.27 

a 

(1.62, 

16.74) 

8.89 ± 4.15 bc 

(0.75, 15.52) 

8.86 ± 3.69 c  

(1.55, 15.18) 

9.18 ± 4.07 

abc  

(1.82, 16.00) 

VWC  

(cm³ cm-³) 

0.86 ± 0.06 b 

(0.68, 0.91) 

0.94 ± 0.04 a 

(0.81, 0.98) 

0.85 ± 0.01 

c 

(0.83, 0.87) 

N.A. 
0.68 ± 0.08 e 

(0.44, 0.73) 

0.82 ± 0.04 d 

(0.70, 0.85) 

Water table 

(cm) 

-27.15 ± 

8.31e 

(-49.14, -

18.53) 

-21.07 ± 7.51b 

(-35.91, -9.68) 

-2.17 ± 

5.62a 

(-20.21, 

4.17) 

N.A. 

-21.76 ± 

25.17d 

(-77.41, 0.38) 

-20.18 ± 

11.80c 

(-49.23, -

9.20) 

root biomass 

(g 100g-1) 

1.43 ± 1.11 a 

(0.20, 3.37) 

0.97 ± 0.87 a 

(0.27, 2.65) 

4.02 ± 2.10 

a 

(1.98, 6.17) 

2.97 ± 3.00 a 

(0.70, 8.46) 

0.98 ± 0.99 a 

(0.18, 2.84) 

0.69 ± 0.27 a 

(0.31, 0.96) 

SOC content 

(g 100g-1) 

38.48 ± 1.71 

b 

(36.55, 

40.80) 

42.36 ± 2.46 ab 

(37.60, 44.30) 

47.00 ± 

1.41 a 

(45.95, 

48.60) 

42.53 ± 2.51 

ab 

(39.75, 

45.95) 

32.26 ± 10.81b 

(13.5, 42.1) 

47.38 ± 2.06 

a 

(43.95, 

49.15) 

TN content  

(g 100g-1) 

2.22 ± 0.13 a 

(2.03, 2.37) 

2.02 ± 0.11 ab 

(1.89, 2.16) 

2.35 ± 0.17 

a 

(2.16, 2.47) 

2.04 ± 0.24 ab 

(1.71, 2.36) 

1.61 ± 0.48 b 

(0.75, 2.19) 

2.13 ± 0.14 a 

(1.99, 2.34) 

C/N ratio 

17.41 ± 1.57 

b 

(15.59, 20.1) 

20.98 ± 1.42 a 

(19.23, 22.70) 

20.03 ± 

1.26 ab 

(18.81, 

21.32) 

20.98 ± 1.95 

a 

(18.6, 24.06) 

19.76 ± 2.01 ab 

(18.08, 23.36) 

22.32 ± 1.79 

a 

(20.21, 

24.51) 

Note. The air temperature was monitored at a height of ~1.4 m above the ground. The soil temperature and VWC 411 

were monitored at a depth of 10 cm by Teros12 sensors. The results are presented as the mean ± one standard 412 

deviation (SD) and values in brackets indicate the minimum and maximum values. The Kruskal-Wallis and Dunn’s 413 

tests were conducted within each class with different superscript letters indicating significant differences (p < 0.05). 414 

 415 

 416 
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3.2 Spatiotemporal patterns of CO2 flux 417 

During the monitoring period, the CO2 emissions show large spatial and seasonal variations across the 418 

landscape. The CO2 fluxes at the footslope (1.25 ± 1.00 μmol m-2 s-1) and backslope (1.11 ± 1.03 μmol 419 

m-2 s-1) were significantly lower than that of other slope positions (p < 0.05) (Figure 3a). Furthermore, 420 

significant differences were observed when grouping the data into three vegetation covers: CO2 421 

emissions from Vaccinium myrtillus were lower than those from Juncus acutus, with mean ± SD values 422 

of 1.59 ± 1.43 μmol m-2 s-1, and 2.33 ± 2.36 μmol m-2 s-1, respectively (Figure 3b) (p < 0.05). However, 423 

the CO2 fluxes under Molinia caerulea displayed large variations (0.02~20.1 μmol m-2 s-1), and no 424 

significant differences were found compared to the other two vegetation types. The CO2 flux data 425 

indicated large CO2 emissions from June to September (3.65 ± 2.68 μmol m-2 s-1), which can be 8.11 426 

times higher than that from winter and early spring (0.45 ± 0.40 μmol m-2 s-1) (Figure 3c). CO2 emissions 427 

in May and October were at a moderate level.  428 

 429 

 430 

Figure 3. Boxplot of CO2 flux (μmol m-2 s-1) across different slope positions (a), vegetation types (b), and sampling 431 
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dates (c), using data from the LI8100 A system recorded between 2023-02-13 and 2024-03-13. (a), CO2 flux data of 432 

each box were from all dates, and Shoulder (w) and Shoulder (d) indicate shoulder wet and shoulder dry areas, 433 

respectively. (b), CO2 flux data of each box were from all dates, and Myrtillus, Molinia and Juncus indicate 434 

