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Abstract. This study evaluates the performance of RegCM5 in simulating air–sea fluxes over Southeast Asia through a set

of  36  sensitivity  experiments  testing  different  physical  scheme combinations.  Scheme choices  vary  across  five  model

aspects: radiative transfer, planetary boundary layer, cumulus convection, parameterized microphysics and cloud fraction. A

multi-criteria  decision-making  framework  is  applied  to  rank  model  configurations  based  on  their  ability  to  reproduce

spatiotemporal patterns of sea surface wind, latent and sensible heat fluxes, precipitation, and radiative heat fluxes, using

mostly satellite-based reference products. No configuration performs consistently best across all criteria: scores assessing

latent and shortwave radiative heat fluxes are generally conflicting, with each other and with the scores for precipitation and

sea  surface  wind  which  instead  tend  to  agree.  The  choice  of  cumulus  convection  scheme  drives  the  performance  in

simulating the latter two variables,  with Tiedtke outperforming and Kain–Fritsch underperforming. In contrast,  the best

shortwave radiative heat flux simulations are obtained with MIT cumulus convection, in combination with CCM3 radiative

transfer. Overall, RRTM/UW-PBL/Tiedtke/SUBEX/Xu–Randall – using the same order of model aspects as listed in the

beginning – stands out by maintaining relatively high scores across all assessed variables. Nonetheless, a stronger dissensus

in precipitation outputs suggests that reliable rainfall patterns may be a higher priority for decision makers, highlighting

CCM3/UW-PBL/Tiedtke/NoTo/Xu–Randall and RRTM/Holtslag/Tiedtke/NoTo/Xu–Randall as the best configurations for

this variable. Beyond statistics, further analysis reveals key monsoon-related biases: Indian Summer Monsoon rainfall is

generally underestimated, Western North Pacific Summer Monsoon features are overestimated and shifted northward, near-

equatorial regions exhibit excessive boreal summer rainfall in most Tiedtke experiments, and austral summer monsoonal sea

surface wind and precipitation only impact areas directly north of Australia without inducing the rainfall annual maximum

observed in that season over equatorial seas. These findings provide a basis for selecting optimal physics in RegCM5 over

Southeast Asia and offer guidance for future applications, including air–sea coupled regional climate modeling.
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1 Introduction

Southeast Asia (SEA; Fig. 1) faces significant climate instabilities that threaten both long-term sustainability and immediate

safety for local populations (about 8.5 % of the world population as of 2023, United Nations, 2024). The region's heavy

reliance on climate-sensitive sectors such as agriculture and fisheries makes it particularly susceptible to the impacts of

climate  change.  In  the  meanwhile,  extreme  events  like  tropical  cyclones,  floods,  droughts  and  wildfires  pose  constant

(McVicar and Bierwirth, 2001; Nguyen-Thanh et al., 2023; Page et al., 2002; Abram et al., 2003; Ummenhofer et al., 2009;

Yumul et al., 2011) and growing (Overland et al., 2017; Dagli and Ferrarini, 2019; Eckstein et al., 2019) socio-economic

risks.

Figure 1: Annotated bathymetric map of the Southeast Asian domain in our simulations. The eight oceanic subregions employed 
in the assessment are highlighted with thick colored borders, labeled with their rounded percentage fraction of the total oceanic 
area in the domain.

Given these vulnerabilities, developing robust adaptation and risk mitigation plans is crucial. Regional climate modeling

plays a pivotal role in this endeavor by enhancing our understanding of present and future climate dynamics (Giorgi, 2019).

Compared  to  global  models,  regional  approaches  offer  finer  spatial  resolution  and  tailored  parameterizations,  thereby

enabling a better representation of local processes (Gao et al., 2006; Octaviani and Manomaiphiboon, 2011; Schiemann et

al., 2014; Giorgi, 2019). The Southeast Asian Coordinated Regional Climate Downscaling Experiment (CORDEX–SEA)

facilitates  these efforts  in  SEA by organizing community experiments  in phases  ultimately producing updated regional

climate projections through dynamical downscaling – i.e. using Regional Climate Models (RCMs) to downscale Coupled

Model Intercomparison Project (CMIP) simulations (e.g. Tangang et al., 2020; Herrmann et al., 2022). RegCM (Giorgi et al.,

2023) is a major RCM employed by the community, and it is the model of interest in this study.

An absolute prerequisite for conducting accurate regional climate projections is model tuning. With RegCM – and

with other RCMs – this generally materializes by conducting sensitivity experiments to the choice of physical  schemes

throughout several model aspects such as parameterized convection and resolved-scale microphysics. The model typically

runs over a period in the near-past  when observation datasets are available,  enabling an assessment of its  performance

against them. Best performing physical configurations according to specific criteria (e.g. the reliability of certain variables

throughout specific spatiotemporal divisions) can then be selected for conducting optimal future runs. For instance, based on

assessments of SEA precipitation by Chung et al. (2018), the CLM land surface model (Oleson et al., 2013) appeared to be

more adapted than BATS (Dickinson et al., 1993) in the region. Besides, the ocean surface scheme was found to have only

minimal impacts on precipitation and near-surface temperature over land, in terms of both mean and extremes (Juneng et al.,
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2016; Cruz et al., 2017; Ngo-Duc et al., 2017), while the study of Li et al. (2016) over both land and sea seemed to indicate a

preference for that  of Zeng et  al.  (1998; Eq. (24)).  Subsequently,  SEA RegCM studies consistently adopted CLM land

surface and Zeng et al.’s ocean surface fluxes in the region (e.g. Chung et al., 2018; Zou et al., 2019; Villafuerte et al., 2021;

Chung et  al.,  2023;  Ngo-Duc  et  al.,  2024).  As  for  the  cumulus  convection  scheme,  Zou et  al.  (2019)  found a  better

representation of sea surface temperature (SST), rainfall and circulation over East Asia with the Tiedtke scheme (Tiedtke,

1989), although the MIT-Emanuel scheme (Emanuel and Živković Rothman, 1999) appeared more capable to reproduce

small scale events – a conclusion consistent with Villafuerte et al. (2021) who focused on tropical cyclones in the Philippine

Sea.  Lastly,  Ngo-Duc et  al.  (2024)  evaluated  land precipitation  and  near-surface  temperature  for  48  different  physical

scheme combinations and concluded on the better performance of the Tiedtke cumulus convection scheme when combined

with  the  UW-PBL (Bretherton  et  al.,  2004)  and  SUBEX explicit  moisture  schemes  (Pal  et  al.,  2000)  –  although two

alternatives using the cumulus convection of Grell (1993) also stood out.

Nevertheless, a notable gap exists in these studies: the performance of RegCM over the ocean has been largely

overlooked. Previous sensitivity experiments have primarily focused on key vulnerability variables like precipitation and

near-surface temperature over land (e.g. Juneng et al. 2016; Ngo-Duc et al., 2024) – putting aside the more regional studies

of Villafuerte et al. (2021) and Zou et al. (2019) which focused on precipitation over the Philippine Sea and East Asia,

respectively – and the ability of RegCM to reproduce SEA sea surface conditions was rarely studied, and mostly with fixed

configurations (e.g. Herrmann et al., 2020, 2022, who evaluated the ability of RegCM to reproduce the SEA sea surface

winds). This is problematic because more than half of the SEA domain is composed of seas (Fig. 1), and many regional

climate  phenomena,  such  as  monsoons,  land-sea  breezes  and  tropical  cyclones,  are  rooted  in  air–sea  exchanges.  By

neglecting oceanic areas,  we thus miss a critical  part  of the picture.  Furthermore,  the authors are currently conducting

research and development efforts to set up an atmosphere–ocean regional climate model over the region – which aligns with

the  latest  direction  of  CORDEX suggesting  that  next-generation  regional  climate  projections  will  increasingly  involve

regional Earth system models, notably including air–sea coupling (Giorgi and Gutowski, 2015). To date, the information gap

in RCM performance over SEA seas leaves us – and more generally the regional community – largely unprepared for those

upcoming coupled modeling projects. While quality reference data may have been lacking in the past, variables such as

wind, precipitation and radiative heat fluxes are now well-monitored over the oceans via satellite-based remote sensing,

enabling model assessments against these observations. In this study, we aim to fill this gap by assessing the performance of

RegCM over SEA seas in terms of air–sea fluxes of heat, mass, and momentum.

