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Abstract 18 

In riverine systems, particulate organic matter (POM) originates from various sources, each 19 

having its proper dynamics related to production, decomposition, transport and burial, resulting 20 

in a significant spatiotemporal heterogeneity in the POM pool. The current study, based on C 21 

and N elemental and isotopic ratios, applies Bayesian mixing models associated with statistical 22 

multivariate analyses to 1) quantify and examine relationships between POM composition and 23 

environmental forcings, and 2) draw a typology of river functioning based on POM composition 24 

and its seasonal dynamics.  25 

Twenty-three temperate rivers accounting for a large diversity of environmental conditions 26 

were sampled fortnightly to monthly for one to seven years at their River-Estuary Interface 27 

(REI). Phytoplankton and labile terrestrial material occurred in all rivers, whereas sewage and 28 

refractory terrestrial material were present in only a few. At the twenty-three rivers scale, 29 

phytoplankton dominance was associated with agricultural surfaces, while labile terrestrial 30 

material was linked to organic-rich leached soil and refractory terrestrial matter to steep 31 

catchments with little soil. Seasonal dynamics were primarily driven by phytoplankton growth, 32 

river discharge (labile terrestrial material), and sediment resuspension (refractory terrestrial 33 

material).   34 

A statistical regionalisation defined four types of river dynamics: (1) systems whose POM is 35 

dominated by labile terrestrial material year-round; (2) systems whose POM is composed of 36 

labile and refractory terrestrial material, in addition to phytoplankton, showing variable 37 

seasonality; systems whose POM is composed of phytoplankton and labile terrestrial material 38 

(3) without and (4) with pronounced seasonality. This work offers a comprehensive 39 

understanding of POM composition, spatio-temporal dynamics and controlling factors at the 40 

REI in temperate climates, complementing similar work dedicated to coastal systems. Future 41 

work dedicated to estuaries is called to get a comprehensive understanding of POM 42 

composition, dynamics and drivers along the Land-Ocean Aquatic Continuum. 43 

  44 
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1. Introduction 45 

The River-Estuary Interface (REI) is a crucial biogeochemical interface for understanding the 46 

transition between continental and coastal systems, beginning at estuaries, because of its key 47 

location within the Land-Ocean Aquatic Continuum (LOAC) (Bate et al., 2002). Indeed, rivers 48 

then estuaries are important filters for matters received from land, transporting and transforming 49 

organic matter and nutrients along their courses (Bouwman et al., 2013; Dürr et al., 2011; 50 

Middelburg and Herman, 2007). These processes are fundamental in understanding global 51 

biogeochemical cycles (Regnier et al., 2013), as these matters directly fuel coastal ocean trophic 52 

networks (Dagg et al., 2004). However, in a Human-impacted world, anthropogenic activities 53 

and disturbances can modify natural matter fluxes. For example, damming rivers directly 54 

impacts nutrient flows (Wang et al., 2022) and sediment transportation (Kang et al., 2021). 55 

Indirectly, land use in river basins can lead to changes in the river matter quality (Lambert et 56 

al., 2017). 57 

In aquatic systems, particulate organic matter (POM), i.e., non-mineral particles, is composed 58 

of different sources that originate from different compartments: phytoplankton, macrophytes 59 

from the aquatic systems, as well as plant litter, soil and petrogenic particles from terrestrial 60 

compartments and even treated and untreated anthropogenic organic matter (Ke et al., 2019; 61 

Sun et al., 2021; Zhang et al., 2021). Depending on its composition, POM exhibits different 62 

levels of lability, i.e., different levels of biogeochemical reactivity and bioavailability. For 63 

instance, phytoplankton is usually considered highly labile, and thus highly biogeochemically 64 

reactive and bioavailable for primary consumers, while terrestrial POM is usually considered 65 

more and more refractory through degradation processes, thus lightly biogeochemically 66 

reactive and poorly bioavailable for the food webs (Brett et al., 2017; David et al., 2005; 67 

Etcheber et al., 2007). In other words, the determination and quantification of POM 68 

composition (i.e., the relative proportion of each source composing the POM) allow a better 69 

understanding of biogeochemical cycles and trophic ecology in aquatic systems (e.g., Grunicke 70 

et al., 2023; Minaudo et al., 2016). Nevertheless, POM composition and concentration are not 71 

only involved in biogeochemical and biological processes (e.g., primary production, 72 

remineralisation, feeding) but also undergo other processes inside and at the interface of the 73 

aquatic compartment (Canuel and Hardison, 2016). River hydrology is a key factor controlling 74 

POM composition and concentration. The geological bedrock and soil characteristics of each 75 

catchment, together with climatic conditions, shape the erosional processes, leading to great 76 

variabilities in hydrodynamics, terrestrial material quality and quantity and phytoplankton 77 

growth conditions (Dalzell et al., 2007; Hilton et al., 2010; Lebreton et al., 2016). This 78 

variability leads to shifts in POM source origins (Arellano et al., 2019; Barros et al., 2010). 79 

Additionally, anthropogenic disturbances can directly or indirectly affect seasonal as well as 80 

long-term patterns of POM composition and concentration.  For instance, a decrease in nutrient 81 

load affects phytoplankton production and biomass (Minaudo et al., 2015), agricultural surface 82 
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alters soil properties and erosion and consequently soil particle export to rivers, damming alters 83 

river hydromorphology and consequently particle dynamics and export ( Kang et al., 2021; 84 

Zhang et al., 2021), etc. 85 

This dependency of POM composition and concentration to physical, biogeochemical and 86 

biological processes and their responses to environmental conditions and characteristics (Bonin 87 

et al., 2019; Falkowski et al., 1998; Field et al., 1998; Galeron et al., 2017; Goñi et al., 2009; 88 

Lebreton et al., 2016) may lead to distinguishing different types of rivers, i.e., the likeliness of 89 

rivers to carry preferential sources. For instance, highly turbid systems are more likely to carry 90 

refractory materials (Savoye et al., 2012), while eutrophicated rivers carry high biomass of 91 

phytoplankton (Hounshell et al., 2022; Minaudo et al., 2015), and contrasting processes can 92 

lead to a mixture between different detrital sources, as soil matter vs. fresh terrestrial plants 93 

(Ogrinc et al., 2008). However, to date, no study clearly determined typologies of river 94 

dynamics based on POM composition and its seasonal variability.  95 

To distinguish POM sources and quantify their contribution to POM composition, different 96 

tools such as elemental and isotopic ratios, pigments or specific compounds like fatty acids or 97 

alkanes can be used (e.g., Chevalier et al., 2015; Liénart et al., 2020, 2017; Savoye et al., 2012). 98 

Elemental and isotopic ratios are usually considered robust and allow the quantification of POM 99 

composition in this kind of study (e.g., Liénart et al., 2016; Onstad et al., 2000; Wang et al., 100 

2021). Indeed, they usually allow the discrimination of, e.g., riverine phytoplankton, terrestrial 101 

POM and wastewater POM (Ke et al., 2019), and they can be used for running mixing models 102 

that quantify the proportion of the different sources in a POM mixture (Parnell et al., 2013). 103 

However, studies using mixing models for quantifying POM composition in river systems are 104 

still quite scarce (e.g., Ferchiche et al., 2025, 2024; Kelso and Baker, 2022, 2020; Zhang et al., 105 

2021). 106 

Within the scope of better understanding the role of the LOAC in modifying matter fluxes and 107 

quality, the present study gathered published data and results from 23 rivers at the river-estuary 108 

interface with the aim of 1) quantifying the POM composition of each river, 2) describing the 109 

seasonal variations of this composition, 3) determining the drivers of the seasonal variability 110 

within each river and the spatial variability among the 23 rivers, and then 4) determining a 111 

typology of river dynamics according to their POM composition and dynamics. This study is 112 

the first that precisely quantify POM composition in numerous and various temperate river 113 

systems in a world region (here, Western Europe) and classify river types according to POM 114 

composition and dynamics.  115 

2. Materials and methods 116 

Twenty-three temperate rivers were studied at their river-estuary interface (i.e., right upstream 117 

of the tidal influence). All the data come from published studies or national open databases. To 118 

minimize the heterogeneity of the datasets in terms of sampling strategy, we have considered 119 
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for this study the datasets only when 1) C/N ratio along with isotopic ratio of carbon and/or 120 

nitrogen were available, 2) particulate matter characteristics like, suspended particulate matter 121 

(SPM), particulate organic carbon (POC), particulate nitrogen (PN) or chlorophyll a (chl a) 122 

were also available, 3) datasets exhibited at least a monthly temporal resolution for one full 123 

year. When needed, published datasets were completed and harmonised thanks to national 124 

databases.  125 

2.1. Study sites 126 

The studied rivers and associated watersheds are all located in France (except the upper basin 127 

of the Rhône River) and distributed in all regions of the mainland. Three, fifteen and five of 128 

these rivers flow into the English Channel, the Atlantic Ocean and the Mediterranean Sea (Fig. 129 

1). Even if located in a somewhat restricted area (Western Europe) at the global scale, they 130 

encompass large gradients of environmental characteristics (Tab. 1) for a temperate climate. 131 

