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Abstract

CO, emissions from peatlands exhibit substantial spatial-and-temperalspatiotemporal variability-due-te
their-heterogeneous-nature, presenting challenges forte identifying their-the underlying drivers and forte
accurately quantifying and modeling CO, fluxes. Here, we integrated field measurements with
Unmanned Aerial Vehicle (UAV)-based multi-sensor remote sensing to investigate soil respiration across
a temperate peatland landscape. Our research addressed two key questions: (1) How do environmental
factors control the spatial-temperalspatiotemporal distribution of soil respiration across complex

landscapes? (2) How do spatial and temporal peaks (i.e., hot spots and hot moments) -of biogeochemical

processes influence landscape-level CO; fluxes? We find that dynamic variables (i.e., soil temperature
and moisture) play significant roles in shaping CO; flux variations, contributing 43 % to seasonal

variability and 29 % to spatial variance, followed by semi-dynamic variables (i.e., Normalized Difference

Vegetation Index (NDVI) and root biomass) (19 % and 24 %). Relatively static variables (i.e., soil organic

carbon (SOC)-stock and &ANcarbon to nitrogen ratio) have a minimal influence on seasonal variation

(2 %) but contribute more to spatial variance (10 %). Additionally, predicting time series of CO, fluxes

is feasible by using key environmental variables (test set: coefficient of determination (R?) = 0.74, Root

Mean Square Error (RMSE) = 0.57 pmol m2 s™', Kling-Gupta Efficiency (KGE) = 0.77), while UAV

remote sensing is an effective tool for mapping daily soil respiration (test set: R? = 0.75, RMSE = 0.564

pmol m2s™', KGE = 0.83). By the integration of in-situ high-resolution time-lapse monitoring and spatial

mapping, we find that despite occurring in 10 % of the year, hot moments_(i.e., periods of time which

have a disproportional high (> 90th percentile) CO, fluxes compared to the surrounding) contribute

28 %—31 % of the annual CO: fluxes. Meanwhile, hot spots_(i.c., locations which CO» fluxes higher than

90th percentile)—representing 10 % of the area—account for about 20 % of CO: fluxes across the
landscape. Our study demonstrates that integrating UAV-based remote sensing with field surveys
improves the understanding of soil respiration mechanisms across timescales in complex landscapes.;
This will previding-provide insights into carbon dynamics and supporting peatland conservation and
climate change mitigation efforts.

Keywords: Peatlands, Soil respiration, Greenhouse gas (CO;) emission, CO, hot spots, CO, hot

moments, Multi-sensor UAV remote sensing, Global warming
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1 Introduction

Peatlands are globally distributed ecosystems that cover an area of 6.75 million km? and store
approximately-600-942.09 + 312 Gt of carbon (Widyastuti et al., 2025)(Yu-etal; 2010}, despite-covering
less-than4-%of the Earth’s-land surface (Xu-etal52048). However, rising concerns exist over peatlands

shifting from carbon sinks to carbon sources due to the impact of climate change (Dorrepaal et al., 2009;
Hopple et al., 2020; Huang et al., 2021), land use/cover conversion (Deshmukh et al., 2021; Leifeld et
al., 2019; Prananto et al., 2020), and other disturbances (Turetsky et al., 2015; Wilkinson et al., 2023).
In Europe, it has been reported that nearly half of the peatlands are suffering degradation, primarily due
to drainage for agricultural or forestry activities (Leifeld et al., 2019; UNEP, 2022). As a consequence,
European peatlands currently emit up to 580 Mt CO,-eq per year across the continent (UNEP, 2022).
Given the critical role of the peatland ecosystem in the terrestrial carbon cycle, it is therefore important
to understand the mechanisms driving carbon fluxes and their responses to climate change and human

disturbances.

Soil respiration, a key ecological process that releases CO, from peatlands into the atmosphere.in

peatlands— is influenced by a combination of biotic and abiotic factors. Among abiotic controls, soil

temperature and moisture play a crucial role in driving microbial activity and root respiration, influencing

CO, fluxes across daily to annual scales (Evans et al., 2021; Fang and Moncrieff, 2001; Hoyt et al., 2019;

Juszczak et al., 2013; Swails et al., 2022). Water table fluctuations alter oxygen availability and

distribution within the soil profile, directly affecting microbial processes and carbon emissions (Evans et

al., 2021; Hoyt et al., 2019). Atmospheric pressure affects the transport of gases between the soil surface

and the atmosphere, thereby modulating the CO, fluxes (Lai et al.,, 2012; Ryan and Law, 2005).

Vegetation, as a key biotic factor, influences the spatiotemporal variations of soil respiration through

phenology, structure, and community (Acosta et al., 2017; Wang et al., 2021). In addition, soil organic

matter provides essential substrates for microbial activity, with previous studies suggesting that the

quality of organic material, rather than its quantity, primarily regulates CO, fluxes in peatlands (Hoyos-

Santillan et al., 2016; Leifeld et al., 2012).
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CO, emissions from peatlands are highly variable over space and time, presenting challenges to

accurately quantify and model carbon fluxes. This may partial-be partially because peatlands are
characterized by a unique microtopography, including features such as set-beneheshummocks and
depressiens-hollows (Moore et al., 2019). These small-scale variations create differences in hydrology,
temperature, biogeochemistry, and vegetation (Harris and Baird, 2019), leading to substantial spatial
differences in the factors that control CO: fluxes and the formation of “hot spots” with elevated CO,
emissions (Becker et al., 2008; Frei et al., 2012; Kelly et al., 2021; Kim and Verma, 1992; McClain et

al., 2003).

by-hummeckand-hollowfeatures-can-be 20°C(Rhoswen-et-al52018). In addition, peatlands experience
exhibit a high sensitivity to meteorological variabilityhighly—variable-weather—conditions, which can

1

trigger periods of disproportionately high CO» fluxes—often referred to as “*hot moments”—in response

to transient environmental changes, such as sudden shifts in temperature, atmospheric pressure, rainfall

events, or fluctuations in the water table (Anthony and Silver, 2023; Fernandez-Bou et al., 2020). High
CO; emissions occur from discrete areas in space (hot spots) and over short periods (hot moments), and
may disproportionately contribute to the overall fluxes (Anthony and Silver, 2023; Fernandez-Bou et al.,
2020).- Most studies have examined the mechanisms and contributions of hot spots and hot moments of
other greenhouse gases (N2O, CH4) in agricultural and forestry ecosystems (Anthony and Silver, 2021;

Fernandez-Bou et al., 2020; Kannenberg et al., 2020; Krichels and Yang, 2019; Leon et al., 2014).; while

However, research on CO; emission hot spots and hot moments in peatlands remains limited- (Antheny

and-Stver—2021: Anthony and Silver, 2023).-_even though both CO, and CH4 originate from organic

matter decomposition under different redox conditions.

Identifying and quantifying hot spots and hot moments in peatlands is challenging, requiring large-scale,
continuous, long-term observations. Currently, most studies on peatland soil respiration rely on point
measurements taken at intervals of half a month to one month, primarily during daytime (e.g., Bubier et
al. (2003); Danev¢i¢ et al. (2010); Kim and Verma (1992); Wright et al. (2013)). This spatial-

temporalspatiotemporal limitation hinders-constrains the effective deteetion-understanding of hot spots
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and hot moments. Some studies attempted to extrapolate point data using land-use maps (McNamara et
al., 2008; van Giersbergen et al., 2024; Webster et al., 2008), but uncertainties in landscape-scale fluxes
increase as the number of measurement locations decreases (Arias-Navarro et al., 2017; Wangari et al.,
2022; Wangari et al., 2023). While automated chamber systems improve temporal resolution and help
capture hot moments (Anthony and Silver, 2023; Hoyt et al., 2019), they are typically limited to a few

sampling points, and scaling up is constrained by significant resource demands. Eddy covariance towers

can continuously measure net ecosystem exchange over large areas_-by+recordinghigh-frequeney- €O

they maynot-aeceuratelyrepresentare less effective in capturing the spatial heterogeneity of peatlands

(Lees et al., 2018). These limitations highlight the need for spatially robust, high-resolution methods that

can characterize eomplementarnv-approaches-to-estimate-COs fluxes atthetandseapeseatewith-methods
adapted-foracross heterogeneous peatland-ecosystemslandscapes.