RegCM version 5 (RegCM5; Giorgi et al., 2023) is the latest version available today, yet little is known about its

capabilities to simulate SEA's climate, particularly with its many newly implemented options (Giorgi et al., 2023, Table 1).

Previous sensitivity studies mostly employed earlier versions such as RegCM3 (e.g. Gianotti et al., 2012), RegCM4 (e.g.

Juneng et al.,  2016) and RegCM4-NH (Ngo-Duc et al.,  2024). Cumulus convection is the aspect  gathering the greatest

interest (e.g. Cruz et al.,  2017; Villafuerte et al., 2021) followed by air–sea fluxes (e.g. Ngo-Duc et al., 2017) and land

surface  (e.g.  Chung  et  al.,  2018),  while  resolved-scale  microphysics,  radiative  transfer,  cloud  fraction  and  planetary

boundary layer (PBL) were often set to the defaults. In their last paper, CORDEX–SEA (Ngo-Duc et al., 2024) conducted a

few experiments with RegCM5 but, facing unsatisfactory results, called for "thorough testing" before selecting this version

for regional climate projections. In response to this call, this article addresses our goal of assessing RegCM5’s ability to

reproduce air–sea interaction over SEA by conducting sensitivity experiments with its most updated options across various

physical scheme combinations.

In this context, we aim to thoroughly evaluate the performance of RegCM5 and its many new physics options in

simulating air–sea exchanges over the SEA region. This assessment seeks to provide guidance for choosing optimal physics

configurations in future use of the model, including future regional climate projections and air–sea coupling. The remainder

of this article is organized as follows. Section 2 provides a description of RegCM5 and details the methodology. Then,

Section 3 presents the results. Lastly, Section 4 provides conclusions.
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2 Materials and methods

2.1 RegCM5

2.1.1 Baseline configuration

RegCM is a distributed regional climate model with a large community base and range of applications, and this study

features its most updated version, i.e. RegCM5 (Giorgi et al., 2023). Fig. 1 exhibits the model domain ranging 89.22° E–

146.78° E and 18.21° S–27.14° N in longitude and latitude, respectively, such that all SEA seas can be incorporated in the

assessment. The horizontal resolution is 25 km – consistent with past CORDEX–SEA studies (e.g. Ngo-Duc et al., 2024).

Lateral  boundaries'  relaxation  applies  within  a  lateral  buffer  area  of  24 grid  nodes  (i.e.  around 600 km) following an

exponential weighting function (lateral boundary conditions are fully described in Giorgi et al., 1993). Forty-one vertical

levels are employed, with an atmosphere top set at 30 km.

We select the MOLOCH non-hydrostatic core, using the staggered Arakawa C-grid (Arakawa and Lamb, 1977) and

a height based ζ  vertical coordinate (Malguzzi et al., 2006; Davolio et al., 2020; Giorgi et al., 2023). The nominal timestep is

set to 3 min (advection and sound waves are computed at higher frequency). Timesteps for the cumulus convection ( dtcum),

surface module (dtsrf) and radiation (dtrad) are set to 6 min, 12 min and 24 min, respectively.

Based on the introduced bibliography, the land surface model and ocean surface scheme are fixed in this study, set

to CLM4.5 (Oleson et al., 2013) and to the scheme of Zeng et al. (1998, Eq. (24), which corresponds to the second choice of

surface  roughness  length  of  momentum  in  the  used  implementation  of  the  model),  respectively.  We  disable  the

parameterization  of  marine  stratocumulus  clouds  based  on  Klein  and  Hartmann  (1993;  i.e.  icldmstrat  =  0),  which  is

irrelevant for the domain (Wood, 2012). Moreover, because we aim to explore the full capabilities of the model, we choose

not  to  constrain  the model’s  degrees  of  freedom regarding  cloud formation:  convective  and large-scale  clouds employ

distinct liquid water path algorithms (i.e. iconvlwp = 0) and maximum cloud fractional cover settings are set to 100 % (i.e.

clfrcvmax = cftotmax = 1.0).

2.1.2 Candidate physics options

In Section 2.2 we present the protocol and methods ruling the sensitivity experiments we then conduct, varying the choices

made for five model aspects. These five aspects and the candidate options we select are listed in Table 1. The cumulus

convection schemes simplified Kuo (Anthes et al., 1987) and Grell (Grell, 1993) are not considered due to their generally

poorer performance in RegCM sensitivity studies over SEA (e.g. Sinha et al., 2013; Zhang et al., 2015; Gao et al., 2016;

Juneng et al., 2016; Li et al., 2016; Maity et al., 2017). We also exclude the WRF-Single-moment-Microphysics 5-class

(WSM5; Hong et al., 2004) option for the resolved-scale microphysics, because preliminary tests with the setups presented

in Giorgi et al. (2023) adapted to our domain and resolution did not yield satisfactory results, based on the criteria described

in Section 2.2 (not shown). Besides, the NoTo microphysics will only be associated with the Xu–Randall cloud fraction, as

done in Nogherotto et al. (2016; spurious cloud amounts appear when combining NoTo with the Sundqvist cloud fraction).

As a result, all considered options reported in Table 1 make 36 possible physical scheme combinations.

Henceforth, a given scheme combination in Table 1 will be named after the five-index series corresponding to its

five physics option choices. For instance, 12410 refers to the configuration using RRTM for the radiative transfer, the UW-

PBL scheme, the MIT cumulus convection scheme, the SUBEX microphysics and the Sundqvist cloud fraction algorithm.

Additionally,  a  group of configurations sharing identical  choices  for one or several  aspects  will  be addressed by using

asterisks (*) where the choices are different. For example, **6** configurations are those using the Kain–Fritsch cumulus

convection scheme, and 01**1 corresponds to any scheme combination using CCM3, Holtslag and Xu–Randall.
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Model aspect Selected options

Radiative transfer 0: Modified CCM3 (Kiehl et al., 1996)

1: RRTM (Mlawer and Clough, 1996; Mlawer et al., 1997)

Planetary boundary layer 1: Modified Holtslag (Holtslag et al., 1990)

2: UW-PBL (Bretherton et al., 2004)

Cumulus convection 4: MIT (Emanuel and Živković Rothman, 1999)

5: Tiedtke (Tiedtke, 1989)

6: Kain–Fritsch (Kain, 2004)

Resolved-scale microphysics 1: SUBEX (Pal et al., 2000)

2: Nogherotto–Tompkins (NoTo; Nogherotto et al., 2016)

Cloud fraction 0: Sundqvist (Sundqvist, 1988)

1: Xu–Randall (Xu and Randall, 1996)

Table 1: Selected physics options for five model aspects. Option indices refer to the corresponding parameter choices in the 
physicsparam namelist of RegCM’s input file. Appellations used in the text are highlighted in bold.

2.2 Protocol and data

2.2.1 Simulated period and forcing data

This study focuses on the first mode of variability in SEA, i.e. the seasonal cycle, allowing us to select one single year for

assessment (as in, e.g. Ratnam et al., 2009; Gao et al., 2016; Zou et al., 2019, 2020). After assuring that such a period does

enable clear discrimination between the simulations’ outputs (with appropriate spin up periods), we select the year 2018,

which offers rather neutral conditions with respect to large-scale oscillations. Notably, the Indian Ocean Dipole remained

neutral  throughout  the  year,  except  for  two  slightly  positive  phases  in  September  and  December,  and  the  Southern

Oscillations transitioned from a weak La Niña to a moderate El Niño (based on monitoring graphs of the Australian Bureau

of  Meteorology  last  accessed  2025-03-26  at  http://www.bom.gov.au/climate/enso/).  The  global  European  Centre  for

Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5, Hersbach et al., 2020), with a horizontal resolution of

1/4° (i.e. around 27 km in the region),  37 vertical  levels and a 6 h period, provides initial and boundary conditions for

temperature, specific humidity, geopotential and winds.