For instance, the Loire River is one of the largest in Europe (length: 1006 km; watershed: 132 

117,356 km²), while the littlest studied river is a very small stream of the Arcachon lagoon 133 

(length: 3 km; watershed: 18 km²). They encompass large gradients of river flow (annual mean: 134 

0.3 m3/s – 1572 m3/s), turbidity (SPM annual mean: 2.7 mg/l – 40.9 mg/l) and trophic status 135 

(from oligotrophic to eutrophic rivers; chlorophyll a annual mean: 0.4 µg/l – 57.1 µg/l). At last, 136 

they undergo a gradient of anthropic pressures as illustrated by the proportion of artificial 137 

surfaces (0.1 % – 5.6 %) and agricultural areas (0 % – 86 %) in the watersheds (Fig. 1). 138 

 139 
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 140 

Figure 1 Studied rivers (thick blue lines), sampling locations (black stars) and watersheds (thin 141 

black lines), including the main land uses (red, yellow and green colours). 1: Seine; 2: Orne; 3: 142 

Rance; 4: Elorn; 5: Aulne; 6: Loire; 7: Sèvre niortaise; 8: Charente; 9: Seudre; 10: Canal du 143 

Porge; 11: Cirès; 12: Milieu; 13: Lanton; 14: Renet; 15: Tagon; 16: Leyre; 17: Canal des 144 

Landes; 18: Adour; 19: Têt; 20: Aude; 21: Orb; 22: Hérault; 23: Rhône. Background: ESRI 145 

Ocean146 
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2.2. Data origin 148 

Regarding the core parameters (C/N ratio, 13C, 15N, water temperature, SPM, POC, PN, chl 149 

a), most of the data sets come from published studies (Canton et al., 2012; Cathalot et al., 2013; 150 

Dubois et al., 2012; Ferchiche et al., 2024; Harmelin-Vivien et al., 2010; Higueras et al., 2014; 151 

Liénart et al., 2016, 2017, 2018; Polsenaere et al., 2013), while most of additional parameters 152 

come from national databases (Tab. A1). When not available in the cited studies, concentrations 153 

of SPM, NO3
-, NH4

+ and PO4
3-, pH and water temperature were retrieved from the Naïades 154 

database (https://naiades.eaufrance.fr/, consulted the 07/10/2023). Note that these parameters 155 

were not necessarily measured or sampled exactly at the same location or date for Naïades as 156 

in the cited studies. In that case, the location was chosen as close as possible to the study 157 

location and data values were time-interpolated to match the study date. Meteorological 158 

variables (air temperature, zonal and meridional wind, irradiance; used to qualify 159 

photosynthetic favourable conditions or wind-induced resuspension) come from Météo France, 160 

the French meteorological service. Wind data were received originally as direction and speed. 161 

To remove the angular bias, they were combined using scalar products to get zonal and 162 

meridional wind speeds, which range between minus and plus infinity (see Lheureux et al., 163 

2022, for more details). River flows (used to qualify the hydrodynamics forcing) were retrieved 164 

from the Banque Hydro database (https://www.hydro.eaufrance.fr/, consulted the 07/10/2023) 165 

or from Polsenaere et al. (2013) for the small streams. 166 

Catchment properties were retrieved when available for the 23 rivers. Land use proportions 167 

originate from the Corine Land Cover database (https://www.statistiques.developpement-168 

durable.gouv.fr/corine-land-cover-0, consulted the 10/01/2024). Soil organic carbon data 169 

originate from the SoilTrEC database (https://esdac.jrc.ec.europa.eu/content/predicted-170 

distribution-soc-content-europe-based-lucas-biosoil-and-czo-context-eu-funded-1, consulted 171 

the 10/01/2024). Net erosion soil data originate from the WaTEM/SEDEM database 172 

(https://esdac.jrc.ec.europa.eu/content/estimate-net-erosion-and-sediment-transport-using-173 

watemsedem-european-union, consulted the 10/01/2024). Strahler numbers originate from the 174 

CARTHAGE database (https://www.sandre.eaufrance.fr/atlas/srv/api/records/c1d89cc3-c530-175 

4b0d-b0ae-06f5ebf7997d, consulted the 15/08/2025). Useful water reserve values come from 176 

the GSF database (Le Bas, 2025). Geological Bedrock,and soil types, granulometry and slope 177 

come from the GISSOL database (gathered by great geological bedrock and soil types 178 

according to the provided legend; INRA, 2025). Wastewater treatment capacities originate from 179 

the Eau France WFS services 180 

(https://services.sandre.eaufrance.fr/geo/odp?REQUEST=getCapabilities&service=WFS&VE181 

RSION=2.0.0, couche sa:SysTraitementEauxUsees, consulted the 15/08/2025). All these 182 

catchment data were pre-processed on a Geographical Information System to extract 183 

information for each catchment surface, then averaged or weighted (depending on continuous 184 

or semi-quantitative data) to characterise each system with a value. 185 
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It should be noted that a complete study was already dedicated to the Loire River and reported 186 

as a companion article (Ferchiche et al., 2024). Consequently, the results are not reported in the 187 

present study but are used for multi-system comparisons (Fig. 5 and 7, and corresponding text). 188 

2.3. Determination of sources signatures 189 

To run mixing models for quantifying POM composition, it is previously needed to 1) 190 

determine sources of POM, and 2) associate elemental and isotopic signatures to these sources. 191 

In riverine systems, autochthonous (mainly phytoplankton) and allochthonous (resuspended 192 

sediment, terrestrial fresh litter or rock-derived soil) are the main sources that are usually 193 

considered as fuelling the POM (e.g., Ferchiche et al., 2024; Pradhan et al., 2016; Sarma et al., 194 

2014). Nevertheless, sewage POM may also contribute (Higueras et al., 2014). Consequently, 195 

phytoplankton, labile and refractory terrestrial POM and sewage POM were considered as 196 

potential sources in this study.  197 

Phytoplankton cannot be easily picked up from bulk particles to measure its elemental and 198 

isotopic ratios. Therefore, the method developed and used by Savoye et al. (2012), Liénart et 199 

al. (2017) and Ferchiche et al. (2024) was applied here. It consists of determining the elemental 200 

and isotopic ratios from a subset of the bulk dataset. Briefly, phytoplankton-dominated POM is 201 

characterised by a low POC/chl a ratio (≤ 200 or even ≤ 100 g/g; Savoye et al., 2003 and 202 

references therein). Thus, elemental and isotopic ratios of samples exhibiting a low POC/chl a 203 

ratio can be considered as good estimates of phytoplankton elemental and isotopic ratios. When 204 

the POC/chl a ratio is not available, samples exhibiting a high PN/SPM ratio can be used. 205 

Additional constraints may be used to minimise potential overlap between phytoplankton and 206 

terrestrial elemental and isotopic signatures. Phytoplankton elemental and especially isotopic 207 

ratios may vary deeply over time and space depending on primary production intensity and 208 

potential limiting factors, nutrient origin, etc. (e.g., Miller et al., 2013; Savoye et al., 2003). 209 

When existing, this variability has to be taken into account to avoid using elemental and isotopic 210 

signatures that are not valid at the time or location of the sampling. This could be performed by 211 

using regressions between elemental and/or isotopic ratios and environmental variables (see 212 

Ferchiche et al., 2024; Liénart et al., 2017; Savoye et al., 2012). At last, when no samples exhibit 213 

a low POC/chl a ratio, samples exhibiting the lowest (even if high) POC/chl a ratios can be 214 

used, but the data should first be corrected for the contribution of the terrestrial POM using 215 

Equations 1-3.  216 

δ13Csample = ([POC]phytoplankton  × δ13Cphytoplankton + [POC]terrestrial × δ13Cterrestrial) / [POC]sample 217 

           (eq. 1) 218 

[POC]phytoplankton = [chl a]sample × (POC/chl a)mean     (eq. 2) 219 

[POC]terrestrial = [POC]sample – [POC]phytoplankton     (eq. 3) 220 
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where (POC/chl a)mean is the mean POC/chl a ratio of the samples used to determine 221 

phytoplankton signatures. Similar equations are used for the N/C ratio, 15N and C/N ratio, but 222 

using PN instead of POC for δ15N and C/N ratio.  223 

Elemental and isotopic signatures of terrestrial POM can be estimated by directly measuring 224 

elemental and isotopic ratios in a sample like soil, rocks or vascular plants (e.g., Sarma et al., 225 

2014). However, this does not take into account the reworking of this material within the river 226 

system, which can affect these signatures (Hou et al., 2021). Thus, similarly to phytoplankton, 227 

elemental and isotopic signatures of terrestrial POM can be estimated using subsets of bulk 228 

data, following the approach of Savoye et al. (2012), Liénart et al. (2017) and Ferchiche et al. 229 

(2025, 2024). Labile terrestrial POM is usually characterised by high POC/chl a and C/N ratios 230 

and low POC/SPM ratios (Etcheber et al., 2007; Savoye et al., 2003 and references therein). 231 

However, during its decay in aquatic systems, terrestrial POM is colonised by bacteria (low 232 

