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Abstract 11 

CO2 emissions from peatlands exhibit substantial spatial and temporalspatiotemporal variability due to 12 

their heterogeneous nature, presenting challenges forto identifying their the underlying drivers and forto 13 

accurately quantifying and modeling CO2 fluxes. Here, we integrated field measurements with 14 

Unmanned Aerial Vehicle (UAV)-based multi-sensor remote sensing to investigate soil respiration across 15 

a temperate peatland landscape. Our research addressed two key questions: (1) How do environmental 16 

factors control the spatial-temporalspatiotemporal distribution of soil respiration across complex 17 

landscapes? (2) How do spatial and temporal peaks (i.e., hot spots and hot moments)  of biogeochemical 18 

processes influence landscape-level CO2 fluxes? We find that dynamic variables (i.e., soil temperature 19 

and moisture) play significant roles in shaping CO2 flux variations, contributing 43 % to seasonal 20 

variability and 29 % to spatial variance, followed by semi-dynamic variables (i.e., Normalized Difference 21 

Vegetation Index (NDVI) and root biomass) (19 % and 24 %). Relatively static variables (i.e., soil organic 22 

carbon (SOC) stock and C/Ncarbon to nitrogen ratio) have a minimal influence on seasonal variation 23 

(2 %) but contribute more to spatial variance (10 %). Additionally, predicting time series of CO2 fluxes 24 

is feasible by using key environmental variables (test set: coefficient of determination (R2) = 0.74, Root 25 

Mean Square Error (RMSE) = 0.57 μmol m⁻² s⁻¹, Kling-Gupta Efficiency (KGE) = 0.77), while UAV 26 

remote sensing is an effective tool for mapping daily soil respiration (test set: R2 = 0.75, RMSE = 0.564 27 

μmol m⁻² s⁻¹, KGE = 0.83). By the integration of in-situ high-resolution time-lapse monitoring and spatial 28 

mapping, we find that despite occurring in 10 % of the year, hot moments (i.e., periods of time which 29 

have a disproportional high (> 90th percentile) CO2 fluxes compared to the surrounding) contribute 30 

28 %–31 % of the annual CO₂ fluxes. Meanwhile, hot spots (i.e., locations which CO2 fluxes higher than 31 

90th percentile)—representing 10 % of the area—account for about 20 % of CO₂ fluxes across the 32 

landscape. Our study demonstrates that integrating UAV-based remote sensing with field surveys 33 

improves the understanding of soil respiration mechanisms across timescales in complex landscapes., 34 

This will providing provide insights into carbon dynamics and supporting peatland conservation and 35 

climate change mitigation efforts. 36 

Keywords: Peatlands, Soil respiration, Greenhouse gas (CO2) emission, CO2 hot spots, CO2 hot 37 

moments, Multi-sensor UAV remote sensing, Global warming  38 
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1 Introduction 39 

Peatlands are globally distributed ecosystems that cover an area of 6.75 million km2 and store 40 

approximately 600 942.09 ± 312 Gt of carbon (Widyastuti et al., 2025) (Yu et al., 2010), despite covering 41 

less than 4 % of the Earth’s land surface (Xu et al., 2018). However, rising concerns exist over peatlands 42 

shifting from carbon sinks to carbon sources due to the impact of climate change (Dorrepaal et al., 2009; 43 

Hopple et al., 2020; Huang et al., 2021), land use/cover conversion (Deshmukh et al., 2021; Leifeld et 44 

al., 2019; Prananto et al., 2020), and other disturbances (Turetsky et al., 2015; Wilkinson et al., 2023).  45 

In Europe, it has been reported that nearly half of the peatlands are suffering degradation, primarily due 46 

to drainage for agricultural or forestry activities (Leifeld et al., 2019; UNEP, 2022). As a consequence, 47 

European peatlands currently emit up to 580 Mt CO2-eq per year across the continent (UNEP, 2022). 48 

Given the critical role of the peatland ecosystem in the terrestrial carbon cycle, it is therefore important 49 

to understand the mechanisms driving carbon fluxes and their responses to climate change and human 50 

disturbances. 51 

Soil respiration, a key ecological process that releases CO2 from peatlands into the atmosphere,in 52 

peatlands  is influenced by a combination of biotic and abiotic factors. Among abiotic controls, soil 53 

temperature and moisture play a crucial role in driving microbial activity and root respiration, influencing 54 

CO2 fluxes across daily to annual scales (Evans et al., 2021; Fang and Moncrieff, 2001; Hoyt et al., 2019; 55 

Juszczak et al., 2013; Swails et al., 2022). Water table fluctuations alter oxygen availability and 56 

distribution within the soil profile, directly affecting microbial processes and carbon emissions (Evans et 57 

al., 2021; Hoyt et al., 2019). Atmospheric pressure affects the transport of gases between the soil surface 58 

and the atmosphere, thereby modulating the CO2 fluxes (Lai et al., 2012; Ryan and Law, 2005). 59 

Vegetation, as a key biotic factor, influences the spatiotemporal variations of soil respiration through 60 

phenology, structure, and community (Acosta et al., 2017; Wang et al., 2021). In addition, soil organic 61 

matter provides essential substrates for microbial activity, with previous studies suggesting that the 62 

quality of organic material, rather than its quantity, primarily regulates CO2 fluxes in peatlands (Hoyos-63 

Santillan et al., 2016; Leifeld et al., 2012). 64 

, such as soil temperature and moisture  (Evans et al., 2021; Fang and Moncrieff, 2001; Hoyt et al., 2019; 65 

Juszczak et al., 2013; Swails et al., 2022; Treat et al., 2014), vegetation and root biomass (Acosta et al., 66 
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2017; Wang et al., 2021), and soil organic matter quality (Hoyos-Santillan et al., 2016; Leifeld et al., 67 

2012).  68 

CO2 emissions from peatlands are highly variable over space and time, presenting challenges to 69 

accurately quantify and model carbon fluxes. This may partial be partially because peatlands are 70 

characterized by a unique microtopography, including features such as soil bencheshummocks and 71 

depressions hollows (Moore et al., 2019). These small-scale variations create differences in hydrology, 72 

temperature, biogeochemistry, and vegetation (Harris and Baird, 2019), leading to substantial spatial 73 

differences in the factors that control CO₂ fluxes and the formation of “hot spots” with elevated CO2 74 

emissions (Becker et al., 2008; Frei et al., 2012; Kelly et al., 2021; Kim and Verma, 1992; McClain et 75 

al., 2003). For instance, the peat surface temperature differences within a 10 m x 10 m plot characterized 76 

by hummock and hollow features can be 20°C (Rhoswen et al., 2018). In addition, peatlands experience 77 

exhibit a high sensitivity to meteorological variabilityhighly variable weather conditions, which can 78 

trigger periods of disproportionately high CO2 fluxes—often referred to as “'hot moments”'—in response 79 

to transient environmental changes, such as sudden shifts in temperature, atmospheric pressure, rainfall 80 

events, or fluctuations in the water table (Anthony and Silver, 2023; Fernandez-Bou et al., 2020). High 81 

CO2 emissions occur from discrete areas in space (hot spots) and over short periods (hot moments), and 82 

may disproportionately contribute to the overall fluxes (Anthony and Silver, 2023; Fernandez-Bou et al., 83 

2020).  Most studies have examined the mechanisms and contributions of hot spots and hot moments of 84 

other greenhouse gases (N2O, CH4) in agricultural and forestry ecosystems (Anthony and Silver, 2021; 85 

Fernandez-Bou et al., 2020; Kannenberg et al., 2020; Krichels and Yang, 2019; Leon et al., 2014)., while 86 

However, research on CO2 emission hot spots and hot moments in peatlands remains limited  (Anthony 87 

and Silver, 2021; Anthony and Silver, 2023),. even though both CO2 and CH4 originate from organic 88 

matter decomposition under different redox conditions. 89 

Identifying and quantifying hot spots and hot moments in peatlands is challenging, requiring large-scale, 90 

continuous, long-term observations. Currently, most studies on peatland soil respiration rely on point 91 

measurements taken at intervals of half a month to one month, primarily during daytime (e.g., Bubier et 92 

al. (2003); Danevčič et al. (2010); Kim and Verma (1992); Wright et al. (2013)). This spatial-93 

temporalspatiotemporal limitation hinders constrains the effective detection understanding of hot spots 94 
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and hot moments. Some studies attempted to extrapolate point data using land-use maps (McNamara et 95 

al., 2008; van Giersbergen et al., 2024; Webster et al., 2008), but uncertainties in landscape-scale fluxes 96 

increase as the number of measurement locations decreases (Arias-Navarro et al., 2017; Wangari et al., 97 

2022; Wangari et al., 2023). While automated chamber systems improve temporal resolution and help 98 

capture hot moments (Anthony and Silver, 2023; Hoyt et al., 2019), they are typically limited to a few 99 

sampling points, and scaling up is constrained by significant resource demands. Eddy covariance towers 100 

can continuously measure net ecosystem exchange over large areas  by recording high-frequency CO2 101 

concentrations and air turbulence, providing insights into temporal variations at the ecosystem level 102 

(Abdalla et al., 2014; Rey-Sanchez et al., 2022),. However, the underlying controlling factors and 103 

mechanisms at the process level are difficult to infer due to the large spatial footprint. In addition, but 104 

they may not accurately representare less effective in capturing the spatial heterogeneity of peatlands 105 

(Lees et al., 2018). These limitations highlight the need for spatially robust, high-resolution methods that 106 

can characterize complementary approaches to estimate CO2 fluxes at the landscape scale with methods 107 

adapted foracross heterogeneous peatland ecosystemslandscapes.  108 

Several studies have integrated satellite-based remote sensing datasets with on-site chamber 109 

measurements to model landscape-scale CO2 fluxes (e.g., Azevedo et al. (2021); Junttila et al. (2021); 110 

Lees et al. (2018); Wangari et al. (2023)). Remote sensing datasets on topography and vegetation 111 

parameters serve as proxies for soil moisture, vegetation cover, and nutrient availability, enabling large-112 

scale CO2 emission estimates within peatlands (Lees et al., 2018). However, this approach is somewhat 113 

limited by coarse spatial (10 m to 1 km) and temporal (1 to 16 days) resolutions, which may overlook 114 

hot spots and hot moments, leading to potential over- or underestimations of CO2 fluxes in heterogeneous 115 