Vaccinium myrtillus, Molinia caerulea and Juncus acutus, respectively. (c), CO2 flux data of each box were from all 435 

slope positions. The edges of each box represent the first quartile (Q1) and third quartile (Q3), while the line inside 436 

the box indicates the median CO2 flux. Whiskers extend from the box to the smallest and largest values within 1.5 437 

times the interquartile range, and points outside the whiskers are considered extreme values. The Kruskal-Wallis and 438 

Dunn’s tests were performed within slope positions and vegetation types, with different letters indicating significant 439 

differences among groups (p < 0.05).  440 

At the daily scale, the soil respiration displayed a clear diurnal trend from April to August (Figure S3), 441 

particularly at the footslope (Figure S3a), backslope (Figure S3b), and shoulder (Figures S3c, 3d) slope 442 

positions, with higher CO2 emissions observed in the late afternoon (14:00–18:00) and lower emissions 443 

in the morning (04:00–08:00). In contrast, the diurnal trend of CO2 flux at the topslope (Figure S3e) and 444 

summit (Figure S3f) in autumn was less pronounced. Figure 4a presents examples of time series data for 445 

CO2 fluxes and environmental factors at the footslope, topslope, and summit from August to October 446 

2024. In August, clear diurnal patterns with variation magnitudes of 2-3 μmol m-2 s-1, and reduced CO2 447 

emissions following precipitation events on 13 August and 17 August were observed at the footslope 448 

(Figures 4a, 4b). Since the middle of September, the diurnal variation was less than 1 μmol m-2 s-1 and 449 

there was no obvious pattern in daily changes (Figures 4a, 4c). 450 



22 

 

 451 

 452 



23 

 

 453 

Figure 4. Examples showing time series data of air pressure (kPa), precipitation (mm), soil volumetric water content 454 

(VWC, cm3 cm-3), water table (cm), soil temperature (Soil temp., °C), air temperature (Air temp., °C), and CO2 flux 455 

(μmol m-2 s-1, measured by eosFD probes) from 1 August 2024 to 31 October 2024 (a), from 8 August 2024 to 15 456 

August 2024 at the footslope (b), and from 8 October 2024 to 15 October 2024 at the topslope slope position (c). 457 

3.3 Factors contributing to spatiotemporal variability 458 

Three types of environmental factors explain 64 % of the observed seasonal variance in CO₂ emissions, 459 

with contributions of 33 % from soil temperature, 10 % from VWC, 19 % from vegetation (i.e., NDVI, 460 

root biomass), 2 % from relatively static factors (i.e., SOC stock, C/N ratio), and 6 % from random effects 461 

(i.e., 33 sampling sites) (Table 3). This suggests that long-term stable environmental factors have minimal 462 

direct influence on seasonal CO₂ flux patterns. Interestingly, the contribution of these relatively stable 463 

factors is nearly 6 times higher in explaining overall spatial variations, although soil temperature is still 464 

the dominant factor (Table 3). The low ICC values in both spatial and seasonal models highlight 465 

significant small-scale heterogeneity in soil respiration. Water table contributed 10 % of seasonal 466 

variation and atmospheric pressure was not important (1 %), as shown in Table S2 of the support material. 467 

The relationships between each environmental factor and CO2 fluxes are shown in Figure S4. 468 
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Table 3. Coefficients and relative contributions of three types of input variables (static, semi-dynamic, dynamic) of 469 

mixed linear regression models for modelling CO2 flux. Random effects were evaluated by ICC and model 470 

performance was evaluated by Marginal R2, Conditional R2, AIC, RMSE, and KGE. 471 

Note. Significance level: *** p < 0.001, ** p < 0.01, * p < 0.05. All CO2 fluxes (unit: μmol m-2 s-1), soil temperature, 472 

and VWC data for spatial and seasonal patterns was from the LI8100 A system. To investigate the factors controlling 473 

spatial variations of CO2 flux, we calculated the mean values of CO2 flux, NDVI, soil temperature, and VWC of 474 

each site during the monitoring time. 475 

3.4 Continuous hourly time series of CO2 flux and hot moments 476 

Three dynamic variables (i.e., soil temp., VWC, air temp.) were taken into account to predict the time 477 

series of hourly CO2 flux at different slope positions. These input variables were selected due to their 478 

influential roles in explaining the diurnal (Figure S3, Figure 4) and seasonal (Table 3) fluctuations of 479 

CO2 emissions. As shown in Table 4, the temporal model yielded a robust performance in both training 480 

and testing dataset, achieving R², RMSE, and KGE values of 0.86,0.39 μmol m⁻² s⁻¹, 0.90, and 0.74, 0.57 481 

μmol m⁻² s⁻¹, 0.77, respectively. 482 

 
Input variables Seasonal patterns Spatial patterns 

Fixed effects: 

coefficient 

(contribution) 

Static 

 

SOC stock 

(t ha-1) 

0.003 

(1 %) 

-0.003 

(0.06 %) 

 C/N ratio 0.05 

(1 %) 

0.07* 

(10 %) 

Semi 

dynamic 

root biomass 

(g 100g-1) 

0.06 

(0.36 %) 

0.09* 

(12 %) 

NDVI 0.90*** 

(18 %) 

-3.35** 

(12 %) 

Dynamic Soil temp. 

