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Abstract. Compound flood risk assessments require probabilistic estimates of flood depths and extents that are derived from 

compound flood models. It is essential to simulate a wide range of flood driver conditions to capture the full range of variability 

in resultant flooding. Although recent advancements in computational resources and the development of faster compound flood 

models allow for more rapid simulations, generating a large enough set of storm events for boundary conditions remains a 15 

challenge. In this study, we introduce a statistical framework designed to generate many synthetic but physically plausible 

compound events, including storm-tide hydrographs and rainfall fields, which can serve as boundary conditions for dynamic 

compound flood models. We apply the proposed framework to Gloucester City in New Jersey, as a case study. The results 

demonstrate its effectiveness in producing synthetic events covering the unobserved regions of the parameter space. We use 

flood model simulations to assess the importance of explicitly accounting for variability in mean sea level (MSL) and tides in 20 

generating the boundary conditions. Results highlight that MSL anomalies and tidal conditions alone can lead to differences 

in flood depths exceeding 1 m and 1.2 m, respectively, in parts of Gloucester City. While we use historically observed events, 

the framework can be applied to model output data including hindcasts or future projections. 

1 Introduction 

Flooding in coastal regions can be caused by various hydrometeorological drivers such as precipitation, excess river discharge, 25 

wind-driven storm surge, mean sea level (MSL), and high tides. When these flood drivers occur simultaneously or in close 

succession, they often lead to compound flooding, which can result in more severe flood impacts and substantial socioeconomic 

losses (e.g., Hendry et al., 2019; Nasr et al., 2023; Wahl et al., 2015; Ward et al., 2018). Therefore, accurately quantifying and 

characterizing compound flood risk is crucial for effective flood risk management and mitigation, infrastructure design, urban 

planning, the (re)insurance markets, emergency response, and more. 30 



 

2 

 

Flood depths (and extents) are typically estimated using compound flood models, due to the scarcity of data on historic flood 

events, e.g., from high water marks or satellite observations. One simple approach is to use static compound flood models (also 

referred to as ‘bathtub’ models) (e.g., Gallien, 2016; Seenath et al., 2016; Semmendinger et al., 2021), but these models tend 

to overestimate flood extent primarily due to the assumption that peak water levels are maintained indefinitely and by 

neglecting critical factors such as bottom friction and flood duration (Barnard et al., 2019; Breilh et al., 2013; Gallien, 2016; 35 

Kumbier et al., 2019). Alternatively, dynamic compound flood models are employed to capture the physical mechanisms of 

coastal and inland flooding, and they have been shown to provide good results for various terrain types, catchment sizes, and 

flood driver combinations (Kumbier et al., 2019; Lewis et al., 2013; Ramirez et al., 2016; Vousdoukas et al., 2016). However, 

dynamic compound flood models require time series of the different flood drivers, and their relative timing to each other, as 

boundary conditions. 40 

Temporally and spatially varying boundary conditions permit a thorough exploration of different scenarios, including 

variations in timing, intensity, and spatial extent of flood drivers (Harrison et al., 2022; Quinn et al., 2014). The development 

of faster compound flood models (e.g. SFINCS (Super-Fast INundation of CoastS)) coupled with the increase in computational 

resources enables many scenarios to be rapidly propagated through dynamic compound flood models.  The scarcity of long-

term concurrent observational records of flood drivers poses a challenge in generating plausible extreme conditions that can 45 

serve as boundary conditions for those models (Ward et al., 2018). One way of addressing this issue is by using physics-based 

models to generate many events (e.g. rainfall-surge-discharge events) (Bass and Bedient, 2018; Bates et al., 2021; Gori et al., 

2020; Nederhoff et al., 2024; Orton et al., 2020). For example, Gori et al. (2020) first derived synthetic tropical cyclone (TC) 

tracks and then simulated the resultant rainfall (RF) fields using a physics-based model and the associated storm tides through 

a hydrodynamic model (ADvanced CIRCulation (ADCIRC) model (Luettich R. A., 1992)). These RF fields and storm tides 50 

were subsequently used as boundary conditions in a one-way coupled hydrodynamic modeling framework to simulate the total 

flood levels in a tidal estuary.  

Generating boundary conditions via physics-based modeling is often computationally expensive, thus making it challenging 

to implement across diverse climate and environmental conditions. Statistical approaches offer a computationally cheaper 

alternative by modeling the joint probability distribution of flood drivers directly and simulating scenarios from the fitted 55 

distribution model. These scenarios are then propagated through compound flood models, allowing for the assessment of flood 

impacts while reducing computational demands compared to more complex physical models. Bayesian networks (e.g., 

Couasnon et al., 2018), bivariate logistic models (e.g., Serafin et al., 2019), and copulas (e.g., Liu et al., 2024; Moftakhari et 

al., 2019; Zellou and Rahali, 2019) are examples of statistical approaches applied to analyze compound flood drivers. These 

approaches still possess various limitations when deriving time series of boundary conditions. For instance, they often rely on 60 

a representative event (e.g., Liu et al., 2024) or a simplistic sinusoidal shape (e.g., Moftakhari et al., 2019) of the hydrographs 

for all simulations, which oversimplifies the temporal variability of flood drivers. They also may neglect the timing dynamics 

between RF-runoff and storm tides, either assuming both flood drivers peak simultaneously or assuming a range of possible 
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time lags (e.g., Moftakhari et al., 2019). Furthermore, they fail to capture the spatial variability of RF fields as they rely on RF 

point data from observations or models (e.g., Zellou & Rahali, 2019).  65 

Harrison et al. (2022) highlighted that in both large and small estuaries, storm surge intensity rather than height was the main 

flooding driver, while Shen et al. (2019) noted that longer-duration storm tides led to greater backward flow volumes in 

underground pipes. Therefore, generating realistic synthetic storm-tide hydrographs is crucial since the flood extent, 

particularly around the peak water level, is often highly sensitive to the shape of the storm-tide hydrograph (Quinn et al., 2014). 