Several studies have integrated satellite-based remote sensing datasets with on-site chamber
measurements to model landscape-scale CO, fluxes (e.g., Azevedo et al. (2021); Junttila et al. (2021);
Lees et al. (2018); Wangari et al. (2023)). Remote sensing datasets on topography and vegetation
parameters serve as proxies for soil moisture, vegetation cover, and nutrient availability, enabling large-
scale CO; emission estimates within peatlands (Lees et al., 2018). However, this approach is somewhat
limited by coarse spatial (10 m to 1 km) and temporal (1 to 16 days) resolutions, which may overlook
hot spots and hot moments, leading to potential over- or underestimations of CO; fluxes in heterogeneous

(e.g.. complexity in topography. diverse vegetation types, varying thermal-hydrological conditions)

peatlands (Kelly et al., 2021; Simpson, 2023). This shortcoming might be overcome by using unmanned
aerial vehicles (UAVs) equipped with different kinds of sensors such as Red-Green-Blue (RGB),
multispectral, thermal infrared, and Light Detection and Ranging (LiDAR). UAVs offer flexible
deployment and capture high-resolution spatiotemporal data (1 cm to 1 m, minutes to months) (Minasny
et al., 2019) which makes them particularly suitable for monitoring complex peatland dynamics and
detecting hot spots and hot moments. Thus far, UAVs have proven to be reliable tools for peatland

applications, including vegetation mapping (Steenvoorden et al., 2023), topographic reconstruction

5



124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

(Harris and Baird, 2019), peat depth and carbon storage estimation (Li et al., 2024), ground-water and

surface water interactions (Moore et al., 2024), and moisture monitoring (Henrion et al., 2025). In a

recent study, Kelly et al. (2021) utilized UAV-derived land surface temperature to estimate ecosystem

respiration of a hemi-boreal fen in southern Sweden, and_some studies (e.g.. Pajula and Purre (2021);

and Walcker et al. (2025)) employed UAV-based multispectral vegetation indices to map ecosystem CO»
flux at high resolution. These recent studies demonstrated the great potential of UAVs for linking CO,
fluxes with environmental factors at a very high resolution, although they mainly focused on data from
a single sensor. Few studies have explored the fusion of UAV-derived data from multiple sensors for

mapping soil respiration across peatland landscapes.

In this study, we integrate multi-sensor UAV-based remote sensing with traditional field surveys to
investigate soil respiration across a temperate peatland_bog landscape, located in the Belgian Hautes

Fagnes-A

which represents an important ecosystem for studying peatland carbon fluxes due to its sensitivity to

climate change and hydrological dynamics. Our research addresses two key questions:

(1) What controls the nature and strength of the relationship between soil respiration and environmental

factors—such as thermal-hydrological conditions, vegetation, carbon stock and quality— across complex

peatland landscapes and across spatial-tempeoralspatiotemporal scales? To address this, we first identify

the factors driving seasonal and spatial variations in soil respiration and then assess the potential for

linking environmental factors to CO» flux at high spatiotemporal resolutions.

(2) How do spatial and temporal peaks (i.e., hot spots ander hot moments) of biogeochemical processes

influence landscape-level carbon fluxes? Mere-speecifically—our—study-hasthree-main-objectives—Hirst;

FhirdFor this purpose, we diseuss-analyze the timing-and locations and timing of hot spots and hot

moments, and assessing their contributions to overall CO; flux budgets.
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2 Materials and methods

2.1 Study site

The Belgian Hautes Fagnes plateau, part of the Stavelot-Venn Massif, is located in eastern Belgium
(Figure 1a). This elevated landscape experiences a humid climate, with mean annual air temperature and
precipitation being approximately 6.7 °C and 1439.4 mm (period: 1971-2000), respectively (Mormal and

Tricot, 2004). The peatlands in this region cover an area of 37.50 km?, which primarily consist of raised

bogs formed since the Late Pleistocene and grown under both oceanic and continental influences
(Frankard et al., 1998; Goemaere et al., 2016). Our study site (50.49 N, 6.05 E; ~0.30 km?) is located in

the upper valley of the Hoégne River peatland bog region (Figure 1a). This ombrotrophic bog is mainly

fed by precipitation and covers an area of approximately 32 hectares. The landscape exhibits complex

structures, characterized by distinct SE-NW oriented topographic units (i.e., summit, topslope, shoulder,

backslope, and footslope), along with diverse microtopographic features, spatiotemporal varying

thermal-hydrological conditions, differences in peat thickness and carbon storage, and a range of

vegetation types Fh

(Henrion et al., 2024; Li et al., 2024; Sougnez and Vanacker, 2011). More specifically, the summit is a

low-relief, southeast-facing plateau at 675 - 680 m elevation, which transitions downslope into the

topslope and concave shoulder slope positions (Figure 1a). The northwest-facing backslope is relatively

steeper (average slope grade: 4.98°; elevation range: 645 - 670 m) compared to these upper units, while

the footslope lies in the northwestern hillslope adjacent to Hoégne River. The peat thickness varies

spatially from 0.20 to 2.10 m across the landscape, with deeper deposits in the footslope and shallower

peat at the topslope (Henrion et al., 2024; Li et al., 2024). The estimated soil organic carbon (SOC) stocks

(i.e., top 1 m layer) range from 176.13 t ha'! to 856.57 t ha!, with significantly higher storage at the

summit, shoulder, and footslope (Li et al., 2024). Due to the pronounced topographic gradients and

microtopography, the landscape exhibits great spatiotemporal variability in rootzone soil volumetric

3

water content (range: 0.1 — 1 cm® cm

and water table dynamics (range: -80 — 5 cm) (Henrion et al.,
2025). The area-study site was drained and planted with spruces in 1914 and 1918, while- tFhe plantations

were progressively cleared between 2000 and 2016.: Ssince 2017, the site has been under restoration and

now primarily covered by Vaccinium myrtillus, Molinia caerulea, Juncus acutus, and native hardwood

7



178  species (e.g.. Betula pubescens and Quercus robur), as shown in Figure 1b. has-been-restored-through

179

180 i i i —An observation station of the Royal Meteorological

181  Institute of Belgium (Mont Rigi, 50.51 N, 6.07 E) situated 3.07 km frem-northeast of the study site,

182  records rainfall and atmospheric pressure data every 10 minutes.
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2.2 CO: flux measurement campaigns

Soil surface CO; flux measurements were conducted at five slope positions along the middle part of the
site (Figure 1a). A portable infrared gas analyzer with an automated closed dynamic chamber (LI-8100A

system, LI-COR, United States; accuracy: =+ 1.5 %) was used to monitor CO; fluxes at 33 sites biweekly

from December 2022 to March 2024 (Figure S1). The dominant vegetation type of each slope position

was recorded. At-each-slepe-pesitionNext, six collars (20 cm diameter) were installed randomly at each

position, spaced 1-5 meters apart, to capture small-scale spatial variability. Given the high variability in

soil water content at the shoulder position (Henrion et al., 2025), While-at-the shoulderconsideringthe
heterogeneous—soil-water-conditions, six collars were installed in drier areas_(i.e., Shoulder dry) and

another three in wetter areas (i.e., Shoulder wet). All vegetation within the collars was removed. During

each campaign, monitoring was conducted between 9:00 and 16:00. At each site, the CO; flux (umol m
2 51y in the chamber was measured for 2.5 minutes per observation. Simultaneously, soil surface
temperature (0—10 cm) and volumetric water content (VWC) during each CO, measurement were
recorded using a T-handled type-E thermocouple sensor (8100-201, LI-COR, United States; accuracy: +
0.5 %) and a portable five-rod, 0.06 m long frequency domain reflectometry (FDR) probe system (ML2x,
Delta-T, United Kingdom; accuracy: + 1 %), respectively. However, CO, measurements were not always
possible due to technical issues and bad weather conditions, resulting in a total of 666 valid measurements.
In addition, a pair of soil CO; forced diffusion probes (eosFD, EOSense, United States; accuracy: = 40
ppm) were installed near LI-8100A collars from 24 April 2024 to 8 November 2024 (Figure S1). These
probes, consisting of a soil node and a reference node, are based on a membrane-based steady-state
approach and can measure CO; flux every 5 minutes (Risk et al., 2011). During this period, the probes
continuously monitored CO, flux at different slope positions (Figure S1), resulting in a total of 39476

valid flux measurements.

2.3 Temperature, -and-soil moisture, and water table monitoring

The temporal evolution of soil temperature and moisture along the middle part was monitored using

Teros12 sensors (Meter Group, Miinchen, Germany; accuracy: = 0.01-0.02 m* m™ for moisture and =+

0.5 °C for temperature), with two replicates per slope position, spaced 5 meters apart (Figure 1a) (Henrion

et al., 2025). These sensors recorded data at a depth of 10 cm from 14 October 2022 to 28 October 2024,

10
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every 10 minutes. Between the two replicates of each slope position, a station positioned ~1.4 m above

the ground recorded air temperature every ten minutes. Additionally, ten soil temperature data loggers

(EL-USB-1-PRO, Lascar, United Kingdom; accuracy: = 0.2 °C) were installed primarily along two
evenly spaced transects parallel to the main slope, at a depth of 10 cm (Figure 1a). These loggers recorded
soil temperatures at the same frequency as Teros12 sensors from 21 March 2023 to 8 November 2024.

Besides, five Levelogger 5 pressure sensors (Solinst, Georgetown, Canada; accuracy: = 0.1 %) were

placed in PVC pipes to capture pressure at the same topographic positions as the Teros12 sensors (Figure

la), which was then used to interpret groundwater-level dynamics (Henrion et al., 2025). These probes

also recorded at 10-minute intervals, from June 2023 through October 2024.