Then, because our assessment focuses on air–sea fluxes, it is critical to choose appropriate SST forcing data. In

particular, submesoscale and mesoscale oceanic processes such as eddies, upwellings and meanders, all considerably shaping

the sea surface conditions in SEA (e.g. Da et al., 2019; To Duy et al., 2022; Herrmann et al., 2023), can modulate latent heat

fluxes by up to 20 %, thereby affecting cloud formation and precipitation (Frenger et al., 2013; Villas Bôas et al., 2015). The

chosen SST forcing data should therefore convey this intense regional sub- and mesoscale activity, at least at and above the

scale of 25 km (the horizontal resolution of our model). Optimal-interpolation-based SST datasets (e.g. the Operational Sea

Surface Temperature and Ice Analysis, OSTIA, Good et al., 2020, or the Reynolds SST assimilated in the GLORYS12V1

global  reanalysis,  E.  U.  Copernicus  Marine  Service  Information  [CMEMS],  2020)  generally  capture  the  correct

spatiotemporal variability on average, but they have been shown to overlook key mesoscale features in the region (To Duy et

al., 2022). To address this limitation, our strategy is to force RegCM5 at the sea surface using output from SYMPHONIE

(Marsaleix et al., 2008), a regional ocean model that we plan to couple with RegCM in future work as part of an air–sea

coupled regional climate system – which underscores the particular relevance of choosing SYMPHONIE for the local long-

term  strategy.  SYMPHONIE  benefits  from  several  years  of  expertise  over  the  region,  with  a  high  resolution  SEA

configuration (Garinet  et al.,  2024) as well as different  configurations throughout the northern SEA (Piton et  al.,  2021;

Nguyen-Duy et al., 2021; To Duy et al., 2022; Herrmann et al., 2023, 2024; Trinh et al., 2024) showing good performances,
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in particular with regards to mesoscale processes and sea surface characteristics.. The SEA configuration covers the same

domain as in Fig. 1, with a 5 km horizontal resolution and 60 vertical levels, resulting in an effective horizontal resolution of

about 20 km, which ensures to resolve oceanic processes in the scale of RegCM's grid. SYMPHONIE runs from January

2017  to  December  2018,  forced  at  the  lateral  boundaries  by  the  GLORYS12V1  global  reanalysis,  with  a  horizontal

resolution of 1/12° (i.e., around 9 km in the region) and 50 vertical levels (CMEMS, 2020). At the air–sea interface, we

employ the COARE3.0 bulk algorithm (Fairall et al., 2003), using the near-surface atmospheric variables of a global analysis

from the European Centre for Medium-Range Weather Forecasts (ECMWF; with a 3 h period and at a horizontal resolution

of 1/8°, i.e. around 12 km in the region). The resulting SST forcing field shows a good average performance relative to

OSTIA (Fig. A1 provides monthly biases to OSTIA through 2018; see also Garinet et al., 2024), and, as expected, exhibits a

number of additional mesoscale patterns characteristic of the region. It is employed at the daily scale to force RegCM at the

sea surface boundary.

2.2.2 Assessment criteria

We then  conduct  36  atmosphere-only  RegCM experiments  implementing  all  considered  physical  scheme combinations

(Section 2.1). After a two-month spin up period (the model runs from November 2017), we evaluate these experiments’ sea

surface fluxes over 2018. Net surface radiative fluxes (longwave and shortwave, hereafter LW and SW) and precipitation

(hereafter PR) are compared with satellite data, namely Energy Balanced and Filled (EBAF) Ed4.1 (Kato et al., 2018) and

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) V07 (Huffman et al., 2023). Latent and

sensible heat fluxes (hereafter LH and SH) are compared with the ECMWF analysis that has forced SYMPHONIE. We

evaluate sea surface wind (SSW) in comparison with WindSat medium-frequency product v07.0.1 (Wentz et al., 2013; after

the  comparative  study of  Hihara  et  al.,  2015).  Wind  direction  is  ignored,  for  great  uncertainty/confusion  is  generally

associated with it when conducting spatio-temporal averages. The sign convention of heat fluxes is the following: only SW

is positive downward; LW, LH and SH are all positive upward.

The assessment distinguishes between temporal and ocean-only spatial series. Temporal series are monthly annual

cycles computed separately over the eight subregions featured in Fig. 1: AND covering the Andaman Sea, SUN for the

Sunda continental shelf south of Vietnam, SNS for deep basin of the SEA Northern Sea, JAV for the Java Sea, SCB for the

Sulu, Celebes and Banda Seas, SAH for the Sahul continental shelf, and IND and PAC for the Indian and Pacific Oceans,

respectively. Designing adequate subregions requires making a compromise between getting reasonably visible cycles (i.e.

underlying the fewest seasonality offsets) and not over-dividing the domain as we would then more likely face “overfitting”

situations. The subregion partition of Fig. 1 is thus decided according to two criteria: firstly, the atmospheric seasonality of

assessed  variables,  with  e.g.  regions  AND,  SUN and  SNS being  primarily  affected  by  the  southwest  boreal  summer

monsoon; and secondly, the coherence of oceanic water masses, notably leading us to match several subregions’ boundaries

with shelf-break areas (see e.g. SAH which closely follows the Sahul Shelf). Ocean-only spatial series correspond to two

mean seasonal patterns, namely December–February and June–August (i.e. the two main seasonal patterns of the year based

on Chang et al., 2005; hereafter DJF and JJA). Each spatial and temporal series is assessed against the reference datasets

introduced above according to the mean bias (MB), normalized standard deviation (i.e. the standard deviation of the modeled

pattern over that of the reference; NSD) and Pearson correlation coefficient (CC), these metrics addressing three distinct

aspects of performance, namely, bias, precision and association (based on the nomenclature of Liemohn et al., 2021).

In summary, for each of the six chosen variables, three metrics are employed to evaluate eight subregional annual

cycles and two seasonal spatial patterns, which gives a total of 180 criteria. To avoid assessing each scheme combination

individually for each criteria,  we first rely on a relative performance analysis based on a multi-criteria decision making

method  (Section  2.3).  This  method  renders  a  ranking  of  our  experiments,  enabling  us  to  select  a  limited  subset  of

experiments for conducting an absolute performance analysis.
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2.3 Multi-criteria decision making

2.3.1 Overview

We aim to rank our 36 experiments based on their performance regarding 180 criteria. With such a large amount of criteria,

it is likely – and it actually is in our case – that no experiment performs strictly better or worse than the others across all

objectives. In that respect, multi-criteria decision making serves to seek for “compromise solutions”, rather than one absolute

best configuration.

The method we present here is derived from Desmet and Ngo-Duc (2021) and was then further utilized (Nguyen-

Duy et al., 2023b; Ngo-Duc et al., 2024). Mainly inspired by the Multi-Attribute Utility Theory (MAUT; Keeney and Raiffa,

1976) and the Analytic Hierarchy Process (AHP; Saaty, 1980), it consists of (1) organizing criteria in a weighted hierarchy;

(2)  applying  an  exponential  utility  function  to  each  alternative’s  rating  across  each  criterion;  and  (3)  computing  the

experiments’ aggregate utility scores using a weighted average of their utilities along the hierarchy.

2.3.2 Weighted hierarchy

Figure 2(a) illustrates the weighted hierarchy organizing the criteria assessing one variable in our problem. Variable scores

result from three equally weighted subscores featuring the experiments’ performance in representing the mean value and the

temporal and spatial variabilities. The mean value branch simply aggregates MB results from all patterns, giving at last an

equal weight to those calculated from annual cycles and those from seasonal averages. The temporal (spatial) variability

branch exclusively considers CC and NSD stemming from annual cycle (seasonal pattern) comparisons. Subregional scores

are weighted by the area they represent according to Fig. 1, and subregional/seasonal branches stemming from variability

metrics are weighted by the relevant reference pattern’s standard deviation (SD).

Figure 2: Schematics of the aggregation process. (a), Illustration of one variable scoring tree. One node (•) represents the average 
of its entering paths (from above). One tilde ( ) stands for the parallel reproduction of a process. (b), Pie chart illustrating the ∼
variable weights used for computing the aggregate scores, grouped in three equal slices for the three flux types. The mass flux 
component of LH’s weight is estimated by deriving evaporation from ECMWF’s LH then comparing it to PR.

Figure 2(b) then illustrates the weights used for the variable scores at the highest level of the hierarchy. These weights are

computed by flux type (heat, mass and momentum are weighted equally) using a representation of the variables’ contribution
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to these fluxes. Referring to the ocean-only spatio-temporal series from the comparison datasets, we consider the sum of

their mean and SD to account for each variable’s relative contribution. For example, calculation for the weight wSW  given to

SW yields:

wSW=1
3

×
⟨sSW ⟩+σ SW

∑
v

SW , LW , LH , SH

⟨sv ⟩+σ v

(1)

where sv  refers to the spatio-temporal series from the comparison dataset used for variable v, ⟨⋅⟩ denotes an average and σ
refers to an SD.

