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Abstract

In riverine systems, particulate organic matter (POM) originates from various sources, each
having its proper dynamics related to production, decomposition, transport and burial,- There
isresulting in a significant ameunt-ef-spatiotemporal heterogeneity in the POM pool. The
current study, based on C and N elemental and isotopic ratios, applies Bayesian mixing models
associated with statistical multivariate analyses to 1) quantify and examine relationships
between POM composition and environmental forcings, and 2) draw a typology of river

functioning based on POM composition and its seasonal dynamics.

Twenty-three temperate rivers—ef—temperate—ehmate accounting for a large diversity of
environmental conditions were sampled fortnightly to monthly for one to seven years at their

River-Estuary Interface (REI). Phytoplankton and labile terrestrial material wvere
presentoccurred in all rivers, eentrary-towhereas sewage and refractory terrestrial material-that
were present in only a few. At the twenty-threestudied rivers scale; POM-seurcesarestrongly
related—to—watershed—charaeteristies, phytoplankton dominance wasbeing associated with
agricultural surfaces-and, while labile terrestrial material was linked to organic-rich leached soil

and refractory terrestrial matter to steep catchments with little soil-erganic-earbon-contentand
eroston—rate. Overall-Seasonal dynamics were primarily driven by phytoplankton growth, river

discharge (labile terrestrial material), and sediment resuspension (refractory terrestrial

material). varia

A statistical regionaliszation defined four types of river dynamicstypes: (1) systems whose

POM is dominated by labile terrestrial material yeaaer-round-al-yearlong; (2) systems whose
POM is composed of labile and refractory terrestrial material, in addition to phytoplankton,
with-showing variable seasonality-aceerdingto+ivers; systems whose POM is composed of

phytoplankton and labile terrestrial material (3) without and (4) with pronounced seasonality.

This work offers a comprehensive understanding of POM composition, spatio-temporal

dynamics and drivers—controlling factors at the REI in temperate climates, complementing

similar work dedicated to coastal systems. Future work dedicated to estuaries is called to get a

comprehensive understanding of POM composition, dynamics and drivers along the Land-

Ocean Aquatic Continuum.
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1. Introduction

The River-Estuary Interface (REI) is a crucial biogeochemical interface for understanding the
transition between continental and coastal systems, beginning at estuaries, because of its key
location within the Land-Ocean Aquatic Continuum (LOAC) (Bate et al., 2002). Indeed, rivers
then estuaries are important filters for matters received from land, transporting and transforming
organic matter and nutrients along their courses (Bouwman et al., 2013; Diirr et al., 2011;
Middelburg and Herman, 2007). These processes are fundamental in understanding global
biogeochemical cycles (Regnier et al., 2013), as these matters directly fuel coastal ocean trophic
networks (Dagg et al., 2004). However, in a Human-impacted world, anthropogenic activities
and disturbances can modify natural matter fluxes. For example, damming rivers directly
impacts nutrient flows (Wang et al., 2022) and sediment transportation (Kang et al., 2021).
Indirectly, land use in river basins can lead to changes in the river matter quality (Lambert et
al., 2017).

In aquatic systems, particulate organic matter (POM), i.e., non-mineral particles, is composed
of different sources that originate from different compartments: phytoplankton, macrophytes

from the aquatic systems, as well as sotl-particles-and-plant litter, soil ander petrogenic particles

from terrestrial compartments and even treated and untreated anthropogenic organic matter (Ke
etal., 2019; Sun et al., 2021; Zhang et al., 2021). Depending on its composition, POM exhibits
different levels of lability, i.e., different levels of biogeochemical reactivity and bioavailability.
For instance, phytoplankton is usually considered mainty—highly labile, and thus highly
biogeochemically reactive and bioavailable for primary consumers, while terrestrial POM is

usually considered matnly-more and more refractory through degradation -processesand, thus

lightly biogeochemically reactive and poorly bioavailable for the food webs (Brett et al., 2017;
David et al., 2005; Etcheber et al., 2007). In other words, the determination and quantification
of POM composition (i.e., the relative proportion of each source composing the POM) allow a
better understanding of biogeochemical cycles and trophic ecology in aquatic systems (e.g.,
Grunicke et al., 2023; Minaudo et al., 2016). Nevertheless, POM composition and concentration
are not only involved in biogeochemical and biological processes (e.g., primary production,
remineraliszation, feeding) but also undergo other processes inside and at the interface of the
aquatic compartment (Canuel and Hardison, 2016). River hydrodynamies-hydrology is ene-of
the—main—drivers—ofa key factor controlling POM composition and concentration.; The

geological and soil characteristics of each catchment, together with climatic conditions, shape

the erosional processes.- leading to great variabilities in_hydrodynamics.- terrestrial material

quality and quantity and phytoplankton growth conditions (Dalzell et al., 2007; Hilton et al.,
2010; Lebreton et al., 2016).;possiblyleading This variability leads to ehanges-shifts in POM
source origins (Arellano et al., 2019; Barros et al., 2010). AdditiennalyAdditionallylse, ehanges
n—anthropie—pressuresanthropogenic disturbances can ehange—directly or indirectly affect

seasonal as well as long-term patterns of POM_seasenal-composition and concentration.-a#ne

3
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theirseasonal variationspatterns;—tke—a— For instance, a decrease in nutrient load_affects
phytoplankton production and biomass ({Minaudo et al., 2015)—er-affeet-yvear-round-ariver's
bioseochemistry- by-alterine stablecontrolline factorsfe-o—. agricultural surfaces altersinethe

soil properties and erosion and consequently soil particle export to rivers.,-o¥ damming altersing

theriver hydromorphology and consequently particle dynamics and export (5 {Kang et al., 2021;
Zhang et al., 2021), etc.-

This dependency of POM composition and concentration en-to physical, biogeochemical and
biological processes and their responses to environmental conditions and characteristics (Bonin
et al., 2019; Falkowski et al., 1998; Field et al., 1998; Galeron et al., 2017; Goi et al., 2009;
Lebreton et al., 2016) may lead to distinguishing different typeselegy of rivers, i.e., the
likeliness of rivers to carry preferential sources. For instance, highly turbid systems are more
likely to carry refractory materials (Savoye et al., 2012), while eutrophicated rivers carry high
biomass of phytoplankton (Hounshell et al., 2022; Minaudo et al., 2015), and contrastinged
processes can lead to a mixture between different detrital sources, as soil matter vs. fresh
terrestrial plants (Ogrinc et al., 2008). However, to date, no study clearly determined typologies

of river dynamicss based on POM composition and its seasonal variability.

To distinguish POM sources and quantify their contribution to POM composition, different
tools such as elemental and isotopic ratios, pigments or specific compounds like fatty acids or
alkanes can be used (e.g., Chevalier et al., 2015; Liénart et al., 2020, 2017; Savoye et al., 2012).
Elemental and isotopic ratios are usually considered robust and allow the quantification of POM
composition in this kind of study (e.g., Liénart et al., 2016; Onstad et al., 2000; Wang et al.,
2021). Indeed, they usually allow the discrimination of, e.g., riverine phytoplankton, terrestrial
POM and wastewater POM (Ke et al., 2019) and they can be used for running mixing models
that quantify the proportion of the different sources inte a POM mixture (Parnell et al., 2013).
However, studies using mixing models for quantifying POM composition in river systems are
still quite scarce (e.g., Ferchiche et al., 2025, 2024; Kelso and Baker, 2022, 2020; Zhang et al.,
2021).

Within the scope of better understanding the role of the LOAC in modifying matter fluxes and
quality, the present study gathered published data and results from 23 rivers at the river-estuary
interface with the aim of 1) quantifying the POM composition of each river, 2) describing the
seasonal variations of this composition, 3) determining the drivers of the seasonal variability
within each river and the spatial variability among the 23 rivers, and then 4) determining a
typology of river dynamicss according to their POM composition and dynamics. This study is
the first thate precisely quantify POM composition in numerous and various temperate river

systems in a world region (here, the-Western Europe) and classify river types according to POM

composition and dynamics.

2. Materials and methods
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Twenty-three temperate rivers were studied at their river-estuary interface (i.e., right upstream
of the tidal influence). All the data come from published studies or national open databases. To
minimize the heterogeneity of the datasets in terms of sampling strategy, we have considered
for this study the datasets only when 1) C/N ratio along with isotopic ratio of carbon and/or
nitrogen were available, 2) particulate matter characteristics like, suspended particulate matter
(SPM), particulate organic carbon (POC), particulate nitrogen (PN) or; chlorophyll a (chl a)
were also available, 3) datasets exhibited at least a monthly temporal resolution for one full
year. When needed, published datasets were completed and harmoniszed thanks to national
databases.

2.1.Study sites

The studied rivers and associated watersheds are all located in France (except the upper basin
of the Rhone River) and distributed in all regions of the mainland. Three, fifteen and five of
these rivers flow into the English Channel, the Atlantic Ocean and the Mediterranean Sea (Fig.

1). Even if located in a somewhat restricted area (Western Europe) at the global scale, tFhey

encompass large gradients of environmental characteristics (Tab. 1) for a temperate climate.

For instance, the Loire River is one of the largest in Europe (length: 1006 km; watershed:
117,356 km?), while the littlest studied river is a very small stream of the Arcachon lagoon
(length: 3 km; watershed: 18 km?). They encompass large gradients of river flow (annual mean:
0.3 m%/s — 1572 m¥/s), turbidity (SPM annual mean: 2.7 mg/l — 40.9 mg/l) and trophic status
(from oligotrophic to eutrophic rivers; chlorophyll @ annual mean: 0.4 pg/l —57.1 ug/l). At last,
they undergo a gradient of anthropic pressures as illustrated by the proportion of artificial
surfaces (0.1 % — 5.6 %) and agricultural areas (0 % — 86 %) in the watersheds (Fig. 1).
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Figure 1 Studied rivers (thick blue lines), sampling locations (black stars) and watersheds (thin
black lines), including the main land uses (red, yellow and green eelerscolours). 1: Seine; 2:
Orne; 3: Rance; 4: Elorn; 5: Aulne; 6: Loire; 7: Sévre niortaise; 8: Charente; 9: Seudre; 10:
Canal du Porge; 11: Cires; 12: Milieu; 13: Lanton; 14: Renet; 15: Tagon; 16: Leyre; 17: Canal
des Landes; 18: Adour; 19: Tét; 20: Aude; 21: Orb; 22: Hérault; 23: Rhone.



160  Table 1 Overview of river samplings and characteristics. Values are given as annual mean over the study period for river flow, temperature,
161  suspended particulate matter (SPM) and chlorophyll a (chl ). Id: identification number; Number: number of sampling dates. River types were

162  defined within the scope of the present study (see section 3.4).

