
Authors’ response to review of egusphere-2025-1568 

We thank both reviewers for their overall positive and constructive feedback on the manuscript. 
In addition, we would like to thank Delong Zhao for additional feedback through a community 
comment. We have considered all comments and have revised and improved the manuscript 
accordingly.  

Shortly after submitting the preprint, we discovered a bug in how the background 
concentrations were computed (it only accounted for 14 days of transport rather than 30 days). 
With this in mind, we decided to redo the model simulations and at the same time take into 
consideration some of the major concerns raised by the reviewers, e.g. accounting for negative 
emissions and extending the sensitivity analysis. The overall spatial and temporal pattern of the 
posterior is unchanged, but the magnitude is closer to the prior: +13% compared to +18%. The 
annual posterior uncertainty is also increased from previous estimated 10 Gg to 16.4 Gg, 
mostly due to the inclusion of site-specific MAC sensitivity. 

Following the main points raised by the reviewers and the changes to the posterior and the 
sensitivity analysis in the new version, we have modified the overall discussion and conclusions 
to better reflect the underlying assumptions and uncertainties. 

We have also taken the opportunity to make some minor grammatical changes in the revised 
manuscript, but they do not change the meaning of the content. 

Reviewer #3 
 'Comment on egusphere-2025-1568', Anonymous Referee #3, 07 Nov 2025   

General comments: 

Summary of paper  

This paper presents a top-down approach to estimate anthropogenic black carbon (BC) 
emissions in Europe in 2021 using a Bayesian inversion framework (LUMIA) coupled with the 
FLEXPART dispersion model. The paper is well organized and provides a thorough literature 
review with clear comparisons to previous studies. The authors find that the top-down 
(posterior) estimates are approximately 18% higher than the bottom-up (prior) inventory. 
Through detailed spatial and seasonal analyses, they identify regions where bottom-up 
inventories likely underestimate emissions. The study also includes comprehensive sensitivity 
and uncertainty analyses, offering valuable insights for improving emission inventories and 
informing future policy and modeling efforts.  

With some minor edits, this manuscript should be published.  

We want to thank reviewer #3 for the positive and thorough review which has helped us to 
improve the manuscript. Below you can find our point-by-point response to all comments. 

Specific comments: 

Line 76: You mention the error term but you don’t explain how it was calculated. Adding a brief 
sentence or two describing how it was calculated would help.   

We have updated the description of the error terms, including separating the explanation for the 
observational error and model error:  



“The observational error, εo, is further described in Sect 3.2. The true model error, εm, is 
unknown, instead we estimate it as site-specific weekly uncertainty, based on the difference 
between the modelled and observed short term variability (see Monteil et al, 2025, for further 
details)” (Ln 76) 

Line 101: “Calculating footprints backwards in time is numerically more efficient in our case, 
since we have fewer observational sites than grid cells”  

Can you elaborate more on this? I’m not exactly understanding why this would be more 
numerically efficient.  

With FLEXPART we essentially relate how emissions in every source grid cell affect the 
concentration at each site (often called Source Receptor Relationship (SRR) or footprints (FP)). 
If we would compute this forward in time, we would need one FP release (simulation) per 
spatiotemporal-gridcell while in backward mode we only need one release per time at each 
site. The underlying intuition for this is that, in forward mode, we would compute much more 
information than we need, essentially the SRR for each cell to every other cell.   

Line 213:  

“First, by changing the horizontal correlation length Lx from 500 to 250 and 1000 km (SCx.), and 
then by changing Lt from 14 to 7 and 21 days 215 (SCt.)”  

Can you clarify this sentence? I’m a bit confused by the three numbers for Lx and Lt. What are 
you changing the numbers to and from?  

We have clarified to: “First, by changing the horizontal correlation length, Lx, from 500 km in the 
synthetic base case to 250 km (SCx.205) and to 1000 km (SCx.1000). Secondly, by changing the 
temporal correlation length, Lt, from 14 to 7 days (SCt.7) and to 21 days (SCt.21)” (Ln 213) 

Grammar:  

Line 69: should be “detail”  

Fixed 

Line 80: there should be “the” before cost function  

Fixed 

Line 95: there either needs to a new sentence starting at “Useful” or you need something before 
it like “thus it is”.  