2.3.3 Utility functions

Utility functions are computed separately for each criterion. This way, let us focus now on one criterion, i.e fixing j  in the

equations below. With x ij the rating of experiment i according to the jth criterion, we first formulate the objective function

f ij depending on the employed metric m j as follows:

f ij=−|xij| if m j=MB (2)

f ij=−|xij−1| if m j=NSD (3)

f ij=xij−1 if m j=CC (4)

such that f ij is to maximize, with an ideal value of 0. The utility function u j can then be applied:

u j(f ij )=β j
f ij /f j (5)

where  f j is the average objective rating among experiments, and  β j is a parameter to calibrate based on the ensemble of

objective ratings f ij along i.

β j drives the exponential slope of the utility function u j, thus influencing its discriminating power, which we would

like to maximize. To quantify u j’s discriminating power, we use the SD along i of u j(f ij ) (i.e the SD of the scores across

experiments). With  β j∼1, the exponential slope is extremely gentle and  u j(f ij)∼1 for all  i, leading to a low SD of the

scores. Conversely, with β j≫1, the slope is too steep and u j(f ij )∼0 for all i, again leading to a low SD of the scores.

Somewhere between these extremes, there exists an optimal value of β j for which the SD of the scores is maximum, such

that on the one hand, some f ij ratings give near-zero u j(f ij ), and on the other hand, some others score above 0.5 or near 1.

Considering our specific ensemble and criteria, we iterate within (1, 50] to determine the optimal β j for each j . We achieve

a precision of this parameter at the second decimal.

2.3.4 Aggregation

Lastly, if w j refers to the weight of the entire jth branch of the hierarchy, i.e. the vertical product along a branch of all local

weights in Fig. 2(a) (provided that the sum of local weights across siblings is always unity), then the aggregate utility score

U i assigned to the ith experiment is:

U i=∑
j

w ju j( f ij) (6)

This process can be adapted to each level of the hierarchy, such that each node in Fig. 3(a) can yield a ranking based on the

subcriteria it covers. This notably allows to break down aggregate utilities into relevant assessment categories.
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3 Results

Based on the protocol described in Section 2.2, we implement 36 RegCM5 physical scheme combinations into experiments,

compute statistics assessing their performance at the air–sea interface (all consultable in Appendix B), and conduct a ranking

of our ensemble using the multi-criteria  decision making technique described in Section 2.3.  This ensemble ranking is

presented and broken down in Section 3.1. Section 3.2 provides a discussion helping to further interpret this ranking. Section

3.3 scales on these first parts for selecting a subset of experiments, therefore analyzing their outputs beyond statistics.
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Figure 3: Scores and associate rankings of the 36 experiments for several stages of the evaluation (all scores are multiplied by 10 
for convenience). (a)–(d), Scores by variable (SH and LW scores are not shown) with score contributions from mean value, 
temporal variability and spatial variability. (e), Scores obtained when aggregating the six weighted variable components: they are 
grouped by flux type so we can visualize equally weighted contributions from heat, momentum and mass fluxes (LH contributes to 
both heat and mass flux bars). Each panel in (a)–(e) is topped by a four-rectangle row showing the SD of the panel’s scores and 
each of the three contributing subscores in the same order and color (while the contribution bars correspond to one-third of the 
subscores such that stacking yields aggregate scores in a 0–10 range, the SD shown on top are all associated with 0–10 scores to 
enable comparison). (f), Heatmap of the CCs between the score series of each panel – “Ag.” standing for “Aggregate scores”. 
Grayscale markers in (a)–(e) refer to the aggregate scores (darker for higher scores in (e)). Simulations are named after the 
configuration they use, as explained in Section 2.1.

3.1 Ensemble ranking

Ensemble  ranking  is  the  first  step  of  our  protocol,  enabling  us  to  statistically  analyze  relative  performance  among

experiments. Bar charts of the scores are shown in Fig. 3 (we do not show nor discuss the experiments’ ability to simulate

SH and LW because of their little contribution to the aggregate scores, see Fig. 3(b)). All scores are multiplied by 10 for

convenience.

Before pointing out any experiment, let us observe the contribution of the three fluxes to the aggregate scores in

Fig. 3(e). These subscores show very different standard deviations (SDs) across the 36 experiments. Quantitatively, SDs of

0.61, 0.89 and 1.21 are obtained for the heat, mass and momentum fluxes, respectively. Great SD indicates that similar

rankings have been found throughout the majority of underlying criteria, causing the better members to accumulate good

scores while the worse ones cannot stand out, thus increasing the relative performance gap. On the contrary,  lower SD

indicates a great diversity of the rankings computed throughout the underlying criteria, such that many members see their

performance  under  one  criterion  offset  that  under  another,  thus  limiting  the  relative  performance  gap  observed  in  the

aggregate scores. These two cases are thereafter referred to as “easy-to-rank” and “hard-to-rank” situations, respectively.

Following this nomenclature, the heat flux scores’ lower SD conveys that the ensemble is harder-to-rank under the heat flux

criteria,  whereas  it  is  easier-to-rank  when  dealing  with  mass  and  momentum  flux  statistics.  Consequently,  mass  and

momentum flux scores seem to drive the aggregate results, while better scores for the heat flux assessment are seen at all

ranks.

While it is tempting to attribute this flux contribution difference to the number of variables they each cover (one for

momentum, two for mass, four for heat), it is striking how easy-to-rank the ensemble is when assessing SSW (Fig. 3(d)). The

worst and best variable scores as well as the highest SD are indeed obtained for SSW, while all variable scores have been

computed  from  the  same  number  of  criteria  hence  being  perfectly  comparable  in  this  regard.  In  particular,  Tiedtke

configurations (**5**) clearly outperform the others (Fig. 3(d)). The top 11 configurations for SSW indeed exclusively

feature Tiedtke experiments, with at least a one score point difference relative to the first non-Tietdke experiment for this

variable, namely 11410, ranking 12th (01511 is the only Tiedtke experiment which underperforms, standing at the second-

to-last place). As in the aggregate ranking, SSW subscores’ contributions from the three assessment aspects, namely mean

value and temporal and spatial variabilities, show different spreads. Capacity in reproducing wind temporal variability does

not seem to be a discriminating factor (this aspects yields the lowest subscore SD, as shown on top of Fig. 3(d)), whereas

reliability  of  the  mean  value  appears  more  efficient  in  that  sense,  notably  being  generally  responsible  for  the  lower

performance of configurations featuring Kain–Fritsch (**6**), behind those using MIT (**4**). Outperformance of Tiedtke

experiments however lies in the better quality of their seasonal spatial patterns whose scores simply double between the 12th

and 11th members. Coming back to the big picture and temporarily ignoring the unequal variable weights which necessarily

modulate the upcoming statements, the higher discriminating power of SSW criteria participates in making SSW scores

particularly influential  in the aggregate results (Fig.  3(e)).  Overall,  ranks resulting from the aggregation of two sets of

subscores with different SD tend to match those associated with the highest-SD subscores. This is a desirable property, since

this procedure dynamically considers the discriminating powers of the input criteria without needing users to make decisions

(reducing the amount of subjective choices one needs to make is indeed among the objectives of the ensemble ranking

method).
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For other variables’ subscores (Fig. 3(a)–(c)), mean value is the aspect separating the ten-to-fifteen lower scores

from the others. In the upper half of the rankings, assessment of the mean value yields similar results, and score differences

stem elsewhere: in the spatial variability branch for PR (though much lighter than for SSW); in the temporal variability

branch for SW; and in a combination of both for LH.

LH and SW are the two biggest contributors to the heat flux scores (Fig. 3(a),(b)). Grayscale markers emphasize the

low correlations of these variable scores with the aggregate results, equal to 0.63 and 0.37, respectively, relative to about

0.88 for both PR and SSW (Fig. 3(f)). Furthermore, the correlation between LH and SW scores is 0.32: in addition to the fact

that the ensemble is harder-to-rank for these variables individually, with score SDs of 0.85 and 0.82, respectively, the two

scores tend to offset each other, explaining our first observation on the low influence of the heat flux scores on the final

results. Only five configurations rank among the top 10 in both rankings, including notably 02421 and 02410 which both use

CCM3, UW-PBL and MIT (024**) and get the highest heat flux contributions to their aggregate scores. Besides, many

configurations show very different relative performance at simulating both variables, such as 02610 and several other UW-

PBL/Kain–Fritsch experiments (*26**) which perform much better with SW than with LH.