Methods for generating extreme storm-tide hydrographs can be mainly categorized into deterministic and stochastic. 70 

Deterministic methods use pre-defined shapes or observed event patterns, such as triangles (e.g., Vousdoukas et al., 2016) or 

sinusoidal functions (e.g., Moftakhari et al., 2019), which simplify the event structure but may not capture the natural 

asymmetry in water level profiles. This approach, although efficient, may also ignore nonlinear interactions between tides and 

surges, depending on how the method is applied (Arns et al., 2020). Rescaling of total water level (or non-tidal residuals (NTR) 

time series) of observed events is another deterministic approach that leverages observed event data (Dawson et al., 2005; Kim 75 

et al., 2023; Xu et al., 2024). This method incorporates site-specific information, eliminating the assumption of symmetrical 

rising and falling limbs in the total water level profile. Alternatively, stochastic simulation methods can be used to generate 

many physically plausible events for a given peak water level, while accounting for natural temporal variability in storm tides 

(MacPherson et al., 2019; Wahl et al., 2011, 2012). For example, Wahl et al. (2011) parameterized water levels around peak 

tides using 19 sea level and six time parameters, fitting independent marginal distributions to each, and modeling dependencies 80 

through linear regression. Filters were applied to ensure realistic event generation, effectively recreating the peak water level–

intensity relationship observed at German Bight tide gauges. Dullaart et al. (2023) created a global dataset of storm tide 

hydrographs from the depth-averaged hydrodynamic Global Tide and Surge Model (GTSM) (Hersbach et al., 2020). They 

incorporated nonlinear tide-surge interactions in the surge series by calculating it as the difference in elevation between storm 

tide simulations and tide-only simulations. However, they assumed that the surge maximum coincided with the high tide. 85 

A variety of methods are available for generating design hyetographs for point RF estimates, ranging from simple geometric 

shapes (e.g., Chow et al., 1988) to more sophisticated multi-site stochastic models (e.g., Evin et al., 2018). However, relatively 

few studies have focused on generating synthetic space-time varying RF events. Green et al. (2024) classified methods for 

simulating space-time varying RF into four main approaches: (1) multi-site temporal simulations (e.g., Brissette et al., 2007; 

Kleiber et al., 2012), (2) point process theory-based methods (e.g., Burton et al., 2008; Cowpertwait et al., 2002), (3) random 90 

field theory-based methods (e.g., Leblois and Creutin, 2013; Papalexiou et al., 2021), and (4) fractal processes in two or three 

dimensions (e.g., Schertzer and Lovejoy, 1987). These methods are often tailored to specific research objectives depending on 

their strengths, but they also come with various limitations. For example, while point process theory-based methods are 

generally robust, they may not accurately capture the complex spatial structures of RF cells (Green et al., 2024). Furthermore, 

many of these approaches generate stochastic RF fields, without accounting for the temporal dependencies with other flood 95 

drivers, such as storm surge, which limits their applicability for generating synthetic compound events. 
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Among the applications of uniform scaling of flooding drivers, Xu et al. (2024) applied the “same frequency amplification” 

method to construct a 200-yr storm surge hydrograph and rainfall hyetograph for their flood simulations. However, their 

approach was limited to point rainfall and assumed uniformly distributed rainfall across the catchment. Kim et al. (2023) 

proposed a framework for generating synthetic time series of RF fields and associated NTR by scaling time series of observed 100 

TC events. The framework was used to capture different spatial patterns of RF fields as this aspect was shown to significantly 

contribute to compound flood hazard (e.g., Gori et al., 2020). However, their analysis exclusively focused on TC events and 

the methodology only produces NTR time series and does not extend to producing complete storm-tide hydrographs; this is 

because it was applied to the Texas coast where the tidal range is small, and where compound flooding is primarily driven by 

TCs. Other types of storms can produce compound flooding in many other areas and tides often contribute significantly to the 105 

resulting still water levels.  

The existing statistical approaches that generate time-varying boundary conditions for dynamic compound flood models are 

primarily intended to construct design events with specified joint return periods (e.g., 50-yr, 100-yr) (Serafin et al., 2019; 

Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 2023; Liu et al., 2024; Xu et al., 2024). This method supports the 

“event-based” flood hazard analysis, where single synthetic events, or a few of them,with known joint return periods are 110 

simulated through a flood model, and it is assumed that the joint probability of the flood drivers directly translates into the 

probability of the flood response. However, this neglects the range of potential different flooding scenarios that may arise from 

variations in temporal and spatial patterns, differences in the relative timing of multiple flood drivers, and other complex 

interactions (for example, tide-surge interactions). For a more complete characterization of flood hazard and risk, the flood 

response of many synthetic events needs to be modeled, allowing the derivation, for example, of return levels of flood depth 115 

at all points within the model domain (i.e., “response-based” flood hazard analysis).  

In this study, we present a framework for generating many synthetic but physically plausible compound events consisting of 

storm-tide hydrographs and RF fields that can act as boundary conditions for dynamic compound flood models. We first 

estimate the joint probability distribution of flood drivers following Maduwantha et al. (2024) and utilize time series of RF 

and NTR of observed events to generate a synthetic event set. We explicitly account for the intra-annual and longer-term 120 

variability of MSL and tides, tide-surge interactions, and relative lag times between the peaks of flood drivers. Then, we use 

flood model simulations to assess the importance of accounting for MSL and tidal variability in the boundary condition’s 

generation process. We apply the proposed framework for Gloucester City, New Jersey, as a case study. 

2 Study area 

Gloucester City is located in Camden County, New Jersey, and has been impacted by several severe compound flood events 125 

in recent years, caused by hurricanes and other intense storms, including Hurricanes Floyd in 1999, Irene in 2011, Sandy in 

2012, and an unnamed storm in 2015. The city is bordered by the Delaware River from the west, Newton Creek to the north, 

and Little Timber Creek to the south exposing the area to flooding from multiple water sources. According to the Federal 
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Emergency Management Agency (FEMA), a substantial portion of the city's land area falls within designated flood zones, and 

over 1,100 residential and commercial properties are exposed to major, severe, or extreme flood risk (Gloucester City New 130 

Jersey, 2024; FEMA, 2016). We select the catchment area for Gloucester City comprising two 14-digit hydrologic units (Fig. 

1) (Jones et al., 2022). 

 

 

 135 

 

Figure 1: Location of Gloucester City, selected catchment boundaries, locations of the rainfall gauge, tide gauge, and grid points of 

the Analysis of Period of Record for Calibration (AORC) data. 

3 Data 

For the statistical analysis, we consider RF and NTR as flood drivers. We use hourly water level data from the nearest tide 140 

gauges to the study site provided by the National Oceanic and Atmospheric Administration (NOAA): Philadelphia (St. ID: 

8545240) and Philadelphia Pier 11-north (St. ID: 8545530). The two datasets are merged, adjusting a 1 cm constant offset 

between the two records during the overlapping period. This results in a 122-year-long dataset from 1901 to 2021 with less 

than 3% of missing data. The water level time series is then detrended using a 30-day moving average to eliminate the effects 

of long-term relative MSL rise and seasonal and interannual MSL variability. Subsequently, a year-by-year harmonic tidal 145 

analysis is conducted using the Unified Tidal Analysis and Prediction (UTide) package in MATLAB to determine tidal 

constituents and tidal levels (Codiga, 2011). Years with more than 25% missing data are removed from the analysis (1903, 

1921, 1922, and 1959). We calculate the hourly NTR time series by subtracting the predicted tides from the detrended water 

levels. 