Fixed 

Line 155: you have “the” twice  

Fixed 

Line 188: remove comma after “quality controlled”  

Fixed 

Line 288: “to winter” should be in “in winter”  

Fixed 



Line 333: “averaged” to “average”  

Fixed 

Line 449: Black Carbon needs to be lower case  

Fixed 

Line 449: change “This have” to “This has”  

Fixed 

Line 450: Please clarify or reword this sentence: “less emissions in climate or atmospheric 
transport models may lead to underestimating of for example radiative forcing or air quality 
effects.”  

Changed to: “using underestimated emission inventories in climate or atmospheric transport 
models may lead to underestimated radiative forcing or air quality effects. Considering both 
top-down and bottom-up emissions in modelling efforts may provide more robust outcomes 
and help quantify biases and uncertainties.” (Ln 450) 

Line 451: This sentence also needs to be redone: “In addition, this work is a first step in 
identifying what (missing or misrepresented) sectors in bottom-up inventories is the driver for 
this underestimation, information which can help guide future policy changes”  

Change “identifying what” to “identifying which”. The last part after the comma can also be 
improved if you add “which provides information that can help..” or something like that.  

Changed to: “In addition, this work is a first step in identifying which (missing or 
misrepresented) sectors in bottom-up inventories are the driver for the apparent 
underestimation, which provides information that can help guide future policy changes” (Ln 
451) 

 

  



Review #4 
'Comment on egusphere-2025-1568', Anonymous Referee #4, 23 Nov 2025   

Overall Assessment  

This study presents a valuable effort to refine estimates of black carbon emissions over Europe 
by applying a Bayesian inversion framework to surface observations. The topic is of clear 
importance for emission mitigation policies. However, the reliability of the conclusions requires 
stronger substantiation, and major revisions are necessary to address several key concerns. 

We want to thank reviewer #4 for the thorough review. It has helped us to improve the 
methodology and manuscript. Below we have responded to all comments point-by-point.   

Major Comments  

1. A primary concern is the attribution of nearly all discrepancies between observed and 
simulated concentrations to emission errors, without sufficiently accounting for other potential 
sources of systematic bias. These include errors in the transport model, uncertainties in the 
conversion from light absorption to equivalent black carbon (e.g., the mass absorption cross-
section), inaccuracies in background concentration estimates, and biases in wet/dry 
deposition parameterizations. The inversion framework appears to assume these errors are 
either negligible or adequately represented in the observation error covariance matrix R, yet no 
validation is provided for this critical assumption. Consequently, the extent and spatiotemporal 
structure of the reported "emission underestimation" may be significantly overstated.  

Accounting for systematic biases is a fundamental issue in any inversion system, since the 
underlying uncertainties in the Maximum A Posterior optimization is assumed to be random 
errors. A weak-constrain 4DVAR (that could account for systematic biases by applying an error 
term to the cost function) is currently not implemented in LUMIA, therefore, there is no way for 
the optimization to handle systematic biases directly. These biases can instead be investigated 
with sensitivity analysis as we have done for numerous potential biases (both in the original 
preprint and in this response; testing for different MAC values, see later review comment). 
Considering the results from the new sensitivity tests and the discovery of a bug in the 
calculation of the background concentrations, we agree with the reviewer that the discussion 
and conclusions of the preprint does not reflect the underlying systematic biases and 
uncertainties well enough. This is changed in the new version, e.g: 

“The results show that the bottom-up BC inventory on average underestimates emissions in the 
domain, given our assumptions regarding transport, background concentrations and mass 
absorption cross-section (MAC).” (Ln 7)  

“However, the inversion shows high sensitivity to the assumed MAC of 10 ± 1.33 m2g-1 at 637 
nm. We also assume the transport model to be representative of the actual transport and in 
extension the computed background concentrations to be correct. 

Under these assumptions, the posterior annual emissions from the inversion with the real 
observations is found…” (Added Ln 430) 

We do want to point out that the observation error covariance matrix does consider a site-
specific transport model error based on the difference short-term obs-model mismatch and 
instrument and MAC uncertainty, often referred to as “error inflation”. It aims at reducing the 
cost of departing from a single observation close to what it would have been if obs error 



correlations had been accounted for. The description of the observational error has been 
updated in Sect. 2 to clarify this.   