. River . Sampling Num Latitud Longitu ~'°" Catchment ¢" W' gpr Chia
River 1Id tvpe Sampled period Periodicitv ber o de length area (km?) flow temperat (mg/l) (ng/l) References
P ¥ (km) (m3/s) ure(°c) & (M8
Seine 1 v 06/2014 to 06/2015 monthly 13 49.3067 1.2425 774 79000 496 15.0 21 2.8 Liénart et al., 2017, 2018
Orne 2 I 06/2014 to 06/2015 monthly 13 49.1797 -0.3491 169 2932 16 14.5 11 1.8 Liénart et al., 2017, 2018
Rance 3 IV 06/2014 to 05/2015 monthly 12 48.4916 -2.0014 103 1195 1.37 15.1 21 57.1 Liénart et al., 2017, 2018
Elorn 4 v 01/2014 to 06/2015 monthly 17 48.4505 -4.2483 56 385 6 12.3 16 3.0 Liénart et al., 2017, 2018
Aulne 5 IV 01/2014 to 06/2015 monthly 17 48.2127 -4.0944 144 1875 30 14.4 7 33 Liénart et al., 2017, 2018
Loire 6 v 10/2009 to 07/2012  bi-monthly 67 47.3920 -0.8604 1006 117356 630 14.1 19 18.7 Ferchiche et al., 2024
Sevre 7 IV 03/2014 to 03/2015 monthly 13 46.3153 -1.0039 158 3650 3.72 15.7 13 3.8 Liénart et al., 2017, 2018
Charente 8 il 03/2014 to 03/2015 monthly 13 45.8680 -0.7131 381 9855 68 15.1 13 1.3 Liénart et al., 2017, 2018
Seudre 9 I 03/2014 to 09/2015 monthly 15 45.6740 -0.9331 68 855 1.81 14.3 17 0.5 Liénart et al., 2017, 2018
Porge 10 1I 01/2008 to 02/2009 monthly 14 447898 -1.1612 57 222 3.48 13.3 12 5.0 Polsenaere et al., 2013
Cires 11 I 02/2008 to 02/2009 monthly 13 44.7598 -1.1107 12 45 0.58 12.2 5 0.4 Polsenaere et al., 2013
Renet 12 1 02/2008 to 02/2009  bi-monthly 23 44.7144 -1.0441 3 18 0.56 12.9 10 0.6 Polsenaere et al., 2013
Lanton 13 1 02/2008 to 02/2009 monthly 13 44.7002 -1.0244 15 36 0.26 12.5 11 1.2 Polsenaere et al., 2013
Milieu 14 I 02/2008 to 02/2009 monthly 13 44.6973 -1.0225 7 21 0.58 12.7 7 0.4 Polsenaere et al., 2013
Tagon 15 1 02/2008 to 02/2009  bi-monthly 26 44.6590 -0.9891 10 30 0.64 12.6 13 1.3 Polsenaere et al., 2013
01/2008 to 03/2010 . . Dubois et al., 2012 /
bi-monthly or
Leyre 16 I and 02/2014 to monthly 59 446263 -0.9961 116 1700 17 13.0 11 0.9 Polsenaere et al., 2013 /
02/2015 Liénart et al., 2017, 2018
Landes 17 1 02/2008 to 02/2009 monthly 12 44.6169 -1.1091 14 117 0.49 14.1 3 1.1 Polsenaere et al., 2013
Adour 18 I 04; iglg;/‘; (?167/ 2:314 monthly 24 434988 -12949 308 16912 516 140 48 24 L‘e]gz‘;;tdz"zé?f /
Tét 9 1 01/2006 to 05/2010 monthly 52 427137 2.9935 115 1369 23 15.7 8 NA Higueras et al., 2014
Hérault 20 1I 01/2006 to 05/2010 monthly 52 43.3594 3.4354 148 2582 53 16.0 7 NA Higueras et al., 2014
Orb 21 1 01/2006 to 05/2010 monthly 52 432850 3.2813 136 1585 23 15.7 8 NA Higueras et al., 2014
Aude 22 1I 01/2006 to 05/2010 monthly 52 43.2442 3.1527 223 5327 40 14.2 31 NA Higueras et al., 2014
Harmelin-Vivien et al., 2010
Rhéne 23 1 12/2003 to 01/2011 monthly 105 43.6787 4.6212 812 95590 1572 15.9 41 1.9 / Cathalot et al., 2013 /
163 Higueras et al., 2014
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2.2.Data origin

Regarding the core parameters (C/N ratio, 8'3C, §'°N, water temperature, SPM, POC, PN, chl
a), most of the data sets come from published studies (Canton et al., 2012; Cathalot et al., 2013;
Dubois et al., 2012; Ferchiche et al., 2024; Harmelin-Vivien et al., 2010; Higueras et al., 2014;
Liénart et al., 2016, 2017, 2018; Polsenaere et al., 2013), while most of additional parameters
come from national databases (Tab. A1). When not available in the cited studies, concentrations
of SPM, NOs", NHs" and PO4*, pH and water temperature were retrieved from the Naiades
database (https://naiades.eaufrance.fr/, consulted the 07/10/2023). Note that these parameters
were not necessarily measured or sampled exactly at the same location or date for Naiades -than

ias inn the cited studies. In that case, the location was chosen as close as possible to the study
location and data values were time-interpolated to match the study date. Meteorological

variables (air temperature, zonal and meridional wind, irradiance; used to qualify

photosynthetic favourable conditions or wind-induced resuspension) come from Météo France,

the French meteorological service. Wind data wereas received originally as direction and speed.
To remove the angular bias, they were combined using scalar products to get zonal and
meridional wind speeds, which range between minus and plus infinity (see Lheureux et al.,
2022, for more details). River flows (used to qualify the hydrodynamics forcing) were retrieved
from the Banque Hydro database (https://www.hydro.eaufrance.fr/, consulted the 07/10/2023)

or from Polsenaere et al. (2013) for the small streams.

Catchment properties were retrieved when available for the 23 rivers. Land use proportions
originate from the——national Corine Land Cover database
(https://www.statistiques.developpement-durable.gouv.fr/corine-land-cover-0, consulted the
10/01/2024). Soil organic carbon data originate from the —SoilTrEC database
(https://esdac.jrc.ec.europa.eu/content/predicted-distribution-soc-content-europe-based-lucas-
biosoil-and-czo-context-eu-funded-1, consulted the 10/01/2024). Net erosion soil data

originates from the WaTEM/SEDEM database (https://esdac.jrc.ec.europa.eu/content/estimate-

net-erosion-and-sediment-transport-using-watemsedem-european-union, consulted the
10/01/2024).___ Strahler numbers  originate  from the = CARTHAGE database
(https://www.sandre.eaufrance.fr/atlas/srv/api/records/c1d89cc3-¢530-4b0d-b0ae-

0615ebf7997d, consulted the 15/08/2025). Useful reserve values come from the GSF database
(Le Bas, 2025). Geological and soil types come from the GISSOL database (gathered by great

geological and soil types; INRA, 2025). Wastewater treatment capacities originate from the Eau

France WES services
(https://services.sandre.eaufrance.fr/geo/odp?REQUES T=getCapabilities&service=WFS&VE
RSION=2.0.0, couche sa:SysTraitementEauxUsees, consulted the 15/08/2025). All these

catchment data were pre-processed on a Geographical Information System to extract

information for each catchment surface, then averaged or weighted (depending on continuous

or semi-quantitative data) to characterise each system bywith a value.
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It should be noted that a complete study was already dedicated to the Loire River and reported
as a companion article (Ferchiche et al., 2024). Consequently, the results are not reported in the

present study but are used for multi-system comparisons (Fig. 5 and 7, and corresponding text).
2.3.Determination of sources signatures

To run mixing models for quantifying POM composition, it is previously needed to 1)
determine sources of POM, and 2) associate elemental and isotopic signatures to these sources.
In riverine systems, phytoplankton-autochthonous (mainly phytoplankton) and allochthonous
(terrestrial POMresuspended sediment, terrestrial fresh litter or rock-derived soil) are the main

sources that are usually considered as fueling the POM (e.g., Ferchiche et al., 2024; Pradhan et
al., 2016; Sarma et al., 2014). Nevertheless, seswage POM may also contribute (Higueras et al.,
2014). Consequently, phytoplankton, labile and refractory terrestrial POM and sewage POM

were considered as potential sources in this study.

Phytoplankton cannot be easily picked up from bulk particles to measure its elemental and
isotopic ratios. Therefore, the method developed and used by Savoye et al. (2012), Liénart et
al. (2017) and Ferchiche et al. (2024) was applied here. It consists of determining the elemental
and isotopic ratios from a subset of the bulk dataset. Briefly, phytoplankton-dominated POM is
characteriszed by a low POC/chl a ratio (< 200 or even < 100 g/g; Savoye et al., 2003 and
references therein). Thus, elemental and isotopic ratios of samples exhibiting a low POC/chl a
ratio can be considered as good estimates of phytoplankton elemental and isotopic ratios. When
the POC/chl a ratio is not available, samples exhibiting a high PN/SPM ratio can be used.
Additional constraints may be used to minimisze potential overlap between phytoplankton and
terrestrial elemental and isotopic signatures. Phytoplankton elemental and especially isotopic
ratios may-deephy vary deeply over time and space depending on primary production intensity
and potential limiting factors, nutrient origin, etc. (e.g., Miller et al., 2013; Savoye et al., 2003).
When existing, this variability has to be taken into account to avoid using elemental and isotopic
signatures that are not valid at the time or location of the sampling. This could be performed by
using regressions between elemental and/or isotopic ratios and environmental variables (see
Ferchiche et al., 2024; Liénart et al., 2017; Savoye et al., 2012). At last, when no samples exhibit
a low POC/chl a ratio, samples exhibiting the lowest (even if high) POC/chl a ratios can be
used, but the data should-be firsthy be corrected frors the contribution of the terrestrial POM

using Equations 1-3.

813Csample = ([POC]phytoplankton X 813Cphytoplankt0n + [POC]terrestrial X 813Cterrestrial) / [POC]sample

(eq. 1)
[POC]phytoplankton: [Chl a]sample X (POC/Chl a)mean (eq 2)
[POC]terrestn'al = [POC]sample - [POC]phytoplankton (eq 3)
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where (POC/chl @)mean 1s the mean POC/chl a ratio of the samples used to determine
phytoplankton signatures. Similar equations are used for the N/C ratio, 8'°N and C/N ratio, but
using PN instead of POC for §'°N and C/N ratio.

