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Abstract. The influence of intrinsic ocean variability on coastal sea level remains largely unexplored but is of potential 

importance for emerging forecasting efforts. As in weather forecasts, intrinsic variability will amplify uncertainty in initial 

conditions. However, variability originating from intrinsic processes may be predictable in a forecast system with sufficient 

resolution and accurate initialization. Here, we examine the spatiotemporal properties of intrinsic sea level variability along 10 

the Southeast United States coast using a suite of global ocean/sea-ice simulations at 0.1° horizontal resolution. In model 

simulations, intrinsic variability is a dominant component of the monthly de-seasonalized and detrended sea level variability 

in deep waters, but it is damped along continental shelves, where it comprises ~10-30% of the sea level standard deviation. 

Our analyses demonstrate that US East Coast and Gulf of Mexico shelves exhibit a common intrinsic mode, with maximal 

amplitude in the South Atlantic Bight and almost no expression north of Cape Hatteras. This intrinsic coastal mode is 15 

coherent with sea level along the Gulf Stream axis after detachment from Cape Hatteras. Intrinsic sea level variability in the 

detached Gulf Stream leads the coastal mode by 2-3 months, suggesting that intrinsic coastal sea level variability may 

exhibit predictability. 
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1 Introduction 

Coastal ecosystems, communities, and economies are highly susceptible to sea level variability over a wide range of time 

scales (e.g., Rashid et al., 2021; NOAA, 2022). Accurate sea level predictions are needed for mitigation and adaptation 

purposes and for effectively managing risks associated with sea level variability. Such predictions will benefit from: 1) 25 

improved understanding of relevant drivers of regional coastal sea level variability, and 2) assessment of the representation 

of monthly to interannual coastal sea level variability in dynamic models utilized for operational ocean forecasting.  

Various physical processes operating at different spatial and temporal scales influence sea level variability (e.g., Gerkema & 

Duran-Matute, 2017; Little et al., 2019; Camargo et al., 2024). These processes can be partitioned into a deterministic 
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component that occurs in response to an applied forcing (“atmospherically-forced component”), and a non-deterministic 30 

(“intrinsic”) component, which is not directly driven by atmospheric variability but is instead generated by the ocean itself, 

for instance, through small-scale (i.e., mesoscale and smaller) turbulent processes (e.g., Penduff et al., 2011). Such small-

scale processes become particularly important in eddy-active regions of the ocean and cause the ocean’s evolution to be non-

deterministic at both small and large (regional to basin) scales under prescribed forcing conditions (Sérazin et al., 2015; Qiu 

et al., 2015; Forget & Ponte, 2015; Close et al., 2020).  35 

Sea level variability originating from intrinsic processes might be a significant source of uncertainty in forecasts and can 

only be represented by adopting ocean models of sufficient horizontal resolution (e.g., Penduff et al., 2010; 2011; Sérazin et 

al., 2018; Chassignet et al., 2020). However, generally, the horizontal resolution of ocean models used for coastal sea level 

forecasts is on the order of 1° (~100 km), which is insufficient to capture the effect of oceanic intrinsic variability on coastal 

sea level (e.g., Long et al., 2021).  40 

Even in simulations capable of representing intrinsic processes, separation of forced and intrinsic variability is not trivial. 

Two strategies have been used to isolate the contribution of intrinsic variability in eddy-permitting ocean model simulations. 

The first strategy compares model output from a realistic atmospherically forced model with one only subjected to 

climatological forcing (e.g., Stewart et al., 2020) (i.e., repeat-year forcing simulations). The second approach employs 

ensemble members with perturbed initial conditions, which permit the estimation of the forced (ensemble mean) and 45 

intrinsic components (i.e., difference between time series of a specific member and the ensemble mean) (e.g., Penduff et al., 

2014; Bessières et al., 2017; Donatelli et al., 2025). 

This paper focuses on characterizing the spatiotemporal properties of intrinsic sea level variability along the Southeast Coast 

of the United States (including the Gulf of Mexico), where societal vulnerability to sea level variability is high and 

increasing (e.g., Thatcher et al., 2013). The majority of the studies in this area focus on atmospherically-forced variability 50 

(e.g., Frederikse et al., 2017; Calafat et al., 2018; Piecuch et al., 2018; Wang et al., 2024) and less is known about the 

influence of oceanic intrinsic processes on coastal sea level.  