2. The processing of observational data and site-specific quality control procedures lack 
sufficient detail, raising concerns about potential systematic biases. The manuscript would 
benefit from a clearer description of the quality control protocols, outlier handling, the sources 
and uncertainty propagation of instrument-specific correction factors (such as for the AE33), 
and the steps taken to ensure comparability across different instruments and sites. Given that 
measurement errors for black carbon are often systematic, failing to properly quantify and 
propagate these uncertainties risks misinterpreting observational biases as emission signals.  

We exclusively use Level-2 quality controlled light absorption coefficients observations from 
EBAS, which undergo well documented quality control protocols and outlier handling (Müller 
and Fiebig, 2021). We assume that the reviewer does not expect us to include documentation of 
this QC in the manuscript. Generally, the point of ACTRIS and other observational network 
infrastructures hosted on EBAS is that the Level-2 quality controlled data should be usable 
without additional QC. That said, we have updated Sect. 3.2 to better reflect some QC choices 
we did which include: manual inspection of the timeseries, site selection, instrument selection 
for sites with multiple instruments and application of correction factors: 

“We performed an additional quality control of the Level-2 data. First, the timeseries were 
manually inspected for outliers (none found). Then, data selection was performed by 1) only 
selecting rural or semi-rural (two sites) sites to remove influence of local (e.g. street-canyon) 
emissions not resolved by the model and 2) in cases of multiple collocated instruments 
selecting firstly for the MAAP if available or else the one with the most data coverage. Finally, we 
manually applied a correction to specific sites (see description of the Aethalometer AE33 
below)” (Added Ln 164) 

One of the major concerns that we discovered was the use of the filter specific correction 
factor, H*, supposed to be applied to measurements from the AE33. The purpose of this is to 
align the AE33 with MAAP measurements and it is the recommended practice from ACTRIS 
guidelines (Müller and Fiebig, 2021). The aethalometer consistently underestimates mass 
absorption coefficients (overestimate eBC). The main issue for us was that the usage of this 
correction factor was inconsistent for 2021 and inconsistently mentioned in the metadata. We 
discovered this when comparing mass absorption coefficients from collocated AE33 and MAAP 
measurements at hbp, where it was clear that the factor had not been applied and not 
mentioned in the metadata. This triggered an investigation into the other sites with only AE33. At 
three sites (jfj, dem, htm), H* had been applied and documented in the metadata. By contacting 
PIs, we found that for three stations (kos, rig, pay) H* was not applied and for one station it was 
applied but not documented (vda). We were unsuccessful in contacting the PI at the one site 
(pmi). Here we utilized the prior forward run, which underestimated observations by about a 
factor of 2, to conclude that the factor had not been applied. The same factor 2 
underestimation in the prior forward run was also observed in the other three cross-references 
site that did not apply H*.  

We have updated the manuscript with a more detailed description of this process, which 
ultimately aimed to increase the cross-instrument comparability of the assimilated 
observations, one of the reviewer’s major concerns:  



“By comparing collocated AE33 and MAAP at hpb, we found that the application of this factor, 
along with accompanying metadata, was inconsistent for 2021. Only three out of eight AE33 
sites (jfj, dem, htm) included information about that the usage of this factor in the metadata (it 
had been applied). To remove this bias in level-2 quality controlled AE33 measurements, we 
cross-referenced with data providers and found that the factor (1.76) had not been applied at 
kos, rig and pay while it had been applied at vda. The cross-reference was unsuccessful at pmi, 
but forward model simulations showed a factor of around 2 underestimations at that site from 
which we concluded that it had not been applied there. Finally, we manually applied the 
harmonization factor to the data from the four sites that had not implemented it.” (Extended Ln 
184-187) 

3. The validation of the inversion results relies heavily on the improved fit to the assimilated 
observations and the comparison with the prior emissions. There is a lack of validation using 
truly independent evidence, such as external observational datasets, independent emission 
inventories, or evaluations with independent model simulations. Without this, features like the 
reported seasonal emission enhancement in Eastern Europe could arise from model artefacts 
or sampling biases rather than representing true emission patterns.  

While we understand the reviewers point, we do not fully agree with the criticism. It is true that 
the manuscript includes comparison of the observational fit between the prior and the posterior 
for the dependent observations. This is purely for diagnostic purposes – showing that the 
inversion converges to a solution with improved fit.  