We use both gridded RF data from the Analysis of Period of Record for Calibration (AORC) from 1979 to 2021 and hourly 150 

RF gauge data at the Philadelphia International Airport from 1900 to 2021 (Kitzmiller et al., 2018). Although radar-based 
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quantitative precipitation estimates, such as the Multi-Radar Multi-Sensor (MRMS) products, often provide higher accuracy 

compared to other gridded rainfall products, their temporal coverage is relatively short (Gao et al., 2021; Gomez et al., 2024). 

We use AORC rainfall data because of its availability from 1979 and its demonstrated higher accuracy among products with 

similar temporal coverage (e.g., Hong et al., 2024; Kim and Villarini, 2022), while offering hourly data at ~4 km spatial 155 

resolution. Rain gauges measure highly localized rainfall. Assuming that these point measurements occurred uniformly 

distributed across the entire catchment can misrepresent the compound flood hazard. To address this, we apply a bias correction 

to the hourly gauge data so it matches the basin-averaged hourly rainfall estimates derived from AORC. This correction is 

performed using the quantile mapping method, in which both the gauge-based and AORC-based rainfall distributions are fitted 

to gamma functions (for more details see Maduwantha et al. (2024)).   160 

For identifying TC events, we use the HURDAT2 TC track dataset from the National Hurricane Center, which provides the 

location of the center of circulation at 6-hour intervals (Landsea and Franklin, 2013). Considering the overlapping periods of 

available datasets, the joint probability analysis is conducted for the period from 1901 to 2021. 

4 Methods 

The overall methodology to derive synthetic boundary conditions for compound flood inundation modeling with associated 165 

annual exceedance probabilities is outlined in the flowchart in Fig. 2. In the following subsections we describe the process in 

more detail and refer to the relevant boxes (or groups of boxes) in the flowchart for better clarity. 

4.1 Joint probability estimation 

Recent data-driven threshold-selection methods, such as the Sequential Goodness-of-Fit method (Bader et al., 2018), the 

Extrapolated-Height Stability method (Liang et al., 2019), L-moment ratio stability (Silva Lomba & Fraga Alves, 2020), and 170 

a comparative multi-method approach (Radfar et al., 2022), provide robust peak-over-threshold (POT) thresholds but primarily 

optimize tail fit. Extreme compound flood events are not necessarily generated by extreme flood driver peaks. With favorable 

timing, duration, and tidal conditions, extreme flooding can occur even under moderate flood-driver conditions (Santamaria et 

al., 2025). Therefore, we use a two-sided conditional sampling based on the POT approach to identify extreme events, setting 

NTR and RF thresholds to obtain samples allowing an average of 5 exceedances per year (Jane et al., 2020; Kim et al., 2023). 175 

When conditioning on NTR, the maximum RF value within a 3-day window is selected, and the same procedure is followed 

when conditioning on RF. To ensure independence within the POT samples, a 5-day declustering window (2.5 days before 

and after the event peaks) is used (Camus et al., 2021). Next, the two conditional samples are stratified into two sets, TC events 

and non-TC events, using the TC track data set. An event is classified as being caused by a TC if there is a center of circulation 

within a 350 km radius of the Gloucester City catchment within a 3-day window (2 days before and 1 day after) of a POT 180 

event. All other events are categorized as non-TC events. This process is carried out for hourly RF accumulation times from 1 

to 48 hours; the RF accumulation time that has the highest correlation with NTR is selected for the subsequent bivariate 
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statistical analysis. Maduwantha et al. (2024) found significant non-stationarity in Kendall’s τ between peak NTR and RF over 

the analysis period. To capture most recent climate conditions and avoid underestimating compounding effects, we model 

dependence using only the last 30 years of data. The stratified samples (TC and non-TC) are then fitted to different parametric 185 

univariate distributions and copulas to identify the best-fitting marginal distributions and copula families, respectively. 

Considering the recommendations of Moftakhari et al. (2019) for compound flood assessments, we use the “AND” scenario 

which represents the exceedance of both variables for calculating annual joint exceedance probabilities (AEPs). The calculated 

AEPs of two stratified samples are then combined to estimate the final joint probability distribution. To quantify relative joint 

probabilities along a given isoline, we sample 106 NTR and RF combinations from the fitted copulas, ensuring the proportion 190 

of extremes matches the empirical distribution. The relative probability along the isolines is then calculated using a kernel 

density function, with the "most likely" event assigned to the point of highest relative probability density on the isoline 

(Salvadori and De Michele, 2013). A more detailed description of the methodology can be found in Maduwantha et al. (2024). 

We generate an event set of 5,000 combinations of NTR and RF (“target events”) by sampling from the fitted copulas such 

that the relative proportion of extremes is consistent with the empirical distribution. This initial event set contains the peak 195 

NTR and peak basin average RF for the selected RF accumulation time reflecting their joint probability of occurrence at the 

study site (Fig. 2 (e)). In the following subsections, we outline how those peak values are turned into storm-tide hydrographs 

and temporally varying RF fields with realistic lag times between the peaks of NTR and RF.  

4.2 Characteristics of NTR and RF time series from TC and non-TC events 

Before generating the final synthetic events, we compare the characteristics of TC events and non-TC events to determine 200 

whether event generation should be conducted separately for TC and non-TC events or if we can draw time series from the 

combined dataset, allowing for more variability in the final event set. We extract hourly time series of NTR (Fig. 2 (d)) and 

hourly RF fields (Fig. 2 (f)) over the Gloucester City catchment during a three-day period around all POT events. This analysis 

is limited to POT events recorded after January 1979, the start date of the gridded AORC RF data. The joint probability 

distribution derived in Section 4.1 explicitly accounts for the two different dependence structures between peak NTR and RF 205 

for the two different storm types. In this analysis step, we examine the correlations between various characteristics of the time 

series, including hourly peaks, durations, intensities, and lag times. Additionally, we assess the distributional shapes of peak 

RF, total RF, RF duration, lag time, NTR duration, and NTR intensity by fitting them to appropriate parametric distributions. 