2.4 Soil sampling and laboratory analysis

After completing all gas sampling campaigns, 33 disturbed soil samples (0-10 cm depth) were collected
within LIS 100A collars at the five slope positions between 30 July and 15 October 2024. An Emlid Reach
RS 2 GPS device with centimeter-level precision was used to record the sampling site locations, using a

PPK solution with the Belgian WALCORS network, resulting in a mean lateral positioning error of 1.84

cm across all sites. The samples were stored in a refrigerator until laboratory analysis. A subset of the

samples was oven-dried at 80 °C for 24 hours (Dettmann et al., 2021), then crushed and ground into a
fine powder for soil organic carbon (SOC) and total nitrogen content (TN) analysis (928 Series, LEGO,
United States). Roots and litter were removed using tweezers during the pre-processing procedure. We
tested the presence of inorganic carbon of each sample by adding one drop of 10 % HCI but found that
no inorganic carbon was present in the samples. A subset of fresh samples was used for root biomass
analysis. The fresh soil samples were weighed and placed in a 1 mm sieve, then rinsed with water to
collect the roots. The washed roots were dried in an oven at 80 °C for 48 hours and then weighed to

calculate their dry biomass.

2.5 UAV data acquisition-and-imagery processing

During the CO, flux monitoring period, we conducted regular UAV flights across the study area to collect
high-resolution spatial data (Figure S1). A DJI Matrice 300 RTK was equipped with four different sensors:

(i) a Red-Green-Blue (RGB) camera (DJI Zenmuse P1 camera, 35 mm and 45 MP), (ii) a multispectral

11



242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

camera (MicaSense RedEdge-M camera with five discrete spectral bands: blue (475 nm), green (560 nm),
red (668 nm), rededge (717 nm), and near-infrared (842 nm), along with a downwelling light sensor),
(iii) a LiDAR scanner (DJI Zenmuse L1, integrated with a 20-MP camera with a 1-inch CMOS sensor)
and (iv) a thermal infrared camera (TeAX, featuring FLIR Tau2 cores and ThermalCapture hardware).

All the UAV flight missions were carried out around noon (10h00-14h00) and the details of UAV

campaigns were presented in support material (Text S1). Similar-flight patterns-and-altitades-wereused
for-the UAV-missions-as-in-ourprevious-work(Lietal;2024). Due to the variable weather conditions in

the research field, UAV campaigns were not always feasible. In total, one RGB and one LiDAR dataset

collected on 7 June 2023, were used in this study and ten multispectral and ten thermal infrared datasets

collected between 13 April 2023 and 13 May 2024 (Figure S1).

2.6 UAV imagery processing

The raw multispectral images were processed in the Pix4D mapper software (Pix4D S.A., Lausanne,
Switzerland) to generate reflectance maps (resolution: 6 cm) of the five spectral bands of the study area.
We calculated the Normalized Difference Vegetation Index (NDVI) across the 10 maps from the

monitoring period (Table S1). The RGB photos were processed in DJI Terra V4.0.10 (DJI., 2023) to

generate an orthomosaic image with a resolution of 1.26 cm. The raw LiDAR data was processed in DJI

Terra to provide a Digital Terrain Model (DTM; .tif file) with a resolution of 15 cm. We then calculated

the terrain wetness index (TWI) in SAGA GIS 9.2.0 using the formula presented in Table 1. The variables

derived from the different types of images and their calculation formula were summarized in Table 1.

Table 1. Orthorectified image, topographical, vegetation index, and land surface temperature maps derived from

RGB, LiDAR, multispectral and thermal images.

Index Definition Unit Data source

RGB orthomosaic Orthorectified image mosaicked from RGB / RGB
image collection

DTM Digital Terrain Model, the elevation m LiDAR

TWI Terrain wetness index: / LiDAR

In (A4s/tan(b)), where As is the specific

contributing area and b is the slope angle (i.e.

12
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the rate of change in elevation) in radians.

NDVI Normalized Difference Vegetation Index: / Multispectral

(near infrared - red) | (near infrared + red)

-
—

Land Surface Temperature °C Thermal infrared

The raw thermal infrared video streams were converted into RJPG images using ThermoViewer version
3.0.26 (TeAX, 2022). Subsequently, the thermal images were processed with the Pix4D mapper to

generate land surface temperature (LST) maps (resolution: 12 cm). To calibrate the LST of each date

(Figure 2a), we first applied linear regressions of temperature obtained by camera and temperature of 2

targets on the ground (Text S1) to create a correction formula. Next, we mapped the spatial variations of

surface emissivity using the classification-based approach (Li et al., 2013; Snyder et al., 1998). based on

land cover data from our previous work (Figure 1b; Li et al. (2024)) and emissivity values of each class

from literature (Snyder et al., 1998). Finally, we converted the LST to thermal radiance using Planck’s

law, applied an emissivity-based correction, and then converted the radiance back to obtain calibrated

2.7 Daily soil temperature mapping

The linear mixed-effects model was utilized to predict the spatial distribution of daily mean soil

temperature (10 cm depth) across the landscape from 1 May 2023 to 30 April 2024. This is because

mixed models integrate both fixed and random effects, which provide a robust framework for analyzing

data with non-independent structures (Pinheiro and Bates, 2000). Daily mean air temperature,

Normalized Difference Vegetation Index (NDVI) and calibrated Land Surface Temperature (LST) were

considered as fixed-effect predictors and monitoring sites were included as random effects. The model

was performed in RStudio (v4.1.2) using the [mer function of the lme4 package (https://CRAN.R-

13
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project.org/package=Ime4) and was defined as:

yi}' = ,80 + ﬂlx” + .+ Bpxl-j + bOj + bljZij + -+ Eij 11'
Where:

e y;; isthe dependent variable (i.e., soil temperature at 10 cm, unit: °C) for observations i in group

J:

e BosPis-... Bp_are fixed-effect coefficients.

e  x;; indicates fixed-effect predictors (independent variables).

e byj. byj.... are random-effect coefficients associated with group j, which account for variability

across groups.

e z;; indicates predictors associated with random effects.

® ¢ is the residual error term.

Soil temperature data were collected from both Teros 12 sensors and data loggers, as described in Section

2.3. Air temperature measurements were obtained from five stations positioned at different slope

locations. The NDVI and calibrated LST estimates were extracted from maps by retrieving values at the

20 soil temperature sensor sites (Figure 1a). These sites were included as random effects in the model to

account for repeated measurements at the same locations throughout the monitoring period. For mapping

purposes, daily air temperature was statistically downscaled by incorporating the relationship between

daily air temperature and elevation, followed by downscaling using a Digital Terrain Model (DTM)

derived from LiDAR data (Figure 2a). The daily NDVI and LST maps were generated by linearly

interpolating the monthly/biweekly maps derived from UAVs. The workflow of soil temperature

mapping is illustrated in Figure 2a.
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|
B by . . .
H - i Linear mixed-
| Daily NDVI maps | | Daily LST maps | | Daily air temp. maps | | Hot spots
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(b)
................................. \ :
Airt Linear mixed-effects P 7 90t percentile
ir temp. del threshold
mol ¢ Shoulder dry
Soil VWC Time series of hourly / Shoulder wet
Soil temp.
................................ Summit
309 .............................
310 Figure 2. Workflow diagram of daily CO, flux spatial mapping (a) and hourly CO, flux temporal
311 modeling (b).
312
313 2.8 Generation of corrected daily TWI
314 We generated corrected daily TWI maps to approximate the spatial distribution of daily soil volumetric
315 water content (VWC) by incorporating both long-term site characteristics and daily precipitation effects
316 (Figure 2a). First, we calculated the mean VWC for each site over the period from 1 May 2023 to 30
317 April 2024. Then, we extracted each site’s TWI values from a TWI map generated using the formula in
318 Table 1. Next, we performed a linear regression with mean VWC as the response and TWI as the predictor:
319 Baseline = Mean VWC = b + a «* TWI 2)
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The Baseline represents the soil moisture level at long-term. A baseline map was then created using this

regression model. Daily deviations (anomalies) from the baseline were defined as:

Anomaly, = VWC, — Baseline 3)

Considering the memory and lag effects in soil moisture dynamics, we assumed that the anomaly on any

day is influenced by the previous day's anomaly and precipitation:

Anomaly, = ¢ * Anomaly,_,_ — d * Precipitation;_, 4)

Finally, we generated a “corrected TWI” map for each day by adding the dynamically updated anomaly

to the baseline map:

Corrected TWI, map = Baseline map + Anomaly, %

This approach allows the daily corrected TWI maps to capture both the inherent spatial variability (as

determined by TWI) and the dynamic influence of rainfall, thereby serving as a proxy for the spatial

distribution of soil moisture.