We do argue that the cross-validation scheme discussed in section 5.2.3, which is validation of 
the robustness of the inversion with independent observation, is a stronger validation than the 
alternative of leaving out a few stations for independent validation. The latter approach suffers 
from the same issues the reviewer points out. There is a potential risk that whatever 
stations/observations that are not included in the inversion introduces sampling biases in the 
posterior. This is certainly the case when the network is spatially sparse and temporally 
confined to a single year. Figure B2 shows exactly this; if we would have left out for instance 
Pallas for validation a large positive bias in the posterior would have been introduced. In 
addition, validation against independent observations can suffers from the same bias as the 
assimilation of similar data, e.g. if the transport model overestimates the sensitivity to 
emissions for the data it assimilates, it will probably do the same for the validation data, 

With the cross-validation approach, we include all stations, some of which provide crucial 
spatial information, and at the same time remain confident in the robustness of the posterior. 
The cross-validation shows that the inversion does converge to similar solutions even if the 
network changes slightly and that this solution results in an improved match against 
independent observations in most cases.  In addition, we can quantify the uncertainty 
introduced by a single site and analyse the response of the inversion when nearby stations have 
conflicting signals. We have modified the text in Sect 5.2.3 to more clearly communicate our 
point of view: 

“To validate the posterior, independent observations which are not used in the optimization 
should be used. However, each observation left for evaluation is an observation not assimilated 
in the posterior, which can introduce sampling biases. Therefore, we opted for a cross-
validation scheme with multiple inversions, leaving one site for validation each time. With this 
approach we evaluate the robustness of the inversion to changes in the network and evaluate 
how an entire ensemble of similar inversions performs on independent observations. We do 



acknowledge that this approach does not validate the exact posterior where all sites are 
assimilated, i.e. the real base inversion (RBase), but we argue that the cross-validation provides 
enough confidence in the inversions robustness while still utilizing all available observations. It 
also indicates how the base inversion is expected to perform on new observational data, given 
their area of influence.” (Ln 326-330) 

To further illustrate the robustness of the inversion system, we here present a new inversion 
where we have utilized gaps in the data to generate an independent dataset for testing. For 
each site we locate two 7-day periods of observation in contact with the first and second largest 
gaps in the data. The rest is kept for assimilation, except 3.5 days of observations on either side 
of these two test periods to remove potential temporal autocorrelation. Figure 1 illustrates this 
split for all sites. In total, 36539 observations are assimilated, 1786 are for testing and 1126 are 
discarded. The posterior performs on average across the stations better on the test dataset 
than the prior. We find a 10% improvement in nRMSE (from 0.27 to 0.24), a 15% improvement in 
correlation coefficient (from 0.51 to 0.58) and a 35% improvement in nME (0.031 to 0.020).  

Crucially, the posterior generated in this experiment is very similar to the posterior of the RBase 
inversion both in magnitude (-0.7% smaller) and in spatiotemporal pattern (not shown). We 
argue that this, together with the cross-validation scheme, shows that the RBase inversion 
indeed is robust to independent observations. Therefore, we do not feel it necessary to include 
this analysis in the final publication.  

  

Figure 1: data coverage for all stations (gray), split into assimilated (blue) and test sets (red)  

In future work, including a 10-year BC inversion, we plan to include both validation by left out 
observations and independent model evaluation. But this is outside the scope of the current 
manuscript. To our knowledge, there are no published BC top-down emission inventories of the 
same domain and year that could be used as independent validation. We do use the, to our 
knowledge, closest published dataset for comparison (Evangeliou et al., 2021) as validation in 
the discussion.  



4. The conclusions exhibit a strong dependence on several choices—including prior covariance 
length scales, key optical parameters (MAC, AAE), and data selection criteria (e.g., time-of-day 
sampling). However, a systematic sensitivity analysis of these factors is absent. Providing such 
an analysis is crucial for readers to assess the robustness of the findings.  

We agree that the conclusions are dependent on several choices, but we do not agree that 
systematic sensitivity analysis of these factors is absent. 