The Southeast Coast of the United States (from now on, SEUS) has a strong intrinsic component at sub-annual to interannual 

timescales (e.g., Close et al., 2020; Little et al. 2024). However, previous studies do not elucidate: (i) the SEUS along-coast 

spatial structure, and (ii) how coastal variability relates to offshore variability over space and time. To explore these 55 

questions, it is essential to use simulations that: 1) represent the SEUS shelf topography with sufficient grid points even in 

regions where the shelf narrows, and 2) adequately resolve offshore intrinsic variability (e.g., Halberg et al., 2013). 

Here, to study the spatial structure (and magnitude) of intrinsic sea level variability along the SEUS coastline and its 

spatiotemporal relationship with offshore variability, we utilize monthly sea surface height (SSH) fields from high-resolution 

(HR) forced ocean/sea-ice (FOSI) and repeat-year-forcing (RYF) (Stewart et al., 2020) simulations performed using the 60 

Community Earth System Model at 0.1° horizontal resolution (Chang et al., 2020; Yeager et al., 2023; Little et al., 2024). 

We utilized the HR FOSI simulation to evaluate whether the model faithfully represents observations, and the HR RYF 

simulation to cleanly estimate intrinsic sea level variability. The paper is organized as follows. The model setup, 
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observational datasets, and data processing are described in the Appendix. In Section 2, we show the results, and in Section 

3, we present the discussion and conclusions. 65 

 
Figure 1: Total sea level standard deviation (cm) from (a) the HR FOSI simulation (the blue dashed line indicates the offshore region in 
Fig. 3a) and (b) gridded altimeter product over the period 1993-2015. (c, d, e) Comparison between detrended and de-seasonalized time 
series from tide gauges (TGs) and HR FOSI ensemble simulation in three representative locations. We reported the standard deviation 
(cm) for TGs (black) and each FOSI cycle. The location of each TG is shown in Fig. 1b. (f) Intrinsic standard deviation (cm) estimated 70 
using the HR RYF simulation. (g) Intrinsic fraction (i.e., intrinsic standard deviation estimated from the HR RYF simulation divided by 
total standard deviation computed using the HR FOSI simulation). 

2 Results 

2.1 Total and intrinsic sea level variability 

We first compare the total (i.e., forced plus intrinsic) sea level standard deviation from the HR FOSI simulation and 75 

observations over the 1993-2018 period (Fig. 1). Total sea level standard deviation (mean across the FOSI members; Fig. 1a) 

is larger in deep waters and decreases over the continental shelf. Over the same temporal window, a gridded altimeter 

product (Fig. 1b) shows a similar spatial structure, with the model generally underestimating the observed monthly total sea 

level standard deviation over the shelf by 10-20%. A similar result was obtained when we compared coastal grid points with 
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the detrended and de-seasonalized sea level recorded by tide gauges (TGs). At three representative locations along the US 80 

coastline (Figs. 1c, d, e), discrepancies between model and TG observations were more significant in Galveston (see 

standard deviations in Figs. 1c, d, e). In contrast, Charleston exhibited the largest inter-cycle differences. Our results show 

that, overall, sea level hindcasts compare favorably to TG observations over the 1993-2018 period (see Table 1). 

Tide gauge R2 RMSE (cm) 
Portland (Maine) 0.81, 0.80, 0.78, 0.8 2.70, 2.73, 2.88, 2.79 
New Port 0.80, 0.78, 0.78, 0.79 2.52, 2.63, 2.65, 2.59 

Cape May 0.86, 0.86, 0.85, 0.86 2.80, 2.85, 2.90, 2.85 
Sewells Point, Hampton Roads 0.85, 0.85, 0.85, 0.85 3.51, 3.57, 3.53, 3.54 

Beaufort (North Carolina) 0.70, 0.69, 0.73, 0.71 4.01, 4.11, 3.93, 3.99 

Wilmington 0.49, 0.51, 0.54, 0.52 6.77, 6.72, 6.62, 6.66 

Charleston 0.66, 0.71, 0.73, 0.66 5.19, 4.85, 4.79, 5.22 
Fort Pulaski 0.64, 0.68, 0.71, 0.63 5.62, 5.27, 5.32, 5.75 

Naples 0.41, 0.43, 0.51, 0.43 4.10, 3.92, 3.73, 3.94 
St. Petersburg 0.48, 0.46, 0.53, 0.44 3.85, 3.79, 3.60, 3.93 

Apalachicola 0.57, 0.54, 0.58, 0.52 4.80, 4.90, 4.73, 5.02 

Grand Isle 0.67, 0.67, 0.72, 0.66 3.99, 3.95, 3.68, 4.00 

Galveston 0.76, 0.78, 0.81, 0.75 4.76, 4.59, 4.37, 4.80 
Rockport 0.73, 0.75, 0.77, 0.73 4.42, 4.37, 3.98, 4.65 
Port Isabel (Texas) 0.7, 0.72, 0.75, 0.71 4.21, 4.05, 3.82, 4.15 

 
Table 1. Comparison between HR FOSI simulation and TG observations. For each ensemble member, we reported 85 

coefficient of determination (R2) and root mean square error (RMSE). 
 