We consider Normal, Exponential, Gamma, Lognormal, Birnbaum-Saunders, and generalized Pareto distributions, selecting 

the best model using the Akaike information criterion (AIC; Akaike, 1974). Previous studies indicate that TCs generally 210 

produce more intense RF compared to extratropical cyclones (ETCs), while ETCs often generate longer-duration RF (e.g., 

Orton et al., 2016; Sinclair et al., 2020). Therefore, we analyze the shapes and durations of the NTR and RF time series from 

observed events to determine whether there are significant differences between TC and non-TC event time series.  

We use a 6-hour continuous dry period to identify independent RF events, and the duration of a given RF event is defined as 

the non-zero basin average RF to the starting hour of the next 6-hour dry spell. Here we calculate the total RF as the sum of 215 
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all the basin-averaged hourly RF quantities of the event. The duration of the NTR events is defined as the duration over which 

the NTR is continuously above the defined threshold. The intensity of the NTR is calculated as the area under the NTR time 

series curve above zero within the duration.  

4.3 The events generation process 

4.3.1 Selecting observed events 220 

To disaggregate the target basin average peak RF spatially and temporally, we select a historical event that closely matches 

the accumulated RF of the target basin average RF. Given the limited number of observed events, selecting only the nearest 

event would result in utilizing a single or small number of observed events for all the nearby target scenarios, thereby restricting 

the diversity of the generated events. Additionally, when the selected RF event is largely different from the target RF, the 

scaling factor becomes higher and may result in making the synthetic event unrealistic. Therefore, we randomly sample from 225 

the observed events, with probabilities defined as the inverse of the difference between target RF and peak basin average RF 

quantities (of the selected RF accumulation time) of historical events (Fig. 2 (j)). For NTR, we also use the same method for 

selecting a nearby event using the inverse of the difference between the target NTR and peak hourly NTR of the historical 

events (Fig. 2 (h)).  

4.3.2 Scaling observed events  230 

We use a similar scaling approach to that introduced by Kim et al. (2023) for assigning time series of data to match target 

scenarios (peak NTR and peak basin average RF pairs). We calculate the RF scaling factor KRF as follows:  

 𝐾𝑅𝐹 = RF𝑇/RF𝑜𝑏𝑠                       (1) 

where, RFT is the target RF and RFobs is the peak basin average RF (of selected accumulation time) of the selected observed 

event. Then we multiply the hourly observed RF fields by the scaling factor KRF, generating a synthetic RF event with a peak 235 

accumulation that matches that of the target RF (Fig. 2 (m)). 

For NTR, we calculate the NTR scaling factor KNTR as follows: 

𝐾𝑁𝑇𝑅 = NTR𝑇/NTR𝑜𝑏𝑠                       (2) 

where, NTRT is the target NTR peak and NTRobs is the peak hourly NTR of the selected observed event. Then we multiply the 

hourly time series of the NTR by the scaling factor KNTR, generating a synthetic NTR event with a peak that matches the peak 240 

target NTR (Fig. 2 (k)). Here we only consider the section of the NTR time series for which the NTR is positive around the 

peak.   

4.3.3 Combining scaled NTR time series with tides and MSL  

Dynamic compound flood models require total water level time series as boundary conditions which comprise the tide, MSL, 

and NTR (in some cases also waves, depending on the location). All of those exhibit seasonal variations, which can be 245 
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significant and, therefore, cannot be ignored (for NTR this is captured through stratification into TC and non-TC events). As 

a preliminary step, we assess the variability of MSL and the high and low tides throughout the year, categorized by calendar 

months. As explained in Maduwantha et al. (2024), we apply a 30-day moving average to the measured water level data to 

remove any trends before conducting the tidal analysis. We then segregate the 30-day averaged MSL values of the last five 

years (to ensure that the analysis reflects the most recent conditions) by calendar month. For tides, we extract hourly tidal 250 

signal segments spanning 3-day periods around each high tide, covering the last 18.6 years to account for the lunar nodal cycle. 

These segments are then grouped by calendar month. 

To ensure consistency with seasonal variations, we first sample a month based on the distribution of POT observations recorded 

in each month (i.e., the monthly frequency of occurrence). Target events are derived from copulas fitted to the TC sample and 

the non-TC sample. If the target event is derived from a copula fitted to TC (non-TC) events, we sample the month from the 255 

distribution of TC (non-TC) events (Fig. 2 (a)). Once the month is selected, we randomly sample a MSL value and a tidal 

signal segment from the selected month (Fig. 2 (g)). 

Considering that tide-surge interactions are significant in certain regions, tides, and wind-driven storm surges (here NTR) often 

show interdependencies. Therefore, it is important to check the variability of the timing of peak NTR relative to tidal levels to 

determine whether it is necessary to explicitly account for tide-surge interactions when generating synthetic events. Here, we 260 

use the observed time difference between peak NTR and the subsequent high tide of the sampled NTR time series to combine 

it with the sampled tidal signal. Then the sampled MSL value is added, generating the storm tide hydrograph (Fig. 2 (n)). 

4.3.4 Combining storm tide hydrograph and RF fields 

As the final step, the scaled RF fields and calculated storm tide hydrographs are combined to create compound events that can 

be simulated through a flood model. The timing dynamics of the flood drivers play a vital role in the resultant flood depth 265 

(Gori et al. 2020). Therefore, we randomly pick one of the observed lag times (between the peak hourly NTR and peak hourly 

basin average RF) from the selected NTR event and selected RF event for creating the synthetic compound event (Fig. 2 (p)). 
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Figure 2: Workflow of the framework. 270 

4.4 Assessing the effects of MSL and tidal variability on flood hazard 

One advancement of the proposed framework over the approach outlined in Kim et al. (2023) is the inclusion of MSL and 

tides, along with their intra- and inter-annual variability. To assess how this variability affects compound flooding, we use the 

SFINCS model. SFINCS is a reduced-complexity model designed to simulate flooding from multiple drivers, such as storm 

surge, river discharge, and precipitation (Leijnse et al., 2021). It offers a simplified yet robust approach to modeling the 275 

complex interactions between flood drivers, balancing computational efficiency with accuracy. We define the flood model 

domain as the catchment area comprising the 14-digit hydrologic units of the two creeks (Newton and Little Timber Creeks) 

that surround Gloucester City to account for all the runoff that can produce pluvial flooding in the study site. The inland 

catchment area boundaries are defined as outflow boundaries to allow water to exit the domain. For the coastal boundary, we 

place an open boundary along the middle of the Delaware River, defined by the catchment polygons described earlier. We use 280 

the Coastal National Elevation Database (CoNED) from the U.S. Geological Survey, a Digital Elevation Model (DEM) with 

a horizontal resolution of 1 meter and a vertical accuracy of 10 cm (Danielson et al., 2016). We use the subgrid approach of 