The manuscript does include sensitivity analyses for several inversion settings in both our real 
and synthetic experiments, including prior covariance length scales. See Figure 2 and Appendix 
B1. We concluded that the inversion is not sensitive to these settings, only varying -3.5% to 
2.5% from RBase. 

For data selection criterion, our cross-validation experiment provides a sensitivity towards 
selection of observational sites, see Appendix B2. Sensitivity towards time-of-day sampling is 
not included in our manuscript for three reasons. 1) this method is the standard method utilized 
in many FLEXPART inversions papers because 2) previous work has shown that FLEXPART 
performs worse when the boundary layer is developing so with observations outside the 
selection, we risk introducing avoidable model errors. 3) At the same time, other preliminary 
work (Annadate et al., 2025) indicates that BC inversions with FLEXPART in Europe are not 
sensitive to this selection criteria. 

We did not include any sensitivity tests toward key optical parameters. Evangeliou et al (2021) 
tested the sensitivity of a BC inversions in Europe towards MAC values by using a constant 5, 10 
and 20 m2/g and site-specific MAC values. They conclude that the overall sensitivity of the 
posterior is less for MAC compared to using different prior.  

In addition, a recent literature review found an average MAC at 550 nm from filter photometers 
of 11.6 m2/g across many articles (Asmi et al., 2025), which adjusted to 637 nm is 10.03 m2/g, 
very close to our assumed MAC value. This indicates that our choice of MAC value is indeed the 
most appropriate choice. However, Asmi et al (2025) report overall higher uncertainty in MAC 
(3.2 m2/g at 637 nm for all ambient measurements) than the one we assume (1.33 m2/g from 
Zanatta et al., 2016).  

Still, it is clear that there is a sensitivity towards MAC (Evangeliou et al., 2021). Therefore, we 
have extended the analysis by performing inversions with constant MAC values (at 637 nm) of 
±2σ of our assumed MAC of 10 ± 1.33 m2/g. i.e. 12.66 and 7.34 m2/g. This effectively means that 
we test the sensitivity towards a systematic bias with decreased and increased observed 
concentrations. Both values are within the reported values from Asmi et al. (2025). In addition, 
we test 50 sets of inversions where each stations MAC value is randomly sampled from a 
normal distribution of our assumed MAC (with max/min of ±2σ), to simulate station specific 
MAC values.    

The results show a strong sensitivity towards MAC values. With a MAC value of 7.34 ± 1.33 m2/g 
at 637 nm at all stations the total posterior emission in the domain is 528 Gg (34% higher than 
the posterior for base inversion), while a MAC value of 12.66 ± 1.33 m2/g results in a posterior of 
313 Gg (20% less than the base posterior). This illustrates, as the reviewer highlights, that the 
final posterior is highly sensitivity towards biases in the assumed MAC values. This will be the 
case for any BC inversion using filter based optical measurements of eBC. However, as stated 
previously, multiple sources highlights (Asmi et al., 2025; Zanatta et al., 2016) that a MAC value 
of 10 m2/g at 637 nm is indeed the most appropriate choice for European sites, and we find it 



unlikely that the true MAC value for all assimilated sites is either as high as 12.66 or as low as 
7.33 m2/g.  

“However, deceasing (increasing) MAC uniformly results in a large deviation of +34% (-20%) 
highlighting the sensitivity towards choice of MAC value. At the same time, we argue that [these 
experiments] is unlikely to represent the truth. For instance, the prior fit to observations is 
worse than RBase. It is more likely that there are biases in site specific MAC values (discussed 
later). In addition, multiple sources highlights (Asmi et al., 2025; Zanatta et al., 2016) that a 
MAC value of 10 m2/g at 637 nm is indeed the most appropriate choice for European sites” 
(Added Ln 314, then moved to 296) 

The 50-sensitivity test with random site-specific MAC allows us to quantify the uncertainty 
introduced by site specific MAC biases. Overall, the total posterior emissions in these 
simulations range from 373.3 to 433.7 Gg, with a standard deviation of 12.8 Gg. Notably, this 
uncertainty is higher than the posterior uncertainty presented in the preprint, which combined 
both uncertainty from perturbed prior emissions, observations and cross-validation scheme. 
Combining all three results in a final uncertainty of the posterior domain total yearly emission 
yields 16.4 Gg. 