C/N ratio), resulting in a consortium terrestrial POM + bacteria of lower C/N ratio than the 233 

original terrestrial POM (Etcheber et al., 2007; Savoye et al., 2012). Finally, one can 234 

discriminate two kinds of terrestrial POM: refractory terrestrial POM, characterised by high 235 

POC/chl a and C/N ratios and very low POC/SPM ratio, and quite labile terrestrial POM 236 

characterised by high POC/chl a ratio, intermediate C/N ratios and low POC/SPM ratio 237 

(Etcheber et al., 2007; Savoye et al., 2012). Thus, subsets of high POC/chl a ratio can be 238 

selected to determine the elemental and isotopic signatures of terrestrial POM. The C/N ratio 239 

can be used to discriminate labile from refractory terrestrial POM. When no samples exhibit a 240 

high POC/chl a ratio, samples exhibiting the highest (even if quite low) POC/chl a ratio can be 241 

used, but the data should first be corrected for the contribution of the phytoplankton POM using 242 

Equations 1-3.  243 

Elemental and isotopic ratios of riverine POM can exhibit a departure from a simple 244 

phytoplankton-terrestrial POM mixing. In the present study, this was the case in only two rivers. 245 

For the Têt River, the elemental and isotopic signature of anthropogenic POM was available in 246 

Higueras et al. (2014). It consisted of analyses of POM sampled in the wastewater treatment 247 

plant (WWTP) closest to the sampling site. For the Orb River, the signatures were estimated 248 

using the sample exhibiting the lowest δ15N, typical of anthropogenic POM (Ke et al., 2019). 249 

The estimation of POM-source signatures was performed independently for each river, except 250 

for some of the tributaries of the Arcachon Lagoon (rivers 11 to 15), where data sets were 251 

gathered, thanks to very similar characteristics (same δ13C of dissolved inorganic carbon; 252 

Polsenaere et al., 2013), to get a larger subset of data for estimating elemental and isotopic 253 

signatures more accurately. All criteria used for defining the above-described subsets are 254 

reported in Table 2. 255 

Table 2 Elemental and isotopic signatures of POM sources and criteria used to choose the data 256 

subset to determine them. When the signature did not vary over time, average ± standard 257 
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deviation are reported. When the signature did vary over time, minimum and maximum values, 258 

standard deviations, as well as equations are reported. The types of mixing models performed 259 

for each river are also indicated (carbon mixing models were performed using δ13C and N/C 260 

ratio, or only δ13C; nitrogen mixing models were performed using δ15N and C/N ratio; mixed 261 

mixing models were performed using δ13C, δ15N and N/C ratio). POC% (or PN%) = Particulate 262 

Organic Carbon (or Particulate Nitrogen) to Suspended Particulate Matter ratio (%); C/N = 263 

POC/PN ratio (mol/mol); chla = chlorophyll a (µg/l); phaeo = phaeopigments (µg/l); conduc = 264 

conductivity (µS); temp = water temperature (°C); Q7 = mean of past seven days river flow; 265 

NO3
- = nitrate (mg(NO3

-)/l). 266 

 267 

  268 

Labile 
terrestrial 

matter

Refractory 
terrestrial 

matter
Phytoplankton

WWTP's 
POM

Carbon Nitrogen Mixed δ13C δ15N C/N N/C δ13C δ15N C/N N/C

Seine C/N > 10 POC/chla < 200 X X
-28.5
± 0.3

6.6
± 0.9

10.6
± 0.3

0.093
± 0.002

Orne C/N > 11 POC/chla < 500 X X
-28.4
± 0.3

5.8
± 1.0

12.4
± 0.4

0.082
± 0.003

Rance
POC/chla > 
200 and chla 

< 10
POC/chla < 150 X X

-26.8
± 0.2

6.1
± 0.7

8.8
± 0.4

0.113
± 0.007

Elorn C/N > 12 POC/chla < 200 X X
-28.4
± 0.7

5.8
± 0.9

13.0
± 0.8

0.077
± 0.005

Aulne C/N > 11
POC/chla < 200 

and C/N < 9
X X

-28.9
± 0.8

5.8
± 0.8

12.1
± 1.1

0.08
± 0.008

Loire
POC/chla > 

500
POC/chla < 200 X X

-28.1
± 0.1

5.9
± 0.3

10.3
± 0.2

0.097
± 0.002

Sèvre Niortaise C/N > 14 POC/chla < 300 X
-28.0
± 0.4

0.057
± 0.040

Charente C/N > 12 POC/chla < 300 X X
-29.0
± 0.4

4.7
± 0.2

14.5
± 0.5

0.069
± 0.002

Seudre
POC/chla > 

2000 and C/N 
> 12

POC/chla < 1000 X
-28.5
± 0.1

Porge C/N > 15 
δ13C : POC/chla < 

100 ; N/C : mean of 
Cirès to Landes 

X
-26.5
± 1.1

0.050
± 0.007

Cirès / Renet / 
Milieu / Lanton 

/ Tagon

C/N > 15 and 
chla < 1

POC/chla < 1000 
and POC% > 10

X
-28.5
± 0.5

0.053
± 0.013

Leyre
C/N > 15 and 

chla < 1

POC/Chla < 1000. 

δ13C < 28.59 and 
POC% > 10

X
-28.3
± 0.5

0.06
± 0.005

Landes C/N > 12
POC/Chla < 600. 

δ13C < -29.1
X

-29.1
± 0.4

0.075
± 0.002

Adour
POC/chla > 

3000
POC/chla < 200 X

-26.0
± 0.9

0.099
± 0.008

Têt C/N > 11.5
POC% < 

4.25
PN% > 2. δ13C < 
26 and δ15N > 5

Measured X
-26.0
± 0.2

3.7
± 0.6

12.2
± 0.5

0.082
± 0.002

-26.0
± 0.6

6.7
± 1.4

5.8
± 1.4

0.180
± 0.045

Aude C/N  > 12 Q7 > 70
PN% > 1 or 2 and 

C/N < 6
X

-28.1
± 0.6

6.3
± 0.1

15.3
± 1.6

0.066
± 0.007

-28.0
± 0.7

4.7
± 0.4

7.3
± 1.0

0.139
± 0.018

Orb C/N > 10
PN% > 2. δ15N > 

4.06

Lower 

δ15N
X

-27.1
± 0.4

3.7
± 0.4

10.5
± 0.3

0.095
± 0.350

Hérault C/N > 12 Q > 45 PN% > 2 X
-27.7
± 0.2

6.1
± 0.7

13.7
± 1.2

0.073
± 0.007

-27.8
± 0.4

4.7
± 0.6

8.2
± 1.5

0.124
± 0.019

Rhône C/N >  12
POC% < 

1.25
C/N < 6.68 and 

δ15N > 3.92
X

-26.4
± 1.3

5.2
± 1.0

17.0
± 3.2

0.061
± 0.012

-25.9
± 0.4

3.1
± 0.8

8.8
± 3.1

0.119
± 0.032

River

Source discriminants Model performed Labile terrestrial matter Refractory terrestrial matter
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Table 2 (continued) 269 

 270 

2.4. Quantification of POM composition 271 

POM composition was quantified using a Bayesian mixing model (‘simmr’ R package version 272 

0.4.5, Govan and Parnell, 2023), which solves the equations system based on bulk and source 273 

POM elemental and isotopic signatures. Mixing models were computed for each sampling date 274 

of each river (Tab. 1), using carbon (δ13C and N/C ratio, Eq. 4, 7, 8), nitrogen (δ15N and C/N 275 

ratio, Eq. 5, 6, 8), and/or a combination of three (δ13C, δ15N and N/C ratio, Eq. 4, 5, 7, 8) tracers. 276 

From the three mixing models performed for each sampling date and river (carbon, nitrogen or 277 

mixed), one model was selected as the best estimation of bulk POM data. It should be noted 278 

that N/C and C/N ratios give information on the mixing of C and N, respectively (Perdue and 279 

Koprivnjak, 2007). We used at least the same number of equations as unknowns (sources) to 280 

avoid running underdetermined models that result in large uncertainty in model outputs(Phillips 281 

et al., 2014). Equations of the models were:  282 

C/N δ13C δ15N C/N N/C

Seine
-32.8
± 1.1

8.4
± 1.7

7.4
± 0.7

0.136
± 0.012

Orne
-31.4
± 0.8

4.3
± 0.8

6.6
± 1.3

0.141
± 0.010

Rance
[-31.4;-25;6]

± 1.7
5.7x10-4×[chla+phaeo]²-
0.04×[chla+phaeo]-30.6

[4.7;11.4]
± 0.7

-0.28×[NO3
-]+12.7

6.2
± 0.4

0.161
± 0.010

Elorn
-27.4
± 0.3

6.9
± 0.5

10.0
± 0.9

0.101
± 0.007

Aulne
-28.1
± 0.2

8.6
± 0.2

8.2
± 0.2

0.122
± 0.003

Loire
[-30.6;-25.0]