On the other hand, correlation between PR and SSW scores is 0.78, and many similarities can be observed between

both rankings (Fig. 3(c),(d)). We already mentioned the high discriminating power of spatial variability statistics for both

variables, but the cumulus convection formulation is also a clear driver of the experiments’ performance for PR, and in the

same order (i.e. with Tiedtke and Kain–Fritsch outperforming and underperforming, respectively). All configurations of the

top seven for PR use Tiedtke, and they are all featured in the SSW top seven as well, although in different order. This way,

contrary to the situation with LH and SW, PR and SSW scores rather seem to accumulate, adding to the asymmetry between

heat flux contributions and those of momentum and mass fluxes in Fig. 3(e).

Finally,  12511  is  the  only  configuration  ranking  relatively  high  for  all  assessed  variables  (including  when

considering SH and LW), its worst rank being fourth for PR, LH and SW. This allows it to rank first overall, even though it

never clearly stands out on a variable-wise basis. Changing the Xu–Randall cloud fraction algorithm for Sundqvist (giving

12510, i.e. second aggregate rank) mostly impacts the mean value assessment, yielding lower performance in SW but higher

in PR. Besides, 02510 provides the best SSW outputs but shows below-average LH accuracy, 12521 exhibits the best LH

performance but is in the second half of the ensemble when assessing SW: each configuration exhibits specific strengths and

weaknesses.

3.2 Discussion

So far, the applied multi-criteria decision making method allowed us to efficiently characterize our ensemble in terms of

relative statistical performance among its members. Yet, this ranking does not hold every information and several points

should be discussed.

3.2.1 Impact of the choice of subregions

Firstly, the dependence of the presented ranking to the subregion partition shown in Fig. 1 may be pointed out. To address

this point, we experimented alternative partitions with four and six subregions, and the results did not vary significantly (not

shown). We are confident in the reasons behind the choice of our final subregion partition as justified in Section 2.2, and

thus assure the ranking’s robustness in this regard.

3.2.2 Pairwise similarity among experiments

Secondly, not all experiment outputs are equally distinct, and equal scores may represent either highly similar or vastly

different patterns. This way, since we aim to provide guidance for choosing optimal configurations in future use of the

model, one may care about avoiding redundancy or duplication in the case of selecting a subset rather than a single optimal
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option. Additional information is thus required for informed decision making, and we employ for this purpose the similarity

index of Yamada et al. (2007). This index ranging between approximately zero and one qualifies the consistency in phase,

amplitude and mean value within an ensemble of patterns (it can mathematically reach -1 in case of extreme dissensus in the

ensemble). As in Desmet and Ngo-Duc (2021), similarity between annual cycles (spatial distributions) is coined “temporal

similarity” (“spatial similarity”). In our case, we compute the similarity between each pair of the 36 experiment ensemble for

each assessed pattern. While decision makers may consult all the results in Appendix C, we prefer to remain concise here,

looking for high similarity pairs among the highest ranking experiments. This way, we first highlight from Fig. C1 and C2

the  high  resemblance  between  12511,  12510  and  02510  (i.e.  the  overall  top  three,  in  order),  all  sharing  the

UW-PBL/Tiedtke/SUBEX (PBL/cumulus convection/resolved-scale precipitation) scheme combination (*251*). To a lesser

extent, high similarity also arises between 01521 and 02521 (ranking fifth and seventh, respectively) which only differ by the

choice of PBL scheme. In this context, decision makers could only pick one configuration per similar cluster for constructing

a subset of configurations performing well but in a different way, hence reducing the number of considered alternatives. The

subset of configurations we further examine in Section 3.3 is constituted using this approach.

3.2.3 Uncertainty on the variable weights

Thirdly, one could fairly question the variable weights employed for the last aggregation. Indeed, even though we have

based our variable weights on comparisons of orders of magnitude between the variables of the same category, the one-third

factor in Eq. (1) highlights the use of arbitrary equal weights when aggregating results from the three flux components. In

fact, how to fairly assess the relative importance of variables? We pointed out that certain criteria had more discriminating

power than others, but how does this translate into actual performance differences? The similarity index can be used once

again to address this problem, but this time applying it to the entire 36 member ensemble.

Figure 4: (a)–(d), Spatial distribution of the ensemble’s temporal similarity index for LH, SW, PR and surface wind. (e), Monthly 
annual cycles of the ensemble’s ocean-only spatial similarity index for LH, SW, PR and SSW.

Figure 4(a)–(d) shows the spatial distribution of temporal similarity for the four variables we focus on, i.e. LH, SW, PR and

surface wind (the map in Fig. 4(d) including both land surface wind and SSW). We can note the generally lower similarity

along the Equator – quite characteristic of SEA (Ngo-Duc et al., 2017; Desmet and Ngo-Duc, 2021) –, several zones of high

dissensus over the SEA seas for LH, and a softer similarity minimum in the northern Philippine Sea for surface wind. For
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PR, disagreement is particularly more widespread.

This last statement is not apparently contradicted by the results obtained for the similarity of ocean-only spatial

patterns throughout the year, which we feature in Fig. 4(e). SW spatial similarity exhibits a clear summer low at around 0.45,

contrasting with a winter high ranging from 0.7 to 0.8. LH and SSW show almost no seasonality with a relatively high index

of 0.7–0.9. Besides, PR seasonal patterns seem to quite disagree all year long, yielding below 0.6 similarities and reaching

minima during the transitional seasons, in April–May and October.

In this context, if one now had to choose one single variable among those we selected to determine a subset of best-

performing experiments in the region, one would likely choose PR – hence emphasizing experiment 02521 (Fig. 3(c)) –

since the ensemble produces the widest  range of patterns for this aspect  of the climate (i.e.  low similarity).  Reversely,

without comprehensively examining each SSW outputs, the similarity results for this variable indicate that most experiments

“agree” on the related patterns – whether this generally corresponds to “good” performances or not – thus one would likely

not consider  better  performances  in  simulating SSW as relevant  configuration-picking criteria.  Although this similarity

analysis brings valuable insights into our problem, variable weights remain unclear to define. In this respect, we highlight the

importance of considering each variable ranking individually, and not exclusively consider the aggregate scores which partly

rely on arbitrary weights.

3.3 Subset analysis

In  the  continuity of  the  performance  rankings  presented  in  Section  3.1 then  discussed  in  Section  3.2,  a  subset  of  six

experiments is selected for a more detailed analysis: 12511 (overall best performer; 12510 and 02510 are ignored based on

the pairwise similarities discussed in Section 3.2.2), 12521 (LH best performer and ranking fourth overall), 02521 (PR best

performer and ranking seventh overall; 01521 is ignored also based on the pairwise similarity analysis, and prioritizing the

analysis of 02521 because of its better performance for PR, which is considered to matter more after our discussion in

Section 3.2.3), 11521 (second best performer for PR and ranking sixth overall), 01421 (SW best performer and best MIT

configuration overall, i.e. at the eighth rank), and 12621 (second best Kain–Fritsch configuration, i.e. at the 21st rank overall,

but best for PR; selecting this experiment allows for a representative of each cumulus convection scheme in the subset,

which was a key driver of performance in the performance ranking as seen in Section 3.1).

3.3.1 Precipitation and shortwave radiation

Figure 5 illustrates the subset’s spatial performances for PR and SW, taking IMERG and EBAF as references, respectively.

Observed seasonal patterns (in DJF and JJA) are displayed in the first row, above bias maps of the six selected experiments.

PR and SW subregional annual cycles are shown in the first two rows of Fig. 6.