“Finally, the posterior uncertainty to MAC is quantified by perturbing site-specific MAC values, 
which introduce most variability near sites. This results in the largest annual standard deviation 
of 12.8 Gg, again highlighting that the inversion is more sensitive to the assumed MAC than any 
other tested parameter. Despite the inclusion of several uncertainty factors, the combined 
annual uncertainty of the posterior is estimated to be 16.4 Gg a reduction of 45% from the prior. 
Spatially, the combined uncertainty results in an overall reduction of uncertainty in the central 
part of the domain, where the observational network density is high.” (Extended Ln 439) 

In all MAC sensitivity tests, we assume that the absolute observational uncertainty remains the 
same as in the real base inversion. Otherwise, we would not only test the sensitivity towards 
MAC values, but also the observational uncertainty. Sensitivity towards eBC observational 
uncertainty is already included in the manuscript. However, we have updated the discussion to 
better relate the results from that sensitivity test to assumptions made regarding MAC standard 
deviation: 

 “The sensitivity towards the standard deviation in MAC is not tested explicitly. However, the 
sensitivity towards the observational uncertainty (which is derived partly by the MAC standard 
deviation) shows less sensitivity than other settings. This indicates that our assumption of MAC 
standard deviation is less important than, for instance, correlation lengths or biases in MAC 
values.” (Added before Ln 315) 

The focus of the manuscript is for BC, for which an AAE = 1 is generally a good approximation 
assuming bare soot (Moosmüller and Arnott, 2009). However, it is true that AAE of BC can vary 
depending on size and shape of the particle (Helin et al., 2021; Romshoo et al., 2021). In 
addition, Asmi et al., (2025) tested this assumption and found that MAC at 550 nm from all 
included studies only vary between -4% and +7% when varying AAE from 0.8 to 1.3. Since these 
changes are less than the changes to MAC in the sensitivity tests described above, we argue 
that testing the sensitivity towards AAE is not necessary in the current manuscript.  

5. The interpretation of identified features, such as emission hotspots and seasonal patterns, 
remains somewhat qualitative. A more in-depth discussion of the potential physical 
mechanisms—for instance, linking patterns to boundary layer dynamics, specific source 



activities (like agricultural burning or residential heating), or regional transport pathways—
would greatly strengthen the discussion and provide deeper insight.  

As clearly stated in the introduction, the main purpose is to test and validate the system. 
Therefore, we decided to only include a qualitative discussion of the physical mechanisms of 
the prior-posterior difference. As we also state in the discussion, we are not comfortable in 
drawing qualitative conclusion since only a single year is analysed.  

However, we do agree with the reviewer that the analysis of potential physical mechanisms 
would provide deep insights. Therefore, a 10-year BC inversion with the current system is 
currently on-going and the resulting posterior will be used to draw more qualitative conclusions 
on the driving mechanisms. This is also stated in the discussion, but we have changed the 
wording to provide better context: 

“However, this [possible causes for the difference found] is speculations based on a single 
year. Further investigation on a longer time-period is required to draw quantitative conclusions 
about the physical mechanisms behind the mismatch between prior and posterior. Therefore, 
future work will include a multi-year inversion with the inversion setup described and validated 
in this study.” (Added Ln 368) 

6. Notably, the real base inversion reported in the manuscript includes "negative emissions" 
accounting for 0.6% of the total annual emissions, a result that is physically implausible. The 
authors have not implemented any constraints to address this issue, which undermines the 
physical consistency of the inversion outcomes.  

We are aware of this flaw in the system, and since the posting of this preprint we have 
implemented a solution for the negative emissions. As in Bergamaschi et al., (2022), a ‘semi-
exponential’ description of the PDF for emissions is applied to enforce positive posterior 
emission. For a given control vector element, x, the emissions, E, in corresponding cell is 
computed as 

𝐸 =  {
 𝐸𝑏 ∗  (1 + 𝑥) 𝑓𝑜𝑟 𝑥 >=   0

𝐸𝑏 ∗ 𝑒𝑥𝑝(𝑥) 𝑓𝑜𝑟 𝑥 <  0
  

where Eb is the prior emission in the same grid cell. The control vector is still 0 a priori, and we 
still assume it to be Gaussian (Bergamaschi et al., 2022). This assumption will introduce a slight 
bias, as the prior uncertainty for any negative state vector values should be lognormal. 
However, as shown below, the inversion with this semi-exponential mapping converges to a 
solution which is very similar to the original setup and the fit to the dependent observations are 
as good. This shows that the bias is small. The original LUMIA setup optimizes for an offset E = 
Eb + x, which is the absolute equivalent to only the upper part of the equation, E = Eb(1+x) 
(optimizing for a scaling factor).  