SFINCS with a dual resolution of 10m and 1m. For surface roughness, we use land cover data from the NJDEP (New Jersey 

Department of Environmental Protection) Bureau of GIS, converting land classifications into Manning's coefficients based on 

guidance from the U.S. Army Corps of Engineers (US Army Corps of Engineers, 2024). Water level boundary conditions are 285 

provided as the time series at the location of the Philadelphia tide gauge. RF forcing is applied as spatially varying fields, with 
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the same resolution as the AORC data, and SFINCS interpolates these onto the model grid resolution. The model is run with 

the advection term neglected, solving the local inertia equations (we tested the sensitivity of the results when the advection 

term was enabled, but changes were negligible). We use the GPU version of SFINCS and ran the simulations on an Intel (R) 

Core (TM) i7-13700KF CPU and NVIDIA GeForce RTX 4080 GPU.   290 

The lack of observed flood data to validate and calibrate flood models is a common challenge (see e.g., Merz et al., 2024; 

Molinari et al., 2019). For this case study, we search for historical flood information from several different sources, including 

high-water marks from USGS (United States Geological Survey), satellite images, the NOAA storm event dataset, FEMA 

Flood Risk Map, local news, and crowd-sourced platforms such as social media and citizen science platforms. However, very 

little information was found to perform a quantitative validation of the simulated water depths and extents. Due to the lack of 295 

observed historical flood data, we perform a qualitative validation comparing a few known flooded areas with simulated 

flooded sites for this qualitative validation, we also use local expert knowledge on areas that are frequently flooded as well as 

a few known flooded areas from past events from the previously listed sources. Overall, we find good agreement between the 

model output and the reported flood depths. A detailed description of the model validation can be found in Appendix 1 of 

Pollack et al. (2025). 300 

To quantify the impact of including MSL and tide variations in the framework, we designed the following experiment. We use 

the most-likely event with 0.01 AEP (i.e., 100-year return period), determined from the derived joint probability distribution, 

as the target scenario for all simulations. Using the developed framework, we generate many most-likely 0.01 AEP events. A 

single event is then selected where the peak NTR coincides with high tide, as tidal variability would have less impact on flood 

depths if the peak NTR occurred during low tide. Then, we modify only the specific parameter of interest (MSL or tide) of the 305 

selected event while keeping all other event characteristics the same. To assess the impact of MSL, we change the MSL to the 

lowest and highest 30-day averaged MSL values recorded in the past five years and simulate the compound flooding. For tidal 

influences, we use tidal signal segments with the lowest and highest high tides over the last 18.6 years of the study period. 

This analysis allows us to assess the individual contributions from the variability of MSL and tides to overall flood hazard and 

better understand how critical it is to align with the seasonality when combining MSL and tide with NTR time series. 310 

5 Results 

5.1 Joint probability distribution 

The threshold for NTR is set to 0.63 m, resulting in a total of 580 POT events (that is consistent with 5 events per year on 

average). For RF, thresholds are set to also obtain 580 POT events for each RF accumulation time from 1 to 48 hours. The 18-

hour RF accumulation time exhibits the strongest correlation with the peak NTR. Therefore, the 18-hour RF accumulation is 315 

selected for subsequent analysis. After stratifying these events into TC and non-TC, 38 are identified as TCs when conditioned 

on NTR, and 43 when conditioned on RF, with the remaining events categorized as non-TCs. The conditioning variable of 

each stratified sample is fit to a Generalized Pareto Distribution (GPD). For the conditioned variable, several parametric 
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distributions are tested. Selected marginal distributions and quantile plots for each sample are shown in Fig. S1 in the 

supplementary material. The rotated Tawn type 2 (180°) copula provides the best fit for both conditioning samples of TC 320 

events. For the non-TC events, the Frank-Joe Copula is selected for the sample conditioning NTR and Clayton Copula for the 

sample conditioning RF. The quantile isolines after combining the joint probability distributions of the two storm populations 

(TC and non-TC) are shown in Fig. 3 (for a more detailed description, refer to Maduwantha et al. (2024)). Here we use the 

framework to derive 5,000 combinations of peak NTR and RF by sampling from the fitted copulas such that the relative 

proportion of extremes is consistent with the empirical distribution (see Fig. 3 (b)). 325 

 

Figure 3: Joint probability isolines after combining the AEPs of the two populations (TC and non-TC) with (a) observations, and (b) 

simulations. The color scale indicates the relative probability of events along the isolines. The location of the “most likely” event is 

assigned to the point with the highest relative probability density on an isoline (black triangles in (a)) 

5.2 Characteristics of TC events and non-TC events 330 

We use Kendall’s rank correlation coefficient τ to measure the strength of dependence between different attributes of observed 

events falling into the TC and non-TC categories. The correlations between NTR duration and peak NTR (Fig. 4 (a)), NTR 

intensity and peak NTR (Fig. 4 (d)), total RF and peak hourly RF (Fig. 4 (k)) are strong, positive, and statistically significant. 

The lag times of the observed events are predominantly positive, indicating that the peak hourly RF typically occurs before 

the peak NTR. The correlation between lag time and peak RF (Fig. 4 (i)) is weakly to moderately negative, but statistically 335 

significant only for the non-TC sample. However, Fig. 4 (e) and Fig. 4 (i) show that events with higher peaks of NTR or RF 

generally tend to have shorter lag times. There is no significant correlation between RF duration and NTR duration in both TC 

and non-TC samples (see Fig 4 (c)). To further examine differences in the pairwise correlations in TC and non-TC samples, 

we derive the confidence intervals associated with the values of Kendall’s τ (Fig. 5). Only the NTR hourly peak vs. RF hourly 
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peak and NTR intensity vs. total RF exhibit non-overlapping 95% confidence intervals, whereas in all other cases, the 340 

confidence intervals for TC and non-TC events overlap.  