According to IMERG, a boreal summer monsoon rainfall cycle is observed over AND (May–Aug), SNS and PAC

(June–September; Fig. 6). This is coherent with the peak periods of the Indian summer monsoon and Western North Pacific

summer monsoon (WNPSM; Wang and LinHo, 2002), and well reproduced by the selected experiments (CC above 0.9 over

these regions; Fig. B5), although with a great dissensus on the amplitude. In AND and SNS, the selected subset tends to

exhibit dry biases – in conjunction with SW overestimation patterns – along the Indochinese western coast (to a lesser extent

with 12511 and 02521), over the northern SNS (particularly for 1***21 experiments: this could be partly attributed to the

joint use of the RRTM radiative transfer model with the NoTo microphysics) and west of the northern Philippines (Fig. 5). In

PAC, although the locally observed PR maximum over the Philippine Sea is not reproduced by RegCM – which is expected

regarding  our  horizontal  resolution  not  designed  for  modeling  extreme  events  –  the  WNPSM PR pattern  is  generally

enhanced in our simulations (Fig. 5 and 6). This is particularly true for 12621 and 01421, which additionally exhibit a dry

bias in the southern Philippine Sea, hence increasing the contrast with heavy precipitation in the north. 12521 is the selected
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experiment showing the most reliable PR pattern over that subregion. Both dry (in AND and SNS) and wet (in PAC) biases

are generally also conveyed in the corresponding annual cycles of Fig. 6. However, it is noteworthy that intra-subregion bias

compensation – coastal vs. offshore over AND and north vs. south over SNS and PAC – tends to minimize the differences to

IMERG curves.

Figure 5: PR and SW seasonal average patterns in IMERG and EBAF reference datasets, respectively (first row), and associated 
biases for the subset of six experiments (second to seventh rows). Within each of the two great columns (PR on the left and SW on 
the right), two subcolumns separate DJF (left) from JJA (right) patterns.
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Figure 6: Monthly annual cycles of PR, SW, LH and SSW (rows) over the eight subregions (columns), according to the subset of 
six experiments and to four reference datasets, respectively IMERG, EBAF, ECMWF and WindSat. Gray areas show the envelope
of the 36 experiment ensemble mean plus or minus one ensemble standard deviation.
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In near-equatorial subregions (SUN, JAV and SCB), IMERG data conveys a PR maximum in austral summer associated

with the Australian summer monsoon (Fig. 5 and 6).  Yet, Fig. 6 shows that a number of Tiedtke experiments (**5**)

produce a boreal-summer-monsoon-type maximum in those regions, contrasting with a dry boreal winter bias. This overly

extensive  boreal  summer  monsoon  peaks  in  June–September,  May–July  and  May–August  over  SUN,  JAV  and  SCB,

respectively (Fig. 6). Such deficiency is most starkly verified by 12511, but remains clear with 02521. 1*521 experiments

are less affected by such patterns around the equator (JAV and SCB), and 11521 only exhibits a rainfall bias band in the

northern hemisphere,  from the Gulf  of Thailand (in SUN) to the Philippine Sea (in PAC), while  slightly affecting the

northern Sulu Sea (in SCB; Fig. 5 and 6). 12521 shares the same summer spatial patterns as 11521 (i.e. changing the PBL

scheme does not impact the spatial series’ CC), except with a dry tendency. In fact, the model produces most of the austral

summer monsoon precipitation in the south of our domain, over SAH and southern IND. 12621 is a good example of this

feature, although every selected experiment seems to agree on it (Fig. 5 and 6).

Then, in terms of radiative forcing, observations show that the baseline SW seasonal cycle is primarily driven by

the incoming solar flux, as can be seen in Fig. 6 during periods of low PR variability. This way, SW over SAH and IND (in

the southern hemisphere) gradually increases during the local dry season from June to November, toward the austral summer

maxima. Conversely, a January-to-May SW increase is very clear in the northern hemisphere over SNS and PAC, while PR

stagnates around its yearly minima. Those transitional season SW trends are overall well reproduced by RegCM, although

with a positive (negative) bias over SNS (IND and PAC). Over SAH, the ensemble is unbiased during the dry season, and

shows little spread.

Besides, near-equatorial subregions (SUN, JAV and SCB) experience a double peak in their SW annual cycle, with

maximum values during transitional seasons and minimum values in winter and summer (Fig. 6). The over-extended boreal

summer monsoon signals commented above strongly impact this baseline seasonality. Over SUN, temporal SW NSD for

12511 and 02521 exceed 1.8 (among the highest figures for this statistic and variable among the eight subregions, as can be

visualised in Fig. 6; explicit numbers are also shown in Fig. B1), as dry (wet) biased conditions in boreal spring (summer)

enhance the observed SW maxima (minima). On the other hand, the lowest temporal CC are obtained over JAV, with 0.25–

0.6 for the selected experiments apart from 11521 and 12621 which give above 0.7 CC (see complete statistics in Fig. B1). It

is worth noting that this disrupted SW and PR seasonality occurs over the shallow seas of the continental shelf and thus

might strongly affect the heat and water budgets of the oceanic components in the perspective of air–sea coupling.

Finally, in spite of a generally inverse correlation between PR and SW patterns – which can be explained by the

radiative  effect  of  convective  clouds  –  unbiased  SW is  rarely  modeled  together  with  unbiased  PR,  and  two  different

configurations do not systematically associate similar PR biases with similar SW biases. For instance, even though 01421

shows a drier boreal summer than 12621 around the equator, the former experiment appears particularly reliable in this same

region for SW, while the latter exhibits positive biases (Fig. 5). Meanwhile, comparably wet biases during the same season

in 02521 and 12511 are associated with a widespread negative SW bias for the former, whereas this level of difference is

reached only locally for the latter. Thus, in addition to the high dissensus among the ensemble members for modeling JJA

spatial distribution of both variables (Fig. 4(e)), there is great variability in their relationship. This highlights a disagreement

in RegCM5 between the radiation and precipitation (whether cumulus convection or resolved-scale microphysics) schemes

on the level of cloudiness that must be associated with satisfactory SW inhibition and rainfall.

3.3.2 Sea surface wind speed and latent heat

Figure  7  illustrates  the  subset’s  spatial  performances  for  LH and SSW, taking  respectively  ECMWF and  WindSat  as

references  and  displaying  seasonal  observed  patterns  and  bias  maps  for  the  six  selected  experiments.  LH  and  SSW

subregional annual cycles are shown in the last two rows of Fig. 6.
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Figure 7: As in Fig. 5, but for LH and SSW, taking ECMWF and WindSat as references, respectively.

Similarly to PR and SW, LH and SSW are closely related, although in this case the correlation is positive (Fig. 6 and 7). This

is directly explained by thermodynamics principles, evaporation being enhanced with increased SSW by construction, yet

this correlation is also modulated by several factors such as near-surface temperature and humidity. That leads RegCM to

simulate various LH responses to a given SSW pattern depending on the configuration used. One can for instance take notice

of the different ensemble spreads for LH between the annual cycles of JAV and SAH (Fig. 6), whereas there is similar

agreement between the simulations when modeling SSW over those subregions. This highlights the relevance of evaluating

both LH and SSW. The observed seasonality of both variables is very well reproduced by the selected experiments (Fig. 6).

We thus conduct the following analysis by focusing on the spatial performance (Fig. 7), using the seasonal cycles (Fig. 6) as
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a support.

For every experiment, a DJF positive SSW bias is produced in the eastern South Indian Ocean–Timor Sea, ranging

from +1 m s–1 (~16 %) with 12511 to +3 m s–1 (~50 %) with 12621 (Fig. 7). Except for 11521, it is associated with intense

LH  biases,  reaching  up  to  +80  W  m–2 (~50  %)  in  12621.  SSW  seasonal  cycles  over  SAH  (Fig.  6)  show  that  the

overestimation during December–January is consensual. The bias variability among experiments acknowledged in Fig. 7 for

DJF in SAH is  thus mainly rooted  in  February  (Fig.  6),  as  all  experiments  except  01421 and 12621 (which  maintain

overestimation in February) are unbiased for this month’s subregional mean, hence partly compensating for the previous

months’ overestimation.

Conversely,  in boreal  summer,  the local  LH maximum observed  in the Timor Sea is underestimated  in many

RegCM runs, with a small to intense negative bias extending further to the west in the Indian Ocean (Fig. 7). At most, a -80

W m–2 (-40 %) bias is obtained in 01421 and 1*521 experiments. This LH underestimation is generally not associated with

SSW underestimation. In the same season, north of that LH underestimation, both LH and SSW are often overestimated

around the equator  or slightly to its  south,  affecting IND, JAV and SCB (Fig.  7).  In terms of  LH, this overestimation

represents a relatively narrow band not exceeding +40 W m–2 with 12521; it is widely spread around the equator and remains

under +50 W m–2 with 12511; and it even reaches +70 W m–2 with 12621 (from +15 to +70 % depending on the area).