(°C) 

0.12*** 

(33 %) 

0.39*** 

(18 %) 

VWC 

(cm3 cm-3) 

-0.77*** 

(10 %) 

-1.37** 

(11 %) 

Random effects ICC 

(contribution) 

0.18 

(6 %) 

0.06 

(3 %) 

Model 

performance 

Marginal R2 0.64 0.63 

Conditional R2 0.70 0.66 

AIC 1386.00 50.10 

RMSE 0.64 0.25 

KGE 0.78 0.78 
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Table 4. Model performance for simulating time series of hourly CO₂ flux (μmol m⁻² s⁻¹) and mapping daily CO₂ 483 

flux (μmol m⁻² s⁻¹) across the landscape.  484 

Models 
Training dataset Testing dataset 

RMSE R2 KGE RMSE R2 KGE 

Temporal model 0.39 0.86 0.90 0.57 0.74 0.77 

Spatial model 0.49 0.81 0.85 0.56 0.75 0.83 

Note. Temporal model used the natural logarithm of CO₂ flux data from LI8100 A and eosFD probes, whereas spatial 485 

model used the natural logarithm of CO₂ flux data only from LI8100 A. 486 

The modelled CO2 emissions at all slope positions display a clear seasonal trend, with higher CO2 fluxes 487 

from June to September and lower estimates in other months, in line with the observed fluxes shown in 488 

brown dots (Figures 5d-5i). The total CO2 fluxes (Table 5) at the summit (19.50 t ha-1) and the shoulder 489 

(dry: 19.47 t ha-1, wet: 16.31 t ha-1) slope positions were higher than that of topslope (14.45 t ha-1), 490 

followed by footslope (13.94 t ha-1) and backslope (11.54 t ha-1), consistent with the spatial patterns of 491 

our observations (Figure 3a). Most hot moments occurred from June to September 2023, whereas few 492 

hot moments were observed from late July to the early August (Figures 5d-5i). Although these hot 493 

moments of different slope positions only accounted for 10 % across the year, they could contribute 494 

28 %-31 % to the annual total CO₂ emissions (Table 5). 495 

 496 
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 497 

Figure 5. Time series of hourly rainfall (blue bar) and atmospheric pressure (light green line) (a), hourly mean VWC 498 

(blue line) and water table (red line) (b), hourly mean air temperature (orange line) and soil temperature (black line) 499 

(c), modelled hourly CO2 flux (purple lines) and in-situ measurements (brown dots) at different slope positions (d-500 
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i). Precipitation(mm) and atmospheric pressure (kPa) data were from the nearby meteorological observation station 501 

(50.51 N, 6.07 E). The water table (cm) data was derived from the Solinist probes. The VWC (cm3 cm-3) and soil 502 

temperature (°C) were mean values from five slope positions monitored by Teros12 sensors at a depth of 10 cm. Air 503 

temperatures (°C) were mean values from 5 stations at 1.4 m height above ground. Measured CO2 fluxes (μmol m⁻² 504 

s⁻¹) were from the LI8100A system. 505 

 506 

Table 5. Summary of modelled mean ± SD CO2 fluxes, thresholds for identifying hot moments, total CO2 flux, and 507 

the contribution of hot moments to total flux at different slope positions. 508 

Slope position Footslope Backslope Shoulder 

wet 

Shoulder 

dry 

Topslope Summit 

Mean ± sd CO2 flux 

(μmol m-2 s-1) 

1.00 ± 0.91 0.83 ± 0.73 1.21 ± 0.99 1.44 ± 1.22 1.04 ± 0.86 1.41 ± 1.22 

Total CO2 flux 

(t ha-1) 

13.94 11.54 16.31 19.47 14.45 19.50 

Threshold 

(μmol m-2 s-1) 

2.22 1.80 2.55 3.07 2.19 3.04 

Contribution 

of hot moments  

30.74 % 30.31 % 28.99 % 28.41 % 28.91 % 29.93 % 

3.5 Daily CO2 flux maps and hot spots 509 

A linear mixed-effects model was utilized to map daily CO₂ flux from 1 May 2023 to 30 April 2024, 510 

incorporating soil temperature, corrected TWI, and SOC stock as predictors due to their significant role 511 

in explaining the spatial-seasonal variability of CO₂ flux and their availability as spatial data. The 512 

mapping model yielded robust performance metrics (Table 4), with R², RMSE, and KGE values of 0.81, 513 