(e.g., complexity in topography, diverse vegetation types, varying thermal-hydrological conditions) 116 

peatlands (Kelly et al., 2021; Simpson, 2023). This shortcoming might be overcome by using unmanned 117 

aerial vehicles (UAVs) equipped with different kinds of sensors such as Red-Green-Blue (RGB), 118 

multispectral, thermal infrared, and Light Detection and Ranging (LiDAR). UAVs offer flexible 119 

deployment and capture high-resolution spatiotemporal data (1 cm to 1 m, minutes to months) (Minasny 120 

et al., 2019) which makes them particularly suitable for monitoring complex peatland dynamics and 121 

detecting hot spots and hot moments. Thus far, UAVs have proven to be reliable tools for peatland 122 

applications, including vegetation mapping (Steenvoorden et al., 2023), topographic reconstruction 123 
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(Harris and Baird, 2019), peat depth and carbon storage estimation (Li et al., 2024), ground-water and 124 

surface water interactions (Moore et al., 2024), and moisture monitoring (Henrion et al., 2025). In a 125 

recent study, Kelly et al. (2021) utilized UAV-derived land surface temperature to estimate ecosystem 126 

respiration of a hemi-boreal fen in southern Sweden, and some studies (e.g., Pajula and Purre (2021); 127 

and Walcker et al. (2025)) employed UAV-based multispectral vegetation indices to map ecosystem CO2 128 

flux at high resolution. These recent studies demonstrated the great potential of UAVs for linking CO2 129 

fluxes with environmental factors at a very high resolution, although they mainly focused on data from 130 

a single sensor. Few studies have explored the fusion of UAV-derived data from multiple sensors for 131 

mapping soil respiration across peatland landscapes. 132 

In this study, we integrate multi-sensor UAV-based remote sensing with traditional field surveys to 133 

investigate soil respiration across a temperate peatland bog landscape, located in the Belgian Hautes 134 

Fagnes. As one of the largest and most ancient peatlands in Western Europe, the Belgian Hautes Fagnes, 135 

which represents an important ecosystem for studying peatland carbon fluxes due to its sensitivity to 136 

climate change and hydrological dynamics. Our research addresses two key questions:  137 

(1) What controls the nature and strength of the relationship between soil respiration and environmental 138 

factors—such as thermal-hydrological conditions, vegetation, carbon stock and quality— across complex 139 

peatland landscapes and across spatial-temporalspatiotemporal scales? To address this, we first identify 140 

the factors driving seasonal and spatial variations in soil respiration and then assess the potential for 141 

linking environmental factors to CO2 flux at high spatiotemporal resolutions.  142 

(2) How do spatial and temporal peaks (i.e., hot spots andor hot moments) of biogeochemical processes 143 

influence landscape-level carbon fluxes? More specifically, our study has three main objectives. First, 144 

we aim to identify the factors driving seasonal and spatial variations in soil respiration. Second, we assess 145 

the potential for linking environmental factors to CO2 flux at high spatial and temporal resolutions. 146 

ThirdFor this purpose, we discuss analyze the timing and locations and timing of hot spots and hot 147 

moments, and assessing their contributions to overall CO2 flux budgets.  148 
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2 Materials and methods 149 

2.1 Study site  150 

The Belgian Hautes Fagnes plateau, part of the Stavelot-Venn Massif, is located in eastern Belgium 151 

(Figure 1a). This elevated landscape experiences a humid climate, with mean annual air temperature and 152 

precipitation being approximately 6.7 °C and 1439.4 mm (period: 1971-2000), respectively (Mormal and 153 

Tricot, 2004). The peatlands in this region cover an area of 37.50 km2, which primarily consist of raised 154 

bogs formed since the Late Pleistocene and grown under both oceanic and continental influences 155 

(Frankard et al., 1998; Goemaere et al., 2016). Our study site (50.49 N, 6.05 E; ~0.30 km2) is located in 156 

the upper valley of the Hoëgne River peatland bog region (Figure 1a). This ombrotrophic bog is mainly 157 

fed by precipitation and covers an area of approximately 32 hectares. The landscape exhibits complex 158 

structures, characterized by distinct SE-NW oriented topographic units (i.e., summit, topslope, shoulder, 159 

backslope, and footslope), along with diverse microtopographic features, spatiotemporal varying 160 

thermal-hydrological conditions, differences in peat thickness and carbon storage, and a range of 161 

vegetation types The site is characterized by a distinct SE-NW oriented topographic gradient, with a clear 162 

transition from a low-relief plateau to steep hillslopes and then to the floodplain of a broad river valley  163 

(Henrion et al., 2024; Li et al., 2024; Sougnez and Vanacker, 2011). More specifically, the summit is a 164 

low-relief, southeast-facing plateau at 675 - 680 m elevation, which transitions downslope into the 165 

topslope and concave shoulder slope positions (Figure 1a). The northwest-facing backslope is relatively 166 

steeper (average slope grade: 4.98°; elevation range: 645 - 670 m) compared to these upper units, while 167 

the footslope lies in the northwestern hillslope adjacent to Hoëgne River. The peat thickness varies 168 

spatially from 0.20 to 2.10 m across the landscape, with deeper deposits in the footslope and shallower 169 

peat at the topslope (Henrion et al., 2024; Li et al., 2024). The estimated soil organic carbon (SOC) stocks 170 

(i.e., top 1 m layer) range from 176.13 t ha-1 to 856.57 t ha-1, with significantly higher storage at the 171 

summit, shoulder, and footslope (Li et al., 2024). Due to the pronounced topographic gradients and 172 

microtopography, the landscape exhibits great spatiotemporal variability in rootzone soil volumetric 173 

water content (range: 0.1 – 1 cm3 cm-3) and water table dynamics (range: -80 – 5 cm) (Henrion et al., 174 

2025). The area study site was drained and planted with spruces in 1914 and 1918, while. tThe plantations 175 

were progressively cleared between 2000 and 2016.; Ssince 2017, the site has been under restoration and 176 

now primarily covered by Vaccinium myrtillus, Molinia caerulea, Juncus acutus, and native hardwood 177 



8 

 

species (e.g., Betula pubescens and Quercus robur), as shown in Figure 1b. has been restored through 178 

reforestation with native hardwood species such as Betula pubescens and Quercus robur. Figure 1b 179 

shows main vegetation types across this landscape. An observation station of the Royal Meteorological 180 

Institute of Belgium (Mont Rigi, 50.51 N, 6.07 E) situated 3.07 km from northeast of the study site, 181 

records rainfall and atmospheric pressure data every 10 minutes.  182 

 183 
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 184 

Figure 1. Maps showing the field-sampling locations (a) and land cover types (b) in the study area. Details on the 185 

land cover map are provided in our previous work (Li et al., 2024).  186 
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2.2 CO2 flux measurement campaigns 187 

Soil surface CO2 flux measurements were conducted at five slope positions along the middle part of the 188 

site (Figure 1a). A portable infrared gas analyzer with an automated closed dynamic chamber (LI-8100A 189 

system, LI-COR, United States; accuracy:  ± 1.5 %) was used to monitor CO2 fluxes at 33 sites biweekly 190 

from December 2022 to March 2024 (Figure S1). The dominant vegetation type of each slope position 191 

was recorded. At each slope positionNext, six collars (20 cm diameter) were installed randomly at each 192 

position, spaced 1–5 meters apart, to capture small-scale spatial variability. Given the high variability in 193 

soil water content at the shoulder position (Henrion et al., 2025),While at the shoulder, considering the 194 

heterogeneous soil water conditions, six collars were installed in drier areas (i.e., Shoulder dry) and 195 

another three in wetter areas (i.e., Shoulder wet). All vegetation within the collars was removed. During 196 

each campaign, monitoring was conducted between 9:00 and 16:00. At each site, the CO2 flux (μmol m-197 

2 s-1) in the chamber was measured for 2.5 minutes per observation. Simultaneously, soil surface 198 

temperature (0–10 cm) and volumetric water content (VWC) during each CO2 measurement were 199 

recorded using a T-handled type-E thermocouple sensor (8100-201, LI-COR, United States; accuracy: ± 200 

0.5 %) and a portable five-rod, 0.06 m long frequency domain reflectometry (FDR) probe system (ML2x, 201 

Delta-T, United Kingdom; accuracy: ± 1 %), respectively. However, CO2 measurements were not always 202 

possible due to technical issues and bad weather conditions, resulting in a total of 666 valid measurements. 203 

In addition, a pair of soil CO2 forced diffusion probes (eosFD, EOSense, United States; accuracy: ± 40 204 

ppm) were installed near LI-8100A collars from 24 April 2024 to 8 November 2024 (Figure S1). These 205 

probes, consisting of a soil node and a reference node, are based on a membrane-based steady-state 206 

approach and can measure CO2 flux every 5 minutes (Risk et al., 2011). During this period, the probes 207 

continuously monitored CO2 flux at different slope positions (Figure S1), resulting in a total of 39476 208 

valid flux measurements.  209 

2.3 Temperature,  and soil moisture, and water table monitoring 210 

The temporal evolution of soil temperature and moisture along the middle part was monitored using 211 

Teros12 sensors (Meter Group, München, Germany; accuracy: ± 0.01–0.02 m3 m-3 for moisture and ± 212 

0.5 °C for temperature), with two replicates per slope position, spaced 5 meters apart (Figure 1a) (Henrion 213 

et al., 2025). These sensors recorded data at a depth of 10 cm from 14 October 2022 to 28 October 2024, 214 
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every 10 minutes. Between the two replicates of each slope position, a station positioned ~1.4 m above 215 

the ground recorded air temperature every ten minutes. Additionally, ten soil temperature data loggers 216 

(EL-USB-1-PRO, Lascar, United Kingdom; accuracy: ± 0.2 °C) were installed primarily along two 217 

evenly spaced transects parallel to the main slope, at a depth of 10 cm (Figure 1a). These loggers recorded 218 

soil temperatures at the same frequency as Teros12 sensors from 21 March 2023 to 8 November 2024. 219 

Besides, five Levelogger 5 pressure sensors (Solinst, Georgetown, Canada; accuracy: ± 0.1 %) were 220 

placed in PVC pipes to capture pressure at the same topographic positions as the Teros12 sensors (Figure 221 

1a), which was then used to interpret groundwater‐level dynamics (Henrion et al., 2025). These probes 222 

also recorded at 10‑minute intervals, from June 2023 through October 2024. 223 

2.4 Soil sampling and laboratory analysis 224 

After completing all gas sampling campaigns, 33 disturbed soil samples (0-10 cm depth) were collected 225 

within LI8100A collars at the five slope positions between 30 July and 15 October 2024. An Emlid Reach 226 

RS 2 GPS device with centimeter-level precision was used to record the sampling site locations, using a 227 

PPK solution with the Belgian WALCORS network, resulting in a mean lateral positioning error of 1.84 228 

cm across all sites. The samples were stored in a refrigerator until laboratory analysis. A subset of the 229 

samples was oven-dried at 80 °C for 24 hours (Dettmann et al., 2021), then crushed and ground into a 230 

fine powder for soil organic carbon (SOC) and total nitrogen content (TN) analysis (928 Series, LEGO, 231 