Here, we compare the semi-exponential description with both the offset and scaling factor 
optimizations. Both linear methods result in nearly identical fit to the dependent observations 
with a network average nRMSE = 0.075, r = 0.744 and nME = 0.011. The semi-exponential (SE) fit 
is very similar with nRMSE = 0.078, r = 0.730 and nME = 0.009. Comparing the posterior 
emissions, we find that the linear methods result in a domain total posterior of 393 Gg/year with 
2.5 Gg of negative emissions (0.6% of the total annual emissions). The SE approach results in 
total posterior of 394 Gg/year with zero negative emissions.  Figure 2 shows the domain total 
daily emissions for linear methods in blue and orange, and SE in green. We see that the two 



linear methods are identical, while the SE only differs slightly. Spatially, we find that the SE 
compensates for less emission reductions by applying less emission increases (not shown for 
brevity). With nearly equivalent fit to the observations and posterior solutions, we argue that 
this is a viable solution to the problem of negative emissions in this case and have implemented 
it in the final manuscript. 

 

Figure 2:  Daily emissions of the prior (black), the two linear approaches in LUMIA offset (blue) 
and scaling factor (orange) and the newly implemented semi-exponential description (green) 

We have updated the description of the inversion framework to include a section that describes 
the SE approach (which is used in the new base simulations): 

“Previously, inversions with LUMIA allow for negative values in the solution. This is strictly non-
physical for BC assuming correctly modelled deposition. To solve this, we implement the 'semi-
exponential' (SE) description of the probability density function of the emissions from 
Bergamaschi et al. 2022). For a given control vector element x the corresponding emissions, E, 
are computed as [the equation above] where Eb is the corresponding prior emissions. This 
means that we are optimizing for a SE scaling factor. Apriori,  the control vector is zero and 
assumed to be Gaussian (Bergamaschi et al., 2022). Despite this assumption, as we will show, 
this approach converges to a solution very similar to the two previously implemented 
approaches in LUMIA (both linear). These are either to optimize for an offset (Monteil and 
Scholze, 2021), where E = Eb + x or a scaling factor (Monteil et al., 2025) computed as E = Eb (1 
+x). Note that the scaling factor approach is the linear version of Eq. [equation above]. In both 
the scaling factor and SE approaches the control vector is dimensionless. (Added Ln 91) 

 And we have included a comparison to both the original (offset) and relative linear mappings 
(scaling factor) in the sensitivity tests: 

“Finally, we test the sensitivity towards the choice of mapping from control vector to emissions 
(i.e. what we are optimizing, see Sect 2.1) by changing from semi-exponential scaling factor to 
linear scaling factor (SM.scf) and to linear offset (SM.ofs).”  (Added Ln 216)  



Community comment #1 
 'Comment on egusphere-2025-1568', Delong Zhao, 22 Sep 2025   

General comment: 

This study addresses significant discrepancies in European black carbon (BC) emission 
inventories by employing the LUMIA inversion algorithm and FLEXPART dispersion model to 
assimilate observational data from 24 background sites during 2021, thereby providing the top-
down estimates of anthropogenic BC emissions at an annual scale. The study’s innovative high-
resolution inversion of European BC emissions is commendable, but flaws in background 
concentration treatment undermine its core conclusions. The claim of “18% underestimated 
European BC emissions” lacks credibility unless critical methodological gaps are resolved.  

We want to thank Delong Zhao for taking the time to read and review our manuscript and 
thereby helping us to improve it. Below you can find our response to your comments. 

Specific comments: 

Line 109: The settings for wet deposition efficiency (rainout/cloud scavenging) significantly 
impact BC lifetime (4-10 days), yet no tests evaluate how different parameters (e.g., snow 
scavenging efficiency) affect posterior emissions.  

The FLEXible PARTicle (FLEXPART) dispersion model has too many assumptions. How did the 
authors address this issue?  