We next quantify intrinsic variability using detrended and de-seasonalized monthly outputs from the HR RYF simulation 

(Fig. 1f). The intrinsic standard deviation shows substantial spatial variations; specifically, it is damped on the continental 

shelf relative to offshore. By computing the intrinsic fraction (i.e., ratio between the intrinsic standard deviation from the HR 90 

RYF simulation and the total cycle-mean sea level standard deviation from the HR FOSI simulation), we found that the 

intrinsic standard deviation represents 10-30% of the total sea level standard deviation on the continental shelf south of Cape 

Hatteras and up to 100% of the total standard deviation in deep waters (Fig. 1g; note that these results pertain to a region 

dominated by a western boundary current). Offshore intrinsic variability is maximized in the interior of the Gulf of Mexico 

and in proximity to the Gulf Stream (GS). Along the GS path, we found a minimum in the offshore intrinsic fraction (Fig. 95 

1g), which coincides with a region of low intrinsic standard deviation (Fig. 1f). The core of the GS is characterized by 

weaker zonal SSH gradients with respect to its margins (see SSH contours in Fig. 3). These spatial variations in SSH 

gradients may be responsible for the patterns observed in offshore intrinsic variability near the GS. 
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2.2 Intrinsic sea level variability along the SEUS coast 

We utilized detrended and de-seasonalized monthly SSHs extracted at 170 coastal grid points (pseudo-TGs) from the HR 100 

RYF simulation to analyze the spatial structure of intrinsic sea level variability along the SEUS coast. Consistent with Figs. 

1f, g, coastal grid points exhibit minimal variability north of Cape Hatters (see pseudo-TGs between locations 100 and 170 

in Fig. 2a).  

We used EOF analysis to identify the modes that explain the largest fraction of the variability along the SEUS coastline. The 

EOF decomposition revealed that the first two modes explain most of the variability in the dataset. Specifically, the first 105 

mode explains 73% of the variability, while the second mode contributes 12% (Figs. 2b, c). The eigenvector associated with 

the dominant mode showed the same sign in all the pseudo-TGs (as indicated by the color of the circles in Fig. 2b), revealing 

a “common mode” linking the East Coast and the Gulf of Mexico. In contrast, the second eigenvector suggests that the 

pseudo-TGs along the US East Coast behave opposite to those in the Gulf of Mexico (Fig. 2c). The variability explained by 

each mode presents significant spatial variations (see the size of the circles in Figs. 2b, c), particularly between pseudo-TGs 110 

south of Cape Hatteras (larger) and those north of Cape Hatteras (smaller standard deviation). Both modes show enhanced 

variability between Cape Hatteras and Jacksonville. 

The temporal evolution of the first two eigenvectors is represented by the PCs associated with each mode (Fig. 2d). The PCs 

exhibit fluctuations at sub-annual to interannual time scales, including multi-year sea level trends (for example PC1, over a 

5-year period beginning around month 90) (Penduff et al., 2019). The remainder of the paper considers only the first mode 115 

(PC1) given its dominant role in explaining SEUS intrinsic coastal variability. 
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Figure 2: (a) Monthly time series from the HR RYF simulation extracted at 170 pseudo-TGs along the SEUS coastline. These time series 
are 32 years long. (b) First and (c) second mode obtained from EOF analysis. The color of the circles indicates the eigenvectors’ value in 
each pseudo-TG, while the circles’ radius is related to the magnitude. (d) Principal components (PCs, cm) associated with modes 1 and 2.  120 