± 0.9

5x10
-4

×[chla+phaeo]²-
0.02[chla+phaeo]-

0.39[chla/phaeo]-27.9

[3.0;10.4]
± 1.2

4.2x10-4[chla]²-
0.08[chla]+8.2

7.2
± 0.6

0.140
± 0.011

Sèvre Niortaise
[-35.7;-29.2]

± 1.0
-258×exp([chla+phaeo]²/
16055)-0.15×[temp]+229

[0.106;0.145]
± 0.006

2.9x10
-

3
×[chla+phaeo] + 

0.1

Charente
-30.8

± 0.03
7.5

± 1.6
6.6

± 0.3
0.152

± 0.006

Seudre
-33.3
± 0.1

Porge
-33.6
± 0.4

0.128
± 0.008

Cirès / Renet / 
Milieu / 

Lanton / Tagon

-34.9
± 0.4

0.133
± 0.006

Leyre
-30.1
± 0.3

0.140
± 0.016

Landes
-29.9
± 0.3

0.112
± 0.010

Adour
-28.2
± 0.6

0.111
± 0.010

Têt
[-29.7;-27.8]

± 0.6
-5.2×10-3[temp]²

+0.08×[temp]-27.5

[5.3;13.3]
± 1.8

5.53×[temp]-5.5
5.6

± 0.7
0.181

± 0.021
-26.3
± 0.1

-0.7
± 0.1

6.3
± 0.3

0.160
± 0.017

Aude
[-32.6;-27.8]

± 0.6
-0.21×[temp]-26.5

[5.2;10.6]
± 1.6 -1.13×δ13C-26.2

5.0
± 0.8

0.205
± 0.033

Orb
[-30.7;-23.4]

± 0.6
-0.19×[temp]-26.0

[4.9;8.4]
± 0.6

8.44-(3.63×(conduc-
505))/(conduc-111)

4.8
± 0.9

0.213
± 0.039

-27.1
± 0.4

1.9
± 1.9

3.7
± 3.7

0.270
± 0.270

Hérault
[-31.5;-27.5]

± 1.0
-0.19×[temp]-26.0

[6.3;10;9]
± 1.3

3.6x10-2×[temp]²-
1.15×[temp]+14.6

5.0
± 0.7

0.203
± 0.031

Rhône
-27.8
± 1.2

5.6
± 0.8

5.5
± 0.8

0.180
± 0.030

River

WWTP's POMPhytoplankton

δ13C + equations δ15N + equations N/C + equations
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δ13Cmixture = x1 δ13Csource 1 + x2 δ13Csource 2 + x3 δ13Csource 3 + x4 δ13Csource 4   (Eq. 4) 283 

δ15Nmixture = x1 δ15Nsource 1 + x2 δ15Nsource 2 + x3 δ15Nsource 3 + x4 δ15Nsource 4   (Eq. 5) 284 

C/Nmixture = x1 C/Nsource 1 + x2 C/Nsource 2 + x3 C/Nsource 3 + x4 C/Nsource 4   (Eq. 6) 285 

N/Cmixture = x1 N/Csource 1 + x2 N/Csource 2 + x3 N/Csource 3 + x4 N/Csource 4   (Eq. 7) 286 

x1 + x2 + x3 + x4 = 1         (Eq. 8) 287 

As there was no a priori knowledge of sources contributions to the POM mixture, the models 288 

were set with an uninformative prior (1, 1, 1, 1) following a Dirichlet distribution (all sources 289 

have an equal probability to contribute to the mix; Phillips et al., 2014). Model runs were set 290 

following the recommendations of Phillips et al. (2014). Models outputs were evaluated with 291 

Gelman-Rubin diagnostic (verification of chain convergence) and predictive distributions to 292 

ensure the good fit of the models to the observed data. Models outputs are given as medians. 293 

Absolute uncertainties for the models varied from 1 to 18 % (range of average for each river) 294 

with an overall average of 8 % (all models).  295 

2.5. Forcings at local and multi-system scales 296 

Environmental forcings driving POM composition were determined using redundancy analysis 297 

(RDA; ‘dudi.pca’ and ‘pcaiv’ functions; R package {ade4} version 1.7-19). RDA summarises 298 

multiple linear regressions between the response variable (POM composition: mixing model 299 

outputs) and a set of explanatory variables (environmental forcings) to assess causality links 300 

(Legendre et al., 2011). RDAs were performed at single-river and multi-river scales. Regarding 301 

the multi-river scale, the annual mean POM composition of each river was used to determine 302 

the drivers of spatial (i.e., between-rivers) variations of POM composition.  303 

The proxies of the environmental forcings were chosen to directly or indirectly reflect the 304 

forcings that affect the processes occurring in the river and the adjacent ecosystems and 305 

influencing POM source inputs. To homogenise the data sets for running the single-river RDAs, 306 

the same combination of twelve parameters (see Table A2) was used for each river. They are 307 

linked to primary production (chlorophyll a, phaeopigments, temperature, pH, ammonium, 308 

nitrate, phosphate, irradiance), upstream and lateral, natural and/or anthropogenic inputs (river 309 

flow, rain, SPM, ammonium, nitrate, phosphate), and resuspension (SPM, zonal and meridional 310 

wind energy). For the multi-river RDA, environmental proxies were selected to reflect 311 

processes occurring at large spatial scales and in the river basin. Forty parameters (See Fig. A6) 312 

were used. They are linked to water quality (conductivity, nitrates), climate setting (river flow, 313 

latitude, longitude, air temperature, precipitation, zonal, meridional and total wind energy), 314 

hydromorphology geomorphology (river length and flow, basin surface area and, slope, Strahler 315 

number), land use coverage (agricultural areas, artificial surfaces, forest and seminatural areas, 316 

wetlands and water bodies), catchment  soil properties (organic carbon content, net erosion, 317 
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granulometry, useful water reserves1), soil type (podzolacidic, brown, organic and 318 

hydromorphic soil), geological bedrock type (alluvialalluvial/unconsolidated deposits, 319 

calcareous and marl rocks, clayey materials, detrital formations, sandy materials, loamyloess, 320 

crystalline and metamorphic rocks, volcanic rocks and other/organic materials), and urban 321 

pressure (WWTP capacities, WWTP capacities to river flow ratio). . From this initial list of 322 

proxies, some were removed to limit the auto-correlation (use of the Variance Inflation Factor, 323 

Borcard et al., 2011) and to improve the adjusted R² of each RDA analysis (Tab. A2 and Fig. 324 

A6).  325 

2.6. Typology of river dynamics 326 

Rivers were classified based on POM composition and their temporal dynamics by performing 327 

a regionalisation analysis as in Liénart et al. (2018) (Fig. A1). This method, based on 328 

multivariate cluster analysis (Souissi et al., 2000), allows to consider the temporal (seasonal) 329 

variations specific to each river in addition to the spatial (between-rivers) component. The 330 

regionalisation analysis was based on POM composition data (i.e., proportions of sources) 331 

computed for each river and each month. When the sampling was fortnightly, averages were 332 

performed to get one value per month. When more than one year was sampled, a standard year 333 

was chosen. Nevertheless, to check if the choice of one year over the other ones would modify 334 

the typology, another regionalisation was performed using all available years for all rivers. This 335 

regionalisation also allowed to check if a river can shift from one type to another type depending 336 

on year and associated environmental conditions (inter-annual variability of type belonging). 337 

Also, in order to check if the over-representation of the small rivers and streams fuelling the 338 

Arcachon Bay would bias the typology, a third regionalisation was performed, reducing the 339 

numbers of these rivers from 8 to 3 (and especially from 6 to 1 regarding rivers of Type I). The 340 

results (Fig. 5, Fig. A7) are very similar, indicating the robustness of the method. 341 

A contingency matrix (rivers, sources, months) was created from monthly values of source 342 

contributions (i.e., mixing model outputs). For each month, a dendrogram was performed, and 343 

ten cut-off levels were considered. Then, for each cut-off level, similarities between stations 344 

were identified within the twelve-monthly dendrograms. Ultimately, global similarities 345 

between rivers were computed using a fuzzy cluster that returns probabilities of membership of 346 

each river to each cluster type. The best number of river types, i.e., river dynamics typology, 347 

was determined considering the best Dunn coefficient (Dunn, 1974) and Silhouette score 348 

(Rousseeuw, 1987). 349 

3. Results 350 

 
1 Useful water reserve corresponds to the water that is retained by the soil and that is  useful for plants. It is 
calculated from soil thickness and granulometry (Le Bas, 2025) 
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Hereafter, four rivers (Rance, Charente, Milieu and Hérault Rivers) were selected and 351 

considered as representative of each type of studied river (see section 3.4). Thus, most of the 352 

results are illustrated using these four rivers. Graphs of all the other rivers are reported in the 353 

supplementary material. 354 

3.1. Contrasting seasonalities in river characteristics 355 

As stated in section 2.1, the 23 studied rivers encompassed large gradients of environmental 356 

characteristics, as illustrated by the lowest and highest annual means of river flow (0.3 and 1572 357 

m3/s; Lanton and Rhône Rivers), water temperature (12.3 to 17.1 °C; Cirès and Têt Rivers), 358 

SPM (2.7 and 40.9 mg/l; Cirès and Rhône River), POC (0.3 and 5.1 mg/l; Hérault and Loire 359 