United States). Roots and litter were removed using tweezers during the pre-processing procedure. We 232 

tested the presence of inorganic carbon of each sample by adding one drop of 10 % HCl but found that 233 

no inorganic carbon was present in the samples. A subset of fresh samples was used for root biomass 234 

analysis. The fresh soil samples were weighed and placed in a 1 mm sieve, then rinsed with water to 235 

collect the roots. The washed roots were dried in an oven at 80 °C for 48 hours and then weighed to 236 

calculate their dry biomass. 237 

2.5 UAV data acquisition and imagery processing 238 

During the CO2 flux monitoring period, we conducted regular UAV flights across the study area to collect 239 

high-resolution spatial data (Figure S1). A DJI Matrice 300 RTK was equipped with four different sensors: 240 

(i) a Red-Green-Blue (RGB) camera (DJI Zenmuse P1 camera, 35 mm and 45 MP), (ii) a multispectral 241 
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camera (MicaSense RedEdge-M camera with five discrete spectral bands: blue (475 nm), green (560 nm), 242 

red (668 nm), rededge (717 nm), and near-infrared (842 nm), along with a downwelling light sensor), 243 

(iii) a LiDAR scanner (DJI Zenmuse L1, integrated with a 20-MP camera with a 1-inch CMOS sensor) 244 

and (iv) a thermal infrared camera (TeAX, featuring FLIR Tau2 cores and ThermalCapture hardware). 245 

All the UAV flight missions were carried out around noon (10h00-14h00) and the details of UAV 246 

campaigns were presented in support material (Text S1). Similar flight patterns and altitudes were used 247 

for the UAV missions as in our previous work (Li et al., 2024). Due to the variable weather conditions in 248 

the research field, UAV campaigns were not always feasible. In total, one RGB and one LiDAR dataset 249 

collected on 7 June 2023, were used in this study and ten multispectral and ten thermal infrared datasets 250 

collected between 13 April 2023 and 13 May 2024 (Figure S1). 251 

2.6 UAV imagery processing 252 

The raw multispectral images were processed in the Pix4D mapper software (Pix4D S.A., Lausanne, 253 

Switzerland) to generate reflectance maps (resolution: 6 cm) of the five spectral bands of the study area. 254 

We calculated the Normalized Difference Vegetation Index (NDVI) across the 10 maps from the 255 

monitoring period (Table S1). The RGB photos were processed in DJI Terra V4.0.10 (DJI, 2023) to 256 

generate an orthomosaic image with a resolution of 1.26 cm. The raw LiDAR data was processed in DJI 257 

Terra to provide a Digital Terrain Model (DTM; .tif file) with a resolution of 15 cm. We then calculated 258 

the terrain wetness index (TWI) in SAGA GIS 9.2.0 using the formula presented in Table 1. The variables 259 

derived from the different types of images and their calculation formula were summarized in Table 1. 260 

Table 1. Orthorectified image, topographical, vegetation index, and land surface temperature maps derived from 261 

RGB, LiDAR, multispectral and thermal images. 262 

Index Definition Unit Data source 

RGB orthomosaic Orthorectified image mosaicked from RGB 

image collection 

/ RGB 

DTM Digital Terrain Model, the elevation  m LiDAR 

TWI Terrain wetness index: 

ln (As/tan(b)), where As is the specific 

contributing area and b is the slope angle (i.e., 

/ LiDAR 
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the rate of change in elevation) in radians. 

NDVI Normalized Difference Vegetation Index: 

(near infrared - red) / (near infrared + red) 

/ Multispectral 

LST Land Surface Temperature  °C Thermal infrared 

 263 

The raw thermal infrared video streams were converted into RJPG images using ThermoViewer version 264 

3.0.26 (TeAX, 2022). Subsequently, the thermal images were processed with the Pix4D mapper to 265 

generate land surface temperature (LST) maps (resolution: 12 cm). To calibrate the LST of each date 266 

(Figure 2a), we first applied linear regressions of temperature obtained by camera and temperature of 2 267 

targets on the ground (Text S1) to create a correction formula. Next, we mapped the spatial variations of 268 

surface emissivity using the classification-based approach (Li et al., 2013; Snyder et al., 1998), based on 269 

land cover data from our previous work (Figure 1b; Li et al. (2024)) and emissivity values of each class 270 

from literature (Snyder et al., 1998). Finally, we converted the LST to thermal radiance using Planck’s 271 

law, applied an emissivity-based correction, and then converted the radiance back to obtain calibrated 272 

LST., which were used for soil temperature mapping (Text S1, Figure S2, Table S2).  273 

The RGB photos were processed in DJI Terra V4.0.10 (DJI, 2023) to generate an orthomosaic image 274 

with a resolution of 1.26 cm. The raw LiDAR data was processed in DJI Terra to provide a Digital Terrain 275 

Model (DTM; .tif file) with a resolution of 15 cm, which was used for generating daily air temperature 276 

maps (Text S1) and terrain wetness index (TWI) (Text S2). The variables derived from the four types of 277 

images were summarized in Table S1. 278 

2.7 Daily soil temperature mapping 279 

The linear mixed-effects model was utilized to predict the spatial distribution of daily mean soil 280 

temperature (10 cm depth) across the landscape from 1 May 2023 to 30 April 2024. This is because 281 

mixed models integrate both fixed and random effects, which provide a robust framework for analyzing 282 

data with non-independent structures (Pinheiro and Bates, 2000). Daily mean air temperature, 283 

Normalized Difference Vegetation Index (NDVI) and calibrated Land Surface Temperature (LST) were 284 

considered as fixed-effect predictors and monitoring sites were included as random effects. The model 285 

was performed in RStudio (v4.1.2) using the lmer function of the lme4 package (https://CRAN.R-286 
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project.org/package=lme4) and was defined as: 287 

𝑦𝑖𝑗  =  𝛽0 +  𝛽1𝑥𝑖𝑗 + ⋯ + 𝛽𝑝𝑥𝑖𝑗 + 𝑏0𝑗 + 𝑏1𝑗𝑧𝑖𝑗 + ⋯ + 𝜖𝑖𝑗                (1) 288 

Where: 289 

• 𝑦𝑖𝑗 is the dependent variable (i.e., soil temperature at 10 cm, unit: °C) for observations 𝑖 in group 290 

𝑗. 291 

• 𝛽0, 𝛽1,…, 𝛽𝑝 are fixed-effect coefficients.  292 

• 𝑥𝑖𝑗  indicates fixed-effect predictors (independent variables). 293 

• 𝑏0𝑗, 𝑏1𝑗,… are random-effect coefficients associated with group 𝑗, which account for variability 294 

across groups.  295 

• 𝑧𝑖𝑗  indicates predictors associated with random effects. 296 

• 𝜖𝑖𝑗  is the residual error term. 297 

Soil temperature data were collected from both Teros 12 sensors and data loggers, as described in Section 298 

2.3. Air temperature measurements were obtained from five stations positioned at different slope 299 

locations. The NDVI and calibrated LST estimates were extracted from maps by retrieving values at the 300 

20 soil temperature sensor sites (Figure 1a). These sites were included as random effects in the model to 301 

account for repeated measurements at the same locations throughout the monitoring period. For mapping 302 

purposes, daily air temperature was statistically downscaled by incorporating the relationship between 303 

daily air temperature and elevation, followed by downscaling using a Digital Terrain Model (DTM) 304 

derived from LiDAR data (Figure 2a). The daily NDVI and LST maps were generated by linearly 305 

interpolating the monthly/biweekly maps derived from UAVs. The workflow of soil temperature 306 

mapping is illustrated in Figure 2a. 307 



15 

 

 308 

 309 

Figure 2. Workflow diagram of daily CO2 flux spatial mapping (a) and hourly CO2 flux temporal 310 

modeling (b). 311 

 312 

2.8 Generation of corrected daily TWI  313 

We generated corrected daily TWI maps to approximate the spatial distribution of daily soil volumetric 314 

water content (VWC) by incorporating both long-term site characteristics and daily precipitation effects 315 

(Figure 2a). First, we calculated the mean VWC for each site over the period from 1 May 2023 to 30 316 

April 2024. Then, we extracted each site’s TWI values from a TWI map generated using the formula in 317 

Table 1. Next, we performed a linear regression with mean VWC as the response and TWI as the predictor: 318 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑀𝑒𝑎𝑛 𝑉𝑊𝐶 = 𝑏 + 𝑎 ∗ 𝑇𝑊𝐼                   (2) 319 
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The Baseline represents the soil moisture level at long-term. A baseline map was then created using this 320 

regression model. Daily deviations (anomalies) from the baseline were defined as: 321 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑡 =  𝑉𝑊𝐶𝑡 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒                                                 (3) 322 

Considering the memory and lag effects in soil moisture dynamics, we assumed that the anomaly on any 323 

day is influenced by the previous day's anomaly and precipitation: 324 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑡 =  𝑐 ∗ 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑡−1 −  𝑑 ∗ 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡−1                  (4) 325 

Finally, we generated a “corrected TWI” map for each day by adding the dynamically updated anomaly 326 

to the baseline map: 327 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑇𝑊𝐼𝑡  𝑚𝑎𝑝 =  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑚𝑎𝑝 + 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑡                    (5) 328 

This approach allows the daily corrected TWI maps to capture both the inherent spatial variability (as 329 

determined by TWI) and the dynamic influence of rainfall, thereby serving as a proxy for the spatial 330 

distribution of soil moisture. 331 

 332 

2.96 Statistical analysis 333 

All data analyses were conducted in RStudio (v4.1.2). All timestamps in this study were converted to 334 

Coordinated Universal Time (UTC) to ensure consistency across datasets. Group differences were 335 

assessed by the Kruskal-Wallis test, a non-parametric alternative to the one-way analysis of variance, and 336 

suitable for non-normally distributed data (Dunn, 1964). When the Kruskal-Wallis test detected a 337 

significant overall effect (p < 0.05), Dunn’s post-hoc test was performed to determine which groups 338 

differed significantly from each other. one-way analysis of variance (ANOVA) using the stats package. 339 

When ANOVA detected a significant effect (p < 0.05), Tukey's Honestly Significant Difference (HSD) 340 

post-hoc test was performed to determine which groups differed significantly from each other. Pearson 341 

correlation analysis was performed using the corrplot package (Murdoch and Chow, 1996). The linear 342 

mixed-effects models used to identify factors controlling spatial- temporal variations of CO2 flux, as well 343 

as time series simulation and mapping are introduced below.  344 
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2.96.1 Models to explain spatial-temporalspatiotemporal variations in CO2 flux  345 