Elemental and isotopic signatures of terrestrial POM can be estimated by directly measuring
elemental and isotopic ratios in terrestrial-materialsa sample like soil, rocks or-and vascular

plants (e.g., Sarma et al., 2014). However, this does not take into account the reworking of this
material within the river system, which can affect these signatures (Hou et al., 2021). Thus,
similarly to phytoplankton, elemental and isotopic signatures of terrestrial POM can be
estimated using subsets of bulk data, following the approach of Savoye et al. (2012), Liénart et
al. (2017) and Ferchiche et al. (2025, 2024). Labile tFerrestrial POM is usually characteriszed
by high POC/chl a and C/N ratios and low POC/SPM ratios (Etcheber et al., 2007; Savoye et
al., 2003 and references therein). However, during its decay in aquatic systems, terrestrial POM
is coloniszed by bacteria (low C/N ratio), resulting in a consortium terrestrial POM + bacteria
of lower C/N ratio than the original terrestrial POM (Etcheber et al., 2007; Savoye et al., 2012).
Finally, one can discriminate two kinds of terrestrial POM: refractory terrestrial POM,
characteriszed by high POC/chl a and C/N ratios and very low POC/SPM ratio, and quite labile
terrestrial POM characteriszed by high POC/chl a ratio, intermediate C/N ratios and low
POC/SPM ratio (Etcheber et al., 2007; Savoye et al., 2012). Thus, subsets of high POC/chl a
ratio can be selected to determine the elemental and isotopic signatures of terrestrial POM. The
C/N ratio can be used to discriminate labile from refractory terrestrial POM. When no samples
exhibit a high POC/chl a ratio, samples exhibiting the highest (even if quite low) POC/chl a
ratio can be used, but the data should be-firsths be corrected frors the contribution of the

phytoplankton POM using Equations 1-3.

Elemental and isotopic ratios of riverine POM can exhibit a departure from a simple
phytoplankton-terrestrial POM mixing. In the present study, this was the case in only two rivers.

For the Tét River, the elemental and isotopic signature of anthropogenic POM was available in

Higueras et al. (2014). It consisted of analyses of POM sampled in the wastewater treatment
plant (WWTP) the-closest to the sampling site. For the Orb River, the signatures were estimated
using the sample exhibiting the lowest §'°N, typical of anthropogenic POM (Ke et al., 2019).

The estimation of POM-source signatures was performed independently for each river, except
for some of the tributaries of the Arcachon Lagoon (rivers 11 to 15), where data sets were
gathered, thanks to very similar characteristics (same 613C of dissolved inorganic carbon;
Polsenaere et al., 2013), to get a larger subset of data for estimating elemental and isotopic
signatures more accurately. All criteria used for defining the above-described subsets are

reported in Table 2.

Table 2 Elemental and isotopic signatures of POM sources and criteria used to choose the data

subset to determine them. When the signature did not vary over time, average + standard

10
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deviation are reported. When the signature did vary over time, minimum and maximum values,
standard deviations, as well as equations are reported. The types of mixing models performed
for each river are also indicated (carbon mixing models were performed using §'°C and N/C
ratio, or only §'3C; nitrogen mixing models were performed using §'°N and C/N ratio; mixed
mixing models were performed using §'3C, §!°N and N/C ratio). POC% (or PN%) = Particulate
Organic Carbon (or Particulate Nitrogen) to Suspended Particulate Matter ratio (%); C/N =
POC/PN ratio (mol/mol); chla = chlorophyll a (ng/l); phaeco = phaeopigments (pg/1); conduc =
conductivity (uS); temp = water temperature (°C);- Q7 = mean of past seven days river flow;
NO3™ = nitrate (mg(NOs3")/1).

Source discriminants Model performed Labile terrestrial matter Refractory terrestrial matter
. Labile Refractory
WWTP"
River terrestrial  terrestrial ~ Phytoplankton P\Z)—I{/II) s Carbon Nitrogen Mixed e 5N C/N N/C sBcC 5°N C/N N/C
matter matter
) 285 6.6 10.6  0.093
Seine C/N>10 POC/chla <200 X X 103 109 103 £0.002
., ) 284 58 124 0.082
Orne C/N>11 POC/chla < 500 X X 103 110 104 £0.003
POC/chla >
268 6.1 88  0.113
R 200 and chl. POC/chla < 150 X X
ance jnlOC a chla=< £02  +£07 404 0007
284 58 13.0 0077
Elorn C/N>12 POC/chla < 200 X X 07 409 +08 +0005
POC/chla <200 289 58 12.1 0.08
SUhE Eh>l and C/N <9 X X +08 +£08 <11 =0.008
. POC/chla > 281 5.9 103 0.097
Loire 500 POC/chla < 200 X X o1 £03  +02 +000
A o 28.0 0.057
Sévre Niortaise C/N> 14 POC/chla <300 X L04 £0.040
. . 290 47 145 0.069
Charente C/N>12 POC/chla <300 X X 04 102 105 £0.002
POC/chla > 28.5
Seudre 2000 and C/N POC/chla < 1000 X :t 0‘1
>12 :
3"3C : POC/chla <
265 0.050
Porge C/N>15 100.; N/C : mean of X 11 £0.007
Cirés to Landes
I\i:l'le:u/ /Im:); C/N> 15 and POC/chla < 1000 X 285 0.053
chla<1 and POC% > 10 +£0.5 +£0.013
/ Tagon
POC/Chla < 1000.
Leyre C/N> 15 and 51C <2859 and X 283 0.06
- . an
hla<1 +0.5 +0.005
cna POCY% > 10
POC/Chla < 600. 29.1 0.075
Landes CN=12 5% <-29.1 X +0.4 +0.002
POC/chla > . -26.0 0.099
Adour 3000 POC/chla <200 X 109 £0.008
. POC%< PN%>2.3"C< 260 3.7 122 0.082 260 6.7 58  0.180
1 CN>1L5 05 ogandslsn>s Measured 2 02  £06  £05 20002 £06 +14 =14 £0.045
. PN% > 1 or 2 and 28.1 6.3 153 0.066 280 47 73 0139
Aude ON>12 - Q7>70 CIN<6 X £06 +£01 16 +0007 £07 +04 +10 +0.018
PN%>2.5"N>  Lower 27.1 3.7 105 0.095
Orb CN>10 w0 e = 104  +£04  £03 +0350
277 61 137 0.073 278 47 82  0.124
‘ o
Heérault CN>12 Q>45 PN%>2 X £02  £07 £12 0007 £04 £06 £15 +0019
. POC%< C/N<6.68 and 264 52 170 0.061 259 3.1 88  0.119
e Y 5N >3.92 X £13  £10 +£32 £0012  £04 +08 3.1 +0.032
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Table 2 (continued)

Phytoplankton WWTP's POM
River S13 . 15 . . <13 15
§7°C + equations 87N + equations C/N N/C + equations §°c "N  CN N/C
Seine 328 8.4 74 0.136
+1.1 £17 £0.7 +0.012
Ome 314 43 6.6 0.141
+£0.8 +£038 £13 £0.010
[-31.4;-25:6]  5.7x10"x[chla+phaco-  [4.7:11.4] : 6.2 0.161
Razce +17 0.04x[chlatphaca-306  +£0.7  OZMNOIZT o0 Lo010
Elom 274 6.9 10.0 0.101
+£03 £0.5 £0.9 +0.007
Aulne 28.1 8.6 82 0.122
£02 £02 £0.2 +0.003
-4
. -30.6;-25.0]  Sx10"x[chla+phaco- 13 0.104 4 ehlale- 72 0.140
Loire [ 0.0 ] 0.02[chla-+phacol- [ 12 ] %20’;1[0111[0]111:]2 £06 £0.011
: 0.39[chla/phaeo]-27.9 - R M : :
2.9x10
. [-35.7:292]  -258xexp([chla+phacol [0.106:0.145]
Blovme Nt 1.0 16055)-0.15x[temp]+229 +0.006 X[chla+phaeo] +
Charente 30.8 75 6.6 0.152
+£0.03 £1.6 +£0.3 +0.006
333
Seudre 101
. 33.6 0.128
orge 104 +0.008
C”ICVS[_/I_Rm;et 4 349 0.133
teu £04 +0.006
Lanton / Tagon
L 30.1 0.140
eyre £03 £0.016
29.9 0.112
Itz £03 £0.010
282 0.111
Adour £0.6 £0.010
. [-29.7;-27.8] -52x107[temp]? [5.3;13.3] 56 0.181 263 0.7 63 0160
[t +0.6 +0.08x[temp]-27.5 +18 SS3[emplSS g9 40021 01 £01 03 0017
[-32.6;-27.8] [5.2;10.6] . 5.0 0.205
Aude +0.6 -021x[templ-26.5 +1.6 LIETC262 g6 10,033
[-30.7;-23.4] [4.9:84] 844-3.63%(conduc- 4.8 0.213 271 19 37 0270
O £0.6 -0-19x{templ-26.0 £0.6  505)/(conduc-111)  +0.9 +0.039 £04 £19 £37 £0270
, [-31.5;-27.5] [63:10:9] 36510 [tempp-  5:0 0.203
-0.19 -26.0 > P
Heérault £1.0 *[temp} £13 LISx[templ+14.6  +0.7  +0.031
Rho 278 5.6 5.5 0.180
one +1.2 £0.8 £0.8 +0.030

2.4.Quantification of POM composition

POM composition was quantified using a Bayesian mixing model (‘simmr’ R package version
0.4.5, Govan and Parnell, 2023), which solves the equations system based on bulk and source
POM elemental and isotopic signatures. Mixing models were computed for each sampling date
of each river (Tab. 1), using carbon (8!3C and N/C ratio, Eq. 4, 7, 8), nitrogen (5'°N and C/N
ratio, Eq. 5, 6, 8), and/or a combination of three (5'°C, §'°N and N/C ratio, Eq. 4, 5, 7, 8) tracers.
From the three mixing models performed for each sampling date and river (carbon, nitrogen or
mixed), one model was selected as the best estimation of bulk POM data. It should be noted
that N/C and C/N ratios give information on the mixing of C and N, respectively (Perdue and
Koprivnjak, 2007). We used at least the same number of equations as unknowns (sources) to
avoid running underdetermined models that result in large uncertainty in model outputs(Phillips

et al., 2014). Equations of the models were:

12
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6 lexture X1 6 Csource 1+ X2 6 Csource 2+ X3 6 Csource 3+ X4 6 Csource 4 (Eq 4)

8" Nimixture = X1 8" Nsource 1 + X2 8" Niource 2+ X3 8" Nsource 3 + X4 8" Nource 4 (Eq. 5)
C/Nmixture = X1 C/Nsource 1 + X2 C/Nisource 2 + X3 C/Nisource 3 + X4 C/Nsource 4 (Eq. 6)
N/Cixture = X1 N/Csource 1 + X2 N/Csource 2 + X3 N/Csource 3 T X4 N/Csource 4 (Eq. 7)
X1 txot+x3+tx4=1 (Eq. 8)

As there was no a priori knowledge of sources contributions to the POM mixture, the models
were set with an uninformative prior (1, 1, 1, 1) following a Dirichlet distribution (all sources
have an equal probability to contribute to the mix; Phillips et al., 2014). Model runs were set
following the recommendations of Phillips et al. (2014). Models outputs were evaluated with
Gelman-Rubin diagnostic (verification of chain convergence) and predictive distributions to
ensure the good fit of the models to the observed data. Models outputs are given as medians.
Absolute uncertainties for the models varied from 1 to 18 % (range of average for each river)

with an overall average of 8 % (all models).
2.5.Forcings at local and multi-systems scales

Environmental forcings driving POM composition were determined using redundancy analysis
(RDA; ‘dudi.pca’ and ‘pcaiv’ functions; R package {ade4} version 1.7-19). RDA summariszes
multiple linear regressions between the response variable (POM composition: mixing model
outputs) and a set of explanatory variables (environmental forcings) to assess causality links
(Legendre et al., 2011). RDAs were performed at single-river and multi-river scales. Regarding
the multi-rivers scale, the annual mean POM composition of each river was used to determine

the drivers of spatial (i.e., between-rivers) variations of POM composition.