2.3 Relationship between along-coast and offshore intrinsic sea level variability 

We utilized detrended and de-seasonalized SSH fields obtained from the HR RYF simulation to identify spatial pathways 

connecting offshore and coastal intrinsic sea level variability. With no lag, PC1 correlates with (i) SSHs over the entire 

continental shelf south of Cape Hatteras, and (ii) SSHs within an off-shelf region located in proximity to the GS axis after 

detachment from Cape Hatteras (Fig. 3a).  125 

To assess evidence for propagating oceanic signals, lag correlations at different lags were applied, with a positive lag 

indicating that offshore sea level leads PC1. We highlight correlated off-shelf regions (blue contours in Figs. 3b, c, d) using a 

threshold of 0.3 (note that coherence analysis performed in the following paragraph is not sensitive to the precise threshold 

Figure 2
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employed to identify the detachment region). Interestingly, lag correlations reveal that the off-shelf region (i) moves 

westward and varies in size with decreasing time lag, and (ii) leads the along-coast intrinsic mode.  130 

 

Figure 3: Lag correlations between the PC1 and SSH field: (a) no lag, (b) lag of 3 months, (c) lag of 1 month, and (d) lag of -1 month. A 
positive lag means that SSH field leads the PC1. The solid blue line in 3a shows the off-shelf region when no lag is applied to the PC1. 
The solid lines in 3b, c represent the off-shelf region when lags of (b) 3 months and (c) 1 month are applied to the PC1. The dashed lines in 
3b, c, and d show the off-shelf region when no lag is applied to the PC1 (i.e., the dashed lines are the same as the solid line in 3a). The 135 
statistical significance of the lag correlations was evaluated using a p-value of 0.05. The thicker black lines indicate a water depth of 100 
meters, while the lighter black line indicates a water depth of 1000 meters. The grey lines are time-mean SSH contours at 10-cm intervals. 

We employed a spectral approach to further characterize the relationship between the PC1 and the detrended and de-

seasonalized SSHs over the off-shelf region (i.e., solid blue line in Fig. 3a). The two-time series show high coherence values 

(coherence amplitude greater than 0.5, Fig. 4a) for frequencies smaller than 0.9 year-1. In this frequency band, the coherence 140 

phase lag (positive phase lag denotes off-shelf region leads the PC1; shown only for frequency bands where coherence is 

statistically significant) ranges between 20 and 40 degrees (i.e., off-shelf region leads PC1 by 2-3 months). To help visualize 

these results, we applied a 13-month low-pass filter to the two-time series (Fig. 4b). Consistent with Fig. 4a, the two filtered 

signals show that the off-shelf region leads the along-coast intrinsic mode. 

Figure 3
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 145 

Figure 4: (a) Coherence analysis between the PC1 and average SSH signal within the off-shelf region. Note phase lag is only shown for 
statistically significant coherence (a positive phase means that the off-shelf region leads the PC1). (b) PC1 (cm) and average SSH signal 
(cm) within the off-shelf region to which we applied a 13-month low-pass filter. The average SSH signal within the off-shelf region is 
divided by 10. 

3 Discussion and Conclusions 150 

Using a 50-member ocean ensemble hindcast at 0.25° horizontal resolution, Close et al. (2020) showed that sea level 

variability is almost entirely driven by intrinsic processes in energetic regions of the ocean, such as the GS. Building on this 

study, we utilized a set of numerical experiments at higher spatial resolution to explore the linkage between offshore and 

coastal sea level variability along the SEUS coastline.  

Our analyses revealed that, at monthly to interannual timescales south of Cape Hatteras, intrinsic processes meaningfully 155 

contribute to sea level variability, reaching up to 30% of the total monthly sea level standard deviation on the continental 

shelf. A common intrinsic sea level mode, largest between Charleston and the Florida Straits, but coherent around the Gulf 

of Mexico, is correlated with sea level variability in the detached GS through a large-scale pathway connecting deep and 

shelf waters. The absence of intrinsic variability to the north of Cape Hatteras is consistent with the limited ability of eddies 

to influence sea level where the shelf is wide (e.g., Gangopadhyay et al., 2020), and the equatorward propagation of coastal 160 

sea level anomalies originating near the GS detachment.  
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The along-coast coherence of PC1, and the robust 2-3 month lag between off-shelf and coastal sea level variability (see 

offshore region in Fig. 3), inform hypotheses about the underlying oceanic mechanisms controlling the propagation of sea 

level anomalies from the off-shelf region to the coast (e.g., Wu & He, 2025). Our results are consistent with propagation 

along the continental slope via topographic Rossby waves (e.g., Wise et al., 2018; Hughes et al., 2019; Wise et al., 2020). 165 