0.49 μmol m⁻² s⁻¹, and 0.85 in the training dataset, and 0.75, 0.56 μmol m⁻² s⁻¹, and 0.83 in the test dataset, 514 

respectively.  515 

Consistent with our observations, the modelled soil respiration also displayed substantial spatiotemporal 516 

heterogeneity (Figures 6a-6d). More specifically, the mean CO2 fluxes ranged from 0.09 μmol m-2 s-1 to 517 

8.23 μmol m-2 s-1 in spring (Figure 6a), 0.31 μmol m-2 s-1 to 33.83 μmol m-2 s-1  in summer (Figure 6b), 518 

0.15 μmol m-2 s-1  to 16.88 μmol m-2 s-1  in autumn (Figure 6c), and 0.03 μmol m-2 s-1  to 2.47 μmol m-2 519 

s-1  in winter (Figure 6d). Many modelled mean CO2 fluxes at the footslope and backslope (elevation < 520 
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660 m) remained below 2 μmol m-2 s-1 (Figure 6e). In contrast, the modelled CO2 emissions remained 521 

higher throughout the year at the shoulder (660 m ≤ elevation ≤ 670 m) and east of summit (elevation > 522 

675 m) with high vegetation cover (Figure 1b). About 10 % of the area were identified as hot spots, with 523 

a high frequency of hot spots occurring in these regions, while the locations of sporadic hot spots varied 524 

over time (Figure 6f). Overall, the landscape emitted approximately 24.81 t ha-1 CO2 to the atmosphere 525 

during the simulation period, with 20.41 % ± 0.61 % of the CO2 fluxes coming from the hot spots. 526 

 527 
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 528 

Figure 6. Maps of modelled mean daily CO2 flux (μmol m-2 s-1) in four seasons (a, b, c, d), throughout the year (e), 529 

and hot spot frequency (f). The histograms of pixel values are presented on the top-right corner of each map. The 530 
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hot spots area proportion and CO2 flux contribution from the hot spots of each season and across the year are 531 

summarized in the corresponding maps.  532 

4 Discussion 533 

4.1 Drivers of spatiotemporal heterogeneity in CO2 emission 534 

Consistent with prior temperate peatland studies (Danevčič et al., 2010; Juszczak et al., 2013; Swails et 535 

al., 2022; Wilson et al., 2015), our results indicate that seasonal variations in soil CO₂ flux across the 536 

landscape are highly related to soil temperature, which could account for 33 % of the seasonal variability 537 

(Table 3). This relationship is likely due to the influence of temperature on microbial activity, as well as 538 

the distinct seasonal patterns in temperature observed in our study (Figure 5c), which in turn drive 539 

corresponding fluctuations in soil respiration throughout the year (Figure 3c). Moreover, spatial 540 

heterogeneity in soil temperature further shaped landscape-scale CO₂ emission patterns (Table 3). For 541 

instance, the south-facing summit slopes, which receive more solar radiation in the daytime, consistently 542 

show higher CO₂ fluxes (Figure 3a). Conversely, the north-facing footslope and backslope, situated on 543 

the windward side, experience lower temperatures, resulting in generally lower soil respiration rates 544 

throughout the observation period (Figure 3a). At the daily scale, clear soil temperature oscillations were 545 

observed in the surface peat, while these diurnal cycles were damped and delayed with depth, with 546 

temperature peaks typically occurring at night and valleys around midday (Figures 4, S3). In contrast, 547 

the diurnal pattern of soil respiration during growing season (i.e., April to August; Figures 4, S3) was 548 

more closely aligned with air temperature, highlighting the important role of air temperature in regulating 549 

short-term variations in soil respiration. 550 

Soil water content influences oxygen availability and nutrients transport within the peat profile, thereby 551 

regulating microbial decomposition, plant root activity, and ultimately CO₂ production (Deshmukh et al., 552 

2021; Hatala et al., 2012; Huang et al., 2021; Knox et al., 2015; Zou et al., 2022). Previous studies 553 

reported nonlinear relationships between soil moisture and soil respiration (Kechavarzi et al., 2010; 554 

Marwanto and Agus, 2014; Wood et al., 2013), as both excessively dry and overly saturated conditions 555 

can limit microbial decomposition. In our study case, we observed a negative correlation between soil 556 

volumetric water content (VWC) and CO2 fluxes (Table 3, Figure S4), with VWC explaining 557 
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approximately 10 % of the spatial and seasonal variability in soil respiration (Table 3). This may partially 558 

explain the slightly higher CO2 fluxes in drier shoulder positions compared to wetter areas (Figure 3a). 559 