Rivers) and chlorophyll a (0.4 to 57.1 µg/l; Cirès and Rance Rivers) concentrations as well as 360 

POC/chl a (199 and 6444 g/g; Loire and Leyre Rivers) and C/N (5.9 and 20.3 mol/mol; Têt and 361 

Lanton Rivers) ratios; this was less contrasting among rivers for δ13C (-30.2 and -26.2 ‰; Sèvre 362 

and Têt Rivers) and especially δ15N (4.0 and 8.0 ‰; Leyre and Rance Rivers) (Fig. 2, A2). 363 

As generally observed in rivers from mid-latitude, the studied rivers exhibited clear seasonal 364 

patterns in water temperature with lower and higher values in winter and summer, respectively. 365 

However, such clear seasonal patterns were not always recorded for all the parameters, as there 366 

were contrasting patterns of seasonal variability among rivers. Indeed, the seasonal variability 367 

of river flow was quite smooth (e.g., the Rance and Charente Rivers) with a higher flow in 368 

winter/spring and lower flow in summer/fall for some rivers, whereas it was highly pulsed for 369 

some others with constant low levels marked by short and strong floods (e.g., 53m3/s in mean 370 

but 1169m3/s in flood time for the Hérault River) (Fig. 2). Overall, one can distinguish rivers 371 

that are characterized by high concentrations of chlorophyll a and clear seasonal patterns of 372 

most parameters (e.g., 53 µg/l of chlorophyll a in mean ranging from 3 to 135 µg/l in the Rance 373 

River) from rivers characterized by low concentrations of chlorophyll a, high POC/chl a and 374 

low seasonal variability for most of the parameters (e.g., 1.1 µg/l of chlorophyll a in mean 375 

ranging from 0.7 to 1.7 µg/l in the Milieu River) and from rivers that are characterized by high 376 

seasonal variability of most parameters but without a clear seasonal pattern (e.g., Hérault 377 

River). Other rivers exhibited intermediate behaviour (e.g., Charente River) (Fig. 2, A2). 378 

Usually, Rance-like rivers exhibited high concentrations of chlorophyll a in spring/summer 379 

associated with POC/chl a ratio lower than 200 g/g, C/N ratio lower than 8 mol/mol and low 380 

δ13C (down to -31 ‰ or -33 ‰; e.g., Seine River, Fig. A2). In contrast, Milieu-like rivers 381 

exhibited high POC/chl a (> ~ 700 g/g) and C/N ratio (> 15 mol/mol) and quite constant δ13C 382 

(~-29 – -28 ‰) all year round (e.g., Cirès and Renet Rivers). These rivers are tributaries of the 383 

Arcachon Lagoon. Hérault-like rivers flowing into the Mediterranean Sea exhibited highly and 384 

suddenly variable C/N ratios (4 – 17 mol/mol), δ13C (~-33 – -26 ‰) and δ15N (~2 – 12 ‰) (e.g., 385 

Aude and Orb Rivers; Fig. A2). 386 
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Figure 2 Temporal variations of matter characteristics for representative rivers along the studied 388 

periods for δ13C (left axis; black dotted line) and δ15N (right axis; blue line) (first column); C/N 389 

(left axis; black dotted line) and POC/chl a (right axis; blue line) ratios (second column); 390 

SPM(left axis; black dotted line), POC (right axis; blue line) and chl a (right axis; blue dotted 391 

line) concentrations (third column) and river flow (left axis; black dotted line) and temperature 392 

(right axis; blue line) (fourth column). 393 

3.2. Elemental and isotopic signatures of POM sources 394 

Elemental and isotopic signatures of phytoplankton were estimated for each of the twenty-three 395 

rivers (Tab. 2, Fig. 3 and A3). Most of them (all of them for the C/N ratio) were found to be 396 

constant over time. Their annual mean values varied between -34.9 ‰ (some tributaries of the 397 

Arcachon Lagoon) and -27.4 ‰ (Elorn River) for 13C, between 4.3 ‰ (Elorn River) and 8.6 398 

‰ (Aulne River) for 15N and between 4.8 mol/mol (Orb River) and 10.0 mol/mol (Elorn River) 399 

for the C/N ratio. Some of them varied over time along with pigment concentration and ratio or 400 

with temperature for 13C, and with pigment concentration (chlorophyll a and/or 401 

phaeopigments), nitrate concentration, temperature, 13C or conductivity for 15N (Tab. 2). The 402 

range of temporal variability was usually 4-6 ‰ for 13C and 15N. Overall, phytoplankton 403 

signatures are comprised between -35.6 and -23.8 ‰ for the δ13C and between 3.0 and 13.2 ‰ 404 

for the δ15N. 405 

All other signatures were found to be constant over time (Tab. 2 and A2, Fig. 3 and A3) but 406 

may differ between rivers. Signatures mean annual values of labile terrestrial POM were 407 

comprised between -29.1 and -26.0 ‰ for the δ13C, between 3.7 and 6.6 ‰ for the δ15N and 408 

between 8.8 and 17.0 mol/mol for the C/N ratio. Signatures mean annual values of refractory 409 

terrestrial POM were comprised between -28.0 and -25.9 ‰ for the δ13C, between 3.1 and 6.7 410 

‰ for the δ15N and between 5.8 and 8.8 mol/mol for the C/N ratio. Signatures mean annual 411 

values of sewage POM were -27.1 and -26.3 ‰ for δ13C, 1.9 and -0.7 ‰ for δ15N and 3.7 and 412 

6.3 mol/mol for C/N ratio for Orb and Têt Rivers, respectively. 413 
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Figure 3 13C, 15N, N/C or C/N values of bulk POM (black crosses) and sources. The latter are 415 

presented as closed circles (average) and bars (standard deviation) when the signatures were 416 

constant over time and by colored area when at least one of the proxies was variable over time 417 

(see Table 2). This colored area corresponds to the dispersion of the values, including their 418 

uncertainties. 419 

3.3. Dynamics of particulate organic matter composition 420 

Particulate organic matter composition resulting from mixing models outputs is presented 421 

hereafter, for each river, as the relative contribution of each source to the POM pool (Fig. 4). 422 

Among rivers whose POM is composed of only two sources (terrestrial POM and 423 

phytoplankton), one can distinguish rivers with terrestrial-dominated POM (e.g., Milieu River: 424 

terrestrial POM accounted for 94 ± 3 % of the mixture) to rivers of intermediate POM 425 

composition (e.g., Charente and Rance Rivers where phytoplankton accounted for 34 ± 10 % 426 

and 62 ± 10 % of the mixture, respectively). All these rivers flow into the English Channel and 427 

the Atlantic Ocean. The rivers whose POM is composed of three or four sources flow into the 428 

Mediterranean Sea. In these rivers, terrestrial POM is present as refractory and labile materials. 429 

The contribution of labile terrestrial POM ranged between 16 ± 15 % (Têt River) and 46 ± 21 430 

% (Orb River), and of refractory terrestrial POM between 21 ± 9 % (Rhône River) and 39 ± 15 431 

% (Aude River). The contribution of phytoplankton ranged between 34 ± 15 % (Aude River) 432 

and 51 ± 30 % (Hérault River) for the Mediterranean rivers. The fourth source of POM was the 433 

WWTP’s POM. It was identified as a source in the Orb and Têt Rivers and accounted for 15 ± 434 

6 % and 10 ± 7 % in these two rivers, respectively. Regarding temporal variations of POM 435 

composition, some rivers exhibited clear seasonal patterns, whereas others revealed a 436 

homogeneous composition over the annual cycle (Fig. 4). The rivers where POM was highly 437 

dominated by terrestrial POM (Seudre, Cirès, Renet, Lanton, Milieu, Tagon, Leyre Rivers) 438 

showed almost no seasonal variability. In contrast, some rivers like the Rance, the Elorn or the 439 

Aulne River showed a clear seasonal pattern with the dominance of terrestrial material in winter 440 

and phytoplankton in summer. At last, other rivers exhibited less clear (e.g., Landes, Porge, 441 

Charente Rivers) or even no clear seasonal pattern but a quite stochastic variability over the 442 

annual cycle (e.g., Sèvre, Adour, Aude, Orb).  443 

It should be noted that the above is valid for carbon and mixed as well as nitrogen models (cf. 444 

Tab. 2; Fig. 4 and A4). 445 
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447 

 448 

Figure 4 Temporal dynamic (rectangle graphs) and (inter-)annual mean (pie charts) of POC 449 

source proportions. Sources are phytoplankton (green), labile terrestrial material (brown), 450 

refractory terrestrial material (yellow) and anthropogenic POM (orange). 451 

  452 
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3.4. Typology of river dynamics 453 

Four types of river dynamics were determined by the regionalisation analysis based on river 454 

POM compositions and their temporal dynamics (Fig. 5). The seven rivers (Renet, Cirès, 455 

Lanton, Milieu, Seudre, Tagon and Leyre River), mainly belonging to Type I, were 456 

characterised by terrestrial-dominated POM and no/low seasonality. Six of them are small 457 

streams/rivers flowing to the Arcachon Lagoon. The five rivers (Aude, Hérault, Têt, Rhône and 458 