The proxies of the environmental forcings were chosen to directly or indirectly reflect the

forcings that affect the processes that-occurring in the river and the adjacent ecosystems {e-g-

primary-production;seil-leaching or WWIT P s-diseharge)and influencing POM source inputs
and-isetopie-values. To homogenisze the data sets for running the single-river RDAs, the same

combination of twelve parameters (see Table A2) proxiesforenvironmentalforeings-was used

for each river. They are linked to primary production (chlorophvll a., phaeopigments,

temperature, pH, ammonium, nitrate, phosphate, irradiance), upstream and lateral, natural

and/or anthropogenic inputs (river flow, rain, SPM, ammonium, nitrate, phosphate), and

resuspension (SPM, zonal and meridional wind energv) —SBM—eh-}eicephyH—a—phaeep@%m&

meridional-wind—For the multi-river RDA, environmental proxies were selected to reflect
processes occurring at large spatial scales and in the river basin. Henece,-anew-combination-of

sixteen-thirty-nineproxtes-was-Forty parameters (See Fig. A6) were used. They are linked to:

river—flowswater quality (conductivity, nitrates)—, climatete setting (river flow, latitude,

longitude, air temperature, precipitations, zonal, and-meridional wind-and total wind energy);

13
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artifteial, hydromorphology (river length, basin surface area, slope, Strahler number), land use
coverage (agricultural, artificial, forest and natural, -and-wetlands and water bodies-surfaee)
areas, net—seH—eroston—_soil properties (organic carbon content, net erosion—i—the—sei,

granulometry, useful reserves), soil type (podzol, brown, organic and hydromorphic soil),

geological type (alluvial, calcareous, clayey, detrital, sandy, loamy., crystalline and

metamorphic, volcanic and other/organic), and urban pressure (WWTP capacities, WWTP

capacities to river flow ratio). riverlength; basin-surface-area; latitude; longitude. From this

initial list of proxies, some were removed to limit the auto-correlation (use of the Variance

Inflation Factor, Borcard et al., 2011) and to improve the adjusted R? of each RDA analysis
(Tab. A2 and Fig. A6).

2.6. Typology of systemsriver dynamics

Rivers were classified based on POM composition and theirits temporal dynamics by
performing a regionaliszation analysis as in Liénart et al. (2018) (Fig. A1). This method, based

on multivariate cluster analysis (Souissi et al., 2000). allows to consider the temporal (seasonal)

variations specific to each river in addition to the spatial (between-rivers) component. The
regionaliszation analysis was based on POM composition data (i.e., proportions of sources)

computed for each river and each month. When the sampling was fortnightly, averages were

performed to get one value per month. When more than twelve-meonths—were-available(bi-
monthlysamphng ermere-yearsjone year was sampled, a standard year eftwelve-months-was
chosen-{(averaged-by-month-f fortnicht dates)+(Seuissietal-2000). Nevertheless, to check if

the choice of one vear over the other ones would modify the typology. another regionalisation

was performed using all available years for all rivers. Also, in order to check if the over-

representation of the small rivers and streams fuelling the Arcachon Bay would bias the

typology, a third regionalisation was performed. reducing the numbers ehof these rivers from

8 to 3 (and especially from 6 to 1 regarding rivers of Type I). The results (Fig. 5. Fig. A7) are

very similar, indicating the robustness of the method.

A contingency matrix (rivers, sources, months) was created from monthly values of source
contributions (i.e., mixing model outputs). For each month, a dendrogram was performed, and
ten cut-off levels were considered. Then, for each cut-off level, similarities between stations
were identified within the twelve-monthly dendrograms. Ultimately, global similarities
between rivers were computed using a fuzzy cluster that returns probabilities of membership of
each river to each cluster type. The best number of river types, i.e., river dynamics typology,
was determined considering the best Dunn coefficient (Dunn, 1974) and Silhouette score
(Rousseeuw, 1987).

3. Results

Hereafter, four rivers (Rance, Charente, Milicu and Hérault Rivers) were selected and

considered as representative of each type of studied river (see section 3.4). Thus, most of the
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results are illustrated using these four rivers. Graphs of all the other rivers are reported in the

supplementary material.
3.1.Contrastinged seasonalities in river characteristics

As stated in section 2.1, the 23 studied rivers encompassed large gradients of environmental
characteristics, as illustrated by the lowest and highest annual means of river flow (0.3 and 1572
m?3/s; Lanton and Rhone Rivers), water temperature (12.3 to 17.1 °C; Cirés and Tét Rivers),
SPM (2.7 and 40.9 mg/l; Cirés and Rhone River), POC (0.3 and 5.1 mg/l; Hérault and Loire
Rivers) and chlorophyll a (0.4 to 57.1 pg/l; Cires and Rance Rivers) concentrations as well as
POC/chl a (199 and 6444 g/g; Loire and Leyre Rivers) and C/N (5.9 and 20.3 mol/mol; Tét and
Lanton Rivers) ratios; this was less contrastinged among rivers for 8'3C (-30.2 and -26.2 %o;
Sévre and Tét Rivers) and especially 8'°N (4.0 and 8.0 %o; Leyre and Rance Rivers) (Fig. 2,
A2).

As generally observed in rivers from mid-latitude, the studied rivers exhibited clear seasonal

patterns in water temperature with lower and higher values in winter and summer, respectively.
However, such clear seasonal patterns were not always recorded for all the parameters, as there
were contrastinged patterns of seasonal variability among rivers. Indeed, the seasonal
variability of river flow was quite smooth (e.g., the Rance and Charente Rivers) with a higher
flow in winter/spring and lower flow in summer/fall for some rivers, whereas it was highly
pulsed for some others with constant low levels marked by short and strong floods (e.g., 53m?/s
in mean but 1169m?/s in flood time for the Hérault River) (Fig. 2). Overall, one can distinguish
rivers that are characterized by high concentrations of chlorophyll a and clear seasonal patterns
of most parameters (e.g., 53 pg/l of chlorophyll a in mean ranging from 3 to 135 pg/l in the
Rance River) from rivers characterized by low concentrations of chlorophyll a, high POC/chl
a and low seasonal variability for most of the parameters (e.g., 1.1 pg/l of chlorophyll @ in mean
ranging from 0.7 to 1.7 pg/l in the Milieu River) and from rivers that are characterized by high
seasonal variability of most parameters but without a clear seasonal pattern (e.g., Hérault
River). Other rivers exhibited intermediate behaviour (e.g., Charente River) (Fig. 2, A2).
Usually, Rance-like rivers exhibited high concentrations of chlorophyll @ in spring/summer
associated with POC/chl a ratio lower than 200 g/g, C/N ratio lower than 8 mol/mol and low
513C (down to -31 %o or -33 %o; e.g., Seine River, Fig. A2). In contrast, Milieu-like rivers
exhibited high POC/chl a (> ~ 700 g/g) and C/N ratio (> 15 mol/mol) and quite constant §'*C
(~-29 — -28 %o) all year round (e.g., Cires and Renet Rivers). These rivers are tributaries of the
Arcachon Lagoon. Hérault-like rivers flowing into the Mediterranean Sea exhibited highly and
suddenly variable C/N ratios (4 — 17 mol/mol), §'C (~-33 —-26 %o) and 8'°N (~2 — 12 %o) (e.g.,
Aude and Orb Rivers; Fig. A2).
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Figure 2 Temporal variations of matter characteristics for representative rivers along the studied
periods for §'°C (left axis; black dotted line) and §'°N (right axis; blue line) (first column); C/N
(left axis; black dotted line) and POC/chl a_(right axis; blue line) ratios (second column);
SPM(left axis; black dotted line), POC (right axis; blue line) and chl a (right axis; blue dotted
line) concentrations (third column) and river flow (left axis; black dotted line) and temperature

(right axis; blue line) (fourth column).
3.2.Elemental and isotopic signatures of POM sources

Elemental and isotopic signatures of phytoplankton were estimated for each of the twenty-three
rivers (Tab. 2, Fig. 3 and A3). Most of them (all of them for the C/N ratio) were found to be
constant over time. Their annual mean values varied between -34.9 %o (some tributaries of the
Arcachon Lagoon) and -27.4 %o (Elorn River) for 8!°C, between 4.3 %o (Elorn River) and 8.6
%o (Aulne River) for §'°N and between 4.8 mol/mol (Orb River) and 10.0 mol/mol (Elorn River)
for the C/N ratio. Some of them varied over time along with pigment concentration and ratio or

with temperature for §8'°C, and with pigment concentration (chlorophyll a and/or

phaeopigments), nitrate concentration, temperature, S8BC or conductivity for 5!°N (Tab. 2). The

range of temporal variability was usually 4-6 %o for §'°C and §'°N. Overall, phytoplankton
signatures are comprised between -35.6 and -23.8 %o for the §'*C and between 3.0 and 13.2 %o
for the §'°N.

All other signatures were found to be constant over time (Tab. 2 and A2, Fig. 3 and A3) but
may differ between rivers. Signatures mean annual values of labile terrestrial POM were
comprised between -29.1 and -26.0 %o for the 8'°C, between 3.7 and 6.6 %o for the 5'°N and
between 8.8 and 17.0 mol/mol for the C/N ratio. Signatures mean annual values of refractory
terrestrial POM were comprised between -28.0 and -25.9 %o for the §'°C, between 3.1 and 6.7
%o for the §'°N and between 5.8 and 8.8 mol/mol for the C/N ratio. Signatures mean annual
values of sewage POM were -27.1 and -26.3 %o for §'3C, 1.9 and -0.7 %o for §!°N and 3.7 and
6.3 mol/mol for C/N ratio for Orb and Tét Rivers, respectively.