2.96 Statistical analysis

All data analyses were conducted in RStudio (v4.1.2). All timestamps in this study were converted to
Coordinated Universal Time (UTC) to ensure consistency across datasets. Group differences were

assessed by the Kruskal-Wallis test, a non-parametric alternative to the one-way analysis of variance, and

suitable for non-normally distributed data (Dunn, 1964). When the Kruskal-Wallis test detected a

significant overall effect (p < 0.05), Dunn's post-hoc test was performed to determine which groups

differed significantly from each other. ene-way-analysis-of-variance(ANOI A using the-stats package:

correlation analysis was performed using the corrplot package (Murdoch and Chow, 1996). The linear

mixed-effects models used to identify factors controlling spatial- temporal variations of CO, flux, as well

as time series simulation and mapping are introduced below.
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2.96.1 Models to explain spatial-temperalspatiotemporal variations in CO: flux

We also utilized linear mixed-effects modeling framework (i.e., as shown in section 2.7)s to assess the

impacts of both static and dynamic environmental factors on the spatial and seasonal variability of CO,

fluxes.

was-performed-using-the- Imed package(Bates-et-al-2015)-with-Unlike the soil temperature model, the

natural logarithm of CO, flux observations was utilized as a response. The CO, fluxes data are often
characterized by extreme values and right-skewed distribution, and a lognormal assumption for CO;
fluxes could better account for the influences of extreme values on the overall distribution (Wutzler et

al., 2020). hemieede Moot e s e ol L

The fixed-effect predictors were categorized into three groups:

o Static variables: SOC stock, and the ratio of SOC content to nitrogen content (C/N ratio).
¢ Semi-dynamic variables: root biomass and NDVI.

¢ Dynamic variables: soil temperature and soil moisture at 0—10 cm depth, as well as water table

and atmospheric pressure (the latter two variables are shown in the support material).

Estimates for NDVI were extracted from the NDVI maps by retrieving the value of the 33 CO, flux
observation sites and the SOC stock values were extracted from the a local high resolution (0.15 m) SOC

stock map (Li et al., 2024). The sites were included as random effects in the seasonal pattern model to
17
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account for repeated measurements at the same locations during the monitoring period, whereas slope

positions were treated as random effects in the spatial pattern model. Independentariable-coefficients;

2.96.2 Modelling hourly CO: flux

The mixed-effects model was utilized to simulate the time series of CO; fluxes at different slope positions
(Figure 2b). Here, the slope position was included as random variable, and the natural logarithm of CO»
flux (hourly) was set as a response. We utilized CO; fluxes data measured by both the LIS100A system
and eosFD probes. Specifically, we randomly selected a number of 30 observations from the eosFD
probes at each slope position to reduce data redundancy from high-frequency sampling. Afterwards, we
applied weighting to adjust the remaining imbalance in data density between the high-frequency eosFD
monitoring and low-frequency LI8100A measurements, ensuring both data sources contributed
proportionally to the model. The independent variables included hourly soil temperature (10 cm depth),
volumetric soil moisture (VWC, 10 cm depth), and air temperature (1.4 m height), considering their

importance in explaining the seasonal and diurnal patterns of CO; flux.

fit-Finally,—weWe made simulations of the time series of hourly CO» flux for different slope positions
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from 1 May 2023 to 30 April 2024. Furthermore, we identified CO; emission hot moments based on the

description in Section 2.69.4.

2.96.3 Mapping daily CO: flux

The linear mixed-effects model was utilized to map the spatial distribution of daily CO, fluxes across the
landscape, with daily soil temperature (10 cm depth), corrected daily TWI, and SOC stock being
considered as fixed-effect variables and gas sampling sites being included as random variables_(Figure
2a). The-daily €O,
approach-detailed-in-Seetion2.6-2-We then-applied-the-trained-modelte-predicted the daily CO; flux of

the landscape from 1 May 2023 to 30 April 2024. Additionally, we calculated the mean daily soil CO,

flux maps for each season and the entire year. Based on these predictions, we identified hot spots for

each day by the methods described below.

2.96.4 Quantifying hot moments and hot spots of CO: flux

In previous studies, percentiles have been used as thresholds for identifying heat waves (e.g., (Meehl and
Tebaldi, 2004): 97.5th percentile), soil heat extremes (e.g., Garcia-Garcia et al. (2023): 90th percentile),
hot spots of N,O emissions (e.g., Mason et al. (2017): median plus three times the interquartile range),
and hot spots of CO, emissions (e.g., Wangari et al. (2023): median plus the interquartile range). In this
study, we tested different methods and selected the 90th percentile as the threshold of both hot moments
and hot spots to balance capturing extreme CO: emissions while maintaining a sufficient sample size. To
capture the hot moments, we calculated a threshold for each slope position separately using its own

dataset (Figure 2b). For hot spots, we determined a daily threshold based on each map (Figure 2a).

2.10 Model performance evaluation

Independent variable coefficients, Intraclass Correlation Coefficient (/CC), coefficients of determination

(marginal R? and conditional R?), Root Mean Square Error (RMSE), and Akaike Information Criterion

(41C) were extracted using the modelsummary package after running each model described in section

2.7 and section 2.9.1. The /CC quantifies the proportion of variance explained by a grouping (random)

factor in multilevel data; values close to 1 indicate high similarity within groups, while values near 0

suggest that grouping conveys little to no information (Nakagawa et al., 2017; Shrout and Fleiss, 1979).
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The marginal R? represents the variance explained by fixed effects alone, and the conditional R?

represents the variance explained by both fixed and random effects (Pinheiro and Bates, 2000). The

Kling-Gupta Efficiency (KGE) between observations and predictions was also calculated, with values

closer to 1 indicating good model performance (Gupta et al., 2009). The relative importance of each

predictor was obtained using the g/mm.hp package (Lai et al., 2023; Lai et al., 2022). To assess

multicollinearity in regression analysis, the car package was used to calculate the variance inflation factor

(VIF) (Fox and Monette, 1992).

For modelling daily soil temperature (i.e., section 2.7) and daily/hourly CO, flux (i.e., sections 2.9.2 and

2.9.3), we divided the corresponding dataset into a training set (70 %) and a test set (30 %) using K-

means clustering, following the methodology of our previous work (Li et al., 2024), to minimize biases

that could arise from random sampling (Hair et al., 2010). The models were trained on the training set,

and the simulation accuracy was validated using the test dataset. The coefficient of determination (R?),

RMSE and KGE were used to assess the quality of all model fits. The daily soil temperature model yielded

R’, RMSE. and KGE values of 0.89, 1.33 °C, and 0.94. respectively (Figure S2). Detailed results on

model coefficients and performance are summarised in Table S1.

20



445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

3 Results

3.1 Peat soil surface and subsurface properties

Table 2 presents an overview of soil surface and subsurface properties at different slope positions. The

air temperature above ground ~1.4 m shows great temporal variability, ranging from -8.76 to 24.79 °C

within one year. Soil temperatures have smaller temporal variations (0.75 - 17.48 °C), while the mean

daily soil temperature (+ one standard deviation (SD)) at the topslope (8.86 + 3.69 °C) is relatively lower

than at other positions. Soil volumetric water content (VWC) across the landscape also exhibits

significant spatial heterogeneity. The backslope has the highest mean daily VWC (0.94 + 0.04 cm® cm-

3), followed by the footslope (0.86 + 0.06 cm® cm™), shoulder wet (0.85 + 0.01 cm® cm™), and summit

(0.82 + 0.04 cm?® cm™). The water table at the topslope showed large fluctuations throughout the year

(range: -77.41-0.38 cm; mean + SD: -21.76 £25.17 cm), as shown in Table 2. In contrast, the water table

at the shoulder wet slope position remained close to the surface and relatively stable within one year

(range: -20.21-4.17 ¢cm; mean + SD: -2.17 + 5.62 cm). No significant differences in dry root biomass

were observed among the various slope positions, which may be attributed to substantial small-scale

variations within each position, particularly at the shoulder, where the biomass ranged from 0.70 to 8.46

g/100g soil. The SOC content values for summit and shoulder wet areas are 47.38 + 2.06 g/100g and