Numerous studies have demonstrated that water table levels play a crucial role on soil respiration 560 

(Berglund and Berglund, 2011; Evans et al., 2021; Hoyt et al., 2019; Knox et al., 2015). For example, 561 

Knox et al. (2015) demonstrated that a declining water table caused by drainage increases oxygen 562 

penetration into the peat, resulting in higher CO₂ flux compared to restored peatlands. Our study also 563 

observed negative correlations between the water table and CO2 fluxes (Figures 4a, S4), whereas the 564 

water table accounted for only 10 % of CO2 flux seasonal variations (Table S2). This relatively modest 565 

contribution may be attributed to (i) the limited number of observation sites (i.e., 5 sites along the 566 

hillslope), (ii) short duration of water table monitoring that matched the CO2 flux measurement periods, 567 

and (iii) the generally low water table throughout the year (Table 2), particularly at the footslope, 568 

backslope, and summit, where maximum water tables remained > 9 cm below the ground. This 569 

maintained aerobic layers that support soil respiration, thereby reducing the influence of water table 570 

fluctuations on CO2 fluxes. Increasing spatial coverage and temporal resolution of water table 571 

observations across the landscape would likely improve our ability to examine its influence on CO2 572 

emissions.  573 

Atmospheric pressure can influence gas fluxes via pressure pumping (Ryan and Law, 2005), and thus we 574 

examined its influence on CO2 emission. However, when atmospheric pressure was included as a 575 

predictor in our model, it only accounted for 1 % of seasonal variability in CO2 fluxes (Table S2). 576 

Examination of high-frequency time series data (i.e., hourly CO2 flux from the eosFD probes) showed 577 

that at the daily scale, the diurnal pattern of CO2 fluxes did not follow atmospheric pressure fluctuation 578 

(Figure 4). At longer time scales, the two variables displayed only weak correlations. Moreover, we 579 

observed that declines in atmospheric pressure were often followed by precipitation events, which in turn 580 

were associated with decreases in both air temperature and CO2 flux, or slight CO2 fluxes increases 581 

(Figure 4). This suggests that atmospheric pressure may indirectly influence soil respiration by affecting 582 

precipitation patterns, rather than exerting a strong direct control. In saturated peatlands, falling 583 

atmospheric pressure has been shown to trigger methane (CH4) ebullition by releasing trapped gas 584 

bubbles (Baird et al., 2004; Tokida et al., 2005; Tokida et al., 2007), while in our study site, which is a 585 

hillslope where the surface peat remains aerobic most of the time (Table 2), such bubble formation and 586 
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ebullition are likely minimal. Another contributing factor maybe the limitations of our observations that 587 

may have limited our ability to detect short-lived CO₂ flux responses to atmospheric pressure fluctuations. 588 

Previous studies have shown that vegetation mediates soil respiration through root respiration, exudates, 589 

litter inputs, and rhizosphere priming effects (Acosta et al., 2017; Bragazza et al., 2013; Jovani-Sancho 590 

et al., 2021; Walker et al., 2016; Wang et al., 2015a). Root respiration, which is closely linked to plant 591 

photosynthetic activity, contributes directly to the overall soil CO2 fluxes (Crow and Wieder, 2005). In 592 

our study, the contribution from root biomass becomes more substantial in the spatial model (i.e., 12 %) 593 

than in the seasonal model (< 1 %, Table 3). This discrepancy is likely because root biomass was 594 

measured only once during the entire CO2 monitoring period, thereby missing its seasonal dynamics. The 595 

monthly/biweekly NDVI is the second-most influential predictor for CO2 seasonal fluctuations (Table 3), 596 

explaining 18 % of variability, as NDVI reveals vegetation phenology during the monitoring period. 597 

Accordingly, positive correlation was observed between CO2 flux and NDVI at the seasonal scale (Table 598 

3, Figure S4). In the spatial-pattern model, however, the annual mean NDVI explained 12 % of the spatial 599 

variability in CO2 fluxes (Table 3) and the relationship became negative (r = - 0.29, p = 0.11). This shift 600 

in correlation may be due to differences in vegetation structure and composition across the landscape. 601 

Slope positions with higher mean NDVI values (i.e., topslope and backslope) are mainly covered by 602 

dwarf shrubs (i.e., Vaccinium myrtillus), which exhibit lower CO2 fluxes compared to other vegetation 603 

types (Figure 3b). The lower CO2 fluxes in dwarf shrub areas are likely associated with their lower root 604 

biomass (Table 2). Furthermore, it has been shown that dwarf shrubs in northern peatlands produce high-605 

phenolic litter with higher resistance to breakdown and introduce more water-soluble phenolics into the 606 

soil compared to Sphagnum moss/herbs (Bragazza et al., 2013; Wang et al., 2015a), which further 607 

constrains microbial activity and CO₂ production. In addition, vegetation cover may indirectly influence 608 

soil respiration by regulating surface microclimate conditions such as humidity and temperature (Nichols, 609 