Together with the LH underestimation in the south, these patterns suggest a northward shift/extension of the high LH and

SSW zone visible in the reference panel along the domain’s southern boundary – corresponding to the dry lower branch of

the winter hemisphere’s Hadley Cell. In terms of SSW, a +1 to +2 m s–1 overestimation is generally associated with this LH

overestimation pattern. However, while similar SSW overestimation is obtained for 12521 and 11521, the latter exhibits no

collocated LH peak (Fig. 7). This could be attributed to the PBL scheme, since 11521 uses Holtslag whereas experiments

overestimating LH typically use UW-PBL (*2***). With the current parameters, Holtslag could induce less turbulence than

UW-PBL near the surface hence affecting *1*** simulations’ capacity to extract moisture from the ocean. On the LH annual

cycles of Fig. 6, the two lowest curves for IND, JAV and SCB are indeed the two *1*** simulations of the subset. Over

IND, these simulations are lower than ECMWF’s cycle, because the southern negative bias is not compensated as with

*2***. Over JAV and SCB, Holtslag experiments are closer to the reference.

SSW overestimation during the WNPSM (i.e. during JJA, over SNS, and the northern Philippine Sea in PAC) is

also frequent, but only 01421 and 12621 (the two non-Tiedtke experiments) bring it to levels significantly impacting LH

(Fig. 7). In particular, 01421 increases SSW by nearly +70 %, from ~6 m s–1 to ~10 m s–1, which is a value not even observed

in the region during winter when trade winds reach the SNS. As a result, 01421’s curve is a clear outlier over SNS (Fig. 6).

Over  PAC,  one  can  note  in  Fig.  7  additional  negative  biases  in  the  southern  Philippine  Sea  for  both  experiments

(compensating for the northern positive biases when spatially averaging for the annual cycle). This is consistent with the PR

bias patterns previously discussed in Section 3.3.1, in association with a generally enhanced WNPSM.

Lastly,  Fig.  7  highlights  a  number  of  differences  between  RegCM  simulations  and  ECMWF’s  LH  spatial

distribution, consistent throughout all selected experiments: mesoscale spatial oscillations in the northern Philippine Sea in

DJF (particularly seeable with 12621), as well as negative bias around Taiwan in DJF and curved negative bias pattern

offshore South Vietnam in JJA. These differences coincide with zones of upwelling and/or mesoscale eddies and meanders

which result in locally cold SST biases in SYMPHONIE when compared with OSTIA (Fig. A1). This mesoscale activity is

certainly not accounted for in ECMWF, thus those biases cannot be attributed to RegCM. Since these patterns are shared by

most experiments, they do not influence the relative performance assessment we conducted in Section 3.1.
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4 Synthesis and conclusion

This study proposed to optimize the choice of physical schemes in RegCM5 for the best performance of the model at the sea

surface,  seeking  to  provide  guidance  for  selecting  appropriate  physics  configurations  in  future  modeling  experiments

(notably, involving air–sea coupling). Employing among the most recent schemes released in the last version of the model,

36 scheme combinations were implemented varying the choices made for five model aspects: radiative transfer, planetary

boundary layer (PBL), cumulus convection, resolved-scale microphysics, and cloud fraction. We then evaluated for the year

2018 those RegCM5 experiments’ ability to reproduce regional sea surface fluxes of heat, mass and momentum.

Precipitation and shortwave and longwave radiative heat fluxes as well as sea surface wind speed were compared to

satellite data, and latent and sensible turbulent heat fluxes were evaluated against an analysis. Eight oceanic subregions were

designed for  computing subregional average annual  cycles  of the studied variables,  based on the joint  consideration of

bathymetric features and known subregional seasonality. Spatial distribution patterns were assessed in terms of seasonal

means. The correlation coefficient,  normalized standard deviation and mean bias were the metrics used to compare the

experiments’ temporal and spatial series to reference data, allowing to differentiate errors of phase, amplitude and mean

value, respectively. Deriving the method of Desmet and Ngo-Duc (2021), we organized the 180 criteria into a weighted

hierarchy, then applied an adaptive utility function hence yielding scores and rankings at each level of the hierarchy. This

multi-criteria decision making approach proved powerful in informing about the relative performance across criteria among

the 36 experiment ensemble.

The ranking results emphasized several top performing RegCM configurations:

● 12511  (using  RRTM/UW-PBL/Tiedtke/SUBEX/Xu–Randall)  and  12510  (changing  Xu–Randall  for  Sundqvist)

ranked first and second overall respectively, 12511 being the only configuration ranking in the top five for every

variable ranking;

● 02510 (using CCM3/UW-PBL/Tiedtke/SUBEX/Sundqvist) ranked third overall and first for SSW;

● 12521 (changing SUBEX for NoTo, in comparison with 12511) ranked fourth overall and first for LH;

● 01521 (changing RRTM for CCM3, in comparison with 12521) ranked fifth overall;

● 11521 (changing UW-PBL for Holtslag, in comparison with 12521) ranked sixth overall and second for PR;

● 02521 (changing Holtslag for UW-PBL, in comparison with 01521) ranked seventh overall and first for PR;

● 01421 (changing Tiedtke for MIT, in comparison with 01521) ranked ninth overall and first for SW.

The majority of the top 10 scheme combinations featured the Tiedtke cumulus convection, the UW-PBL, and the Xu–

Randall cloud fraction schemes, while representing each option for radiative transfer and resolved-scale microphysics nearly

equally.  The  Tiedtke  cumulus  convection  scheme  particularly  outperformed  others  for  modeling  precipitation  and  sea

surface wind. Conversely, Kain–Fritsch experiments exhibited the lowest ranks on average, the best simulation standing 20th

overall. No configuration was found to perform consistently better across all variables (12511 ranked relatively high in each

variable  ranking,  but  only  ranked  first  after  aggregating  the  variable  scores).  In  particular,  while  many  Tiedtke

configurations appeared to perform well for both precipitation and sea surface wind, the three first-ranking experiments for

shortwave radiative flux used MIT, and their scores for this variable showed a clear performance gap with 12511 ranking

fourth. Besides, a similarity analysis (Section 3.2.3) informed about the enhanced variety of patterns among the ensemble for

precipitation  when  compared  to  other  variables  yielding  less  dissensus,  which  suggests  that  a  better  performance  at

simulating precipitation might matter more to decision makers – although to what extent is uncertain.

Ignoring several well performing experiments which showed a high level of similarity with each other (based on

Section 3.2.2),  we then constituted a subset  of six top-performing configurations for  an absolute performance analysis,

helping to characterize the experiments’ patterns beyond their scores and statistics. The major conclusions of the subset

analysis are summarized as follows. RegCM5 captures reasonably well the seasonality of sea surface wind, latent heat flux,
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as well as shortwave radiative heat flux under low-rainfall conditions. The timing of summer and winter monsoons is overall

well captured, although their intensity and spatial extent are modeled with a great dissensus: boreal summer near-coastal

rainfall  in  the  northwest  is  generally  underestimated  (especially  in  RRTM–NoTo experiments);  Western  North  Pacific

Summer Monsoon rainfall, sea surface wind, and latent heat flux are overestimated and shifted northward (particularly in

non-Tiedtke  experiments);  in  near-equatorial  regions,  most  Tiedtke  experiments  produce  an  unrealistic  annual  rainfall

maximum in boreal summer instead of boreal winter; Australian Summer Monsoon precipitation, sea surface wind, and

latent heat flux are intensified over the continental shelf north of Australia, which coincides with an austral summer dry bias

in near-equatorial  seas.  UW-PBL experiments  tend to simulate higher latent  heat  flux than Holtslag ones,  attributed to

enhanced turbulence.

Several limitations are yet to be mentioned. Indeed, our strategy targeted the seasonal cycle, assessed over a single

year selected for its neutrality with respect to large-scale oscillations. Consequently, our findings are specific to that context,

and no conclusions can be drawn about the performance of this study's top-performing configurations under non-neutral

conditions, in terms of intraseasonal/inter-annual variability or more. While this work provides a basis for identifying a

subset  of  promising configurations,  additional  experiments are needed to further  refine the selection, notably involving

longer simulations to conduct more comprehensive diagnostics.