47.00 £+ 1.41 g/100g, respectively. The SOC content in the shoulder and backslope positions is similar,

approximately 42 g¢/100g, while the carbon content in the footslope and topslope positions is

comparatively lower. In addition, the TN content at the topslope (1.61 + 0.48 ¢/100g) is significantly

lower than at other positions (p < 0.05). The C/N ratio at the footslope (17.41 £ 1.57) was significantl

lower than at the summit, topslope, and backslope (p < 0.05), while no significant differences in C/N

ratios were observed among the other places.
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Table 2. Summary of the mean daily air temperature (4ir temp.), soil temperature (Soil temp.), soil volumetric water

content (VWC), and water table in one year at different slope positions. Soil subsurface properties at 10 cm depth,

i.e, dry root biomass, soil organic carbon (SOC) content, total nitrogen (TN) content, and C/N ratio, at different slope

positions.
Slope Shoulder Shoulder .
. Footslope Backslope Topslope Summit
positions wet dry
) Molinia Vaccinium Juncus Molinia Vaccinium Molinia
Vegetation ) ]
caerulea myrtillus acutus caerulea myrtillus caerulea
) 9.74 £ 6.73 )
. 9.04 £ 6.792 ) - ) 9.25+6.892
Air temp. 9.70 £6.77% a 9.66 +£6.80*
(-8.76, N.A. (-8.44,
(&) (-7.68,24.79) (-1.77 (-7.83,24.66)
23.75 24.52
24.60)
9.65 +£4.27
Soil temp. 9.67+£4.62% 9.55+4.27% a 8.89+4.15% 886+3.69°¢ he
[&O) 1.29,17.48 1.40,16.98 1.62, 0.75,15.52 1.55,15.18
( ) ( ) ( ( ) ( ) 1.82.16.00
16.74)
0.85 £ 0.01
VWC 0.86+£0.06° 0.94+0.04° . N A 0.68 +£0.08°¢ 0.82 +£0.044
3em 0.68, 091 0.81,0.98 : 0.44.0.73 0.70,0.85
(cm?® cm) ( ) ( ) 0.83. 087 ( ) ( )
-27.15 + -2.17 + -20.18 +
-21.76 + T
Water table 8.31¢ -21.07+£7.51°  5.622 11.80¢
(cm) (-49.14 (-35.91,-9.68) (-20.21 NA. 2517 (-49.23,
cm -49. - (3591, -9. -20.21, -49. -
(-77.41, 0.38)
18.53) 4.17) 9.20)
. 4.02 +£2.10
root biomass 1.43+1.11* 0.97+0.872 X 297+3.00* 0.98+0.99? 0.694+0.27?
100g™! 0.20,3.37 0.27,2.65 ) 0.70, 8.46 0.18,2.84 0.31,0.96
(g g ') ( ) ( ) 1.98. 6.17 ( ) ( ) ( )
38.48 + 1.71 47.00 + 42.53+£2.51 47.38 £2.06
SOC content 4236246 1.41% ab 3226+10.81°> =
(g 100gh) (36.55, (37.60,44.30) (45.95 (39.75, (13.5,42.1) (43.95
40.80) 48.60) 45.95) 49.15)
2.35+0.17
TN content 222+0.13*  2.02+0.11% X 2.04£0.24%®  1.61+0.48" 2.13+0.14?
100g™! 2.03,2.37 1.89,2.16 ) 1.71,2.36 0.75,2.19 1.99,2.34
(g 100g™h) ( ) ( ) 216.2.47 ( ) ( ) ( )
20.03 + 2232+ 1.79
17.41 +£ 1.57 20.98 £ 1.95
. 20.98 £1.427 1.26% 19.76 £2.01% 2
C/N ratio b a
15.59. 20.1 (19.23,22.70) (18.81 18.6.24.06 (18.08,23.36) (20.21
- - 21.32) : - 24.51)

Note. The air temperature was monitored at a height of ~1.4 m above the ground. The soil temperature and VWC

were monitored at a depth of 10 cm by Teros12 sensors. The results are presented as the mean + one standard

deviation (SD) and values in brackets indicate the minimum and maximum values. The Kruskal-Wallis and Dunn's

tests were conducted within each class with different superscript letters indicating significant differences (p < 0.05).
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3.21 Spatial and-temperalSpatiotemporal patterns of CO: flux

During the monitoring period, the CO, emissions show large spatial and seasonal variations across the

landscape. The CO; fluxes at the summit(3-16=325 umolm>s)-and shoulder (dry:2.81 322 umol
s wet 233+ 2.36 umol-m>-s H)-slope-positions—were-significantly-higherthan-that-of footslope
(1.25 £ 1.00 pmol m? s™!) and backslope (1.11 = 1.03 umol m s™!) were significantly lower than that of

other slope positions (p < 0.05) (Figure 2a3a). Furthermore, significant differences were observed when

grouping the data into three vegetation covers: CO; emissions from Vaccinium myrtillus were lower than
those from Juncus acutus, with mean + sé-SD values of 1.59 = 1.43 pmol m* s}, and 2.33 + 2.36 umol
m2 sl respectively (Figure 2b3b) (p <0.05). However, the CO; fluxes under Molinia caerulea displayed
large variations (0.02~20.1 umol m s™!), and no significant differences were found compared to the other
two vegetation types. The CO; flux data indicated large CO, emissions from June to September (3.65 +
2.68 pmol m? s!), which can be 8.11 times higher than that from winter and early spring (0.45 + 0.40

pumol m? s7) (Figure 2¢3c). CO, emissions in May and October were at a moderate level.
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Figure 23. Boxplot of CO2 flux (umol m™ s!) across different slope positions (a), vegetation types (b), and sampling
dates (c), using data from the LI8100 A system recorded between 2023-02-13 and 2024-03-13. (a), CO: flux data of
each box were from all dates, and Shoulder (w) and Shoulder (d) indicate shoulder wet and shoulder dry areas,
respectively. (b), CO2 flux data of each box were from all dates, and Myrtillus, Molinia and Juncus indicate
Vaccinium myrtillus, Molinia caerulea and Juncus acutus, respectively. (c), COz flux data of each box were from all
slope positions. The edges of each box represent the first quartile (Q1) and third quartile (Q3), while the line inside
the box indicates the median CO2 flux. Whiskers extend from the box to the smallest and largest values within 1.5
times the interquartile range, and points outside the whiskers are considered extreme values. The Kruskal-Wallis and

Dunn's testsANOFA-and-HSD-post-hoe-tests were performed within slope positions and vegetation types, with bexes

sharing-the-samedifferent letters indicating-ne significant differences among groups (» < 0.05).

At the daily scale, the soil respiration displayed a clear diurnal trend from April to August (Figure S3),

particularly at the footslope (Figure S3a), backslope (Figure S3b), and shoulder (Figures S3c, 3d) slope

positions, with higher CO, emissions observed in the late afternoon (14:00—18:00) and lower emissions

in the morning (04:00-08:00). In contrast, the diurnal trend of CO, flux at the topslope (Figure S3e) and
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summit (Figure S3f) in autumn was less pronounced. Figure 4a presents examples of time series data for

CO; fluxes and environmental factors at the footslope, topslope, and summit from August to October

2024. In August, clear diurnal patterns with variation magnitudes of 2-3 umol m? s\, and reduced CO»

emissions following precipitation events on 13 August and 17 August were observed at the footslope

(Figures 4a, 4b). Since the middle of September, the diurnal variation was less than 1 umol m? s and

there was no obvious pattern in daily changes (Figures 4a, 4¢).
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519 Figure 4. Examples showing time series data of air pressure (kPa), precipitation (mm), soil volumetric water content

520 (VWC, cm’ cm3), water table (cm), soil temperature (Soil temp., °C), air temperature (Air temp., °C). and CO> flux
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(umol m2 s!. measured by eosFD probes) from 1 August 2024 to 31 October 2024 (a), from 8 August 2024 to 15

August 2024 at the footslope (b), and from 8 October 2024 to 15 October 2024 at the topslope slope position (c).

3.32 Factors contributing to spatial-temperalspatiotemporal variability

Three types of environmental factors explain 64 % of the observed seasonal variance in CO: emissions,

with contributions of 33 % from soil temperature, 10 % from VWC, 19 % from vegetation (i.e., NDVI,

root biomass), 2 % from relatively static factors (i.e., SOC stock, C/N ratio), and 6 % from random effects

(i.e., 33 sampling sites) (Table +3). This suggests that long-term stable environmental factors have

minimal direct influence on seasonal CO: flux patterns. Interestingly, the contribution of these relatively

stable factors is nearly H-6 times higher in explaining overall spatial variations, although soil temperature

is still the dominant factor (Table +3). The low ICC values in both spatial and seasonal models highlight

significant small-scale heterogeneity in soil respiration. Water table contributed 10 % of seasonal

variation and atmospheric pressure was not important (1 %), as shown in Table S2 of the support material.

The relationships between each environmental factor and CO; fluxes are shown in Figure S4.

Table 31. Coefficients and relative contributions of three types of input variables (static, semi-dynamic, dynamic)

of mixed linear regression models for modelling CO: flux. Random effects were evaluated by /CC and model

performance was evaluated by Marginal R?, Conditional R?, AIC,and RMSE, and KGE.

Input variables

Seasonal patterns

Spatial patterns

Fixed effects: Static SOC stock 0.003 -0.003
coefficient (tha') (1 %) (0.06 %)
(contribution) C/N ratio 0.05 0.07*
(1 %) (10 %)
Semi root biomass 0.06 0.09%*
dynamic (g 100g™) (0.36 %) (12 %)
NDVI 0.90*** -3.35%*
(18 %) (12 %)
Dynamic Soil temp. 0.127%%* 0.39%#**
§©) (33 %) (18 %)
VwC -0.77%** -1.37%*
(cm® cm) (10 %) (11 %)
Random effects icc 0.18 0.06
(contribution) (6 %) 3 %)
Marginal R’ 0.64 0.63
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Model Conditional R* 0.70 0.66

performance AIC 1386.00 50.10
RMSE 0.64 0.25
KGE 0.78 0.78

Note. Significance level: *** p <0.001, ** p <0.01, * p < 0.05. All CO2 fluxes (unit: pmol m s™), soil temperature,
and VWC data for spatial and seasonal patterns waswere from the LI8100 A system. To investigate the factors
controlling spatial variations of CO: flux, we calculated the mean values of CO2 flux, NDVI, soil temperature, and

VWC of each site during the monitoring time.