17



435

Hérault

=26 A =26 12
x x
J x i 11 x
27 <X ok ¥ 27 1 <
»B % % ¥% XX x WK »g—T,—c 10 x x
28 1 X Xy 1{‘,“ 281 % k,c o~} x
e\g 3 x * * ’.8\ & x x ca\8 *x
5'29 1 x x 2\_,‘29 1 X x E’ 8 X x x
- 30 X x @] 30 4 x 4 7
= 30 x x x %o 30 % ’{x = x X, X% xx x x
x x
-31 *x x =31 1 x X x 6 ’&x ‘&‘ ’j
x x X 5 Fxoxom o wxl ¥ X
-32 A s -32 % 4 x &L
-33 . . . , -33 . . . . . 3 . . . . . , .
0,05 0,10 0,15 0,20 0,25 3 5 7 9 1 13 5 7 9 1 13 15 17
N/C (mol/mol) 3N (%o) C/N (mol/mol)
Milieu Charente
226 - =27 4 10
27 X x
28 x 9 N
T ek 28 -
29 4 x * — 3 x
= 3 3 * x
31 1 -29 1 7
o 31 o ; x :Z )
';o -32 1 ?b 0 xx x 2] 6
-33 4
34 =01 x x
b x 5 x
7 —— |, L e
004 006 008 0,10 0,12 014 0,16 0,06 0,08 0,10 0,12 0,14 0,16 8 10 12 14 16
N/C (mol/mol) N/C (mol/mol) C/N (mol/mol)
Rance Legend
-24 - 13 -
25 12 x X BulkPOM
26 - . 11 A < ]
27] —@x x ~ 10 - @ Labile terrestrial POM
= x x =X 9
X -28 4 xx E x T .
O -29 4 x £ 87 =, Refractory terrestrial POM
= 0 7 - o
30 - x * x
31 6 1 " x ~——&—— Phytoplankton
31 %
x
2 4 - Phytoplankton
-33 . . . s 3 r . . . .
0,10 0,12 0,14 0,16 0,18 5 6 7 8 9 10
N/C (mol/mol) C/N (mol/mol)

18



436
437
438

440

441

442
443
444
445
446
447

48

49

50
451
452
453
454

55

56

57
458
459
460
461
462
463
464

465
466

Figure 3 8'°C, 8§!°N, N/C or C/N values of bulk POM (black crosses) and sources. The latter are
presented as closed circles (average) and bars (standard deviation) when the signatures were
constant over time and by colored area when at least one of the proxies was variable over time
(see Table 2). This colored area corresponds to the dispersion of the values, including their
uncertainties.

3.3.Dynamics of particulate organic matter composition

Particulate organic matter composition resulting from mixing models outputs is presented
hereafter, for each river, as the relative contribution of each source to the POM pool (Fig. 4).
Among rivers whose POM is composed of only two sources (terrestrial POM and
phytoplankton), one can distinguish rivers with terrestrial-dominated POM (e.g., Milieu River:
terrestrial POM accounted for 94 + 3 % of the mixture) to rivers of intermediate POM
composition (e.g., Charente and Rance Rivers where phytoplankton accounted for 34 + 10 %
and 62 + 10 % of the mixture, respectively). All these rivers flow in-into the English Channel
and the Atlantic Ocean. The rivers whose POM is composed of three or four sources flow
into the Mediterranean Sea. In these rivers, terrestrial POM is present as refractory and labile
materials. The contribution of labile terrestrial POM ranged between 16 + 15 % (Té&t River) and
46 £ 21 % (Orb River), and of refractory terrestrial POM between 21 + 9 % (Rhone River) and
39 £ 15 % (Aude River). The contribution of phytoplankton ranged between 34 + 15 % (Aude
River) and 51 #+ 30 % (Hérault River) for the Mediterranean rivers. The fourth source of POM
was the WWTP’s POM. It was identified as a source in the Orb and Tét Rivers and accounted
for 15 + 6 % and 10 = 7 % in these two rivers, respectively. Regarding temporal variations of
POM composition, some rivers exhibited clear seasonal patterns, whereas others revealed a
homogeneous composition over the annual cycle (Fig. 4). The rivers where POM was highly
dominated by terrestrial POM (Seudre, Cires, Renet, Lanton, Milieu, Tagon, Leyre Rivers)
showed almost no seasonal variability. In contrast, some rivers like the Rance, the Elorn or the
Aulne River showed a clear seasonal pattern with the dominance of terrestrial material in winter
and phytoplankton in summer. At last, other rivers exhibited less clear (e.g., Landes, Porge,
Charente Rivers) or even no clear seasonal pattern but a quite stochastic variability over the

annual cycle (e.g., Sévre, Adour, Aude, Orb).

It should be noted that the above is valid for carbon and mixed as well as nitrogen models (cf.
Tab. 2; Fig. 4 and A4).
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Figure 4 Temporal dynamic (rectangle graphs) and (inter-)annual mean (pie charts) of POC
source proportions. Sources are phytoplankton (green), labile terrestrial material (brown),

refractory terrestrial material (yellow) and anthropogenic POM (orange).
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3.4. Typology of river dynamicss

Four types of river dynamics were determined by the regionaliszation analysis based on river
POM compositions and theirits temporal dynamics (Fig. 5). The seven rivers (Renet, Cires,
Lanton, Milieu, Seudre, Tagon and Leyre River), mainly belonging to Type I, are—were
characteriszed by terrestrial-dominated POM and no/low seasonality. Six of them are small
streams/rivers flowing to the Arcachon Lagoon. The five rivers (Aude, Hérault, Tét, Rhone and
Orb River), mainly belonging to Type II, are-were characteriszed by the co-occurrence of labile
and refractory terrestrial POM and large temporal variability, but, except for the Hérault River,
without a clear seasonal pattern. They all flow to the Mediterranean Sea. The five rivers (Porge,
Adour, Charente, Orne and Landes River), mainly belonging to Type III, are-were composed
of phytoplankton and terrestrial POM, and exhibited moderate seasonality. Type III is clearly
an intermediary between Type I and Type IV. These five rivers flow to the Atlantic Ocean or
the English Channel. Among the seven rivers flowing to the Arcachon Lagoon, the two that
mainly belong to Type III are man-managed streams and flow through lakes, contrary to the six
other ones, which mainly belong to Type I and are natural streams that do not flow through
lakes. Finally, the six rivers (Rance, Elorn, Aulne, Loire, Seine and Sévre River) mainly
belonging to Type IV are-were composed of phytoplankton and terrestrial POM, and exhibited
high seasonality. These six rivers flow to the Atlantic Ocean or the English Channel._It should

be noted that the regionalisations performed using all sampled vears for all rivers (Fig. A7)

resulted in the same typology and in the same type for each river, whatever the sampling vear.

The only exception is the Leyre River, which switched from Type 111 in 2008 to Type I in 2009.

Rance (3)
Elorn (4)
Aulne (5)
Loire (6)
Seine (1)
Sévre (7)
Porge (10)
Adour (18)
Charente (8)
Orne (2)
Landes (17)
Orb (21)
Rhone (23)
Tét (19)
Hérault (22)
Aude (20)
Leyre (16)
Tagon (15)
Seudre (9)
Milieu (12)
Lanton (13)
Cires (11)
Renet (14)

o
X

20% 40% 60% 80% 100%
Proportion of type membership
mType IV ®Typelll = Typell mTypel
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Figure 5 Typology of river dynamicss following a hierarchical cluster analysis on POM source
proportions. The percentages of membership for each type attributed to each river are shown.

3.5.Environmental forcings driving POM composition

One redundancy analysis was performed for each river to relate environmental parameters,
considered as proxies of drivers, to the POM composition, i.e., to assess the drivers of the
temporal variability of POM composition for each river (Fig. 6 and AS5). It should be kept in
mind that the POC or PN concentration of each source was used for these analyses and not the
relative proportion of the sources. In type-I rivers, i.e., rivers characteriszed by terrestrial-
dominated POM and no/low seasonality, terrestrial POM is usually linked to river flow and/or
SPM concentration (e.g., Milieu River on Fig. 6, Leyre and Tagon Rivers in Fig. AS5). However,
this feature is not always clear since the POM of these rivers is always dominated by terrestrial
material, almestregardless of swhateverthe environmental conditions-are. In type-II rivers, i.e.,
rivers characteriszed by the co-occurrence of labile and refractory terrestrial POM and large
temporal variability, phytoplankton POM is usually positively linked to temperature and
negatively linked to river flow, whereas labile and refractory terrestrial POM are bothis
positively linked to SPM and/or river flow. IaterestinghyPrecisely, labile terrestrial POM is
usually better linked to river flow and refractory terrestrial POM to SPM (e.g., Hérault River in
Fig. 6 and Rhone River in Fig. AS). In the Tét River, anthropogenic POM was linked to nitrate
concentration (Fig. AS5). In rivers characteriszed by phytoplankton and terrestrial-POM
composition with moderate (Type III) or high (Type IV) seasonality, terrestrial POM was
almost always positively linked to river flow and/or SPM concentration, while phytoplankton
was usually linked with chlorophyll a concentration (e.g., Charente and Rance Rivers on Fig.
6, Landes and Sseine Rivers on Fig. AS).
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Figure 6 Redundancy analyses (correlation circles) of rivers standing for each type of river.
Black arrows represent explained variables (concentration of POC sources) and red arrows
represent explaining variables (environmental variables). River types are recalled (Roman
numerals). POC,-LTroc = Labile terrestrial POC; RTprocPOE,: = Refractory terrestrial POC;
POCoroc = Phytoplankton POC; Chl a = chlorophyll a; Phaeco. = phaeopigments; M. wind =
meridional wind; Z. wind = zonal wind; R. flow = river flow; Temp. = temperature; Irrad. =

Irradiance; NH4" = ammonium; NO;™ = nitrate; PO4*> = phosphates-; Adj. R? = adjusted R2.