The NTR duration, NTR intensity, lag time, RF duration, peak hourly RF, and total RF observations are fitted to various 

parametric distributions, with the best fitting selected based on AIC. Fig. 6 displays the estimated parameters of the selected 

distributions along with their 95% confidence intervals. For all parameter values, the confidence intervals for TC events overlap 

with those of non-TC events, except for the scale parameter of the RF duration. The goodness of fit of the parametric 345 

distributions is shown in Fig. S2 of the supplementary material. As described in Section 4.2, we also check the time evolution 

of the NTR and basin-averaged RF of the observed POT events. Fig. 7 shows the hourly time series of NTR and basin average 

RF of observed events around the peak. Although peak RF is higher for TC events compared to non-TCs, the overall shape of 

the NTR time series and basin-average RF is similar for both storm types. Therefore, TC and non-TC RF and NTR time series 

are randomly sampled (and scaled to the target peak values) without stratifying by storm type.  350 

We emphasize that stratification is still conducted and important when deriving the joint probability distribution because TC 

and non-TC events exhibit different dependence between NTR and RF. However, the relevant characteristics of the complete 

time series of the different event types are similar, as shown in this section. Therefore, to have a larger sample to draw from 

(especially in the TC case) we do not treat TC and non-TC events separately when selecting observed event time series for 

subsequent scaling. We elaborate on this more in the Discussion section. 355 
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Figure 4: Scatter plots between (a) NTR duration and peak NTR, (b) RF duration and peak hourly RF, (c) NTR duration and RF 365 
duration, (d) NTR intensity and peak NTR, (e) peak NTR and lag time, (f) RF duration and lag time, (g) NTR duration and lag time, 

(h) peak hourly RF and peak NTR, (i) Peak hourly RF and lag time, (j) NTR intensity and total RF, (k) total RF (sum of all the 

basin-averaged hourly RF quantities of the event) and peak hourly RF,  of observed TC events (red) and non-TC events (blue). 

Kendall’s τ for each sample with the corresponding p-value (in brackets) is shown in each panel. 

 370 
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Figure 5: Kendall’s τ for different parameters of observed TC events (red) and non-TC events (blue). The light color range indicates 

the associated 95% confidence intervals. 

 375 

Figure 6: Parameter values of the fitted parametric distributions with their 95% confidence intervals for TC events (red) and non-

TC events (blue). The selected parametric distribution is shown in each panel. 
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Figure 7: Houry time series of (a) NTR and (b) basin average RF of observed events besides the peak. The solid lines show the mean 380 
value of each time step of TC events (red) and non-TC events (blue).  The dashed lines of (a) represent the standard deviation around 

the mean at each time step. 

5.3 Event generation process 

Fig. 8 illustrates the procedure for generating an event with a 106-year joint return period, consisting of a 1.75 m NTR and 80 

mm 18-hour basin-average RF. Since the target event was simulated from the copula that was fit to the TC sample, the event 385 

month was randomly sampled from the frequency of TC occurrences in each month (Fig. 8 (d)). For the selected event, the 

month of July was sampled. After that, a MSL value of 0.3 m was selected from the MSL distribution for the month of July 

(Fig. 8 (e)). To generate the storm tide hydrograph, an NTR time series was sampled from the observed events (regardless of 

storm type) (Fig.8 (g)) and scaled to match the target value (Fig. 8 (h)). The NTR time series was subsequently combined with 

the sampled MSL and a randomly selected tidal signal segment, chosen from the set of tidal signal segments for the month of 390 

July (Fig. 8 (f)). For generating RF fields, an RF event was sampled (regardless of storm type) from all available events (Fig. 

8 (b)) and scaled to match the target 18-hour RF (Fig. 8 (c)). Fig. 8 (k) shows the scaled RF fields at selected hours, 

demonstrating the spatio-temporal variability in the RF fields. A 6-hour time lag, originally associated with the selected RF 

event, was used to combine the RF time series with the storm tide hydrograph (Fig. 8 (m)).  
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The proposed framework was implemented to generate 5,000 synthetic events, consisting of hourly still water levels (storm 395 

tide hydrograph) at the Philadelphia tide gauge and hourly RF fields over the Gloucester City catchment. Fig. 9 shows the 

scatter plots comparing various characteristics of the time series, including hourly peaks, durations, intensities, and lag times 

for both observed and simulated events. Overall, the spread and correlation for each pair of parameters in the simulated events 

are consistent with those in the observed events. 
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Figure 8: The demonstration of the event generation process using an example target event with 1.75 m NTR and 80 mm 18-hr RF. 400 
Panels: (a) Joint probability distribution, (b) Observed RF time series, (c) Selected and scaled RF time series, (d) Monthly frequency 

of occurrence of TC events and non-TC events, (e) MSL distribution of the month July, (f) Tidal signal segments of the month July, 

(g) Observed NTR time series, (h) Selected and scaled NTR time series, (j) Storm tide hydrograph, (k) Scaled hourly RF fields over 

the Gloucester City catchment, (m) Synthetic compound event comprised of storm tide hydrograph (including scaled NTR) and 

scaled RF. 405 
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Figure 9: Scatter plots between (a) NTR duration and peak NTR, (b) RF duration and peak hourly RF, (c) NTR duration and RF 

duration, (d) NTR intensity and peak NTR, (e) peak NTR and lag time, (f) RF duration and lag time, (g) NTR duration and lag time, 

(h) peak hourly RF and peak NTR, (i) Peak hourly RF and lag time, (j) NTR intensity and total RF, (k) total RF (sum of all the 

basin-averaged hourly RF quantities of the event) and peak hourly RF, of observed events (red) and simulated events (gray). 410 
Kendall’s τ for each sample with the corresponding p-value (in brackets) is shown in each panel. 
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5.4 Flood model simulations and role of MSL and tide variation 

A most-likely 0.01 AEP event (see black triangle in Fig. 3 (a)) was used to assess the impact of tidal and MSL variability on 

flood depth and extent. To assess MSL impact, we simulate flooding by adjusting the MSL to the lowest (-0.198 m, above 415 

NAVD88) and highest (0.540 m, above NAVD88) 30-day average values recorded over the past five years. For tidal influences, 

we use tidal segments with the lowest and highest high tides observed over the last 18.6 years. Fig. 10 illustrates the maximum 

flood depth and extent resulting from each scenario during the flood model simulations. There is a significant difference in 

flood depth and extent when comparing the simulation results of applying the maximum and minimum tide (or MSL). Flood 

depths reach up to 1.5 meters in certain areas when the highest 30-day MSL is used for generating the storm-tide hydrograph. 420 

The difference in flood depths between using the highest and lowest 30-day MSL reaches up to 1 m in some areas of the city. 

Similarly, applying the tidal signal segment with the highest high tide causes flood depths to reach 2 m in several areas, with 

increases over 1.2 m compared to using the segment with the lowest high tide. These changes in flood depths are particularly 

pronounced along the Delaware River and Newton Creek, where the influence of coastal water levels is strongest. 