1998; Stoy et al., 2012).  610 

As shown in Table 3, the SOC stock and C/N ratio have limited explanatory power for the seasonal 611 

variability of CO2 flux, in line with findings of Danevčič et al. (2010). However, when analyzing drivers 612 

of average soil CO2 flux rate across the entire monitoring period, the importance of C/N ratio increased 613 

nearly 11 times (Table 3). This likely reflects how long-term averaging integrates short-term dynamic 614 
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variability, thereby amplifying the role of spatial heterogeneity mediated by the C/N ratio. Prior studies 615 

suggesting that the quality of organic material, rather than its quantity, primarily regulates CO2 fluxes in 616 

peatlands (Hoyos-Santillan et al., 2016; Leifeld et al., 2012). Specifically, the soil C/N ratio is known to 617 

regulate microbial community functionality and respiration intensity (Briones et al., 2014; Ishikura et al., 618 

2018; Leifeld et al., 2020; Wang et al., 2015b).  619 

 620 

4.2 CO2 emission hot moments and hot spots: identification, implications, and importance 621 

4.2.1 Temporal analysis and hot moments 622 

During past decades, efforts have been made to model CO2 flux over time based on its relationship with 623 

environmental factors such as hydrology, temperature, substrate quality, microbial community, and 624 

vegetation (Abdalla et al., 2014; Anthony and Silver, 2021; Farmer et al., 2011; Hoyt et al., 2019; Junttila 625 

et al., 2021; Rowson et al., 2012; Schubert et al., 2010). In our study, diurnal cycles of CO2 fluxes are 626 

closely related to air temperature (Figure 4, Figure S3), while soil temperature and moisture are important 627 

factors in explaining the seasonal patterns of CO2 flux (Table 3). Hence, the three dynamic environment 628 

variables were incorporated into the model to simulate the hourly CO2 flux across the entire monitoring 629 

period. Overall, the temporal model demonstrated robust performance in both the training and testing 630 

datasets (Table 4) and effectively captured seasonal and diurnal trends at most sites (Figures 5d-5i). 631 

However, the modelled peak values are lower than the observations at shoulder and summit slope 632 

positions (Figures 5g, 5f, 5i), which may be partially due to the limited number of high-value 633 

observations in these areas. Consequently, the model is more influenced by the more frequent lower CO2 634 

fluxes, leading to an overall underestimation of the peak. In addition, two types of gas analyzers were 635 

employed to monitor CO2 flux with different sampling frequency and time: the LI-8100A sensor was 636 

used biweekly or monthly to capture seasonal trends, while eosFD probes collected data every five 637 

minutes to track diurnal fluctuations. The integration of these datasets for modelling temporal dynamics 638 

improved estimation accuracy but might also introduce uncertainties into the model. 639 

Anthony and Silver (2023) demonstrated that identifying hot moments of CO2 flux in peatland requires 640 

intensive continuous measurements, while as an alternative, our robust simulation of hourly CO2 flux 641 

enabled the identification of hot moments in a complex landscape. We found that most of these hot 642 
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moments occurred during the summer and early autumn seasons (Figures 5d-5i), in agreement with our 643 

in-situ observations (Figure 3c). The frequent high CO2 emissions in June and July can be attributed to 644 

the low precipitation and water table level, decreased soil moisture, and high temperatures (Figures 5a-645 

5c). In water-limited ecosystems or during the dry season of tropical peatlands, precipitation pulses can 646 

trigger hot moments of CO2 gas emissions, as precipitation regulates soil moisture and infiltrating water 647 

physically displaces CO2 from soil pores (Fernandez-Bou et al., 2020; Leon et al., 2014; Wright et al., 648 

2013). This occurs when rainwater rapidly infiltrates dry soil, filling air-filled pores and forcing CO₂-649 

rich air out due to hydraulic pressure. In this study, CO2 fluxes showed both decreases and increases in 650 

response to precipitation events (Figure 4). The observed decreases may be attributed to the high water 651 

content of the surface peat, and prolonged and intense rainfall led to lower temperatures, increased soil 652 

moisture, and higher water table (Figures 4, 5b, 5c), thereby suppressing microbial and root respiration. 653 

Consequently, a few hot moments were captured during late July and early August during the heavy 654 

rainfall events (Figure 5). Following this period, CO2 emissions reached values that exceeded the 'hot 655 

moments' threshold in mid-August, aligning with declining rainfall and rising temperatures (Figures 5d-656 