We also utilized linear mixed-effects modeling framework (i.e., as shown in section 2.7)s to assess the 346 

impacts of both static and dynamic environmental factors on the spatial and seasonal variability of CO2 347 

fluxes. This is because mixed models integrate both fixed and random effects, which provide a robust 348 

framework for analyzing data with non-independent structures (Pinheiro and Bates, 2000). The model 349 

was performed using the lme4 package (Bates et al., 2015), with Unlike the soil temperature model, the 350 

natural logarithm of CO2 flux observations was utilized as a response. The CO2 fluxes data are often 351 

characterized by extreme values and right-skewed distribution, and a lognormal assumption for CO2 352 

fluxes could better account for the influences of extreme values on the overall distribution (Wutzler et 353 

al., 2020). The mixed-effects models were defined as: 354 

𝑦𝑖𝑗  =  𝛽0 + 𝛽1𝑥𝑖𝑗 + ⋯ + 𝛽𝑝𝑥𝑖𝑗 + 𝑏0𝑗 + 𝑏1𝑗𝑧𝑖𝑗 + ⋯ + 𝜖𝑖𝑗                (1) 355 

Where: 356 

• 𝑦𝑖𝑗 is the dependent variable (i.e., ln (CO2 flux), unit: μmol m-2 s-1) for observations 𝑖 in group 357 

𝑗. 358 

• 𝛽0, 𝛽1,…, 𝛽𝑝 are fixed-effect coefficients.  359 

• 𝑥𝑖𝑗  is the fixed-effect variable (independent variable). 360 

• 𝑏0𝑗 , 𝑏1𝑗 ,… are random-effect coefficients associated with group 𝑗 , which account for 361 

variability across groups.  362 

• 𝑧𝑖𝑗  is the random-effect variable. 363 

• 𝜖𝑖𝑗  is the residual error term. 364 

The fixed-effect predictors were categorized into three groups: 365 

• Static variables: SOC stock, and the ratio of SOC content to nitrogen content (C/N ratio). 366 

• Semi-dynamic variables: root biomass and NDVI. 367 

• Dynamic variables: soil temperature and soil moisture at 0–10 cm depth, as well as water table 368 

and atmospheric pressure (the latter two variables are shown in the support material). 369 

Estimates for NDVI were extracted from the NDVI maps by retrieving the value of the 33 CO2 flux 370 

observation sites and the SOC stock values were extracted from the a local high resolution (0.15 m) SOC 371 

stock map (Li et al., 2024). The sites were included as random effects in the seasonal pattern model to 372 
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account for repeated measurements at the same locations during the monitoring period, whereas slope 373 

positions were treated as random effects in the spatial pattern model. Independent variable coefficients, 374 

Intraclass Correlation Coefficient (ICC), coefficients of determination (marginal R² and conditional R²), 375 

Root Mean Square Error (RMSE), and Akaike Information Criterion (AIC) were extracted using the 376 

modelsummary package after running each model. The ICC quantifies the proportion of variance 377 

explained by a grouping (random) factor in multilevel data; values close to 1 indicate high similarity 378 

within groups, while values near 0 suggest that grouping conveys little to no information (Nakagawa et 379 

al., 2017; Shrout and Fleiss, 1979). The marginal R², represents the variance explained by fixed effects 380 

alone, and conditional R² represents the variance explained by both fixed and random effects (Pinheiro 381 

and Bates, 2000). The relative importance of each independent variable was obtained using the glmm.hp 382 

package(Lai et al., 2023; Lai et al., 2022). To assess multicollinearity in regression analysis, the car 383 

package was used to calculate the variance inflation factor (VIF) (Fox and Monette, 1992).  384 

2.96.2 Modelling hourly CO2 flux  385 

The mixed-effects model was utilized to simulate the time series of CO2 fluxes at different slope positions 386 

(Figure 2b). Here, the slope position was included as random variable, and the natural logarithm of CO2 387 

flux (hourly) was set as a response. We utilized CO2 fluxes data measured by both the LI8100A system 388 

and eosFD probes. Specifically, we randomly selected a number of 30 observations from the eosFD 389 

probes at each slope position to reduce data redundancy from high-frequency sampling. Afterwards, we 390 

applied weighting to adjust the remaining imbalance in data density between the high-frequency eosFD 391 

monitoring and low-frequency LI8100A measurements, ensuring both data sources contributed 392 

proportionally to the model. The independent variables included hourly soil temperature (10 cm depth), 393 

volumetric soil moisture (VWC, 10 cm depth), and air temperature (1.4 m height), considering their 394 

importance in explaining the seasonal and diurnal patterns of CO2 flux.  395 

As in our previous work (Li et al., 2024), we divided the dataset into a training set (70 %) and a test set 396 

(30 %) using K-means clustering to minimize biases that could arise from random sampling (Hair et al., 397 

2010). The models were trained on the training set, and the simulation accuracy was validated using the 398 

test dataset. The coefficient of determination (R2) and RMSE were used to assess the quality of the model 399 

fit. Finally, weWe made simulations of the time series of hourly CO2 flux for different slope positions 400 



19 

 

from 1 May 2023 to 30 April 2024. Furthermore, we identified CO2 emission hot moments based on the 401 

description in Section 2.69.4. 402 

2.96.3 Mapping daily CO2 flux  403 

The linear mixed-effects model was utilized to map the spatial distribution of daily CO2 fluxes across the 404 

landscape, with daily soil temperature (10 cm depth), corrected daily TWI, and SOC stock being 405 

considered as fixed-effect variables and gas sampling sites being included as random variables (Figure 406 

2a). The daily CO2 flux model training, testing procedures, and evaluation of model fit followed the same 407 

approach detailed in Section 2.6.2. We then applied the trained model to predicted the daily CO2 flux of 408 

the landscape from 1 May 2023 to 30 April 2024. Additionally, we calculated the mean daily soil CO2 409 

flux maps for each season and the entire year. Based on these predictions, we identified hot spots for 410 

each day by the methods described below. 411 

2.96.4 Quantifying hot moments and hot spots of CO2 flux 412 

In previous studies, percentiles have been used as thresholds for identifying heat waves (e.g., (Meehl and 413 

Tebaldi, 2004): 97.5th percentile), soil heat extremes (e.g., García-García et al. (2023): 90th percentile), 414 

hot spots of N2O emissions (e.g., Mason et al. (2017): median plus three times the interquartile range), 415 

and hot spots of CO2 emissions (e.g., Wangari et al. (2023): median plus the interquartile range). In this 416 

study, we tested different methods and selected the 90th percentile as the threshold of both hot moments 417 

and hot spots to balance capturing extreme CO₂ emissions while maintaining a sufficient sample size. To 418 

capture the hot moments, we calculated a threshold for each slope position separately using its own 419 

dataset (Figure 2b). For hot spots, we determined a daily threshold based on each map (Figure 2a). 420 

2.10 Model performance evaluation 421 

Independent variable coefficients, Intraclass Correlation Coefficient (ICC), coefficients of determination 422 

(marginal R² and conditional R²), Root Mean Square Error (RMSE), and Akaike Information Criterion 423 

(AIC) were extracted using the modelsummary package after running each model described in section 424 

2.7 and section 2.9.1. The ICC quantifies the proportion of variance explained by a grouping (random) 425 

factor in multilevel data; values close to 1 indicate high similarity within groups, while values near 0 426 

suggest that grouping conveys little to no information (Nakagawa et al., 2017; Shrout and Fleiss, 1979). 427 
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The marginal R² represents the variance explained by fixed effects alone, and the conditional R² 428 

represents the variance explained by both fixed and random effects (Pinheiro and Bates, 2000). The 429 

Kling-Gupta Efficiency (KGE) between observations and predictions was also calculated, with values 430 

closer to 1 indicating good model performance (Gupta et al., 2009). The relative importance of each 431 

predictor was obtained using the glmm.hp package (Lai et al., 2023; Lai et al., 2022). To assess 432 

multicollinearity in regression analysis, the car package was used to calculate the variance inflation factor 433 

(VIF) (Fox and Monette, 1992). 434 

For modelling daily soil temperature (i.e., section 2.7) and daily/hourly CO2 flux (i.e., sections 2.9.2 and 435 

2.9.3), we divided the corresponding dataset into a training set (70 %) and a test set (30 %) using K-436 

means clustering, following the methodology of our previous work (Li et al., 2024), to minimize biases 437 

that could arise from random sampling (Hair et al., 2010). The models were trained on the training set, 438 

and the simulation accuracy was validated using the test dataset. The coefficient of determination (R2), 439 

RMSE and KGE were used to assess the quality of all model fits. The daily soil temperature model yielded 440 

R2, RMSE, and KGE values of 0.89, 1.33 °C, and 0.94, respectively (Figure S2). Detailed results on 441 

model coefficients and performance are summarised in Table S1. 442 

 443 

  444 
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3 Results 445 

3.1 Peat soil surface and subsurface properties 446 

Table 2 presents an overview of soil surface and subsurface properties at different slope positions. The 447 

air temperature above ground ~1.4 m shows great temporal variability, ranging from -8.76 to 24.79 °C 448 

within one year. Soil temperatures have smaller temporal variations (0.75 - 17.48 °C), while the mean 449 

daily soil temperature (± one standard deviation (SD)) at the topslope (8.86 ± 3.69 °C) is relatively lower 450 

than at other positions. Soil volumetric water content (VWC) across the landscape also exhibits 451 

significant spatial heterogeneity. The backslope has the highest mean daily VWC (0.94 ± 0.04 cm3 cm-452 

3), followed by the footslope (0.86 ± 0.06 cm3 cm-3), shoulder wet (0.85 ± 0.01 cm3 cm-3), and summit 453 

(0.82 ± 0.04 cm3 cm-3). The water table at the topslope showed large fluctuations throughout the year 454 

(range: -77.41-0.38 cm; mean ± SD: -21.76 ± 25.17 cm), as shown in Table 2. In contrast, the water table 455 

at the shoulder wet slope position remained close to the surface and relatively stable within one year 456 

(range: -20.21-4.17 cm; mean ± SD: -2.17 ± 5.62 cm). No significant differences in dry root biomass 457 

were observed among the various slope positions, which may be attributed to substantial small-scale 458 

variations within each position, particularly at the shoulder, where the biomass ranged from 0.70 to 8.46 459 

g/100g soil. The SOC content values for summit and shoulder wet areas are 47.38 ± 2.06 g/100g and 460 

47.00 ± 1.41 g/100g, respectively. The SOC content in the shoulder and backslope positions is similar, 461 

approximately 42 g/100g, while the carbon content in the footslope and topslope positions is 462 

comparatively lower. In addition, the TN content at the topslope (1.61 ± 0.48 g/100g) is significantly 463 

lower than at other positions (p < 0.05). The C/N ratio at the footslope (17.41 ± 1.57) was significantly 464 

lower than at the summit, topslope, and backslope (p < 0.05), while no significant differences in C/N 465 

ratios were observed among the other places.  466 

 467 

 468 

 469 

 470 
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Table 2. Summary of the mean daily air temperature (Air temp.), soil temperature (Soil temp.), soil volumetric water 471 

content (VWC), and water table in one year at different slope positions. Soil subsurface properties at 10 cm depth, 472 

i.e, dry root biomass, soil organic carbon (SOC) content, total nitrogen (TN) content, and C/N ratio, at different slope 473 

positions.  474 

Slope 

positions 
Footslope Backslope 

Shoulder 

wet 

Shoulder 

dry 
Topslope Summit 

Vegetation 
Molinia 

caerulea 

Vaccinium 

myrtillus 

Juncus 

acutus 

Molinia 

caerulea 

Vaccinium 

myrtillus 

Molinia 

caerulea 

Air temp. 