At last, another RDA was performed, gathering all rivers to relate environmental parameters to
the mean annual POM composition at the multi-rivers scale (Fig. 7). As anthropogenic POM
was only detected in two rivers (Orb, Tét), it was not included in the multi-rivers analysis to
avoid analysis bias. At this scale, phytoplankton is strongly positively hnked-correlated to
agricultural surfaces and conductivity, labile terrestrial material to te-sei-erestonrate-and-soil
organic carbon_content and podzol coverage, and refractory terrestrial material to riverflow-and
water—temperaturecatchment slope; refractory terrestrial material is also—and negatively

correlated to soil useful reserves of water (all correlations are significant; Fig. A6). Note that

the phytoplankton and labile terrestrial matter, as well as their related environmental variables,

are negatively correlated.
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Figure 7 Multi-rivers redundancy analysis. Black arrows represent explained variables (relative
proportions), red arrows represent explaining variables (environmental variables), and numbers
are river identifiers (cf. Fig.1). R. flow = river flow; %OC soil = percentages of organic carbon
1n soil:-Set 1on-—s61 i - Ram— ipitatiens; NOs3™ = nitrates concentration-;

Useful reserve = Useful reserve in soil; Conduc. = conductivity; %Agri. Surf. = Proportion of

agricultural surface; %Podzol = Proportion of podzol coverage; Slope = Catchment slope; Adj.
2 = adjusted R2.

4. Discussion

4.1.Bulk data-POM and source signatures in temperate rivers
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Over the 23 studied rivers, §'°C, 8'°N, and C/N ratios of bulk POM ranged between -35.2 and
-24.5 %o, -0.3 and 12.6 %o, and 3 and 23.4 mol/mol, respectively. This corresponds to usual

values recorded for riverine POM over temperate systems, except for the lowest C/N ratios
(Ferchiche et al., 2024; Kendall et al., 2001; Ogrinc et al., 2008).

In the present study, isotopic and elemental signatures of terrestrial POM and phytoplankton
were determined from subsets of the bulk data sets following the approaches of Savoye et al.
(2012), Liénart et al. (2017) and Ferchiche et al. (2025, 2024). It has the double advantage of
1) taking into account the reworking of terrestrial POM within the river and thus discriminating
labile from refractory terrestrial POM, and 2) taking into account the variability of
phytoplankton signature over time, due to differences in growth conditions (see below). Labile
terrestrial POM mainly appears during high river flow (Fig. 6 and AS; Savoye et al., 2012) and
is usually composed of riparian litter (e.g., Veyssy et al., 1998). In the studied rivers, §'3C, 8'°N
and C/N ratio of labile terrestrial POM ranged between -28.9 + 0.8 %o and -26 + 0.9 %o, 3.7 £+
0.6 %0 and 6.6 + 0.9 %o, and 8.8 = 0.4 and 17 + 3.2 mol/mol, respectively. These values are very
similar to values found in other temperate systems like the Gironde Estuary (§'°C =-28.7+ 0.9
%o; Savoye et al., 2012), the Sava River (§'°C = -28 £ 5 %o; 8!°N =5 £ 2 %o; C/N =33 £ 15
mol/mol; Ogrinc et al., 2008) or Taiwanese rivers (8'3C = -26.6 + 1.8 %o; C/N = 31.1 + 23 .4
mol/mol; Hilton et al., 2010) and very similar to direct measurement of C3 plants (5'°C = -28.1
+ 2.5 %o0; O’Leary, 1981 and references therein; 8'3C = -28 = 1.3 %o; 8'°N = 0.8 £ 2.9 %o; C/N
= 39.6 + 25.7 mol/mol; Dubois et al., 2012; §'*°C = -27.9 + 0.1 %o; Fernandez et al., 2003).
Refractory terrestrial POM is terrestrial POM that has undergone large reworking within river
water, river sediment or even the estuarine- maximum turbidity zone (e.g., Etcheber et al., 2007;
Veyssy et al., 1998). In the studied rivers where it was found, 8'3C, 8'°N and C/N ratios of
refractory terrestrial POM ranged between -28 £ 0.7 %o and -25.9 + 0.4 %o, 3.2 + 0.8 %0 and 6.7
+ 1.4 %o, and 5.8 + 1.4 and 8.8 £+ 3.1 mol/mol, respectively. These values are very similar to
athe large gradient of refractory POM origins these-found in other temperate systems like the
Gironde Estuary (France) (resuspended sediment, SBC =-252+0.3 %o; 8N = 5.5 £ 0.4 %o;
C/N = 8.5 £ 0.8 mol/mol; Savoye et al., 2012), Taiwanese rivers (petrogenic POM, §'*C = -
23.6 £ 1.1 %0; C/N = 6.5 + 1.6 mol/mol; Hilton et al., 2010) and in the Pearl River (China) (soil,
813C: between -28.3 £ 0.8 %o and -21.7 + 0.7 %o; C/N: between 8.9+ 1.1 and 17.9 + 3.6 mol/mol;
Yu et al., 2010).

Isotopic signatures of phytoplankton vary depending on biogeochemical conditions and
processes like nutrient availability and utiliszation, growth rate and limitation (e.g., Fry, 1996;
Liénart et al., 2017; Lowe et al., 2014; Miller et al., 2013; Savoye et al., 2003; Sigman et al.,
2009; Yan et al., 2022) and can be estimated using measured environmental parameters
(Ferchiche et al., 2024, 2025; Liénart et al., 2017; Savoye et al., 2012). For the seven rivers

where phytoplankton isotopic signatures were found variable over time, phytoplankton 8'*C or
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8'°N were correlated to: concentrations and ratio of chlorophyll a and phaeopigments, water
temperature, nitrate concentration and/or conductivity (Tab. 2). Chlorophyll a and
phaeopigments concentrations are direct proxies of phytoplankton fresh and degraded
biomasses and are related to phytoplankton growth and decay, two processes that increase
phytoplankton 8'*C (Golubkov et al., 2020; Michener and Kaufman, 2007 and references
therein). Similar processes may explain phytoplankton-3'°N increase with chlorophyll a
increase. An increase in water temperature accelerates bio-mediated carbon remineraliszation
processes, bringing a lower §'°C value than CO, coming from water-atmosphere equilibration
and rock-leaching CO> (Polsenaere et al., 2013 and references therein). Consequently,
phytoplankton §'*C decreases as phytoplankton uses remineraliszed CO, and thus as water
temperature increases. Phytoplankton 8'°N depends on N-nutrient origin and availability
(Savoye et al., 2003 and references therein). Especially, it increases with nutrient concentration
decrease (Sigman et al., 2009) as reported for the Rance River (Tab. 2). Water conductivity
could be considered as a proxy of water mass and thus of nitrate origin. This may explain the

relationship between phytoplankton 8'°N and water conductivity in the Orb River (Tab. 2).

In the studied rivers, phytoplankton 8'°C, !N and C/N ratio ranged between -34.9 + 0.4 and -
23.8 £ 0.6 %o, 4.3 £ 0.8 and 13.2 + 1.8 %o, and 4.8 + 0.9 and 10 £+ 0.9 mol/mol, respectively.
This is similar to values reported for the Loire River, another French river (-30.6 <§'3C <-25.0
%o; 3.0 < 8N < 10.4 %o; C/N = 7.2 + 0.6 mol/mol: Ferchiche et al., 2024), but narrower ranges
can be found in the literature. In the Sava River (Eastern Europe), phytoplankton signature was
-30.4 + 2.1 %o, 5.0 £ 1.5 %o and 6.5 = 1.5 mol/mol for §'3C, !°N and C/N ratio, respectively
(Ogrinc et al., 2008), similar to that of Indian (§'3C = -30.6 £ 1.7 %o, "N = 7.0 £ 2.3 %o;
Gawade et al., 2018) and Texan (8'3C = -31,4 %o; Lebreton et al., 2016) rivers. Lower §'3C
values (< -32 %o0) were also found (Finlay et al., 2010; Hellings et al., 1999; Sato et al., 2006;
Savoye et al., 2012). However, values of elemental and isotopic ratios for riverine
phytoplankton are scarce in the literature. Indeed, it is not easy to estimate phytoplankton
signature since it cannot be separated from other particles. Thus, literature estimates may not

be perfectly representative of the variability of phytoplankton isotopic signatures.

4.2.Watershed characteristics drive en—spatial dynamics of POM

composition

At the annual scale, we observed deep variations between studied rivers eencernineregarding
the mean POC proportion of the different sources (5 < phytoplankton < 80 %; 17 < labile
terrestrial POC < 95 %; 0 < refractory terrestrial POC < 39 %)).

Interestingly, phytoplankton proportions wereas highly correlated to the proportion of

agriculture surface areas and conductivity and in a less extent to river nitrate concentration (Fig.
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relationship between agriculture surface-area and phytoplankton is well-known, as agricultural

activities increase nutrient inputs to river bodies (Khan and Mohammad, 2014), leading to better
conditions for phytoplankton growth (Dodds and Smith, 2016; Minaudo et al., 2015).

Also ilnterestingly, the proportions of labile terrestrial matter wereas strenghrpositively hnked
eocorrelated to setl-eresion—and-soil organic carbon content, soil erosion,—and the podzol

coverage and sandy rock coverage (Fig. 7, Fig. A6), indicating a strong relationship between

terrestrial matter in rivers and soil nature with undecomposed and fresh detrital matter

(McCorkle et al., 2016). They are also negatively correlated to phytoplankton proportions and

their related environmental parameters. Rivers which POM is dominated by labile terrestrial

POM (mainly rivers of type 1) flow through catchments dominated by sandy rocks and podzol.

This kind of soil is submitted to soil erosion and releasercleases large amounts of colored

dissolved organic carbon, favouring the input of terrestrial material (soil erosion) and

disfavouring 9 3 3 al-ma 3 aeh-a
the—nability forphytoplankton te-growth in the river water because of the turbidity due to the
dissolved organic carbon—a—sienificantbiomass—this—sol typebeines hishly favourableto

river-euphotie zone-(Canton et al., 2012; Polsenaere et al., 2013).

The dominanceproportions of refractory terrestrial matter are correlated to the catchment slope
and negatively correlated to linkedto-pooruseful reserve of water (Fig. 7, Fig. A6). Rivers for
which POM- is partly composed of refractory terrestrial POM (most of the rivers of type II)

flow through catchments of-and-hich slopeinform ofspecificcatchment settines—where more

mountainous surfaces, which are associated with shallower, poorer topsoil and more

outcropping bedrock. It favours more reactive and abrupt transfer of water to the river, leading

to enhanced episodes of sediment resuspension, as well as permitting a rock-derived POM

weathering (Copard et al., 2018; Higueras et al., 2014; Yaalon, 1997).