5i). The hot moments observed in September are linked to seasonal fluctuations in atmospheric pressure, 657 

precipitation, water table, and temperature (Figures 5a-5c). 658 

Similar to the findings of Anthony and Silver (2021) and Kannenberg et al. (2020), these hot moments 659 

accounted for approximately 10 % throughout the year, while they contributed significantly to the annual 660 

total CO2 emissions (28 %-31 %; Table 3), highlighting the important role of short-term high-emission 661 

events in the overall carbon emission. Therefore, missing hot moments may lead to significant 662 

underestimates of total peat soil respiration budgets. Despite continuous automated chamber or eddy 663 

covariance measurements that are ideal for capturing hot moments of CO2 emissions (Anthony and Silver, 664 

2021; Anthony and Silver, 2023; Hoyt et al., 2019), long-term continuous monitoring is still labor-665 

intensive and cost-prohibitive in many locations within the complex peatland ecosystems. Given that we 666 

observed a concentration of hot moments in the summer and autumn, we recommend increasing 667 

monitoring frequency during these seasons for temperate peatlands. This strategy would help capture 668 

carbon emission dynamics more effectively, reduce uncertainties in annual carbon flux estimates, and 669 

provide more representative peatland CO2 flux data. 670 
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4.2.2 Spatial analysis of CO2 fluxes and hot spots 671 

Our mapping of daily CO2 flux across the landscape yielded a model performance of R² = 0.75, KGE = 672 

0.83, and RMSE = 0.56 μmol m-2 s-1 for the test dataset (Table 4). This can be attributed to the 673 

incorporation of key environmental factors that drive the spatiotemporal heterogeneity of soil respiration 674 

into the model inputs. These factors – including soil temperature, corrected TWI, and SOC stock – can 675 

be estimated using high spatiotemporal resolution UAV data. Previous studies upscaled spatial carbon 676 

fluxes using area-weighted methods, extrapolating point data from CO2 chamber flux measurements to 677 

adjacent or larger areas based on land cover maps (Leon et al., 2014; van Giersbergen et al., 2024; 678 

Webster et al., 2008). However, this approach can lead to over- or underestimation (Leifeld and 679 

Menichetti, 2018; Wangari et al., 2023), because our findings reveal that even within the same vegetation 680 

cover, such as Molinia caerulea, CO2 emissions exhibit significant spatiotemporal variability (Figure 3b). 681 

In recent years, spatial upscaling of CO2 fluxes has increasingly relied on satellite-based remote sensing 682 

data (e.g., Azevedo et al. (2021); Huang et al. (2015); Junttila et al. (2021); Wangari et al. (2023); Zhang 683 

et al. (2020). While this method covers larger areas, it is often constrained by coarse temporal and spatial 684 

resolutions. The peatland ecosystem is characterized by great temporal and spatial heterogeneity at small 685 

scales, and ignoring these variations can introduce significant uncertainties in CO2 emission estimates. 686 

Our study demonstrates that multi-sensor and multi-date UAV remote sensing has great potential in 687 

modeling CO2 fluxes with high resolution (i.e., spatial: 15 cm; temporal: daily interval), thereby reducing 688 

uncertainties in spatiotemporal predictions of CO2 fluxes. 689 

However, the key environmental variables used for mapping soil respiration were estimated by UAV data, 690 

which inevitably introduce uncertainties into the prediction processes. For instance, because daily UAV 691 

imagery was unavailable, the predictors (i.e., air temperature, LST, and NDVI) for modelling the 692 

spatiotemporal dynamics of soil temperature were linearly interpolated between acquisition dates, 693 

potentially adding uncertainty to the model results. Moreover, flight conditions and preprocessing of the 694 

raw UAV data (e.g., georeferencing, resampling, the calibration of LST, downscaling air temperature) 695 

may have further introduced errors into the soil temperature estimates. The corrected daily TWI maps 696 

were also subject to uncertainty, as they relied on in-situ soil VWC observations, which were only 697 

available in the middle transect of the landscape. Similarly, uncertainties in SOC stock mapping arose 698 
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from the peat thickness estimation and soil sampling strategy, as discussed in our previous work (Li et 699 

al., 2024). 700 

Nevertheless, these reliable high-resolution CO2 flux maps allowed for the identification of hot spot areas 701 

across the landscape. We found that most of the hot spots occurred to the west of the shoulder areas and 702 

to the east of the summit, which is covered by dense vegetation (Figure 1b, Figure 6f). Some sporadic 703 

hot spots were found at the backslope and footslope positions. Spatial variability in the factors controlling 704 

biogeochemical processes, such as soil temperature, moisture, water table depth, vegetation type, and 705 

substrate quality, is likely driving these differences (Anthony and Silver, 2023; Kuzyakov and 706 

Blagodatskaya, 2015; McNamara et al., 2008). For instance, the persistent hot spots that occurred at the 707 

shoulder might be due to their relatively drier conditions and higher carbon stocks compared to other 708 

areas (Li et al., 2024). The tree-covered areas at the summit likely contribute substantial root respiration, 709 

which could sustain hot spot formation throughout the year. Besides, litterfall beneath trees insulates the 710 

peat soil and provides an abundant resource for microbial activity even during the non-growing season. 711 