(°C) 

9.04 ± 6.79 a  

(-8.76, 

23.75) 

9.70 ± 6.77 a  

(-7.68, 24.79) 

9.74 ± 6.73 

a  

(-7.77, 

24.60) 

N.A. 
9.66 ± 6.80 a  

(-7.83, 24.66) 

9.25 ± 6.89 a  

(-8.44, 

24.52) 

Soil temp. 

(°C) 

9.67 ± 4.62 a 

(1.29, 17.48) 

9.55 ± 4.27 ab 

(1.40, 16.98) 

9.65 ± 4.27 

a 

(1.62, 

16.74) 

8.89 ± 4.15 bc 

(0.75, 15.52) 

8.86 ± 3.69 c  

(1.55, 15.18) 

9.18 ± 4.07 

abc  

(1.82, 16.00) 

VWC  

(cm³ cm-³) 

0.86 ± 0.06 b 

(0.68, 0.91) 

0.94 ± 0.04 a 

(0.81, 0.98) 

0.85 ± 0.01 

c 

(0.83, 0.87) 

N.A. 
0.68 ± 0.08 e 

(0.44, 0.73) 

0.82 ± 0.04 d 

(0.70, 0.85) 

Water table 

(cm) 

-27.15 ± 

8.31e 

(-49.14, -

18.53) 

-21.07 ± 7.51b 

(-35.91, -9.68) 

-2.17 ± 

5.62a 

(-20.21, 

4.17) 

N.A. 

-21.76 ± 

25.17d 

(-77.41, 0.38) 

-20.18 ± 

11.80c 

(-49.23, -

9.20) 

root biomass 

(g 100g-1) 

1.43 ± 1.11 a 

(0.20, 3.37) 

0.97 ± 0.87 a 

(0.27, 2.65) 

4.02 ± 2.10 

a 

(1.98, 6.17) 

2.97 ± 3.00 a 

(0.70, 8.46) 

0.98 ± 0.99 a 

(0.18, 2.84) 

0.69 ± 0.27 a 

(0.31, 0.96) 

SOC content 

(g 100g-1) 

38.48 ± 1.71 

b 

(36.55, 

40.80) 

42.36 ± 2.46 ab 

(37.60, 44.30) 

47.00 ± 

1.41 a 

(45.95, 

48.60) 

42.53 ± 2.51 

ab 

(39.75, 

45.95) 

32.26 ± 10.81b 

(13.5, 42.1) 

47.38 ± 2.06 

a 

(43.95, 

49.15) 

TN content  

(g 100g-1) 

2.22 ± 0.13 a 

(2.03, 2.37) 

2.02 ± 0.11 ab 

(1.89, 2.16) 

2.35 ± 0.17 

a 

(2.16, 2.47) 

2.04 ± 0.24 ab 

(1.71, 2.36) 

1.61 ± 0.48 b 

(0.75, 2.19) 

2.13 ± 0.14 a 

(1.99, 2.34) 

C/N ratio 

17.41 ± 1.57 

b 

(15.59, 20.1) 

20.98 ± 1.42 a 

(19.23, 22.70) 

20.03 ± 

1.26 ab 

(18.81, 

21.32) 

20.98 ± 1.95 

a 

(18.6, 24.06) 

19.76 ± 2.01 ab 

(18.08, 23.36) 

22.32 ± 1.79 

a 

(20.21, 

24.51) 

Note. The air temperature was monitored at a height of ~1.4 m above the ground. The soil temperature and VWC 475 

were monitored at a depth of 10 cm by Teros12 sensors. The results are presented as the mean ± one standard 476 

deviation (SD) and values in brackets indicate the minimum and maximum values. The Kruskal-Wallis and Dunn’s 477 

tests were conducted within each class with different superscript letters indicating significant differences (p < 0.05). 478 

 479 

 480 
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3.21 Spatial and temporalSpatiotemporal patterns of CO2 flux 481 

During the monitoring period, the CO2 emissions show large spatial and seasonal variations across the 482 

landscape. The CO2 fluxes at the summit (3.16 ± 3.25 μmol m-2 s-1) and shoulder (dry: 2.81 ± 3.22 μmol 483 

m-2 s-1, wet: 2.33 ± 2.36 μmol m-2 s-1) slope positions were significantly higher than that of footslope 484 

(1.25 ± 1.00 μmol m-2 s-1) and backslope (1.11 ± 1.03 μmol m-2 s-1) were significantly lower than that of 485 

other slope positions (p < 0.05) (Figure 2a3a). Furthermore, significant differences were observed when 486 

grouping the data into three vegetation covers: CO2 emissions from Vaccinium myrtillus were lower than 487 

those from Juncus acutus, with mean ± sd SD values of 1.59 ± 1.43 μmol m-2 s-1, and 2.33 ± 2.36 μmol 488 

m-2 s-1, respectively (Figure 2b3b) (p < 0.05). However, the CO2 fluxes under Molinia caerulea displayed 489 

large variations (0.02~20.1 μmol m-2 s-1), and no significant differences were found compared to the other 490 

two vegetation types. The CO2 flux data indicated large CO2 emissions from June to September (3.65 ± 491 

2.68 μmol m-2 s-1), which can be 8.11 times higher than that from winter and early spring (0.45 ± 0.40 492 

μmol m-2 s-1) (Figure 2c3c). CO2 emissions in May and October were at a moderate level.  493 

 494 
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 495 

Figure 23. Boxplot of CO2 flux (μmol m-2 s-1) across different slope positions (a), vegetation types (b), and sampling 496 

dates (c), using data from the LI8100 A system recorded between 2023-02-13 and 2024-03-13. (a), CO2 flux data of 497 

each box were from all dates, and Shoulder (w) and Shoulder (d) indicate shoulder wet and shoulder dry areas, 498 

respectively. (b), CO2 flux data of each box were from all dates, and Myrtillus, Molinia and Juncus indicate 499 

Vaccinium myrtillus, Molinia caerulea and Juncus acutus, respectively. (c), CO2 flux data of each box were from all 500 

slope positions. The edges of each box represent the first quartile (Q1) and third quartile (Q3), while the line inside 501 

the box indicates the median CO2 flux. Whiskers extend from the box to the smallest and largest values within 1.5 502 

times the interquartile range, and points outside the whiskers are considered extreme values. The Kruskal-Wallis and 503 

Dunn’s testsANOVA and HSD post-hoc tests were performed within slope positions and vegetation types, with boxes 504 

sharing the samedifferent letters indicating no significant differences among groups (p < 0.05).  505 

At the daily scale, the soil respiration displayed a clear diurnal trend from April to August (Figure S3), 506 

particularly at the footslope (Figure S3a), backslope (Figure S3b), and shoulder (Figures S3c, 3d) slope 507 

positions, with higher CO2 emissions observed in the late afternoon (14:00–18:00) and lower emissions 508 

in the morning (04:00–08:00). In contrast, the diurnal trend of CO2 flux at the topslope (Figure S3e) and 509 
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summit (Figure S3f) in autumn was less pronounced. Figure 4a presents examples of time series data for 510 

CO2 fluxes and environmental factors at the footslope, topslope, and summit from August to October 511 

2024. In August, clear diurnal patterns with variation magnitudes of 2-3 μmol m-2 s-1, and reduced CO2 512 

emissions following precipitation events on 13 August and 17 August were observed at the footslope 513 

(Figures 4a, 4b). Since the middle of September, the diurnal variation was less than 1 μmol m-2 s-1 and 514 

there was no obvious pattern in daily changes (Figures 4a, 4c). 515 

 516 
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 517 

 518 

Figure 4. Examples showing time series data of air pressure (kPa), precipitation (mm), soil volumetric water content 519 

(VWC, cm3 cm-3), water table (cm), soil temperature (Soil temp., °C), air temperature (Air temp., °C), and CO2 flux 520 
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(μmol m-2 s-1, measured by eosFD probes) from 1 August 2024 to 31 October 2024 (a), from 8 August 2024 to 15 521 

August 2024 at the footslope (b), and from 8 October 2024 to 15 October 2024 at the topslope slope position (c). 522 

3.32 Factors contributing to spatial-temporalspatiotemporal variability 523 

Three types of environmental factors explain 64 % of the observed seasonal variance in CO₂ emissions, 524 

with contributions of 33 % from soil temperature, 10 % from VWC, 19 % from vegetation (i.e., NDVI, 525 

root biomass), 2 % from relatively static factors (i.e., SOC stock, C/N ratio), and 6 % from random effects 526 

(i.e., 33 sampling sites) (Table 13). This suggests that long-term stable environmental factors have 527 

minimal direct influence on seasonal CO₂ flux patterns. Interestingly, the contribution of these relatively 528 

stable factors is nearly 11 6 times higher in explaining overall spatial variations, although soil temperature 529 

is still the dominant factor (Table 13). The low ICC values in both spatial and seasonal models highlight 530 

significant small-scale heterogeneity in soil respiration. Water table contributed 10 % of seasonal 531 

variation and atmospheric pressure was not important (1 %), as shown in Table S2 of the support material. 532 

The relationships between each environmental factor and CO2 fluxes are shown in Figure S4. 533 

Table 31. Coefficients and relative contributions of three types of input variables (static, semi-dynamic, dynamic) 534 

of mixed linear regression models for modelling CO2 flux. Random effects were evaluated by ICC and model 535 

performance was evaluated by Marginal R2, Conditional R2, AIC,and RMSE, and KGE. 536 

 
Input variables Seasonal patterns Spatial patterns 

Fixed effects: 

coefficient 

(contribution) 

Static 

 

SOC stock 

(t ha-1) 

0.003 

(1 %) 

-0.003 

(0.06 %) 

 C/N ratio 0.05 

(1 %) 

0.07* 

(10 %) 

Semi 

dynamic 

root biomass 

(g 100g-1) 

0.06 

(0.36 %) 

0.09* 

(12 %) 

NDVI 0.90*** 

(18 %) 

-3.35** 

(12 %) 

Dynamic Soil temp. 