3.43 Continuous hourly time series of CO: flux and hot moments

Three dynamic variables (i.e., soil temp., VWC, air temp.) were taken into account to predict the time
series of hourly CO, flux at different slope positions. These input variables were selected due to their
influential roles in explaining the diurnal (Figure S3. Figure 4) and seasonal (Table 3) fluctuations of
CO; emissions. As shown in Table 24, the temporal model yielded a robust performance in both training

and testing dataset, achieving R?-and RMSE, and KGE values of 0.86,-and-0.39 pmol m2 s7'-, 0.90, and

0.74.-and 0.57 pmol m2 s7*, 0.77, respectively.

Table 42. Model performance for simulating time series of hourly CO: flux (uait-pmol m2 s™') and mapping daily

CO: flux (wnit-pmol m2 s') across the landscape.

Training dataset Testing dataset
Models

RMSE R? KGE RMSE R? KGE
Temporal model 0.39 0.86 0.90 0.57 0.74 0.77
Spatial model 0.5049 0.81 0.85 0.5456 0.75 0.83

Note. Temporal model used the natural logarithm of CO: flux data from LI8100 A and eosFD probes, whereas spatial

model used the natural logarithm of CO: flux data only from LI§100 A.

The modelled CO, emissions at all slope positions display a clear seasonal trend, with higher CO; fluxes
from June to September and lower estimates in other months, in line with the observed fluxes shown in
brown dots (Figures 5d3e-5i3k). The total CO, fluxes (Table 53) at the summit (19.50 t ha!) and the
shoulder (dry: 19.47 t ha'!, wet: 16.31 t ha'!) slope positions were higher than that of topslope (14.45 t
ha'!), followed by footslope (13.94 t ha!) and backslope (11.54 t ha'')-(Table-3), consistent with the

spatial patterns of our observations (Figure 3a). Hewever-the modeled mean+sd-CO,-fluxesatallslope

.. ble3 | | 1 CO. A bl 2106 This st
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valuesrepresent-the-average-of both-daytime and nighttimefluxes-—Most hot moments occurred from

June to September 2023, whereas few hot moments were observed from late July to the early August
(Figures 5d3e-5i3k). Although these hot moments of different slope positions only accounted for 10 %

across the year, they could contribute 28 %-31 % to the annual total CO- emissions (Table 53).
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566 Figure 53. Time series of hourly rainfall-precipitation (blue bar) and; atmospheric pressure (light green line) (a),

567 hourly mean VWC (blue line) and water table (red line) (ba), hourly mean air temperature (orange line) and soil
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temperature (black line) (cb), modelled hourly CO: flux (purple lines) and in-situ measurements (brown dots) at

different slope positions (de-ik). Precipitation-Rainfall-(anit-mm) and atmospheric pressure (kPa) data was from the

nearby meteorological observation station_(50.51 N, 6.07 E). The water table (cm) data were derived from the

Solinist probes. The VWC (unit—cm?® cm™) and soil temperature (uait—°C) were mean values from five slope
positions monitored by Teros12 sensors at a depth of 10 cm. Air temperatures (urit:-°C) were mean values from 5

stations at 1.4 m height above ground. Measured CO: fluxes (unit—pumol m2 s™') were from the LI8100A system.

Table 53. Summary of modelled mean + s-SD CO: fluxes, thresholds for identifying hot moments, total CO> flux,

and the contribution of hot moments to total flux at different slope positions.

Slope position Footslope Backslope Shoulder Shoulder Topslope Summit
wet dry
Mean + sd CO2 flux  1.00 £0.91 0.83 +0.73 1.21 £0.99 1.44£1.22 1.04 £0.86 1.41+£1.22

(umol m? s

Total CO2 flux 13.94 11.54 16.31 19.47 14.45 19.50
(thal)
Threshold 2.22 1.80 2.55 3.07 2.19 3.04

(umol m2 s
Contribution 30.74 % 3031 % 28.99 % 28.41 % 28.91 % 29.93 %

of hot moments

3.54 Daily CO: flux maps and hot spots

A linear mixed-effects model was utilized to map daily CO: flux from 1 May 2023 to 30 April 2024,
incorporating soil temperature, corrected TWI, and SOC stock as predictors due to their significant role
in explaining the spatial-seasonal variability of CO: flux and their availability as spatial data. The

mapping model yielded robust performance metrics (Table 24), with R?-and RMSE, and KGE values of

0.81,-and 0.56-49 pmol m2s™" , and 0.85 in the training dataset, and 0.75,-and 0.54-56 umol m2 s, and

0.83 in the test dataset, respectively.

Consistent with our observations, the modelled soil respiration also displayed substantial spatial-
temperalspatiotemporal heterogeneity (Figures 64a-64d). More specifically, the mean CO, fluxes ranged

from 6:170.09 pmol m? s~ to 10:808.23 umol m? s\~ in spring (Figure 64a), 0.316 umol m? s~ to
31
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33.830:60 pmol m2 5™ in summer (Figure 64b), 0.158 umol m?2 s to 16.884:87 ymol m?s” in autumn
(Figure 64¢), and 0.034 umol m2 s! to 2.4724 pmol m? s in winter (Figure 64d). Many modelled
mean CO, fluxes at the footslope and backslope (elevation < 660 m) remained below 2 pmol m? s°!
(Figure 64e). In contrast, the modelled CO, emissions remained higher throughout the year at the
shoulder (660 m < elevation < 670 m) and east of summit (elevation > 675 m) with high vegetation cover
(Figure 1b). About 10 % of the area were identified as hot spots, with a high frequency of hot spots
occurring in these regions, while the locations of sporadic hot spots varied over time (Figure 64f). Overall,
the landscape emitted approximately 24.34-81 t ha! CO; to the atmosphere during the simulation period,

with 49:6320.41 % + 0.6157 % of the CO» fluxes coming from the hot spots.
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Figure 64. Maps of modelled mean daily CO> flux (umol m? s!) in four seasons (a, b, ¢, d), throughout the year (e),

and hot spot frequency (f). The histograms of pixel values are presented on the top-right corner of each map. The
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602 summarized in the corresponding maps.
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4 Discussion

4.1 Drivers of spatiotemporal heterogeneity in CO: emission

Consistent with prior temperate peatland studies (Danev¢ic et al., 2010; Juszczak et al., 2013; Swails et
al., 2022; Wilson et al., 2015), our results indicate that seasonal variations in soil CO: flux across the
landscape are highly related to soil temperature, which could account for 33 % of the seasonal variability

(Table +3).

relationship is likely due to the influence of temperature on microbial activity, as well as thetemperature

exhibits distinct seasonal patterns in temperature observed in our study (Figure 53bc), which in turn drive

corresponding fluctuations in soil respiration throughout the year (Figure 32c). Moreover, spatial
heterogeneity in soil temperature further shaped landscape-scale CO: emission patterns (Table 4+3). For
instance, the south-facing summit slopes, which receive more solar radiation in the daytime, consistently
show higher CO: fluxes (Figure 2a3a). Conversely, the north-facing footslope and backslope, situated on
the windward side, experience lower temperatures, resulting in generally lower soil respiration rates

throughout the observation period (Figure 32a). At the daily scale, clear soil temperature oscillations

were observed in the surface peat, while these diurnal cycles were damped and delayed with depth, with

temperature peaks typically occurring at night and valleys around midday (Figures 4, S3). In contrast,

the diurnal pattern of soil respiration during growing season (i.e., April to August; Figures 4, S3) was

more closely aligned with air temperature, highlighting the important role of air temperature in regulating

short-term variations in soil respiration.

While—temperature—is—the-dominant-driver—se#Soil water content influences oxygen availability and

nutrients transport within the peat profile, thereby regulating microbial decomposition, plant root activity,

and ultimately CO: production (Deshmukh et al., 2021; Hatala et al., 2012; Huang et al., 2021; Knox et

al., 2015; Zou et al., 2022).

restored—peatlands—Previous studies reported nonlinear relationships between soil moisture and soil

respiration (Kechavarzi et al., 2010; Marwanto and Agus, 2014; Wood et al., 2013), as both excessively

dry and overly saturated conditions can limit microbial decomposition. In our study case, we observed a
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negative correlation between soil volumetric water content (VWC) and CO; fluxes (Table 3, Figure S4),

with VWC explaining approximately 10 % of the spatial and seasonal variability in soil respiration (Table

3). This may partially explain the slightly higher CO, fluxes wereshghtlyhigher-in drier shoulder

positions compared to wetter areas (Figure 32a)..—and VW -C-aceounted-forapproximately 10-% of the
spatial-seasonal-varianee-in-CO-fluxes{Table H—Numerous studies have demonstrated that water table

levels play a crucial role on soil respiration (Berglund and Berglund, 2011; Evans et al., 2021; Hoyt et

al., 2019; Knox et al., 2015). For example, Knox et al. (2015) demonstrated that a declining water table

caused by drainage increases oxygen penetration into the peat, resulting in higher CO- flux compared to

restored peatlands. Our study also observed negative correlations between the water table and CO» fluxes

(Figures 4a, S4). whereas the water table accounted for only 10 % of CO, flux seasonal variations (Table

S2). This relatively modest contribution may be attributed to (i) the limited number of observation sites

(i.e., 5 sites along the hillslope), (ii) short duration of water table monitoring that matched the CO, flux

measurement periods, and (iii) the generally low water table throughout the year (Table 2), particularly

at the footslope, backslope, and summit, where maximum water tables remained > 9 cm below the ground.