The latter travel with a speed of a few centimeters per second at these latitudes (first baroclinic mode), roughly consistent 

with the time lag we quantified between the off-shelf region and the PC1 (barotropic Rossby waves may also be involved in 

this transfer process). Once sea level anomalies break the potential vorticity barrier and penetrate onto the shallow 

continental shelf (e.g., Wise et al., 2020), they are transmitted via Kelvin waves traveling at a few meters per second (first 

baroclinic mode); such signals can travel from Cape Hatteras to the Gulf of Mexico in less than a month. This lag is not 170 

resolved using the monthly SSH fields available from the HR RYF and is thus consistent with our identification of a single 

signed coastal mode. Given the disparity between open-ocean and coastal wave speeds, daily SSH fields will be required to 

capture the along-coast propagation of sea level anomalies.  

The frequency band in which the along-coast intrinsic mode and the off-shelf region exhibit high coherence suggests that 

SSH within the off-shelf region might be influenced by variations in the GS position excited by intrinsic oceanic variability 175 

(e.g., Quattrocchi et al., 2012; Gregorio et al., 2015). More specifically, frequencies smaller than 0.9 year-1 seem consistent 

with interannual GS path oscillations, which are known to control a significant fraction of the total SSH variance within the 

GS detachment region (e.g., Guo et al., 2023). Related to this point, it is important to mention that the GS is often misplaced 

in numerical models (Chassignet & Marshall, 2008). This GS separation bias produces excessive surface EKE north of Cape 

Hatteras in POP (Parallel Ocean Program, Smith et al., (2010)) HR FOSI (Chassignet et al., 2020) and, therefore, we can 180 

expect that it may also impact the magnitude of the along-coast mode detected in the HR RYF simulation. 

CESM simulations show that intrinsic sea level variability is smaller (in a time-aggregated sense) than forced sea level 

variability; however, it is not negligible and, as noted, may have inherent predictability. Although the origin of 

atmospherically-forced and intrinsic sea level variations is different, our study reveals that the oceanic mechanisms involved 

in the communication of off-shelf anomalies to the coast (and from Cape Hatteras to the Gulf of Mexico) are similar to those 185 

regulating the transfer of some previously described forced sea-level signals (e.g., Calafat et al., 2018; Dangendorf et al., 

2021; 2023; Steinberg et al., 2024). As such, our findings help understand the role of GS path variations (forced and 

intrinsic) on coastal sea level, and we suggest that sea level forecasting efforts will benefit from further studies of intrinsic 

variability along the SEUS coastline and elsewhere. This study provides a better understanding of (i) the physical processes 

governing offshore-shelf and shelf-to-shelf communication along the SEUS coastline, and (ii) the relationship between 190 

offshore GS variations and coastal sea level (e.g., Ezer, 1995; 2013; Wu & He, 2025). It may also help with the 

interpretation of observational datasets (e.g., Oelsmann et al., 2024). 
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Appendix A. CESM simulations 

We employed an HR FOSI simulation with a spatial resolution of 0.1° (~10 km) to analyze monthly SSH fields from 1993 to 

2018. The HR FOSI simulation represents the response of the ocean and sea ice to prescribed atmospheric forcing (e.g., 195 

wind, temperature). This simulation was performed using the global Community Earth System Model version 1.3 

(CESM1.3) following the Ocean Model Intercomparison Project version 2 (OMIP2) experimental protocol (Griffies et al., 

2016). The 1958-2018 forcing applied is (nearly) identical in each of four consecutive cycles (or ensemble members) and is 

obtained from JRA55 reanalysis. The JRA55 atmospheric fields have a spatial resolution of 55 km and a temporal resolution 

of 3 hours. The HR FOSI simulation was initialized from observed climatology (i.e., World Ocean Atlas) and spun up 200 

through consecutive cycles of 1958-2018 (61-year) forcing. Each cycle repeats the forcing of the previous simulation (e.g., 

simulation years 62-122 (cycle 2) repeats the forcing of simulation years 1-61 (cycle 1)). Since the cycles share the same 

forcing but have different initial conditions, inter-cycle differences can be largely attributed to intrinsic processes.  