(°C) 

0.12*** 

(33 %) 

0.39*** 

(18 %) 

VWC 

(cm3 cm-3) 

-0.77*** 

(10 %) 

-1.37** 

(11 %) 

Random effects ICC 

(contribution) 

0.18 

(6 %) 

0.06 

(3 %) 

Marginal R2 0.64 0.63 
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Note. Significance level: *** p < 0.001, ** p < 0.01, * p < 0.05. All CO2 fluxes (unit: μmol m-2 s-1), soil temperature, 537 

and VWC data for spatial and seasonal patterns waswere from the LI8100 A system. To investigate the factors 538 

controlling spatial variations of CO2 flux, we calculated the mean values of CO2 flux, NDVI, soil temperature, and 539 

VWC of each site during the monitoring time. 540 

3.43 Continuous hourly time series of CO2 flux and hot moments 541 

Three dynamic variables (i.e., soil temp., VWC, air temp.) were taken into account to predict the time 542 

series of hourly CO2 flux at different slope positions. These input variables were selected due to their 543 

influential roles in explaining the diurnal (Figure S3, Figure 4) and seasonal (Table 3) fluctuations of 544 

CO2 emissions. As shown in Table 24, the temporal model yielded a robust performance in both training 545 

and testing dataset, achieving R², and RMSE, and KGE values of 0.86, and 0.39 μmol m⁻² s⁻¹ , 0.90, and 546 

0.74, and 0.57 μmol m⁻² s⁻¹, 0.77, respectively. 547 

Table 42. Model performance for simulating time series of hourly CO₂ flux (unit: μmol m⁻² s⁻¹) and mapping daily 548 

CO₂ flux (unit: μmol m⁻² s⁻¹) across the landscape.  549 

Models 
Training dataset Testing dataset 

RMSE R2 KGE RMSE R2 KGE 

Temporal model 0.39 0.86 0.90 0.57 0.74 0.77 

Spatial model 0.5049 0.81 0.85 0.5456 0.75 0.83 

Note. Temporal model used the natural logarithm of CO₂ flux data from LI8100 A and eosFD probes, whereas spatial 550 

model used the natural logarithm of CO₂ flux data only from LI8100 A. 551 

The modelled CO2 emissions at all slope positions display a clear seasonal trend, with higher CO2 fluxes 552 

from June to September and lower estimates in other months, in line with the observed fluxes shown in 553 

brown dots (Figures 5d3c-5i3h). The total CO2 fluxes (Table 53) at the summit (19.50 t ha-1) and the 554 

shoulder (dry: 19.47 t ha-1, wet: 16.31 t ha-1) slope positions were higher than that of topslope (14.45 t 555 

ha-1), followed by footslope (13.94 t ha-1) and backslope (11.54 t ha-1) (Table 3), consistent with the 556 

spatial patterns of our observations (Figure 3a). However, the modelled mean ± sd CO2 fluxes at all slope 557 

positions (Table 3) were lower than measured CO2 fluxes by the LI8100 A system. This is because the 558 

Model 

performance 

Conditional R2 0.70 0.66 

AIC 1386.00 50.10 

RMSE 0.64 0.25 

KGE 0.78 0.78 
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measurements were taken during the daytime when fluxes were higher (Figure 2), whereas the modeled 559 

values represent the average of both daytime and nighttime fluxes. Most hot moments occurred from 560 

June to September 2023, whereas few hot moments were observed from late July to the early August 561 

(Figures 5d3c-5i3h). Although these hot moments of different slope positions only accounted for 10 % 562 

across the year, they could contribute 28 %-31 % to the annual total CO₂ emissions (Table 53). 563 

 564 
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 565 

Figure 53. Time series of hourly rainfall precipitation (blue bar) and, atmospheric pressure (light green line) (a), 566 

hourly mean VWC (blue line) and water table (red line) (ba), hourly mean air temperature (orange line) and soil 567 
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temperature (black line) (cb), modelled hourly CO2 flux (purple lines) and in-situ measurements (brown dots) at 568 

different slope positions (dc-ih). Precipitation Rainfall (unit: mm) and atmospheric pressure (kPa) data was from the 569 

nearby meteorological observation station (50.51 N, 6.07 E). The water table (cm) data were derived from the 570 

Solinist probes. The VWC (unit: cm3 cm-3) and soil temperature (unit: °C) were mean values from five slope 571 

positions monitored by Teros12 sensors at a depth of 10 cm. Air temperatures (unit: °C) were mean values from 5 572 

stations at 1.4 m height above ground. Measured CO2 fluxes (unit: μmol m⁻² s⁻¹) were from the LI8100A system. 573 

 574 

 575 

Table 53. Summary of modelled mean ± sd SD CO2 fluxes, thresholds for identifying hot moments, total CO2 flux, 576 

and the contribution of hot moments to total flux at different slope positions. 577 

Slope position Footslope Backslope Shoulder 

wet 

Shoulder 

dry 

Topslope Summit 

Mean ± sd CO2 flux 

(μmol m-2 s-1) 

1.00 ± 0.91 0.83 ± 0.73 1.21 ± 0.99 1.44 ± 1.22 1.04 ± 0.86 1.41 ± 1.22 

Total CO2 flux 

(t ha-1) 

13.94 11.54 16.31 19.47 14.45 19.50 

Threshold 

(μmol m-2 s-1) 

2.22 1.80 2.55 3.07 2.19 3.04 

Contribution 

of hot moments  

30.74 % 30.31 % 28.99 % 28.41 % 28.91 % 29.93 % 

3.54 Daily CO2 flux maps and hot spots 578 

A linear mixed-effects model was utilized to map daily CO₂ flux from 1 May 2023 to 30 April 2024, 579 

incorporating soil temperature, corrected TWI, and SOC stock as predictors due to their significant role 580 

in explaining the spatial-seasonal variability of CO₂ flux and their availability as spatial data. The 581 

mapping model yielded robust performance metrics (Table 24), with R², and RMSE, and KGE values of 582 

0.81, and 0.50 49 μmol m⁻² s⁻¹ , and 0.85 in the training dataset, and 0.75, and 0.54 56 μmol m⁻² s⁻¹, and 583 

0.83 in the test dataset, respectively.  584 

Consistent with our observations, the modelled soil respiration also displayed substantial spatial-585 

temporalspatiotemporal heterogeneity (Figures 64a-64d). More specifically, the mean CO2 fluxes ranged 586 

from 0.170.09 μmol m-2 s-1  to 10.808.23 μmol m-2 s-1  in spring (Figure 64a), 0.316 μmol m-2 s-1  to 587 



32 

 

33.830.60 μmol m-2 s-1  in summer (Figure 64b), 0.158 μmol m-2 s-1  to 16.884.87 μmol m-2 s-1  in autumn 588 

(Figure 64c), and 0.034 μmol m-2 s-1  to 2.4724 μmol m-2 s-1  in winter (Figure 64d). Many modelled 589 

mean CO2 fluxes at the footslope and backslope (elevation < 660 m) remained below 2 μmol m-2 s-1 590 

(Figure 64e). In contrast, the modelled CO2 emissions remained higher throughout the year at the 591 

shoulder (660 m ≤ elevation ≤ 670 m) and east of summit (elevation > 675 m) with high vegetation cover 592 

(Figure 1b). About 10 % of the area were identified as hot spots, with a high frequency of hot spots 593 

occurring in these regions, while the locations of sporadic hot spots varied over time (Figure 64f). Overall, 594 

the landscape emitted approximately 24.34 81 t ha-1 CO2 to the atmosphere during the simulation period, 595 

with 19.6320.41 % ± 0.6157 % of the CO2 fluxes coming from the hot spots. 596 
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 598 

Figure 64. Maps of modelled mean daily CO2 flux (μmol m-2 s-1) in four seasons (a, b, c, d), throughout the year (e), 599 

and hot spot frequency (f). The histograms of pixel values are presented on the top-right corner of each map. The 600 
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hot spots area proportion and CO2 flux contribution from the hot spots of each season and across the year are 601 

summarized in the corresponding maps.   602 
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4 Discussion 603 

4.1 Drivers of spatiotemporal heterogeneity in CO2 emission 604 

Consistent with prior temperate peatland studies (Danevčič et al., 2010; Juszczak et al., 2013; Swails et 605 

al., 2022; Wilson et al., 2015), our results indicate that seasonal variations in soil CO₂ flux across the 606 

landscape are highly related to soil temperature, which could account for 33 % of the seasonal variability 607 

(Table 13). In contrast to tropical peatlands, where precipitation or water table fluctuations often 608 

dominate CO₂ flux dynamics (Cobb et al., 2017; Hoyt et al., 2019), our observations reveal that This 609 

relationship is likely due to the influence of temperature on microbial activity, as well as thetemperature 610 

exhibits distinct seasonal patterns in temperature observed in our study (Figure 53bc), which in turn drive 611 

corresponding fluctuations in soil respiration throughout the year (Figure 32c). Moreover, spatial 612 

heterogeneity in soil temperature further shaped landscape-scale CO₂ emission patterns (Table 13). For 613 

instance, the south-facing summit slopes, which receive more solar radiation in the daytime, consistently 614 

show higher CO₂ fluxes (Figure 2a3a). Conversely, the north-facing footslope and backslope, situated on 615 

the windward side, experience lower temperatures, resulting in generally lower soil respiration rates 616 

throughout the observation period (Figure 32a). At the daily scale, clear soil temperature oscillations 617 

were observed in the surface peat, while these diurnal cycles were damped and delayed with depth, with 618 

temperature peaks typically occurring at night and valleys around midday (Figures 4, S3). In contrast, 619 

the diurnal pattern of soil respiration during growing season (i.e., April to August; Figures 4, S3) was 620 

more closely aligned with air temperature, highlighting the important role of air temperature in regulating 621 

short-term variations in soil respiration. 622 

While temperature is the dominant driver, soilSoil water content influences oxygen availability and 623 

nutrients transport within the peat profile, thereby regulating microbial decomposition, plant root activity, 624 

and ultimately CO₂ production (Deshmukh et al., 2021; Hatala et al., 2012; Huang et al., 2021; Knox et 625 

al., 2015; Zou et al., 2022). For example, Knox et al. (2015) demonstrated that a declining water table 626 

caused by drainage increases oxygen penetration into the peat, resulting in higher CO₂ flux compared to 627 

restored peatlands. Previous studies reported nonlinear relationships between soil moisture and soil 628 

respiration (Kechavarzi et al., 2010; Marwanto and Agus, 2014; Wood et al., 2013), as both excessively 629 

dry and overly saturated conditions can limit microbial decomposition. In our study case, we observed a 630 
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negative correlation between soil volumetric water content (VWC) and CO2 fluxes (Table 3, Figure S4), 631 

with VWC explaining approximately 10 % of the spatial and seasonal variability in soil respiration (Table 632 