4.3.Temporal dynamics of POM composition and river—dynamics
typology

If average quantitative difference between rivers can be input to differences in the catchment

characteristics (see section 4.2), fn-aquatie-systemsseasonnally, phytoplankton likely appears
during spring and summer in favorable conditions, related to low discharge, high-temperature

conditions and enough nutrients to support its growth, while in winter, high turbidity and low-
temperature conditions li t al., 2022). Quantitative-differencesbetween

mit its presence (Turner e

423, Terrestrial material likely appears during winter conditions, related to floods that transport
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great amounts of terrestrial material (Dalzell et al., 2007). Such a seasonal dichotomy between
phytoplankton and terrestrial POM was clearly visible for most of the studied rivers (Fig. 4),
especially for type-IV and type-III rivers, but even for some of those highly dominated by the
labile terrestrial POM (e.g., Milieu and Tagon Rivers; Type-I rivers). This was illustrated by
the relationships between phytoplankton POM and chlorophyll @ concentration and/or
temperature (as proxies of favourable conditions for phytoplankton production) on the one
hand, and between labile terrestrial POM and river flow and/or SPM concentration on the other
hand (Fig. 6 and AS5). This dichotomy in POM composition was also reported in other similar
studies (e.g., Kelso and Baker, 2020; Lu et al., 2016). In rivers where refractory terrestrial POM
was present in addition to the labile one (type-II rivers), #—was—interestingto-see—thatboth

terrestrial sources were linked to river flows and SPM concentrations. More precisely, it was

interesting to see that the refractory terrestrial POM was more related to SPM concentration

than river flow and inversely for the labile terrestrial POM. This indicates that labile and
refractory terrestrial POM were preferentially associated with direct river input and sediment
resuspension, respectively. The origin of the refractory terrestrial POM may be
fossil/bedrock/petrogenic OM (e.g., Copard et al., 2022; Hilton et al., 2010; Sun et al., 2021)
brought by river flow (in quantity undetectable in the bulk POM using our tools), especially in
Type-II rivers which watersheds are characterized by high slopes (Fig. 7). This POM can be

and-then accumulated in the-downstream sediments and be resuspended (in quantity calculable
in the bulk POM using our tools). Refractory terrestrial POM may also come from;-and/er labile

terrestrial POM brought by the river flow and then accumulated and reworked/decayed until

refractory POM in the sediment (e.g., Etcheber et al., 2007; Savoye et al., 2012), which can be
resuspended.

Sewage POM was detected in two of the studied rivers, but with different associated temporal
dynamics. In the Tét River, because the former WWTP was dysfunctional, a new one replaced
it in late 2007 (https://www.assainissement.developpement-durable.gouv.fr/pages/data/fiche-
060966136002, last visit 10/09/24). This explains the shift in sewage POM between the two
studied periods (2006-2007 versus 2008-2010 without anthropogenic POM). In the Orb River,
sewage POM was detected throughout the studied periods. The WWTP is located only a few

kilometreers upstream of the sampling site and is large enough (220.-000 inhabitant equivalent)

compared to the river flow (annual mean: 23m?*/s) to make the sewage POM detectable in the

bulk POM using 8'°N. Such a result is quite common for urban rivers (e.g., Kelso and Baker,
2020).
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provides a comprehensive assessment of POM composition and its spatial and seasonal

variability in temperate rivers. By including twenty-three rivers spanning a wide range of

environmental conditions under a temperate climate, a river—dynamics typology is proposed

based on POM composition and its temporal patterns. In type-I rivers, POM is dominated by

labile terrestrial material throughout the year. This material is mainly associated with suspended

particulate matter. Phytoplankton makes a slight contribution, especially during summer. Type-

Il rivers are characterised by the presence of both labile and refractory terrestrial material, along

with phytoplankton. The variability between these sources over time is high, but seasonality is

not always evident, although phytoplankton and terrestrial POM can dominate the POM

composition during summer and winter, respectively. Nonetheless, if both terrestrial sources

are primarily linked to river flow and SPM., a better coupling of refractory terrestrial POM with

SPM indicates that this material is probably stored in sediments and resuspended, whatever its

origin (soil, litter, petrogenic POM). In type-IlI rivers, POM consists of phytoplankton and

labile terrestrial material. The seasonality of POM composition is not very pronounced, though

the contribution of labile terrestrial POM is closely related to river flow. Type III is an

intermediate between type I and type IV. In type-IV rivers, POM is also composed of

phytoplankton and labile terrestrial material, but the seasonality is highly marked, with a clear

shift from high phytoplankton contribution in summer to high terrestrial contribution in winter.

Labile terrestrial POM remains closely associated with river flow. Beyond this typology, the

main differences in POM composition between the studied rivers is related to catchment

inherent properties. The contribution of phytoplankton is correlated with the proportion of

agricultural coverage, while the contribution of labile terrestrial POM is linked to leached OM-

rich thick soil features and the refractory terrestrial POM to thin OM-poor soils with high rock-

derived features.

The originality of the present study lies firstly in its approach. Even if C and N stable isotopes

have been used for decades to investigate POM origins within river waters, the quantification

of POM composition (i.e., the relative proportion of each source composing the POM) using

mixing models, especially Bayesian mixing models, is not so common. Most previous studies

either use literature data for phytoplankton isotopic signature (e.g., €Zhang et al., 2021)_or use

lake or autochthonous POM as a proxy of phytoplankton (e.g., {Kelso and Baker, 2020). Also,

most of these studies use direct measurements of soil or plants to assess the isotopic signature

32



774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

793
794
795
796
797

798
799
800

801
802
803
804
805
806

07
E08
809
810

of terrestrial POM, although this material may rework within the water column or sediment,

changing its elemental and isotopic values (e.g., €Savoye et al., 2012). These approaches do not

consider the temporal variability of phytoplankton and terrestrial material isotopic signatures.

In the present study, we used the approach developed by ¢(Savoye et al.; (2012)_in an estuary,
{Liénart et al.; (2017) in coastal systems, and {Ferchiche et al.; (2024, 2025) in a river to assess

elemental and isotopic signatures from subsets of bulk POM and, when needed, empirical

equations. This approach has the advantage of 1) using signatures dedicated to the sampling

area and 2) taking into account the potential variability of these signatures over time, i.e.,

depending on environmental conditions for phytoplankton growth and its decay for

phvtoplankton and terrestrial POM. Especially, we discriminated labile from refractory

terrestrial POM in some rivers, as (Savoye et al.; (2012)_did in an estuary. Another great

originality of the present study lies in the multi-systems approach: studying 23 rivers in a single

study allowed the detection of four types of river functioning regarding the POM composition

and its temporal dynamics, which has not been performed before. It also highlights the great

influence of land use (agriculture) and characteristics (erosion, organic carbon content, type of

soil) on the POM composition of rivers. At last, the multi-parameter use of '3C, §'°N, and C/N

ratio allowed either to perform mixing models with up to four end-members or to study POC

and PN composition separately. It showed that POC and PN display very similar compositions

and dynamics in rivers.

OveralOverall, this study, which focuses on the River-Estuary Interface, brings meaningful

information for the comprehension of C and N cycles along the LOAC and especially the
behaviour, dynamics and drivers of POM that leaves the river and enters the estuary.

From a methodological perspective, such a study could be strengthened by the use of non-
exchangeable §°H as an additional tool to even better distinguish and quantify more sources in
mixing models. This tool has been recently shown to be powerful for such purposes (Ferchiche
et al., 2025). From a fundamental perspective, aggregating more datasets from other temperate
rivers would allow testing the robustness of this typology and probably detecting additional
types, but also datasets from polar and tropical rivers to perform an even more comprehensive

study at a global climate scale. Clearly, the approach developed in the present study is

transferable 4a-to other etherregions of the planet and used at broader space-spatial scales.seale:

In addition, a similar study dedicated to the estuarine systems would even increase our

comprehensive understanding of the origin and fate of POM along the Land-Ocean Aquatic
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811  Continuum by complementing the present study dedicated to the River-Estuary Interface and
’812 those of Liénart et al.; (2017, 2018) dedicated to the coastal systems. ¢
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849

Table A1 Summary of data availability and origin (X means that the data were available; * means that the data were retrieved from the Naiades

database; ** means that the data were retrieved from the Météo France database). n = number of sampling dates; SPM = Suspended Particulate

Matter; POC or PN = Particulate Organic Carbon or Nitrogen; Chl a = Chlorophyll a; Phaco = Phacopigments.

Samplings Parameters
; Water Air
River . i Wi i
Dates Periodicity n Latitude Longitude 5P%c "N C/N SPM POC PN Chla Phaeo temperat pH CC.)n,d . NH,” NO, NO; PO," Flow Rainfall tempera .Wm,d . mé frradi
ratio ctivity direction intensity ance
ure ture
Seine 06/2014 to 06/2015  monthly 13 49.306667  1.242500 X X X X X X X X X X+ X+ X* X+ X+ X* X X Xk XH* X
Orne 06/2014 to 06/2015  monthly 13 49.179722  -0.349167 X X X X X X X X X X+ X+ X* X+ X+ X* X X Xk X X X
Rance 06/2014 to 05/2015 monthly 12 48.491667  -2.001389 X X X X* X X X X X* X*  X* X* o X* X* X* X X Xk X X X
Elorn 01/2014 to 06/2015  monthly 17 48.450556  -4.248333 X X X X X X X X X+ X+ X+ X+ X¥ X¥ X X X X X X X
Aulne 01/2014 to 06/2015 monthly 17 48.212778  -4.094444 X X X X* X X X X X* X*  X* X*  X*  X* X* X X X X X X
Loire 10/2009 to 07/2012  bi-monthly 67 47.392095  -0.860351 X X X X X X X X X X X X X X X X X X X X X
nii‘;:;iese 03/2014 t0 03/2015  monthly 13 46315348 -1.003891 X X X X X X X X X* Xt Xr X+ X+ Xt X+ X X X+
Charente 03/2014 to 03/2015 monthly 13 45.868056  -0.713056 X X X X* X X X X X* X X+ X X X* X X Xk X X
Seudre 03/2014 to 09/2015 monthly 15 45.674027  -0.933123 X X X X* X X X X X* X* X X* o X* X* X* X X Xk X X X
Porge 01/2008 to 02/2009 monthly 14 44789868  -1.161181 X X X X X X X X X# X X Xk X X
Renet 02/2008 to 02/2009  bi-monthly 23 44714466  -1.044013 X X X X X X X X X# X X Xk X X
Milieu 02/2008 to 02/2009 monthly 13 44.697326  -1.022532 X X X X X X X X X# X X Xk X X
Cirés 02/2008 to 02/2009 monthly 13 44759820  -1.110657 X X X X X X X X X# X X Xk X X
Lanton 02/2008 to 02/2009 monthly 13 44700283  -1.024385 X X X X X X X X X# X X Xk X X
Tagon 02/2008 to 02/2009  bi-monthly 26 44.659049  -0.989050 X X X X X X X X X# X X Xk X X
Landes 02/2008 to 02/2009 monthly 12 44.616912  -1.109066 X X X X X X X X X# X X Xk X X
bi-monthl
Leyre 02/2008 to 02/2015 0; Egﬂthg 59 44.626389  -0.996111 X X X X* X X X X X X*  X* X*  X*  X* X* X X X X X
Adour 04/2013 to 05/2018 monthly 24 43.498880  -1.294899 X X X X X X X X X X X X X Xk X X X
Tét 01/2006 to 05/2010 ~ monthly 52 42.713704  2.993488 X X X X X X X X X Xx* X+ X* X* X X X X X
Aude 01/2006 to 05/2010 monthly 52 43.244281 3.152733 X X X X X X X X X X*  X*  X* X* X X X## X X#* X##
Orb 01/2006 to 05/2010 monthly 52 43.285004 3.281278 X X X X X X X X X X* o X* X* X* X X Xk
Hérault 01/2006 to 05/2010 monthly 52 43.359415 3.435398 X X X X X X X X X X*  X*  X* X* X X Xk X X
Rhéne 12/2003 to 01/2011 monthly 105 43.678724  4.621188 X X X X X X X X X X X X* o X* X* X* X X Xk X X X
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850 Table A2 Summary of parameters kept (informative) to perform the local seasonal RDAs, opposite to those not considered (because non-

B51 informative, not available. or auto-correlated (see section 2.5)).