Orb River), mainly belonging to Type II, were characterised by the co-occurrence of labile and 459 

refractory terrestrial POM and large temporal variability, but, except for the Hérault River, 460 

without a clear seasonal pattern. They all flow to the Mediterranean Sea. The five rivers (Porge, 461 

Adour, Charente, Orne and Landes River), mainly belonging to Type III, were composed of 462 

phytoplankton and terrestrial POM, and exhibited moderate seasonality. Type III is clearly an 463 

intermediary between Type I and Type IV. These five rivers flow to the Atlantic Ocean or the 464 

English Channel. Among the seven rivers flowing to the Arcachon Lagoon, the two that mainly 465 

belong to Type III are man-managed streams and flow through lakes, contrary to the six other 466 

ones, which mainly belong to Type I and are natural streams that do not flow through lakes. 467 

Finally, the six rivers (Rance, Elorn, Aulne, Loire, Seine and Sèvre River) mainly belonging to 468 

Type IV were composed of phytoplankton and terrestrial POM, and exhibited high seasonality. 469 

These six rivers flow to the Atlantic Ocean or the English Channel. It should be noted that the 470 

regionalisations performed using all sampled years for all rivers (Fig. A7) resulted in the same 471 

typology and in the same type for each river, whatever the sampling year. The only exception 472 

is the Leyre River, which switched from Type III in 2008 to Type I in 2009. 473 

 474 
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Figure 5 Typology of river dynamics following a hierarchical cluster analysis on POM source 475 

proportions. The percentages of membership for each type attributed to each river are shown. 476 

3.5. Environmental forcings driving POM composition 477 

One redundancy analysis was performed for each river to relate environmental parameters, 478 

considered as proxies of drivers, to the POM composition, i.e., to assess the drivers of the 479 

temporal variability of POM composition for each river (Fig. 6 and A5). It should be kept in 480 

mind that the POC or PN concentration of each source was used for these analyses and not the 481 

relative proportion of the sources. In type-I rivers, i.e., rivers characterised by terrestrial-482 

dominated POM and no/low seasonality, terrestrial POM is usually linked to river flow and/or 483 

SPM concentration (e.g., Milieu River on Fig. 6, Leyre and Tagon Rivers in Fig. A5). However, 484 

this feature is not always clear since the POM of these rivers is always dominated by terrestrial 485 

material, regardless of the environmental conditions. In type-II rivers, i.e., rivers characterised 486 

by the co-occurrence of labile and refractory terrestrial POM and large temporal variability, 487 

phytoplankton POM is usually positively linked to temperature and negatively linked to river 488 

flow, whereas labile and refractory terrestrial POM are both positively linked to SPM and/or 489 

river flow. Precisely, labile terrestrial POM is usually better linked to river flow and refractory 490 

terrestrial POM to SPM (e.g., Hérault River in Fig. 6 and Rhône River in Fig. A5). In the Têt 491 

River, anthropogenic POM was linked to nitrate concentration (Fig. A5). In rivers characterised 492 

by phytoplankton and terrestrial-POM composition with moderate (Type III) or high (Type IV) 493 

seasonality, terrestrial POM was almost always positively linked to river flow and/or SPM 494 

concentration, while phytoplankton was usually linked with chlorophyll a concentration (e.g., 495 

Charente and Rance Rivers on Fig. 6, Landes and Seine Rivers on Fig. A5). 496 
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 497 

 498 

Figure 6 Redundancy analyses (correlation circles) of rivers standing for each type of river. 499 

Black arrows represent explained variables (concentration of POC sources) and red arrows 500 

represent explaining variables (environmental variables). River types are recalled (Roman 501 

numerals). LTPOC = Labile terrestrial POC; RTPOC = Refractory terrestrial POC; φPOC = 502 

Phytoplankton POC; Chl a = chlorophyll a; Phaeo. = phaeopigments; M. wind = meridional 503 

wind; Z. wind = zonal wind; R. flow = river flow; Temp. = temperature; Irrad. = Irradiance; 504 

NH4
+

 = ammonium; NO3
- = nitrate; PO4

3- = phosphates; Adj. R² = adjusted R². 505 

 506 

At last, another RDA was performed, gathering all rivers to relate environmental parameters to 507 

the mean annual POM composition at the multi-river scale (Fig. 7). As anthropogenic POM 508 

was only detected in two rivers (Orb, Têt), it was not included in the multi-river analysis to 509 

avoid analysis bias. At this scale, phytoplankton is strongly positively correlated to agricultural 510 

surfaces and conductivity, labile terrestrial material to soil organic carbon content and podzol 511 

acidic soil coverage, and refractory terrestrial material to catchment slope; refractory terrestrial 512 

material is also negatively correlated to soil useful water reserves of water (all correlations are 513 
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significant; Fig. A6). Note that the phytoplankton and labile terrestrial matter, as well as their 514 

related environmental variables, are negatively correlated. 515 

 516 

Figure 7 Multi-river redundancy analysis. Black arrows represent explained variables (relative 517 

proportions), red arrows represent explaining variables (environmental variables), and numbers 518 

are river identifiers (cf. Fig.1). R. flow = river flow; %OC soil = percentages of organic carbon 519 

in soil; NO3
- = nitrates concentration; Useful reserve = Useful water reserve in soil; Conduc. = 520 

conductivity; %Agri. Surf. = Proportion of agricultural surface; %Acid. soil = Proportion of 521 

podzol acidic soil coverage; Slope = Catchment slope; Adj. R² = adjusted R². 522 

4. Discussion 523 

4.1. Bulk POM and source signatures in temperate rivers 524 

Over the 23 studied rivers, 13C, 15N, and C/N ratios of bulk POM ranged between -35.2 and 525 

-24.5 ‰, -0.3 and 12.6 ‰, and 3 and 23.4 mol/mol, respectively. This corresponds to usual 526 

values recorded for riverine POM over temperate systems, except for the lowest C/N ratios 527 

(Ferchiche et al., 2024; Kendall et al., 2001; Ogrinc et al., 2008). 528 

In the present study, isotopic and elemental signatures of terrestrial POM and phytoplankton 529 

were determined from subsets of the bulk data sets following the approaches of Savoye et al. 530 

(2012), Liénart et al. (2017) and Ferchiche et al. (2025, 2024). It has the double advantage of 531 

1) taking into account the reworking of terrestrial POM within the river and thus discriminating 532 

labile from refractory terrestrial POM, and 2) taking into account the variability of 533 

phytoplankton signature over time, due to differences in growth conditions (see below). Labile 534 

terrestrial POM mainly appears during high river flow (Fig. 6 and A5; Savoye et al., 2012) and 535 

is usually composed of riparian litter (e.g., Veyssy et al., 1998). In the studied rivers, 13C, 15N 536 

and C/N ratio of labile terrestrial POM ranged between -28.9 ± 0.8 ‰ and -26 ± 0.9 ‰, 3.7 ± 537 

0.6 ‰ and 6.6 ± 0.9 ‰, and 8.8 ± 0.4 and 17 ± 3.2 mol/mol, respectively. These values are very 538 

similar to values found in other temperate systems like the Gironde Estuary (13C = -28.7 ± 0.9 539 
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‰; Savoye et al., 2012), the Sava River (13C = -28 ± 5 ‰; 15N = 5 ± 2 ‰; C/N = 33 ± 15 540 

mol/mol; Ogrinc et al., 2008) or Taiwanese rivers (13C = -26.6 ± 1.8 ‰; C/N = 31.1 ± 23.4 541 

mol/mol; Hilton et al., 2010) and very similar to direct measurement of C3 plants (13C = -28.1 542 

± 2.5 ‰; O’Leary, 1981 and references therein; 13C = -28 ± 1.3 ‰; 15N = 0.8 ± 2.9 ‰; C/N 543 

= 39.6 ± 25.7 mol/mol; Dubois et al., 2012; 13C = -27.9 ± 0.1 ‰; Fernandez et al., 2003). 544 

Refractory terrestrial POM is terrestrial POM that has undergone large reworking within river 545 

water, river sediment or even the estuarine maximum turbidity zone (e.g., Etcheber et al., 2007; 546 

Veyssy et al., 1998). In the studied rivers where it was found, 13C, 15N and C/N ratios of 547 

refractory terrestrial POM ranged between -28 ± 0.7 ‰ and -25.9 ± 0.4 ‰, 3.2 ± 0.8 ‰ and 6.7 548 

± 1.4 ‰, and 5.8 ± 1.4 and 8.8 ± 3.1 mol/mol, respectively. These values are very similar to the 549 

large gradient of refractory POM origins found in other temperate systems like the Gironde 550 

Estuary (France) (resuspended sediment, 13C = -25.2 ± 0.3 ‰; 15N = 5.5 ± 0.4 ‰; C/N = 8.5 551 

± 0.8 mol/mol; Savoye et al., 2012), Taiwanese rivers (petrogenic POM, 13C = -23.6 ± 1.1 ‰; 552 