3). This may partially explain the slightly higher CO2 fluxes were slightly higher in drier shoulder 633 

positions compared to wetter areas (Figure 32a)., and VWC accounted for approximately 10 % of the 634 

spatial-seasonal variance in CO₂ fluxes (Table 1). Numerous studies have demonstrated that water table 635 

levels play a crucial role on soil respiration (Berglund and Berglund, 2011; Evans et al., 2021; Hoyt et 636 

al., 2019; Knox et al., 2015). For example, Knox et al. (2015) demonstrated that a declining water table 637 

caused by drainage increases oxygen penetration into the peat, resulting in higher CO₂ flux compared to 638 

restored peatlands. Our study also observed negative correlations between the water table and CO2 fluxes 639 

(Figures 4a, S4), whereas the water table accounted for only 10 % of CO2 flux seasonal variations (Table 640 

S2). This relatively modest contribution may be attributed to (i) the limited number of observation sites 641 

(i.e., 5 sites along the hillslope), (ii) short duration of water table monitoring that matched the CO2 flux 642 

measurement periods, and (iii) the generally low water table throughout the year (Table 2), particularly 643 

at the footslope, backslope, and summit, where maximum water tables remained > 9 cm below the ground. 644 

This maintained aerobic layers that support soil respiration, thereby reducing the influence of water table 645 

fluctuations on CO2 fluxes. Increasing spatial coverage and temporal resolution of water table 646 

observations across the landscape would likely improve our ability to examine its influence on CO2 647 

emissions.  648 

Atmospheric pressure can influence gas fluxes via pressure pumping (Ryan and Law, 2005), and thus we 649 

examined its influence on CO2 emission. However, when atmospheric pressure was included as a 650 

predictor in our model, it only accounted for 1 % of seasonal variability in CO2 fluxes (Table S2). 651 

Examination of high-frequency time series data (i.e., hourly CO2 flux from the eosFD probes) showed 652 

that at the daily scale, the diurnal pattern of CO2 fluxes did not follow atmospheric pressure fluctuation 653 

(Figure 4). At longer time scales, the two variables displayed only weak correlations. Moreover, we 654 

observed that declines in atmospheric pressure were often followed by precipitation events, which in turn 655 

were associated with decreases in both air temperature and CO2 flux, or slight CO2 fluxes increases 656 

(Figure 4). This suggests that atmospheric pressure may indirectly influence soil respiration by affecting 657 

precipitation patterns, rather than exerting a strong direct control. In saturated peatlands, falling 658 

atmospheric pressure has been shown to trigger methane (CH4) ebullition by releasing trapped gas 659 
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bubbles (Baird et al., 2004; Tokida et al., 2005; Tokida et al., 2007), while in our study site, which is a 660 

hillslope where the surface peat remains aerobic most of the time (Table 2), such bubble formation and 661 

ebullition are likely minimal. Another contributing factor maybe the limitations of our observations that 662 

may have limited our ability to detect short-lived CO₂ flux responses to atmospheric pressure fluctuations. 663 

Previous studies have shown that vegetation mediates soil respiration through root respiration, exudates, 664 

litter inputs, and rhizosphere priming effects (Acosta et al., 2017; Bragazza et al., 2013; Jovani-Sancho 665 

et al., 2021; Walker et al., 2016; Wang et al., 2015a). Root respiration, which is closely linked to plant 666 

photosynthetic activity, contributes directly to the overall soil CO2 fluxes (Crow and Wieder, 2005). In 667 

our study, the contribution from root biomass becomes more substantial in the spatial model (i.e., 12 %) 668 

than in the seasonal model (< 1 %, Table 3). This discrepancy is likely because root biomass was 669 

measured only once during the entire CO2 monitoring period, thereby missing its seasonal dynamics. The 670 

monthly/biweekly NDVI is the second-most influential predictor for CO2 seasonal fluctuations (Table 671 

13), explaining 18 % of variability, as NDVI reveals vegetation phenology during the monitoring period. 672 

Accordingly, positive correlation was observed between CO2 flux and NDVI at the seasonal scale (Table 673 

3, Figure S4). In the spatial-pattern model, however, the annual mean NDVI explained 12 % of the spatial 674 

variability in CO2 fluxes (Table 3) and the relationship became negative (r = - 0.29, p = 0.11). This shift 675 

in correlation may be due to differences in vegetation structure and composition across the landscape. 676 

Slope positions with higher mean NDVI values (i.e., topslope and backslope) are mainly covered by 677 

dwarf shrubs (i.e., Vaccinium myrtillus), which exhibit lower CO2 fluxes compared to other vegetation 678 

types (Figure 3b). The lower CO2 fluxes in dwarf shrub areas are likely associated with their lower root 679 

biomass (Table 2). the contribution from root biomass becomes more substantial, together with mean 680 

NDVI explaining 24 % of spatial variance. These findings align with previous studies that vegetation 681 

mediates soil respiration through root respiration, exudates, litter inputs, and rhizosphere priming effects 682 

(Acosta et al., 2017; Bragazza et al., 2013; Jovani-Sancho et al., 2021; Walker et al., 2016; Wang et al., 683 

2015a). In our study, the CO2 fluxes of dwarf shrubs (i.e., Vaccinium myrtillus) were significantly lower 684 

than those in Juncus acutus-dominated areas (Figure 2b), likely due to the lower root biomass of dwarf 685 

shrubs (Table S3). Furthermore, it has been shown that dwarf shrubs in northern peatlands produce high-686 

phenolic litter with higher resistance to breakdown and introduce more water-soluble phenolics into the 687 

soil compared to Sphagnum moss/herbs (Bragazza et al., 2013; Wang et al., 2015a), which further 688 
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constrains microbial activity and CO₂ production. In addition, vegetation cover may indirectly influence 689 

soil respiration by regulating surface microclimate conditions such as humidity and temperature (Nichols, 690 

1998; Stoy et al., 2012).  691 

As shown in Table 31, the SOC stock and C/N ratio have limited explanatory power for the seasonal 692 

variability of CO2 flux, in line with findings of Danevčič et al. (2010). However, when analyzing drivers 693 

of average soil CO2 flux rate across the entire monitoring period, the importance of C/N ratio increased 694 

nearly 11 times (Table 31). This likely reflects how long-term averaging integrates short-term dynamic 695 

variability, thereby amplifying the role of spatial heterogeneity mediated by the C/N ratio. Prior studies 696 

suggesting that the quality of organic material, rather than its quantity, primarily regulates CO2 fluxes in 697 

peatlands (Hoyos-Santillan et al., 2016; Leifeld et al., 2012). Specifically, the soil C/N ratio is known to 698 

regulate microbial community functionality and respiration intensity  (Briones et al., 2014; Ishikura et 699 

al., 2018; Leifeld et al., 2020; Wang et al., 2015b).  700 

4.2 CO2 emission hot moments and hot spots: identification, implications, and importance 701 

4.2.1 Temporal analysis and hot moments 702 

During past decades, efforts have been made to model CO2 flux over time based on its relationship with 703 

environmental factors such as hydrology, temperature, substrate quality, microbial community, and 704 

vegetation (Abdalla et al., 2014; Anthony and Silver, 2021; Farmer et al., 2011; Hoyt et al., 2019; Junttila 705 

et al., 2021; Rowson et al., 2012; Schubert et al., 2010).  In our study, diurnal cycles of CO2 fluxes are 706 

closely related to air temperature (Figure 4, Figure S3), while soil temperature and moisture are important 707 

factors in explaining the seasonal patterns of CO2 flux (Table 31). Hence, the three dynamic environment 708 

variables were incorporated into the model to simulate the hourly CO2 flux across the entire monitoring 709 

period. Overall, the temporal model demonstrated robust performance in both the training and testing 710 

datasets (Table 42) and effectively captured seasonal and diurnal trends at most sites (Figures 53dc-5i3h). 711 

However, the modelled peak values are lower than the observations at shoulder and summit slope 712 

positions (Figures 3f5g, 3e5f, 3h5i), which may be partially due to the limited number of high-value 713 

observations in these areas. Consequently, the model is more influenced by the more frequent lower CO2 714 

fluxes, leading to an overall underestimation of the peak.  In addition, two types of gas analyzers were 715 
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employed to monitor CO2 flux with different sampling frequency and time: the LI-8100A sensor was 716 

used biweekly or monthly to capture seasonal trends, while eosFD probes collected data every five 717 

minutes to track diurnal fluctuations. The integration of these datasets for modelling temporal dynamics 718 

improved estimation accuracy but might also introduce uncertainties into the model. 719 

Anthony and Silver (2023) demonstrated that identifying hot moments of CO2 flux in peatland requires 720 

intensive continuous measurements, while as an alternative, our robust simulation of hourly CO2 flux 721 

enabled the identification of hot moments in a complex landscape. We found that most of these hot 722 

moments occurred during the summer and early autumn seasons (Figures 3c5d-3h5i), in agreement with 723 

our in-situ observations (Figure 2c3c). The frequent high CO2 emissions in June and July can be 724 

attributed to the low precipitation and water table level, decreased soil moisture, and high temperatures 725 

(Figures 3a5a-3b5c). In water-limited ecosystems or during the dry season of tropical peatlands, 726 

precipitation pulses can trigger hot moments of CO2 gas emissions, as precipitation regulates soil 727 

moisture and infiltrating water physically displaces CO2 from soil pores (Fernandez-Bou et al., 2020; 728 

Leon et al., 2014; Wright et al., 2013). This occurs when rainwater rapidly infiltrates dry soil, filling air-729 

filled pores and forcing CO₂-rich air out due to hydraulic pressure. HoweverIn this study, CO2 fluxes 730 

showed both decreases and increases in response to precipitation events (Figure 4). few hot moments 731 

were captured during late July and early August due to the heavy rainfall events (Figure 3a). Theis 732 

absence observed decreases may be attributed to the high water content of the surface peat, and prolonged 733 

and fact that intense rainfall led to lower temperatures, and increased soil moisture, and higher water 734 

table (Figures 4, 3a5b, 3b5c), thereby suppressing microbial and root respiration (Hoyt et al., 2019). 735 