852

River SPM Chlorophyll a Phaeozlgment Temperature  River flow pH Ammonium Nitrates Phosphates Irradiance ~ Zonal wind Mevr:iiznal
Seine X X X X X X X - = - -
Orne - X - X X X - X X - X -
Rance X X - X X - - X - - - -
Elorn - X X - X - X - X - - -
Aulne X X - - X X - X - - - -
Sevre X X X - - X - - -

Charente - X X - X X - - - X
Seudre X X X X X - - - - X X X
Porge X X X - - X X
Cireés X X X X X - -
Milieu X X X - X - X
Lanton X X X X - - X
Renet X X X X - - -
Tagon X X X X X - -
Leyre X X X X - X - - - -
Landes X X X - X - X
Adour X - X X X X - - - -

Tét X X X X - X - - X
Aude X X X - X - X X - -
Orb X X X X - X X - -
Hérault X X X - - - X - - X
Rhone X - X - - - -
X = Kept =No data
R53 - = Non kept = Auto-correlated

37



854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

F69

870

v,
3 o o 2
o O ® 3
- .
B = T 3
n s =
b — =8

\70\ 10 cut off levels

6@ 3sources

<—
7 [
‘)
i \ AN
£
12 dendrograms v

Global dendrogram 10 dendrograms
(23 Rivers)

Figure Al Diagram detailing the regienalization-regionalisation method, adapted from Souissi et al. (2000).

SIONIY €7

38



234 813C (o 15 y ) / 5 = POC (mg/l -
239 8C (%) SN (%o)[ 12 21 C/N (mol/mol) POC/chl a (g/g)f **  ® 1 SPM (mg/l) Chi a(( */_1; ° 12001 River flow (m¥/s) Temperature (°C)[ *°
gt ug
2000 0 \ °
n
1500
o
= 30
- —
D 1000
2] 20
S00 10
0 0
50
2000 50
4
1600 40
35
v 1200 30
£ 25
© 300 20
15
400 10
5
0 0
50
3500 25 14 125 4 30
3000 1 o0 25
2500 10
20
2000 S s
2 15
= 1500 6 50
10
< 1000 4
33 2 s _— 5 & 5
a5 0 0 0 0
o g & K
o & & o o
23 10000 16 30 20
=25 25 L 25
8000 i3 -~ =
27 20 20
6000
E 29 s 15 15
(=} 4000
= 10 10
4
- 2000 5 l s
=35 0 0 o 0
b ] > )
o & & e &

871



= POC (mg/}) . ,,

g 13 15 . b .
23 1 8°C (%o) 3N (%o)[ 12 161 C/N (mol/mol) POC/chl a (g/g); ™ @ SPM (mg/l) ==+ Chl a (ug/l) %1 River flow (m¥/s) Temperature (°C)[ *
25 10 14 A 600 . ? k|
27 s n
-2 . s 12 ] + 500 ‘IR
® t 400
’; . [6 10 4
5 31 F 300
) . s
233 + 200
a5 : 6 1 100
0
3000
2500
& 2000
i
5 1500
7]
1000
500
0
12
10
8
% 6
(=]
-9 Fd
N
0
S
10000 10 20 25 30
251 5000 25
-27 20
- 6000
I P el ST g )
8 =29 15
'= 4000
= a1
U 10
33 4 2000 5
35 : . ; : 10 : . - 0 °
g 9% N »“ & Sﬁ »% xﬁ S
& N e o & & N o o & &

872



23 488C (%o) SN (@ 25 i “ ,
(%o) C/N (mol/mol) POC/chl a (g/g)[ M 1 1gpM (mg/l) = POC (mg/l) |16 25 1 piver fl 5 30
. / 1 e
25 . 2 * o «««Chl a (ug/) ver flow (m’/s) Temperature (°C)
22 ‘ \ .‘
-
-2 H] 10000
-
19 4 Al
g 29 v, . A..‘)‘. "‘. (R T ‘.‘ e 8000
] LA
[~ 31 16 ¢ 6000
4000
33 13
W -
35
S & > E > o w»" ® O » S S '
> &
<*® < ¥ o o & o Qe'?» « ‘3&» oe,‘» & &
-23 4 N
259 10000 49 - .
225 4 ‘
3 35 4
8000
g2 2 %1 6
s Aoy 25
S 29 Pee PO, S e-e - M 5000 =
s 20 4
231 4 4000 15 4
-33 2000 124 - 2
5 4 S
EY e M=
q‘.‘& ‘,9% a* & o P 0 °$ P :".-":" 0 00 &
N N v ~ & & CA S & 4 ¥ S & ®
3 & < o o ¢ K
223 - . 9 2
25 7000 60 -
r M
25 28 30
£ 6000
= 227 4 5000
= »
229 A o, » % 4000
%n o o N e &’
h 31 4 3000
2000
33 4
t 1000
38 T T
y 0
S N4 N & o
* Q&S S e“g v""»
s
30000
27 . 25000
) - «
£ a9 |~J‘ P g e, ¥ -’ 20000
< .
.3 u £ 15000
10000
33
2000
35 ;
& 0
By I S Ll

873 S S



874

Landes

Adour

Aude

13 215 ;
2 ,0°C (%o) 3N (%0) 251 C/N (molmol)  POC/chla (¢/g); 16000
225 4
+ 12000
227 4 /. ~o
[ VP 4
29 4 . S .---4 L s000
231 4
4000
-33 4
35 0
& $ & $
S N o S
& « " N « +F
-23 12 6000
5000
- 4000
3000
2000
1000
0
’
!
33 2 2 . :
& & $ S o & s * ® »
o & & & " " o & & &
25 1 20
= 10 17
2 AP A : * ?
‘¥ A '
ol ‘V’. 1 ] 14 ] M
é L] ! '
29 SN V! n " "
I 'l ,' 6 1 [} n l'I
o e Moy iAo
! \ 4 8 N e ! N L
d 'y 1e! e
4 \ “’I.’l‘b' .’\”¢9 1%
33 . N 2 | ¢ Py . P I»’
i ) L] %
35 0 2 . . . .
& > ® S N $ » >
o & & e o & & v

= POC (mg/l)

201 SPM (mg/h ==« Chl a (ug/l)

25, River flow (m’/s) Temperature (°C) [ 30

-

z 8
——————— - @

»

42



875

13~ (o, S15 5 : . = POC (mg/l) . ; 3 e
25 107°C (%o0) 07N (%o) [ 12 277 C/N (mol/mol) POC/chl a (g/g % 1SPM (mg/l) Chl a((“; ‘1; r 3% 1River flow (m’/s) Temperature (°C)f 30
L ] mws ug
b 1o 1 i »
. > * PRey To” 2 "
227 ‘l. IH:\,!” fOM" ] . 5
L . - rs n
\ ‘ 17 n %0 4
n
ﬁ 1 Tk " '
= " 21 ::o . 1 !
1 4 i
31 A - ! rm 14 ‘Q.\ s * n 20 4 ? t !
¢ 5 “‘I'Rl ", ‘H‘ .‘ 1IN L] " n
i s Y se ¢ "”‘?y " e ui :
®
33 0 2 0 0
& N N N N g N N N N N ® N N B
?\0" R < ¥ < @"iﬁ o~ Q"’o’ N & @”i" o"\$ <° 4 &
» [ 2 1000 10
.
' t
25 0 15 4 s 500 .
i i
16 [} 56
@ 14 I ? ¢ 600 6
g i [} !
s 1 . | -
= \ ‘ " ]
291 (]
o : 10 ’ . ?I }I&E, &.u . H 400 4 .
& o~ ? ? * i [ l& i
-3 L4 6 |ﬁ 10 ¢ é. N q 200
‘ N
33 T T T + 0 2 { 0 = 0 0
LSS S D T T N P R PN T B I I N >
879 R R R RS P I S R I PO AN O ]

880  Figure A2 Temporal variations of matter characteristics for representative rivers along the studied periods for §'3C (left axis; black dotted line) and
881  8!°N (right axis; blue line) (first column); C/N (left axis; black dotted line) and POC/chl a(right axis; blue line) ratios (second column); SPM(left
|882 axis; black dotted line), POC (right axis; blue line) and chlorophyll a (right axis; blue dotted line) concentrations (third column) and river flow (left
883  axis; black dotted line) and temperature (right axis; blue line) (fourth column).
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887  Figure A3 §'°C, §"°N, N/C and/or C/N values of bulk POM (black crosses) and sources. The latter are presented as closed circles (average) and
888  bars (standard deviation) when the signatures were constant over time and by colored area when at least one of the proxies was variable over time

F89 (see Table 2). This colored area corresponds to the dispersion of the values, including their uncertainties.
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Figure A4 Temporal dynamic (rectangle graphs) and (inter-)annual mean (pie charts) of PN
source proportions. Sources are phytoplankton (green) and labile terrestrial material (brown).
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Figure A5 Redundancy analyses (correlation circles) of rivers standing for each type of river.
Black arrows represent explained variables (concentration of POC or PN sources) and red
arrows represent explaining variables (environmental variables). River types are recalled
(Roman numerals). LTproc or pn = Labile terrestrial POC or PN: RTpoc = Refractory terrestrial
POC: oroc or n_= Phytoplankton POC or PN: Anth. POC = Anthropogenic POM; SPM =
Suspended particulate matter; Chl a = chlorophyll a; Phaeo. = phaecopigments; M. wind =

meridional wind: Z. wind = zonal wind; R. flow = river flow: Temp. = temperature: Irrad. =
Irradiance; NH4* = ammonium; NO;™ = nitrate; PO4*" = phosphates; Adj. R2 = adjusted R
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