C/N = 6.5 ± 1.6 mol/mol; Hilton et al., 2010) and in the Pearl River (China) (soil, 13C: between 553 

-28.3 ± 0.8 ‰ and -21.7 ± 0.7 ‰; C/N: between 8.9 ± 1.1 and 17.9 ± 3.6 mol/mol; Yu et al., 554 

2010). 555 

Isotopic signatures of phytoplankton vary depending on biogeochemical conditions and 556 

processes like nutrient availability and utilisation, growth rate and limitation (e.g., Fry, 1996; 557 

Liénart et al., 2017; Lowe et al., 2014; Miller et al., 2013; Savoye et al., 2003; Sigman et al., 558 

2009; Yan et al., 2022) and can be estimated using measured environmental parameters 559 

(Ferchiche et al., 2024, 2025; Liénart et al., 2017; Savoye et al., 2012). For the seven rivers 560 

where phytoplankton isotopic signatures were found variable over time, phytoplankton 13C or 561 

15N were correlated to: concentrations and ratio of chlorophyll a and phaeopigments, water 562 

temperature, nitrate concentration and/or conductivity (Tab. 2). Chlorophyll a and 563 

phaeopigments concentrations are direct proxies of phytoplankton fresh and degraded 564 

biomasses and are related to phytoplankton growth and decay, two processes that increase 565 

phytoplankton 13C (Golubkov et al., 2020; Michener and Kaufman, 2007 and references 566 

therein). Similar processes may explain phytoplankton-15N increase with chlorophyll a 567 

increase. An increase in water temperature accelerates bio-mediated carbon remineralisation 568 

processes, bringing a lower 13C value than CO2 coming from water-atmosphere equilibration 569 

and rock-leaching CO2 (Polsenaere et al., 2013 and references therein). Consequently, 570 

phytoplankton 13C decreases as phytoplankton uses remineralised CO2 and thus as water 571 

temperature increases. Phytoplankton 15N depends on N-nutrient origin and availability 572 

(Savoye et al., 2003 and references therein). Especially, it increases with nutrient concentration 573 

decrease (Sigman et al., 2009) as reported for the Rance River (Tab. 2). Water conductivity 574 

could be considered as a proxy of water mass and thus of nitrate origin. This may explain the 575 

relationship between phytoplankton 15N and water conductivity in the Orb River (Tab. 2).  576 
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In the studied rivers, phytoplankton 13C, 15N and C/N ratio ranged between -34.9 ± 0.4 and -577 

23.8 ± 0.6 ‰, 4.3 ± 0.8 and 13.2 ± 1.8 ‰, and 4.8 ± 0.9 and 10 ± 0.9 mol/mol, respectively. 578 

This is similar to values reported for the Loire River, another French river (-30.6 ≤ 13C ≤ -25.0 579 

‰; 3.0 ≤ 15N ≤ 10.4 ‰; C/N = 7.2 ± 0.6 mol/mol: Ferchiche et al., 2024), but narrower ranges 580 

can be found in the literature. In the Sava River (Eastern Europe), phytoplankton signature was 581 

-30.4 ± 2.1 ‰, 5.0 ± 1.5 ‰ and 6.5 ± 1.5 mol/mol for δ13C, δ15N and C/N ratio, respectively 582 

(Ogrinc et al., 2008), similar to that of Indian (δ13C = -30.6 ± 1.7 ‰, δ15N = 7.0 ± 2.3 ‰; 583 

Gawade et al., 2018) and Texan (13C = -31,4 ‰; Lebreton et al., 2016) rivers. Lower 13C 584 

values (≤ -32 ‰) were also found (Finlay et al., 2010; Hellings et al., 1999; Sato et al., 2006; 585 

Savoye et al., 2012). However, values of elemental and isotopic ratios for riverine 586 

phytoplankton are scarce in the literature. Indeed, it is not easy to estimate the phytoplankton 587 

signature since it cannot be separated from other particles. Thus, literature estimates may not 588 

be perfectly representative of the variability of phytoplankton isotopic signatures.  589 

4.2. Watershed characteristics drive spatial dynamics of POM 590 

composition 591 

At the annual scale, we observed deep variations between studied rivers regarding the mean 592 

POC proportion of the different sources (5 ≤ phytoplankton ≤ 80 %; 17 ≤ labile terrestrial POC 593 

≤ 95 %; 0 ≤ refractory terrestrial POC ≤ 39 %).  594 

Interestingly, phytoplankton proportions were highly correlated to the proportion of agriculture 595 

surface areas and conductivity and in a less extent to river nitrate concentration (Fig. 7). Such 596 

relationship between agriculture surface and phytoplankton is well-known, as agricultural 597 

activities increase nutrient inputs to river bodies (Khan and Mohammad, 2014), leading to better 598 

conditions for phytoplankton growth (Dodds and Smith, 2016; Minaudo et al., 2015). 599 

Also interestingly, the proportions of labile terrestrial matter were positively correlated to soil 600 

organic carbon content, soil erosion, the podzol acidic soil coverage and sandy rock material 601 

coverage (Fig. 7, Fig. A6), indicating a strong relationship between terrestrial matter in rivers 602 

and soil nature with undecomposed and fresh detrital matter (McCorkle et al., 2016). They are 603 

also negatively correlated to phytoplankton proportions and their related environmental 604 

parameters. Rivers which POM is dominated by labile terrestrial POM (mainly rivers of type I) 605 

flow through catchments dominated by sandy rocks material andin podzolpodzol (an acidic soil 606 

type). This kind of soil  is subjectmitted to soil erosion and releases large amounts of coloured 607 

dissolved organic carbon, favouring the input of terrestrial material (soil erosion) and 608 

disfavouring phytoplankton growth in the river water because of the turbidity due to the 609 

dissolved organic carbon (Canton et al., 2012; Polsenaere et al., 2013).  610 

The proportions of refractory terrestrial matter are correlated to the catchment slope and 611 

negatively correlated to useful water reserve of water (Fig. 7, Fig. A6). Rivers for which POM 612 
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is partly composed of refractory terrestrial POM (most of the rivers of type II) flow through 613 

catchments of mountainous surfaces, which are associated with shallower, poorer topsoil and 614 

more outcropping bedrock (so a reduced soiluseful water reserve of the soil). It favours more 615 

reactive and abrupt transfer of water to the river, leading to enhanced episodes of sediment 616 

resuspension, as well as permitting a rock-derived POM weathering (Copard et al., 2018; 617 

Higueras et al., 2014; Yaalon, 1997). 618 

4.3. Temporal dynamics of POM composition and river-dynamics 619 

typology 620 

If average quantitative difference between rivers can be input to differences in the catchment 621 

characteristics (see section 4.2), seasonnally, phytoplankton likely appears during spring and 622 

summer in favourable conditions, related to low discharge, high-temperature conditions and 623 

enough nutrients to support its growth, while in winter, high turbidity and low-temperature 624 

conditions limit its presence (Turner et al., 2022). . Terrestrial material likely appears during 625 

winter conditions, related to floods that transport great amounts of terrestrial material (Dalzell 626 

et al., 2007). Such a seasonal dichotomy between phytoplankton and terrestrial POM was 627 

clearly visible for most of the studied rivers (Fig. 4), especially for type-IV and type-III rivers, 628 

but even for some of those highly dominated by the labile terrestrial POM (e.g., Milieu and 629 

Tagon Rivers; Type-I rivers). This was illustrated by the relationships between phytoplankton 630 

POM and chlorophyll a concentration and/or temperature (as proxies of favourable conditions 631 

for phytoplankton production) on the one hand, and between labile terrestrial POM and river 632 

flow and/or SPM concentration on the other hand (Fig. 6 and A5). This dichotomy in POM 633 

composition was also reported in other similar studies (e.g., Kelso and Baker, 2020; Lu et al., 634 

2016). In rivers where refractory terrestrial POM was present in addition to the labile one (type-635 

II rivers), both terrestrial sources were linked to river flows and SPM concentrations. More 636 

precisely, it was interesting to see that the refractory terrestrial POM was more related to SPM 637 

concentration than river flow and inversely for the labile terrestrial POM. This indicates that 638 

labile and refractory terrestrial POM were preferentially associated with direct river input and 639 

sediment resuspension, respectively. The origin of the refractory terrestrial POM may be 640 

fossil/bedrock/petrogenic OM (e.g., Copard et al., 2022; Hilton et al., 2010; Sun et al., 2021) 641 

brought by river flow (in quantity undetectable in the bulk POM using our tools), especially in 642 

Type-II rivers which watersheds are characterized by high slopes (Fig. 7). This POM can be 643 

accumulated in downstream sediments and be resuspended (in quantity calculable in the bulk 644 

POM using our tools). Refractory terrestrial POM may also come from labile terrestrial POM 645 

brought by the river flow and then accumulated and reworked/decayed until refractory POM in 646 

the sediment (e.g., Etcheber et al., 2007; Savoye et al., 2012), which can be resuspended. 647 

Sewage POM was detected in two of the studied rivers, but with different associated temporal 648 

dynamics. In the Têt River, because the former WWTP was dysfunctional, a new one replaced 649 
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it in late 2007 (https://www.assainissement.developpement-durable.gouv.fr/pages/data/fiche-650 