Consequently, a few hot moments were captured during late July and early August during the heavy 736 

rainfall events (Figure 5). Following this period, CO2 emissions reached values that exceeded the 'hot 737 

moments' threshold in mid-August, aligning with declining rainfall and rising temperatures (Figures 738 

3c5d-3h5i). The hot moments observed in September are linked to seasonal fluctuations in atmospheric 739 

pressure, precipitation, water table, and temperature (Figures 3a5a-5c,3b). 740 

Similar to the findings of Anthony and Silver (2021) and Kannenberg et al. (2020), these hot moments 741 

accounted for approximately 10 % throughout the year, while they contributed significantly to the annual 742 

total CO2 emissions (28 %-31 %; Table 3), highlighting the important role of short-term high-emission 743 
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events in the overall carbon emission. Therefore, missing hot moments may lead to significant 744 

underestimates of total peat soil respiration budgets. Despite continuous automated chamber or eddy 745 

covariance measurements that are ideal for capturing hot moments of CO2 emissions (Anthony and Silver, 746 

2021; Anthony and Silver, 2023; Hoyt et al., 2019), long-term continuous monitoring is still labor-747 

intensive and cost-prohibitive in many locations within the complex peatland ecosystems. Given that we 748 

observed a concentration of hot moments in the summer and autumn, we recommend increasing 749 

monitoring frequency during these seasons for temperate peatlands. This strategy would help capture 750 

carbon emission dynamics more effectively, reduce uncertainties in annual carbon flux estimates, and 751 

provide more representative peatland CO2 flux data. 752 

4.2.2 Spatial analysis of CO2 fluxes and hot spots 753 

Our mapping of daily CO2 flux across the landscape yielded a model performance of R² = 0.75, KGE = 754 

0.83, and RMSE = 0.564 μmol m-2 s-1 for the test dataset (Table 42). This can be attributed to the 755 

incorporation of key environmental factors that drive the spatiotemporal heterogeneity of soil respiration 756 

into the model inputs. These factors – including soil temperature, corrected TWI, and SOC stock – can 757 

be directly obtained through multi-sensor UAV remote sensing or estimated using high spatiotemporal 758 

resolution UAV data. Previous studies upscaled spatial carbon fluxes using area-weighted methods, 759 

extrapolating point data from CO2 chamber flux measurements to adjacent or larger areas based on land 760 

cover maps (Leon et al., 2014; van Giersbergen et al., 2024; Webster et al., 2008). However, this approach 761 

can lead to over- or underestimation (Leifeld and Menichetti, 2018; Wangari et al., 2023), because our 762 

findings reveal that even within the same vegetation cover, such as Molinia caerulea, CO2 emissions 763 

exhibit significant spatial-temporalspatiotemporal variability (Figure 32b). In recent years, spatial 764 

upscaling of CO2 fluxes has increasingly relied on satellite-based remote sensing data (e.g., Azevedo et 765 

al. (2021); Huang et al. (2015); Junttila et al. (2021); Wangari et al. (2023); Zhang et al. (2020).  While 766 

this method covers larger areas, it is often constrained by coarse temporal and spatial resolutions. The 767 

peatland ecosystem is characterized by great temporal and spatial heterogeneity at small scales, and 768 

ignoring these variations can introduce significant uncertainties in CO2 emission estimates. Our study 769 

demonstrates that multi-sensor and multi-date UAV remote sensing has great potential inhigh-resolution 770 

UAV remote sensing imagery, with fine temporal and spatial scales, could effectively upscalmodelinge 771 
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CO2 fluxes from point measurements across a heterogeneous landscapewith high resolution (i.e., spatial: 772 

15 cm; temporal: daily interval), thereby reducing uncertainties in spatioaltemporal predictions of CO2 773 

fluxes.  774 

However, the key environmental variables used for mapping soil respiration were estimated by UAV data, 775 

which inevitably introduce uncertainties into the prediction processes. For instance, because daily UAV 776 

imagery was unavailable, the predictors (i.e., air temperature, LST, and NDVI) for modelling the 777 

spatiotemporal dynamics of soil temperature were linearly interpolated between acquisition dates, 778 

potentially adding uncertainty to the model results. Moreover, flight conditions and preprocessing of the 779 

raw UAV data (e.g., georeferencing, resampling, the calibration of LST, downscaling air temperature) 780 

may have further introduced errors into the soil temperature estimates. The corrected daily TWI maps 781 

were also subject to uncertainty, as they relied on in-situ soil VWC observations, which were only 782 

available in the middle transect of the landscape. Similarly, uncertainties in SOC stock mapping arose 783 

from the peat thickness estimation and soil sampling strategy, as discussed in our previous work (Li et 784 

al., 2024). 785 

FurthermoreNevertheless, these reliable high-resolution CO2 flux maps allowed for the identification of 786 

hot spot areas across the landscape. We found that most of the hot spots occurred toat the west of shoulder 787 

areas where soil moisture was relatively lower and to the east of the summit which is covered by dense 788 

vegetation (Figure 1b, Figure 4f6f). Some sporadic hot spots were found at the backslope and footslope 789 

positions. Spatial variability in the factors controlling biogeochemical processes, such as soil temperature, 790 

moisture, water table depth, vegetation type, and substrate quality, is likely driving these differences 791 

(Anthony and Silver, 2023; Kuzyakov and Blagodatskaya, 2015; McNamara et al., 2008). For instance, 792 

the persistent hot spots that occurred at the shoulder might be due to their relatively drier conditions and 793 

higher carbon stocks compared to other areas (Li et al., 2024). Tthe tree-covered areas at the summit 794 

likely contribute substantial root respiration, which could sustain hot spot formationmay, in turn, trigger 795 

the formation of consistent hot pots throughout the year. Besides, litterfall beneath trees insulates the peat 796 

soil and provides an abundant resource for microbial activity even during the non-growing season. While 797 

at other places, such as the footslope and backslope, which are mainly covered by dwarf shrubs and 798 

Molinia caerulea (Figure 1b) with pronounced seasonal phenology, they potentially form sporadic soil 799 
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respiration hot spots at specific times of the year. Furthermore, surface peat beneath relatively short 800 

vegetation can receive higher direct solar radiation in summer, leading to elevated soil temperatures and 801 

the emergence of carbon emission hot spots. 802 

High-emission events from hot spots play a crucial role in overall CO2 fluxes (Anthony and Silver, 2023), 803 

hence, neglecting these areas could lead to substantial underestimation of peatland carbon emissions. In 804 

our study, although less than 10 % of area was identified as hot spots, their CO2 flux contribution 805 

accounted for nearly 20 % across the year (Figure 46).  However, research specifically focusing on 806 

peatland CO2 emission hot spots remains limited (Anthony and Silver, 2023), despite increased 807 

exploration of greenhouse gas emission hot spots in other ecosystems (e.g., agricultural field (Krichels 808 

and Yang, 2019; Leifeld et al., 2020; Rey-Sanchez et al., 2022); wetland (Rey-Sanchez et al., 2022); 809 

water-limited Mediterranean ecosystem (Leon et al., 2014); forest (Wangari et al., 2023)). Hence, to 810 

improve the accuracy of CO₂ spatial budgeting for peatlands, there is a need for enhanced high-resolution 811 

dynamic monitoring of hot spot areas (Becker et al., 2008). Our study demonstrates the great potential 812 

of UAV technology for peatland hot spot identification and quantification, offering new insights into 813 

studying soil respiration within heterogeneous ecosystems as well as optimizing peatland management 814 

and CO2 emission reduction strategies. 815 

  816 
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5 Conclusion 817 

In this study, we monitored the dynamics of peatland surface and subsurface environments using both 818 

field surveys and multi-sensor UAVs at high spatial-temporalspatiotemporal resolution. We investigated 819 

the influence of dynamic and static environmental factors on soil respiration rates across different scales, 820 

thereby enhancing our understanding of peatland carbon cycling. Additionally, we simulated CO2 flux 821 

with high spatial-temporalspatiotemporal resolution by integrating field measurements and UAV data. 822 

These reliable modelling allow us to identify and quantify CO2 emission hot spots and hot moments 823 

across the landscape. To summarize, the main findings of our study are as follows: 824 

(1) Soil respiration rates vary significantly across space and time, influenced by both dynamic and 825 

relatively static environmental factors at different scales. Temperature is the primary driver of CO2 flux 826 

variations, explaining 33 % CO2 seasonal variability and 18 % spatial variability. Soil moisture 827 

negatively affects both seasonal and spatial variations, accounting for 10 % - 11 % of the variance. Water 828 

table dynamics also play a role (10 %), but more observations are needed to explore its influence. 829 

Atmospheric pressure may indirectly influence soil respiration by affecting precipitation patterns, rather 830 

than exerting a strong direct control. Semi-dynamic factors (i.e., NDVI and root biomass) contribute 19 % 831 

to seasonal variability and 24 % to spatial variability. While relative static factors (i.e., the C/N and SOC 832 

stock) have little impact on the seasonal CO2 flux variability, the contribution of the C/N ratio increases 833 

nearly 11 times for spatial variability.  834 

(2) Predicting temporal series of hourly CO2 flux can be effectively achieved (test set: R2 = 0.74, RMSE 835 

= 0.57 μmol m⁻² s⁻¹, KGE = 0.77) by considering its relationship with key environmental variables such 836 

as air temperature, soil temperature and soil moisture, all of which are relatively straightforward to 837 

monitor. These reliable time series data provide a foundation for capturing respiration pulses occurring 838 

over short periods, with hot moments primarily occurring in summer and early autumn. 839 

(3) The UAV remote sensing offers great potential in monitoring and estimating key environmental 840 

variables that control soil respiration across heterogeneous landscapes. Our model using UAV-derived 841 

data predictors can yielded robust spatial mapping of soil respiration rates across heterogeneous 842 

landscapes, with RMSE, KGE, and R2 values of 0.54 56 μmol m⁻² s⁻¹, 0.83, and 0.75 in the test dataset, 843 

respectively. These high-resolution CO2 flux maps enable us to locate hot spots as well as providing a 844 
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valuable tool for assessing peatland management strategies, such as evaluating conditions before and 845 

after restoration.  846 

(4) Despite representing 10 % of time within one year, CO2 fluxes from hot moments contribute 28 %-847 

31 % to the overall CO2 flux budgets. Approximately 10 % areas are identified as hot spots, while 848 

contributing 20.4119.63 % ± 0.57 61 % of total CO₂ fluxes. The locations of high-frequency hot spots 849 

remain consistent, while the locations of sporadic hot spots vary over time. 850 

Code and data availability 851 

The field measurements of CO2 fluxes, climate data, and soil properties are available on HydroShare: 852 

https://www.hydroshare.org/resource/a4efce8d4d114b939f0d92a18b3168c6/. 853 

Code and UAV data will be made available on request. 854 
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