This maintained aerobic layers that support soil respiration, thereby reducing the influence of water table

fluctuations on CO, fluxes. Increasing spatial coverage and temporal resolution of water table

observations across the landscape would likely improve our ability to examine its influence on CO;

emissions.

Atmospheric pressure can influence gas fluxes via pressure pumping (Ryan and Law, 2005). and thus we

examined its influence on CO, emission. However, when atmospheric pressure was included as a

predictor in our model, it only accounted for 1 % of seasonal variability in CO, fluxes (Table S2).

Examination of high-frequency time series data (i.e., hourly CO; flux from the eosFD probes) showed

that at the daily scale, the diurnal pattern of CO, fluxes did not follow atmospheric pressure fluctuation

(Figure 4). At longer time scales, the two variables displayed only weak correlations. Moreover, we

observed that declines in atmospheric pressure were often followed by precipitation events, which in turn

were associated with decreases in both air temperature and CO, flux, or slight CO, fluxes increases

(Figure 4). This suggests that atmospheric pressure may indirectly influence soil respiration by affecting

precipitation patterns, rather than exerting a strong direct control. In saturated peatlands, falling

atmospheric pressure has been shown to trigger methane (CHy) ebullition by releasing trapped gas
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bubbles (Baird et al., 2004; Tokida et al., 2005; Tokida et al., 2007), while in our study site, which is a

hillslope where the surface peat remains aerobic most of the time (Table 2), such bubble formation and

ebullition are likely minimal. Another contributing factor maybe the limitations of our observations that

may have limited our ability to detect short-lived CO: flux responses to atmospheric pressure fluctuations.

Previous studies have shown that vegetation mediates soil respiration through root respiration, exudates,

litter inputs, and rhizosphere priming effects (Acosta et al., 2017; Bragazza et al., 2013 Jovani-Sancho

et al., 2021; Walker et al., 2016; Wang et al., 2015a). Root respiration, which is closely linked to plant

photosynthetic activity, contributes directly to the overall soil CO, fluxes (Crow and Wieder, 2005). In

our study, the contribution from root biomass becomes more substantial in the spatial model (i.e., 12 %)

than in the seasonal model (< 1 %, Table 3). This discrepancy is likely because root biomass was

measured only once during the entire CO, monitoring period, thereby missing its seasonal dynamics. The

monthly/biweekly NDVI is the second-most influential predictor for CO; seasonal fluctuations (Table

13), explaining 18 % of variability, as NDVI reveals vegetation phenology during the monitoring period.

Accordingly, positive correlation was observed between CO» flux and NDVI at the seasonal scale (Table

3, Figure S4). In the spatial-pattern model, however, the annual mean NDVI explained 12 % of the spatial

variability in CO, fluxes (Table 3) and the relationship became negative (»r = - 0.29, p = 0.11). This shift

in correlation may be due to differences in vegetation structure and composition across the landscape.

Slope positions with higher mean NDVI values (i.e., topslope and backslope) are mainly covered by

dwarf shrubs (i.e., Vaccinium myrtillus), which exhibit lower CO, fluxes compared to other vegetation

types (Figure 3b). The lower CO; fluxes in dwarf shrub areas are likely associated with their lower root

biomass (Table 2). the

shrubs{TFable-S3)-Furthermore, it has been shown that dwarf shrubs in northern peatlands produce high-

phenolic litter with higher resistance to breakdown and introduce more water-soluble phenolics into the

soil compared to Sphagnum_moss/herbs (Bragazza et al., 2013; Wang et al., 2015a), which further
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constrains microbial activity and CO: production. In addition, vegetation cover may indirectly influence
soil respiration by regulating surface microclimate conditions such as humidity and temperature (Nichols,

1998; Stoy et al., 2012).

As shown in Table 3+, the SOC stock and C/N ratio have limited explanatory power for the seasonal
variability of CO; flux, in line with findings of Danev¢ic et al. (2010). However, when analyzing drivers
of average soil CO flux rate across the entire monitoring period, the importance of C/N ratio increased
nearly 11 times (Table 3+). This likely reflects how long-term averaging integrates short-term dynamic
variability, thereby amplifying the role of spatial heterogeneity mediated by the C/N ratio. Prior studies
suggesting that the quality of organic material, rather than its quantity, primarily regulates CO; fluxes in
peatlands (Hoyos-Santillan et al., 2016; Leifeld et al., 2012). Specifically, the soil C/N ratio is known to
regulate microbial community functionality and respiration intensity- (Briones et al., 2014; Ishikura et

al., 2018; Leifeld et al., 2020; Wang et al., 2015b).

4.2 CO: emission hot moments and hot spots: identification, implications, and importance

4.2.1 Temporal analysis and hot moments

During past decades, efforts have been made to model CO; flux over time based on its relationship with
environmental factors such as hydrology, temperature, substrate quality, microbial community, and
vegetation (Abdalla et al., 2014; Anthony and Silver, 2021; Farmer et al., 2011; Hoyt et al., 2019; Junttila
et al., 2021; Rowson et al., 2012; Schubert et al., 2010).- In our study, diurnal cycles of CO, fluxes are
closely related to air temperature (Figure 4, Figure S3), while soil temperature and moisture are important
factors in explaining the seasonal patterns of CO, flux (Table 34). Hence, the three dynamic environment
variables were incorporated into the model to simulate the hourly CO, flux across the entire monitoring
period. Overall, the temporal model demonstrated robust performance in both the training and testing
datasets (Table 42) and effectively captured seasonal and diurnal trends at most sites (Figures 53de-5i3h).
However, the modelled peak values are lower than the observations at shoulder and summit slope
positions (Figures 3f5g, 3e5f, 3h51), which may be partially due to the limited number of high-value
observations in these areas. Consequently, the model is more influenced by the more frequent lower CO,

fluxes, leading to an overall underestimation of the peak. -In addition, two types of gas analyzers were
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employed to monitor CO; flux with different sampling frequency and time: the LI-8100A sensor was
used biweekly or monthly to capture seasonal trends, while eosFD probes collected data every five
minutes to track diurnal fluctuations. The integration of these datasets for modelling temporal dynamics

improved estimation accuracy but might also introduce uncertainties into the model.

Anthony and Silver (2023) demonstrated that identifying hot moments of CO, flux in peatland requires
intensive continuous measurements, while as an alternative, our robust simulation of hourly CO, flux
enabled the identification of hot moments in a complex landscape. We found that most of these hot
moments occurred during the summer and early autumn seasons (Figures 3e5d-3h51), in agreement with
our in-situ observations (Figure 2e3c). The frequent high CO, emissions in June and July can be

attributed to the low precipitation and water table level, decreased soil moisture, and high temperatures

(Figures 3a5a-3b5c). In water-limited ecosystems or during the dry season of tropical peatlands,

precipitation pulses can trigger hot moments of CO, gas emissions, as precipitation regulates soil

moisture and infiltrating water physically displaces CO, from soil pores (Fernandez-Bou et al., 2020;

Leon et al., 2014; Wright et al., 2013). This occurs when rainwater rapidly infiltrates dry soil. filling air-

filled pores and forcing CO--rich air out due to hydraulic pressure. Howewverln this study, CO, fluxes

showed both decreases and increases in response to precipitation events (Figure 4). few-hot-moments

a)—Theis

absenee-observed decreases may be attributed to the high water content of the surface peat, and prolonged

and faet-that-intense rainfall led to lower temperatures,-and increased soil moisture, and higher water
table (Figures 4. 3a5b, 3b5c¢), thereby suppressing microbial and root respirationHevt-etal;2619).

Consequently, a few hot moments were captured during late July and early August during the heavy

rainfall events (Figure 5). Following this period, CO, emissions reached values that exceeded the 'hot

moments' threshold in mid-August, aligning with declining rainfall and rising temperatures (Figures
3e5d-3h51). The hot moments observed in September are linked to seasonal fluctuations in atmospheric

pressure, precipitation, water table, and temperature (Figures 3a5a-5¢;3b).