Also, the analysis of spatial distributions highlighted bias compensation within subregions, rooted, e.g., in coastal

vs. offshore performance contrasts (although the robustness of the ranking to the choice of subregion partition was validated

in Section 3.2). Since such bias compensation depends on experiments, it appears difficult to select a perfectly relevant

subregion partition, but we could use more systematic protocols such as clustering techniques hence making the selection

less arbitrary. Taking a broader view, this also questions the definition of criteria by fixed spatiotemporal subdivision – i.e.

by subregion and by season – while the climatic features shaping the studied patterns (e.g. the monsoons) are moving in time

and space. In this respect, process-oriented diagnostics could be more appropriate and should be explored in future studies.

Moreover, it is worth reminding that all the physical schemes tested throughout this paper were employed with their

default internal parameters. Regarding the improvements obtained in the model of Zou et al. (2014) after fine-tuning their

cumulus convection scheme, one could fairly question the relevance of our study. Indeed, although not explicitly mentioned,

our work relied on the disputable hypothesis that our schemes’ internal parameters are all relatively close to their “tuned”

value. Based on the analysis of our top-performing experiments in Section 3.3, where, in particular, unbiased precipitation

was never associated with unbiased surface shortwave fluxes, we can confidently state that this hypothesis is not valid. In

addition, the “tuned” values of, e.g., the Tiedtke cumulus convection scheme, would certainly differ whether the scheme is

employed in combination with, e.g., for the resolved-scale precipitation scheme, SUBEX or NoTo, or when varying any

other  physical  option  in  the  model.  So,  ideally,  a  more  thorough  protocol  would  have  been  to  fine-tune  the  internal

parameters of the five schemes chosen altogether, and to repeat the process for every different scheme combination, i.e. 36

times. Only then could we apply our strategy to assess and rank the 36 fine-tuned configurations based on their performance

at  the  air–sea  interface,  select  a  subset  for  a  more  thorough  analysis,  etc.  Such  work  would  however  have  involved

considerably  more  computing  resources  and  time  than  we  could  afford.  Keeping  the  default  internal  parameters  was

therefore only pragmatic.

Another approach within the same constraints would have been to fine-tune one single configuration we would have

chosen based on previous research. However, previous studies featured significantly less physical options than those tested

here, and focused almost exclusively on land performance. For example, Ngo-Duc et al. (2024) recently employed 0***0

configurations to assess land temperature and precipitation (and to our knowledge, only 01*10 experiments were tested in

earlier works). As a result, our understanding of how RegCM performs across the full SEA domain was incomplete, and

some recent options were never assessed despite yielding good results in the present study (e.g. RRTM and Xu–Randall).

After the current paper, assessing RegCM's most updated schemes over land would be a valuable follow-up. Nonetheless, in
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order to guide modelers seeking homogenous RegCM performance over the region, we can conduct  as of now a brief

comparison of our ocean-focused results with the land-only ones of Ngo-Duc et al. (2024). They notably identified four

configurations with equivalent  aggregate  scores,  including three using Kain–Fritsch and one using Tiedtke.  Our results

indicate that Kain–Fritsch tends to overestimate oceanic monsoon signals in terms of precipitation, sea surface wind and

latent heat flux, such that Kain–Fritsch configurations generally ranked in the bottom third of the ensemble. This supports

favoring their top experiment that used Tiedtke instead. The Tiedke configuration highlighted in their study (i.e. 02510 using

our  notation)  ranked  third  overall  in  ours  while  sharing  the  same PBL (UW-PBL),  cumulus  convection  (Tiedke)  and

microphysics (SUBEX; i.e. *251*) as in the first and second ranks. This suggests that a balanced configuration may lie

among these *251* combinations. Our work thus serves as a prerequisite before embarking on any fine-tuning efforts from a

relevant  configuration.  According  to  our findings,  future  fine-tuning efforts  should first  target  the  cumulus  convection

scheme,  which  was  the  primary  driver  of  performance.  Radiative  transfer,  PBL,  and  microphysics  should  follow  as

secondary priorities, while the cloud fraction algorithm warrants lower focus.

The research proposed in this article also invites further exploration. For example, while we chose to force RegCM

with a high-resolution SST field from SYMPHONIE in place of traditional, smoother SST datasets, we did not address the

impact of this choice on the outputs of the model. How oceanic mesoscale eddies and meander impact the formation of

clouds and precipitation in the area? We employed a 25 km horizontal resolution, so this may limit the impact of oceanic

mesoscale in the atmosphere, but will this influence of SST become more critical with future resolution improvements?

Indeed,  with the upcoming seventh phase of  the Coupled Model Intercomparison Project  (CMIP; Dunne et  al.,  2024),

resolution should increase in both global and regional climate models (including those we employ). More generally, how

will our performance ranking evolve with those new resolutions?

Lastly,  we want  to ensure the relevance  of  our results in the perspective of using RegCM as the atmospheric

component of a coupled system involving air–sea coupling. Indeed, referring to Hourdin et al. (2017), tuning a coupled

modeling system usually requires several  stages, including “component tuning” with the standalone components, before

conducting a “system tuning” with the fully coupled setup. Moreover, in their review on air–sea coupled modeling over the

Maritime Continent, Xue et al. (2020) pointed out that uncertainties in modeling convective processes, fractional coverage

and  autoconversion  –  all  strongly  affecting  surface  fluxes  –  are  primarily  driven  by  their  formulation  and  associated

parameters within the atmospheric component, rather than by ocean–atmosphere coupling. In that respect, the insights gained

from our atmosphere-only experiments provide valuable guidance for future air–sea coupled simulations. Such modeling

perspectives are a key focus of the authors’ ongoing research and development efforts.
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Appendix A

Figure A1: 2018 monthly biases between the SST forcing data used in RegCM5 (issued from a high resolution simulation from the 
regional ocean model SYMPHONIE) and OSTIA’s analysed SST. Note that OSTIA’s analysis error in SEA is about 0.2 °C far 
from land, and ranges between 0.5 and 1 °C in near-coastal areas. In each subplot’s title, “av” and “sd” show the average and 
standard deviation of the displayed bias field, respectively.
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Appendix B

Figure B1: Raw statistics assessing the 36 experiments’ SW fields, serving as a basis for the ranking shown in Fig. 3. The 
percentage in the title recalls the variable weight of Fig. 2(b). Below, the bar graph indicates the relative weights among the 30 
criteria across columns. Then, the heatmap exhibits the raw statistics across experiments (rows) and criteria (columns). Three 
different colormaps are employed for three different metrics, all indicating brighter shades for better performances: from dark 
red to white for CC; from dark green to dark purple for NSD (with white assigned to NSD=1); and from dark blue to dark red 
for MB (with white assigned to MB=0). The colormaps’ scaling is computed independently for each column, based on local 
minimum and maximum values across rows (for NSD and MB, the scaling is symmetric, based on the maximum distance to 1 and 
0, respectively). Experiments are displayed in arbitrary order. The six experiments included in the subset of Section 3.3 are 
emphasized in bold.
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Figure B2: As in Fig. B1, but for LW.
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Figure B3: As in Fig. B1, but for SH.
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Figure B4: As in Fig. B1, but for LH.
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Figure B5: As in Fig. B1, but for PR.

28

690



Figure B6: As in Fig. B1, but for SSW.
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Appendix C

Figure C1: Pairwise spatial similarity indices across the 36 experiments and two seasons. Similarity indices are applied to DJF 
(JJA) patterns in the upper-left (lower-right) section of each subplot. The cells corresponding to the three pairs one can constitute 
with 12511, 12510 and 02510 are framed in orange.

30

695

700

30



Figure C2: As in Fig. C1, except with the temporal similarity indices across the eight oceanic subregions. Similarity indices are 
applied to SUN, JAV, SAH and AND (SNS, SCB, PAC and IND; displayed clockwise within each cell starting at the top) patterns 
in the upper-left (lower-right) section of each subplot.

Code availability

The RegCM5 code version used for this work is produced by the Abdus Salam International Centre for Theoretical Physics

(ICTP,  2025)  and  can  be  accessed  at https://doi.org/10.5281/zenodo.15125814.  A  Python  package  was  also  coded  to

implement the ranking logic although it is not ready for distribution. The version used in this paper can be accessed at

https://doi.org/10.5281/zenodo.15356967. Last, miscellaneous scripts to reproduce all the data and visuals presented in this

paper can be accessed at https://doi.org/10.5281/zenodo.15359231.
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