6 Discussion 425 

A detailed description of the procedure for estimating the joint probability distribution applied in this study is provided in 

Maduwantha et al. (2024). When applying the two-way sampling to extract POT events, we used a 3-day pairing window to 

capture peak NTR and RF, following similar studies (Couasnon et al., 2020; Kim et al., 2023). We also manually checked the 

RF and NTR time series of POT events and found that a 3-day window was generally sufficient to capture both peaks in the 

vast majority of cases. To ensure independence within the POT samples, previous studies have applied various declustering 430 

windows (e.g., 3 days (Haigh et al., 2016), 7 days (Santos et al., 2021), 10 days (Kim et al., 2023), and 14 days (Terlinden-

Ruhl et al., 2025)). Longer declustering windows are often adopted when the influence of river discharge is present, as its 

effects can persist for several days or more (Terlinden-Ruhl et al., 2025). In this study, we use a 5-day declustering window 

(2.5 days before and after the event peaks), as highly elevated NTR rarely lasts more than 5 days at the tide gauge location. 

Previous studies have applied various search radii to identify TC events, such as ~400 km (Kim et al., 2023) and 500 km 435 

(Towey et al., 2022). In this study, we tested the sensitivity of the correlation between peak NTR and peak accumulated RF to 

the TC search radius, following Kim et al. (2023). Increasing the search radius captures more nearby TC tracks but also 

introduces events that are too distant to strongly influence flooding drivers at the study site, thereby reducing the overall 

correlation between RF and NTR of the TC sample. We selected a 350 km search radius, as it provided a higher correlation 

between drivers while still retaining a reasonable number of TC events in the sample. 440 

Maduwantha et al. (2024) identified a strong correlation between peak NTR and peak RF when the extreme events are caused 

by TCs in the Gloucester City region, suggesting that there is a higher potential for compound flooding by TCs in the study 

region (Fig. S3 (a) and (c) in supplementary material). The non-TC events, which include ETCs and convective RF events, 

exhibit a weaker correlation between peak NTR and RF. Consequently, TC and non-TC events were treated as two distinct 
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populations in the joint probability analysis, leading to more accurate and robust estimates compared to modeling them as a 445 

single population (Maduwantha et al., 2024). The joint probability distributions of peak NTR and peak RF of TC and non-TC 

storms are substantially different. Small to moderate compound events are more frequent in the non-TC storms, whereas the 

most extreme compound events are more likely generated by TCs. For example, the selected event for demonstrating the event-

generation framework (NTR = 1.75 m, 18-h RF = 80 mm) corresponds to a ~106-yr joint return period in the combined joint 

probability distribution. The same event has a joint return period of ~111 yrs in the TC sample and ~2431 yrs in the non-TC 450 

sample, highlighting that rare events are primarily associated with TCs.” Here, the generated 5,000 combinations of peak NTR 

and RF by sampling from the fitted copulas provide 1,000 years’ worth of extreme events (5 events per year on average) , 

reflecting the joint probability distribution of NTR and RF.  

Considering the distinct properties of TCs compared to ETCs and other storm types, it is crucial to account for the unique 

characteristics of these flood drivers in the synthetic event generation process. Therefore, the most effective approach would 455 

be to use observed time series of flood drivers from TC events exclusively for generating synthetic TC events, while using 

those from non-TC events separately to generate synthetic non-TC events. This separation allows for a more accurate 

representation of the differences in timing (of peak storm surge and peak RF), intensity, duration, and spatial patterns between 

TC and non-TC events, ensuring that the synthetic events realistically reflect the distinct physical properties associated with 

each storm type. However, the small number of TCs in the historical record, due to their infrequent occurrence, presents a 460 

challenge when generating many synthetic events. A limited TC dataset may not fully reflect the  

inherent variability and the full range of possible events through the event generation process. Therefore, we assess whether 

the event generation process can be applied to the entire sample combining both TC and non-TC events while still preserving 

key characteristics of the flood drivers. To inform this decision, we examined various time series attributes of NTR and RF, 

such as magnitudes, durations, shapes, and timing. 465 
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Figure 10: Changes in flood depths associated with variability in MSL (left) and Tide (right) of a selected 0.01 AEP most-likely event. 

(a) When considering the lowest 30-day MSL, (b) when considering the tidal segment with the lowest high tide, (c) when considering 

the highest 30-day MSL, (d) when considering the tidal segment with the highest high tide, (e) the difference between (a) and (c), (f) 

difference between (b) and (d). (X, Y coordinates system: UTM- zone 18N). 
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 470 

Kendall’s τ for the hourly peak and duration of the NTR time series shows a strong positive correlation (see Fig. 4 (a)), 

suggesting that more intense storm surge events tend to last longer in the study region. In contrast, for RF there is no significant 

correlation between the hourly peak and the duration of the basin-average RF, as indicated by τ values closer to zero (see Fig. 

4 (b)). However, the confidence intervals of τ, as shown in Fig. 5, indicate that the strength of dependence between the tested 

characteristics does not differ significantly between the two storm types. It is well known that TCs typically produce more 475 

intense RF than ETCs, whereas ETCs tend to be larger in size and generate RF for prolonged durations (e.g., Orton et al., 2016; 

Sinclair et al., 2020). However, this behavior is not evident in the statistical properties of the observed POT events, as shown 

in Figs. 4 to 6. Several factors could explain this. First, the non-TC sample may include TCs that passed beyond the 350 km 

search radius but still contributed RF and storm surge to the Gloucester City catchment. Second, the non-TC sample also 

contains locally generated convective RF events, which, although shorter in duration, can produce severe RF intensities (Pfahl 480 

and Wernli, 2012). Further, the smaller number of observed TC events may lead to statistically significant correlations going 

undetected and wider confidence intervals, limiting the ability to discern distinct patterns. One option to overcome the limited 

TC sample size in our analysis is employing physics-based models to generate time series of flood drivers from synthetic TC 

tracks (e.g., Emanuel et al., 2006; Gori et al., 2020). We plan to explore this in future work. The relatively small size of the 

Gloucester City catchment also means that we analyze only parts of the spatial variability associated with different storm types.  485 

The comparison of distribution parameters fitted to peak RF, total RF, RF duration, lag time, NTR duration, and NTR intensity 

also suggests no significant differences between the various characteristics of TCs and non-TCs (see Fig. 6). Similarly, the 

shapes of the NTR and basin-average RF time series produced by TCs are not significantly different from those generated by 

non-TC events (see Fig. 7). Given these results we conclude that sampling and scaling of the observed event time series (i.e., 

water level hydrographs and RF hyetographs) separately for the two storm types would produce similar results compared to 490 

the ones we derive without stratifying. Note, that stratification is still applied when deriving the joint probability distribution 

since the dependence structure of the peaks of NTR and RF is substantially different. Importantly, this applies to the specific 

study location. In other places, significant differences may exist in the time series characteristics between TC and non-TC 

samples (as discussed in Section 4.2), warranting that the event generation process is also conducted separately for each storm 

type.  495 

In the event generation process described in Section 4.3, steps are taken to ensure the synthetic events are both realistic and 

physically plausible. While lag times between peak NTR and peak RF can vary a lot, more extreme events tend to exhibit 

shorter lag times (see Figs. 4 (e) and 4 (i)). To incorporate this behavior into the synthetic events, we not only select nearby 

historical events for scaling but also adopt the lag time from one of the selected events. At the Philadelphia tide gauge, peak 