The limited number of HR FOSI cycles does not allow a clear separation of forced and intrinsic variability (although 

estimation of the forced and intrinsic variance might be possible using inter-cycle differences, see Little et al. (2024)). To 205 

cleanly quantify intrinsic variability, we use an HR RYF (repeat-year forcing) simulation. The HR RYF simulation was 

carried out by applying a single year of JRA55 boundary conditions from May 2003 to the end of April 2004. The May 

2003-April 2004 year is characterized by low (non-anomalous) values for major climate modes. The May-April cycle is to 

avoid forcing discontinuities in mid-winter. By applying the same annual forcing in each year, interannual variability in sea 

level can be mainly attributed to oceanic intrinsic processes. Here, we analyzed the last 32 years of monthly outputs from a 210 

70-year-long HR RYF simulation to examine the spatiotemporal properties of intrinsic sea level variability along the SEUS 

coastline, over the continental shelf, and adjacent deep waters. The HR RYF simulation was selected because of its 

unprecedently high resolution (0.1°), which allows us to examine the linkage between offshore and along-coast intrinsic sea 

level variability. Further details of the model setup can be found in Little et al. (2024). 

Appendix B. Observational dataset and comparisons with model outputs 215 

We utilized monthly mean TG observations with less than 12 missing months over the 1993-2018 period. TG observations 

were obtained from the Permanent Service for Mean Sea Level Revised Local Reference database on December 1, 2022 

(Holgate et al., 2013). Missing data were infilled using linear interpolation after removing the seasonal cycle from the time 

series.  

Sea level recorded by TGs is affected by numerous processes not accounted for in CESM simulations (e.g., inverted 220 

barometer effect, barystatic changes, global mean steric expansion/contraction, and vertical land motion). Thus, we removed 

from the TG record (i) the inverted barometer effect, using surface pressure fields from the ERA-5 atmospheric reanalysis, 

and (ii) the global mean sea level due to barystatic and steric processes, employing estimates obtained from altimetry 
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(MeaSUREs, 2021). Additionally, we linearly detrended the corrected TG time series to account for vertical land motion 

(after correction and detrending, we denote sea level as z!). 225 

To compare model output and sea level observed by TGs, we extracted the SSH in the closest model grid points to each TG 

using a ball tree algorithm (i.e. a ball tree algorithm is an efficient means of finding model grid points closest to a list of TG 

locations; more details can be found https://scikit-learn.org/stable/modules/neighbors.html). The modelled time series were 

detrended to remove model drift. To evaluate the model performance at larger spatial scales, we compared the spatial 

structure of z! variability from the HR FOSI simulation with a 1/6° gridded satellite altimeter product at monthly temporal 230 

resolution over the 1993-2018 period (MeaSUREs, 2022). Before comparing the two datasets, we removed the global mean 

sea level and linearly detrended the residual at each grid point from the altimeter product (note that the inverted barometer 

effect has already been removed from the altimeter gridded product). 

Appendix C. Additional data processing 

SSH time series were extracted from the HR RYF simulation along the SEUS coast at 170 pseudo-TGs (one pseudo-TG for 235 

each model grid cell along the coast). Then, we applied Empirical Orthogonal Function (EOF) analysis on the extracted SSH 

time series to identify the modes that explain the largest fraction of variability in the dataset. First, a matrix (O) was created 

by storing the time series extracted from the HR RYF simulation along each column. Then, we computed the covariance 

matrix (C = OTO) and solved the corresponding eigenvalue problem: 

C = VlVT        (C1)  240 

where V and l are the eigenvector and eigenvalue matrices. Each eigenvalue indicates the fraction of the variance explained 

by each eigenvector. By expressing matrix O in the space identified by the eigenvectors, we computed the principal 

components (PCs) associated with each mode. 

We also utilized coherence analysis to characterize the relationship between along-coast and offshore intrinsic sea level 

variability. The spectrum was obtained by applying a Hanning window with overlapping (50% overlap) data segments. Each 245 

data segment has a length of 64 time steps (i.e., 64 months) and starts halfway through the previous segment (i.e., each data 

segment captures half of the data of the previous one). Coherence uncertainties were obtained using a standard approach 

(e.g., Gallet & Julien, 2011). This approach sets a threshold to assess whether a computed coherence exceeds what might be 

expected from random noise. The threshold is determined based on the significance level (i.e., 95% significance level) and 

the number of segments used to compute the coherence spectrum. The number of segments was evaluated as the time series 250 

length divided by the window length multiplied by 0.5. 

Data availability 

Sea level observations analyzed in this study are available from the Permanent Service for Mean Sea Level (Holgate 

et al., 2013; Permanent Service for Mean Sea Level, 2024) (for tide gauges) and from NASA (MEaSUREs, 2021) (for 



12 
 

satellite altimetry). Derived quantities from CESM simulations, and scripts required to generate figures, are archived at 255 

Little (2024). 
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