060966136002, last visit 10/09/24). This explains the shift in sewage POM between the two 651 

studied periods (2006-2007 versus 2008-2010 without anthropogenic POM). In the Orb River, 652 

sewage POM was detected throughout the studied periods. The WWTP is located only a few 653 

kilometres upstream of the sampling site and is large enough (220,000 inhabitant equivalent) 654 

compared to the river flow (annual mean: 23m3/s) to make the sewage POM detectable in the 655 

bulk POM using 15N. Such a result is quite common for urban rivers (e.g., Kelso and Baker, 656 

2020). 657 

5. Synthesis, originality of the study and perspectives 658 

The present study provides a comprehensive assessment of POM composition and its spatial 659 

and seasonal variability in temperate rivers. By including twenty-three rivers spanning a wide 660 

range of environmental conditions under a temperate climate, a river-dynamics typology is 661 

proposed based on POM composition and its temporal patterns. In type-I rivers, POM is 662 

dominated by labile terrestrial material throughout the year. This material is mainly associated 663 

with suspended particulate matter. Phytoplankton makes a slight contribution, especially during 664 

summer. Type-II rivers are characterised by the presence of both labile and refractory terrestrial 665 

material, along with phytoplankton. The variability between these sources over time is high, 666 

but seasonality is not always evident, although phytoplankton and terrestrial POM can dominate 667 

the POM composition during summer and winter, respectively. Nonetheless, if both terrestrial 668 

sources are primarily linked to river flow and SPM, a better coupling of refractory terrestrial 669 

POM with SPM indicates that this material is probably stored in sediments and resuspended, 670 

whatever its origin (soil, litter, petrogenic POM). In type-III rivers, POM consists of 671 

phytoplankton and labile terrestrial material. The seasonality of POM composition is not very 672 

pronounced, though the contribution of labile terrestrial POM is closely related to river flow. 673 

Type III is an intermediate between type I and type IV. In type-IV rivers, POM is also composed 674 

of phytoplankton and labile terrestrial material, but the seasonality is highly marked, with a 675 

clear shift from high phytoplankton contribution in summer to high terrestrial contribution in 676 

winter. Labile terrestrial POM remains closely associated with river flow. Beyond this 677 

typology, the main differences in POM composition between the studied rivers is are related to 678 

catchment inherent properties. The contribution of phytoplankton is correlated with the 679 

proportion of agricultural coverage, while the contribution of labile terrestrial POM is linked to 680 

leached OM-rich thick soil features and the refractory terrestrial POM to thin OM-poor soils 681 

with high rock-derived features. 682 

The originality of the present study lies firstly in its approach. Even if C and N stable isotopes 683 

have been used for decades to investigate POM origins within river waters, the quantification 684 

of POM composition (i.e., the relative proportion of each source composing the POM) using 685 

mixing models, especially Bayesian mixing models, is not so common. Most previous studies 686 
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either use literature data for phytoplankton isotopic signature (e.g., Zhang et al., 2021) or use 687 

lake or autochthonous POM as a proxy of phytoplankton (e.g., Kelso and Baker, 2020). Also, 688 

most of these studies use direct measurements of soil or plants to assess the isotopic signature 689 

of terrestrial POM, although this material may rework within the water column or sediment, 690 

changing its elemental and isotopic values (e.g., Savoye et al., 2012). These approaches do not 691 

consider the temporal variability of phytoplankton and terrestrial material isotopic signatures. 692 

In the present study, we used the approach developed by Savoye et al. (2012) in an estuary, 693 

Liénart et al. (2017) in coastal systems, and Ferchiche et al. (2024, 2025) in a river to assess 694 

elemental and isotopic signatures from subsets of bulk POM and, when needed, empirical 695 

equations. This approach has the advantage of 1) using signatures dedicated to the sampling 696 

area and 2) taking into account the potential variability of these signatures over time, i.e., 697 

depending on environmental conditions for phytoplankton growth and its decay for 698 

phytoplankton and terrestrial POM. Especially, we discriminated labile from refractory 699 

terrestrial POM in some rivers, as Savoye et al. (2012) did in an estuary. Another great 700 

originality of the present study lies in the multi-system approach: studying 23 rivers in a single 701 

study allowed the detection of four types of river functioning regarding the POM composition 702 

and its temporal dynamics, which has not been performed before. It also highlights the great 703 

influence of land use (agriculture) and characteristics (erosion, organic carbon content, type of 704 

soil) on the POM composition of rivers. At last, the multi-parameter use of δ13C, δ15N, and C/N 705 

ratio allowed either to perform mixing models with up to four end-members or to study POC 706 

and PN composition separately. It showed that POC and PN display very similar compositions 707 

and dynamics in rivers. Overall, this study, which focuses on the River-Estuary Interface, brings 708 

meaningful information for the comprehension of C and N cycles along the LOAC and 709 

especially the behaviour, dynamics and drivers of POM that leaves the river and enters the 710 

estuary.  711 

From a methodological perspective, such a study could be strengthened by the use of non-712 

exchangeable 2H as an additional tool to even better distinguish and quantify more sources in 713 

mixing models. This tool has been recently shown to be powerful for such purposes (Ferchiche 714 

et al., 2025). From a fundamental perspective, aggregating more datasets from other temperate 715 

rivers would allow testing the robustness of this typology and probably detecting additional 716 

types, but also datasets from polar and tropical rivers to perform an even more comprehensive 717 

study at a global climate scale. Clearly, the approach developed in the present study is 718 

transferable to other regions of the planet and used at broader spatial scales. In addition, a 719 

similar study dedicated to the estuarine systems would even increase our comprehensive 720 

understanding of the origin and fate of POM along the Land-Ocean Aquatic Continuum by 721 

complementing the present study dedicated to the River-Estuary Interface and those of Liénart 722 

et al. (2017, 2018) dedicated to the coastal systems. 723 

  724 
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Toward a typology of river functioning: a 726 
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matter composition at the multi-river scale 728 
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 770 

Figure A1 Diagram detailing the regionalisation method, adapted from Souissi et al. (2000). 771 

  772 



 

36 
 

 773 



 

37 
 

 774 



 

38 
 

 775 



 

39 
 

 776 

 777 



 

40 
 

 778 Figure A
2 T

em
poral variations of m

atter characteristics for representative rivers along the studied periods for δ
13C

 (left axis; black dotted line) 

and δ
15N

 (right axis; blue line) (first colum
n); C

/N
 (left axis; black dotted line) and P

O
C

/chl a(right axis; blue line) ratios (second colum
n); 

S
P

M
(left axis; black dotted line), P

O
C

 (right axis; blue line) and chlorophyll a (right axis; blue dotted line) concentrations (third colum
n) and 

river flow
 (left axis; black dotted line) and tem

perature (right axis; blue line) (fourth colum
n). 
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 782 

Figure A3 13C, 15N, N/C and/or C/N values of bulk POM (black crosses) and sources. The 783 

latter are presented as closed circles (average) and bars (standard deviation) when the signatures 784 
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were constant over time and by colored area when at least one of the proxies was variable over 785 

time (see Table 2). This colored area corresponds to the dispersion of the values, including their 786 

uncertainties.787 

 788 

 789 

 790 

Figure A4 Temporal dynamic (rectangle graphs) and (inter-)annual mean (pie charts) of PN 791 

source proportions. Sources are phytoplankton (green) and labile terrestrial material (brown). 792 
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 807 

 808 

 809 

 810 

 811 

Figure A5 Redundancy analyses (correlation circles) of rivers standing for each type of river. 812 

Black arrows represent explained variables (concentration of POC or PN sources) and red 813 

arrows represent explaining variables (environmental variables). River types are recalled 814 

(Roman numerals). LTPOC or PN = Labile terrestrial POC or PN; RTPOC = Refractory terrestrial 815 

POC; φPOC or PN = Phytoplankton POC or PN; Anth. POC = Anthropogenic POM; SPM = 816 

Suspended particulate matter; Chl a = chlorophyll a; Phaeo. = phaeopigments; M. wind = 817 

meridional wind; Z. wind = zonal wind; R. flow = river flow; Temp. = temperature; Irrad. = 818 

Irradiance; NH4
+

 = ammonium; NO3
- = nitrate; PO4

3- = phosphates; Adj. R² = adjusted R². 819 
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 822 

Figure A6 Correlogram of multi-system RDA parameters, including source proportions and 823 

accompanying parameters. Descriptions of environmental parameters can be retrieved in 824 

section 2.5. Temperature = Water temperature; SPM = Suspended particulate matter; OC in soil 825 

= Organic carbon proportions in soil; WWTP population equivalent = sewage treatment 826 

capacities; WWTP …River flow = sewage treatment capacities to average river flow ratio.  827 
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Figure A7 Typology of river dynamics following a hierarchical cluster analysis on POM 835 
source proportions. The percentages of membership for each type attributed to each river are 836 
shown. Left panel: considering all sampling years for all rivers. Right panel: considering only 837 
one stream of type I fuelling the Bay of Arcachon (Milieu River). 838 
 839 
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