We agree that FLEXPART, as any other transport model, depends on many assumptions. 
However, FLEXPART is one of the most well documented, utilized and validated Lagrangian 
transport models that has been used in numerous studies for numerous purposes including BC 
inversions studies (Evangeliou et al., 2021, 2018; Jia et al., 2021). Specifically for wet deposition 
efficiency, not only are the values recommended and validated in FLEXPART development 
papers (e.g Grythe et al., 2017) but they have already been tested for BC inversion purposes 
(Evangeliou et al., 2018). 

Lines 128-130: The manuscript claims that “total emissions are irrelevant for background 
calculations; only the ratio between intra- and extra-domain emissions matters.” While 
theoretically valid under proportional scaling assumptions (e.g., doubling both intra- and extra-
domain emissions preserves their relative contribution ratio to background concentration ybg), 
this contains serious flaws in practical application. The authors tested the impacts of prior 
uncertainties and observational errors but did not test the sensitivity of ybg to extra-domain 
emission errors. The manuscript simultaneously states “all emission sources are assumed to 
have identical mass absorption cross-sections (MAC)” (Line 169), yet MAC values for extra-
domain BC (e.g., dust-influenced regions) versus intra-domain BC (e.g., European vehicular 
emissions) differ significantly, further invalidating the proportionality assumption. Line 405 
indicates: “At most, 52% of the average concentration is attributed to ybg at Jungfraujoch (jfj) 
and Pic du Midi (pmi).” The poor performance of these sites in cross-validation (Figure 7) 
directly reflects the unreliability of background concentration calculations. If ybg contains 
biases, the system will misattribute external errors to European emissions, rendering the 
results invalid. The reported “18% underestimation of European BC emissions” may partly 
compensate for extra-domain emission/transport errors rather than reflect actual missing 
sources. How did the authors address this issue?  



We agree with the comment, but we also need to limit the scope of the article by making some 
assumptions. One of these are the constant AAE = 1 (e.g. same MAC for all sources). See our 
answer (final paragraph) to Reviewer #4, point 4. However, the discovery of the bug in the 
background calculations does highlight the sensitivity of the posterior emissions to background 
concentration calculations as the comment points out. Therefore, we have changed several 
parts of the discussions and the conclusions to better reflect the underlying assumptions and 
uncertainties.  

Line 184: Correction factors (1.76) for the AE33 aethalometer at five stations relied on manual 
verification, with methods for other stations unspecified. This risks introducing systematic 
biases into observational data.  

The manual verification was utilized to make sure that the filter specific correction factor was 
applied to all sites with AE33 in an effort to remove systematic biases in the entire dataset. This 
means that our manual verification reduced systematic biases, not the other way around, since 
cross-instrument comparison showed that AE33 consistently overestimate eBC compared to 
MAAP. See our answer to Reviewer #4, point 2 for a more detailed description of the process. 

Line 200: The manuscript only selected afternoon data (low-altitude sites) or nighttime data 
(high-altitude sites), discarding >50% of valid observations despite intending to reduce 
boundary-layer modeling errors. The authors did not verify whether this operation introduces 
selection bias.  

See our answer (3rd paragraph) to Reviewer #4, point 4 

From Section 3.2, it can be seen that the measurement of BC utilized multiple instruments and 
assumed that the MAC values from different sources would not change. However, the AAE of 
BC is not exactly equal to 1. How did the author consider the impact of these errors on the 
posterior results?  

See our answer (final paragraph) to Reviewer #4, point 4. 

Line 261: Remove the redundant parenthesis after “dashed and dotted lines”.  

Fixed by removing the parenthesis after “a” on the same line 

Line 365: Significant increases in Eastern European emissions during spring/summer (Figure 5) 
potentially originate from agricultural burning (discussed in Sect. 6), yet no comparison was 
made with satellite fire detection data or existing fire emission inventories (e.g., GFED) for 
verification. How did the authors address this issue?  

Note that GFED is a part of the non-optimized sector and thus is included in the model. In 
addition, the main purpose of the manuscript is to test and validate the system. Therefore, we 
decided to only include a qualitative discussion of the physical mechanisms of the prior-
posterior difference. For more info, see our answer to Reviewer #4, point 5. 
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