While at other places, such as the footslope and backslope, which are mainly covered by dwarf shrubs 712 

and Molinia caerulea (Figure 1b) with pronounced seasonal phenology, they potentially form sporadic 713 

soil respiration hot spots at specific times of the year. Furthermore, surface peat beneath relatively short 714 

vegetation can receive higher direct solar radiation in summer, leading to elevated soil temperatures and 715 

the emergence of carbon emission hot spots. 716 

High-emission events from hot spots play a crucial role in overall CO2 fluxes (Anthony and Silver, 2023), 717 

hence, neglecting these areas could lead to substantial underestimation of peatland carbon emissions. In 718 

our study, although less than 10 % of area was identified as hot spots, their CO2 flux contribution 719 

accounted for nearly 20 % across the year (Figure 6).  However, research specifically focusing on 720 

peatland CO2 emission hot spots remains limited (Anthony and Silver, 2023), despite increased 721 

exploration of greenhouse gas emission hot spots in other ecosystems (e.g., agricultural field (Krichels 722 

and Yang, 2019; Leifeld et al., 2020; Rey-Sanchez et al., 2022); wetland (Rey-Sanchez et al., 2022); 723 

water-limited Mediterranean ecosystem (Leon et al., 2014); forest (Wangari et al., 2023)). Hence, to 724 

improve the accuracy of CO₂ spatial budgeting for peatlands, there is a need for enhanced high-resolution 725 

dynamic monitoring of hot spot areas (Becker et al., 2008). Our study demonstrates the great potential 726 
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of UAV technology for peatland hot spot identification and quantification, offering new insights into 727 

studying soil respiration within heterogeneous ecosystems as well as optimizing peatland management 728 

and CO2 emission reduction strategies. 729 

5 Conclusion 730 

In this study, we monitored the dynamics of peatland surface and subsurface environments using both 731 

field surveys and multi-sensor UAVs at high spatiotemporal resolution. We investigated the influence of 732 

dynamic and static environmental factors on soil respiration rates across different scales, thereby 733 

enhancing our understanding of peatland carbon cycling. Additionally, we simulated CO2 flux with high 734 

spatiotemporal resolution by integrating field measurements and UAV data. These reliable modelling 735 

allow us to identify and quantify CO2 emission hot spots and hot moments across the landscape. To 736 

summarize, the main findings of our study are as follows: 737 

(1) Soil respiration rates vary significantly across space and time, influenced by both dynamic and 738 

relatively static environmental factors at different scales. Temperature is the primary driver of CO2 flux 739 

variations, explaining 33 % CO2 seasonal variability and 18 % spatial variability. Soil moisture 740 

negatively affects both seasonal and spatial variations, accounting for 10 % - 11 % of the variance. Water 741 

table dynamics also play a role (10 %), but more observations are needed to explore its influence. 742 

Atmospheric pressure may indirectly influence soil respiration by affecting precipitation patterns, rather 743 

than exerting a strong direct control. Semi-dynamic factors (i.e., NDVI and root biomass) contribute 19 % 744 

to seasonal variability and 24 % to spatial variability. While relative static factors (i.e., the C/N and SOC 745 

stock) have little impact on the seasonal CO2 flux variability, the contribution of the C/N ratio increases 746 

nearly 11 times for spatial variability.  747 

(2) Predicting temporal series of hourly CO2 flux can be effectively achieved (test set: R2 = 0.74, RMSE 748 

= 0.57 μmol m⁻² s⁻¹, KGE = 0.77) by considering its relationship with key environmental variables such 749 

as air temperature, soil temperature and soil moisture, all of which are relatively straightforward to 750 

monitor. These reliable time series data provide a foundation for capturing respiration pulses occurring 751 

over short periods, with hot moments primarily occurring in summer and early autumn. 752 

(3) The UAV remote sensing offers great potential in monitoring and estimating key environmental 753 
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variables that control soil respiration across heterogeneous landscapes. Our model using UAV-derived 754 

predictors yielded robust spatial mapping of soil respiration rates across heterogeneous landscapes, with 755 

RMSE, KGE, and R2 values of 0.56 μmol m⁻² s⁻¹, 0.83, and 0.75 in the test dataset, respectively. These 756 

high-resolution CO2 flux maps enable us to locate hot spots as well as providing a valuable tool for 757 

assessing peatland management strategies, such as evaluating conditions before and after restoration.  758 

(4) Despite representing 10 % of time within one year, CO2 fluxes from hot moments contribute 28 %-759 

31 % to the overall CO2 flux budgets. Approximately 10 % areas are identified as hot spots, while 760 

contributing 20.41 % ± 0.61 % of total CO₂ fluxes. The locations of high-frequency hot spots remain 761 

consistent, while the locations of sporadic hot spots vary over time. 762 
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