Similar to the findings of Anthony and Silver (2021) and Kannenberg et al. (2020), these hot moments
accounted for approximately 10 % throughout the year, while they contributed significantly to the annual

total CO, emissions (28 %-31 %, Table 3), highlighting the important role of short-term high-emission
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events in the overall carbon emission. Therefore, missing hot moments may lead to significant
underestimates of total peat soil respiration budgets. Despite continuous automated chamber or eddy
covariance measurements that are ideal for capturing hot moments of CO, emissions (Anthony and Silver,
2021; Anthony and Silver, 2023; Hoyt et al., 2019), long-term continuous monitoring is still labor-
intensive and cost-prohibitive in many locations within the complex peatland ecosystems. Given that we
observed a concentration of hot moments in the summer and autumn, we recommend increasing
monitoring frequency during these seasons for temperate peatlands. This strategy would help capture
carbon emission dynamics more effectively, reduce uncertainties in annual carbon flux estimates, and

provide more representative peatland CO; flux data.

4.2.2 Spatial analysis of CO: fluxes and hot spots

Our mapping of daily CO> flux across the landscape yielded a model performance of R?=0.75, KGE =

0.83, and RMSE = 0.564 umol m™ s for the test dataset (Table 42). This can be attributed to the
incorporation of key environmental factors that drive the spatiotemporal heterogeneity of soil respiration
into the model inputs. These factors — including soil temperature, corrected TWI, and SOC stock — can
be direetly-obtained-threugh-multi-sensor UAV remetesensingor-estimated using high spatiotemporal
resolution UAV data. Previous studies upscaled spatial carbon fluxes using area-weighted methods,
extrapolating point data from CO, chamber flux measurements to adjacent or larger areas based on land
cover maps (Leon et al., 2014; van Giersbergen et al., 2024; Webster et al., 2008). However, this approach
can lead to over- or underestimation (Leifeld and Menichetti, 2018; Wangari et al., 2023), because our
findings reveal that even within the same vegetation cover, such as Molinia caerulea, CO, emissions
exhibit significant spatial-temperalspatiotemporal variability (Figure 32b). In recent years, spatial
upscaling of CO; fluxes has increasingly relied on satellite-based remote sensing data (e.g., Azevedo et
al. (2021); Huang et al. (2015); Junttila et al. (2021); Wangari et al. (2023); Zhang et al. (2020). -While
this method covers larger areas, it is often constrained by coarse temporal and spatial resolutions. The
peatland ecosystem is characterized by great temporal and spatial heterogeneity at small scales, and
ignoring these variations can introduce significant uncertainties in CO, emission estimates. Our study

demonstrates that multi-sensor and multi-date UAV remote sensing has great potential inkigh-reselution

upsealmodelinge
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CO; fluxes frompointmeasurements-across-a-heterogeneoustandseapewith high resolution (i.e., spatial:

15 cm; temporal: daily interval), thereby reducing uncertainties in spatioattemporal predictions of CO,

fluxes.

However, the key environmental variables used for mapping soil respiration were estimated by UAV data,

which inevitably introduce uncertainties into the prediction processes. For instance, because daily UAV

imagery was unavailable, the predictors (i.e., air temperature, LST, and NDVI) for modelling the

spatiotemporal dynamics of soil temperature were linearly interpolated between acquisition dates,

potentially adding uncertainty to the model results. Moreover, flight conditions and preprocessing of the

raw UAV data (e.g., georeferencing, resampling, the calibration of LST, downscaling air temperature)

may have further introduced errors into the soil temperature estimates. The corrected daily TWI maps

were also subject to uncertainty, as they relied on in-situ soil VWC observations, which were only

available in the middle transect of the landscape. Similarly, uncertainties in SOC stock mapping arose

from the peat thickness estimation and soil sampling strategy, as discussed in our previous work (Li et

al., 2024).

FurthermereNevertheless, these reliable high-resolution CO; flux maps allowed for the identification of

hot spot areas across the landscape. We found that most of the hot spots occurred toat the west of shoulder

areas where-soi-meisture-wasrelativelylower-and to the east of the summit which is covered by dense

vegetation (Figure 1b, Figure 4£6f). Some sporadic hot spots were found at the backslope and footslope

positions. Spatial variability in the factors controlling biogeochemical processes, such as soil temperature,
moisture, water table depth, vegetation type, and substrate quality, is likely driving these differences
(Anthony and Silver, 2023; Kuzyakov and Blagodatskaya, 2015; McNamara et al., 2008). For instance,

the persistent hot spots that occurred at the shoulder might be due to their relatively drier conditions and

higher carbon stocks compared to other areas (Li et al., 2024). Tthe tree-covered areas at the summit

likely contribute substantial root respiration, which could sustain hot spot formationmay;in-turns-trigger

the-fermation-of consistenthotpots throughout the year. Besides, litterfall beneath trees insulates the peat

soil and provides an abundant resource for microbial activity even during the non-growing season. While

at other places, such as the footslope and backslope, which are mainly covered by dwarf shrubs and

Molinia caerulea (Figure 1b) with pronounced seasonal phenology, they potentially form sporadic soil
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respiration hot spots at specific times of the year. Furthermore, surface peat beneath relatively short

vegetation can receive higher direct solar radiation in summer, leading to elevated soil temperatures and

the emergence of carbon emission hot spots.

High-emission events from hot spots play a crucial role in overall CO; fluxes (Anthony and Silver, 2023),
hence, neglecting these areas could lead to substantial underestimation of peatland carbon emissions. In
our study, although less than 10 % of area was identified as hot spots, their CO, flux contribution
accounted for nearly 20 % across the year (Figure 46). However, research specifically focusing on
peatland CO; emission hot spots remains limited (Anthony and Silver, 2023), despite increased
exploration of greenhouse gas emission hot spots in other ecosystems (e.g., agricultural field (Krichels
and Yang, 2019; Leifeld et al., 2020; Rey-Sanchez et al., 2022); wetland (Rey-Sanchez et al., 2022);
water-limited Mediterranean ecosystem (Leon et al., 2014); forest (Wangari et al., 2023)). Hence, to
improve the accuracy of CO: spatial budgeting for peatlands, there is a need for enhanced high-resolution
dynamic monitoring of hot spot areas (Becker et al., 2008). Our study demonstrates the great potential
of UAV technology for peatland hot spot identification and quantification, offering new insights into
studying soil respiration within heterogeneous ecosystems as well as optimizing peatland management

and CO; emission reduction strategies.
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5 Conclusion

In this study, we monitored the dynamics of peatland surface and subsurface environments using both
field surveys and multi-sensor UAVs at high spatial-temperalspatiotemporal resolution. We investigated
the influence of dynamic and static environmental factors on soil respiration rates across different scales,
thereby enhancing our understanding of peatland carbon cycling. Additionally, we simulated CO, flux
with high spatial-temperalspatiotemporal resolution by integrating field measurements and UAV data.
These reliable modelling allow us to identify and quantify CO, emission hot spots and hot moments

across the landscape. To summarize, the main findings of our study are as follows:

(1) Soil respiration rates vary significantly across space and time, influenced by both dynamic and
relatively static environmental factors at different scales. Temperature is the primary driver of CO; flux
variations, explaining 33 % CO; seasonal variability and 18 % spatial variability. Soil moisture
negatively affects both seasonal and spatial variations, accounting for 10 % - 11 % of the variance. Water

table dynamics also play a role (10 %), but more observations are needed to explore its influence.

Atmospheric pressure may indirectly influence soil respiration by affecting precipitation patterns, rather

than exerting a strong direct control. Semi-dynamic factors (i.e., NDVI and root biomass) contribute 19 %

to seasonal variability and 24 % to spatial variability. While relative static factors (i.e., the C/N and SOC
stock) have little impact on the seasonal CO, flux variability, the contribution of the C/N ratio increases

nearly 11 times for spatial variability.

(2) Predicting temporal series of hourly CO; flux can be effectively achieved (test set: R’ = 0.74, RMSE

=0.57 yumol m2 s, KGE = 0.77) by considering its relationship with key environmental variables such

as air temperature, soil temperature and soil moisture, all of which are relatively straightforward to
monitor. These reliable time series data provide a foundation for capturing respiration pulses occurring

over short periods, with hot moments primarily occurring in summer and early autumn.

(3) The UAV remote sensing offers great potential in monitoring and estimating key environmental

variables that control soil respiration across heterogeneous landscapes. Our model using UAV-derived

data—predictors _ean—yielded robust spatial mapping of soil respiration rates across heterogeneous

landscapes, with RMSE, KGE. and R’ values of 0.54-56 pmol m™ s™', 0.83, and 0.75 in the test dataset,

respectively. These high-resolution CO, flux maps enable us to locate hot spots_as well as providing a
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valuable tool for assessing peatland management strategies, such as evaluating conditions before and

after restoration.

(4) Despite representing 10 % of time within one year, CO; fluxes from hot moments contribute 28 %-
31 % to the overall CO; flux budgets. Approximately 10 % areas are identified as hot spots, while
contributing 20.4149-63 % + 0.57-61 % of total CO- fluxes. The locations of high-frequency hot spots

remain consistent, while the locations of sporadic hot spots vary over time.

Code and data availability

The field measurements of CO, fluxes, climate data, and soil properties are available on HydroShare:

https://www.hydroshare.org/resource/a4efceS8d4d114b939f0d92a18b3168c6/.

Codeand-UAV data will be made available on request.
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