NTR often occurs 4–5 hours before the next high tide (see Fig. S4 in the supplementary material). To account for this, we 500 

combined scaled NTR with tide predictions using the observed lag between peak NTR and subsequent high tide of the sampled 

NTR event (see Section 4.3.3). These steps ensure that synthetic compound events retain the same temporal dynamics as 

similar observed events.  
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MSL exhibits both long-term trends and seasonal variability, which is often driven by regional climate characteristics (Barroso 

et al., 2024). Detection of this seasonality is crucial, as the risk of flooding increases significantly when elevated MSL coincides 505 

with storm activity and/or seasonal high tides (known as king tides), compared to when these peaks are out of phase (Barroso 

et al., 2024; Dangendorf et al., 2013; Thompson et al., 2021). At the Philadelphia tide gauge, the 30-day averaged MSL varies 

by approximately 0.7 m over the last five years of the study period, highlighting the importance of incorporating this variability 

into flood modeling frameworks. The long-term variations of tides have also been linked to increases in high-tides and extreme 

coastal flooding (Enríquez et al., 2022; Thompson et al., 2021). These tidal variations arise from the nodal and perigean 510 

modulations, with cycles of 18.6 and 4.4 years respectively. To account for these tidal variations, we use 3-day tidal signal 

segments over the most recent 18.6 years of the study period to generate the synthetic storm events. The framework was applied 

to generate 5,000 synthetic events, and the comparisons of scatter plots in Fig. 9 indicate that the characteristics of the simulated 

events, such as hourly peaks, durations, intensities, and lag times are consistent with the observed events.  

The results of the compound flood model simulations show that a substantial portion of the study area is impacted by a 0.01 515 

AEP compound flood event. Still, the flood depth varies significantly depending on the MSL and tidal conditions (see Fig. 

10). An event with 0.01 AEP (i.e., joint probability between peak RF and peak NTR) can produce up to 1 m difference in flood 

depth depending on MSL conditions, while the prevailing tidal conditions can lead to differences of up to 1.2 m. These changes 

are particularly evident in areas along the Delaware River and Newton Creek, where the influence of coastal water levels is 

the largest. It is important to note that these variabilities are solely due to the influence of MSL and tides, and do not account 520 

for additional variability from different combinations of NTR and RF peaks along the 0.01 AEP isoline or other factors (Jane 

et al., 2022). Nonetheless, the substantial differences in flood depths highlight the critical importance of accurately representing 

MSL and tidal conditions, which we achieve in the proposed framework by randomly sampling from their monthly 

distributions. Analyzing only the most likely event, even if it appears to be the most plausible based on observations, does not 

capture the range of flood levels that could be generated by different combinations of flood drivers (i.e., NTR and RF) with 525 

different time series properties. Therefore, the flood model simulations presented here are aimed at evaluating the importance 

of explicitly accounting for the variability of MSL and tides, and not to produce comprehensive probabilistic flood maps. In a 

separate study (Santamaria et al., 2025), we simulated flooding of 5,000 synthetic storms at this site and found large variation 

in resultant flooding, even for events with similar joint return periods. However, attributing this variability to a single factor 

like MSL or tides is challenging due to the complexity of their interactions. 530 

One key assumption of the framework is that uniform scaling (also referred to as “same frequency amplification”) of flooding-

driver time series creates a realistic compound event. This approach has been widely adopted in previous studies to construct 

design hydrographs and hyetographs (e.g., Serafin et al., 2019; Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 

2023; Liu et al., 2024; Xu et al., 2024). However, assessing whether each generated synthetic storm event is physically realistic 

is challenging. Ideally, a direct one-to-one validation against observed events (verifying whether every synthetic event has a 535 

similar observed event) would provide the most rigorous test. Yet such validation is impossible given the limited availability 

of observations, which is why the synthetic event generation is necessary in the first place. Instead, we tested the framework 
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by comparing statistical properties of key time series characteristics between observations and synthetic events (Fig. 9). 

Another limitation of the proposed framework is that certain characteristics of synthetic events, such as RF duration and lag 

times, are limited to the observed values. To generate more diverse lag times, the observed lag times could be fitted to a 540 

parametric distribution (or alternatively to a copula that accounts for the dependence between peak values and lag times) and 

then one could sample lag times from the fitted distribution during the event generation process. This would introduce 

unobserved lag times into the synthetic events, enhancing their diversity. Additionally, the stratification of POT events utilizes 

a simple yet commonly used approach (e.g., Kim et al., 2023; Maduwantha et al., 2024) as discussed in Section 4.1. However, 

this method may not capture all TCs, particularly those that produce significant RF and storm surges from distances greater 545 

than 350 km. Such events are classified as non-TC events here, meaning the analysis in Section 4.2 may not fully reflect the 

true characteristics of TC and non-TC events.  

Although measures are taken to prevent the generation of physically unrealistic events (see Section 4.3), it cannot be fully 

ruled out. For instance, when generating many peak NTR-RF combinations from the multivariate statistical model, unbounded 

marginal distributions can produce implausible extreme events that would result in unrealistic flood depths for those particular 550 

events. How much that affects the overall results depends on the type of analysis and how the flood information from individual 

synthetic events is used. Implementing a quality control process, e.g., using probable maximum precipitation or existing data 

on maximum storm surge potential (in the U.S. such data is available from a large number of SLOSH simulations) could help 

filter out such unrealistic events, ensuring that the resulting synthetic event set remains feasible for a comprehensive flood risk 

assessment. 555 

7 Conclusions 

This paper presents a novel framework for generating synthetic events consisting of RF fields and (coastal/estuarine) water 

level time series, which can serve as boundary conditions for compound flood models. The framework explicitly accounts for 

different storm types in estimating the joint distribution of flood drivers and derives a large sample of peak NTR-RF 

combinations. Historic time series are scaled to match the target peaks, with the observed events chosen to ensure that the re-560 

scaled events are physically plausible. We applied this framework to Gloucester City in New Jersey, a coastal city that is 

exposed to flooding from multiple water sources and storm types. The results demonstrate that the simulated events are 

consistent with observed events while covering unobserved portions of the event space. Results of the flood modeling indicate 

that substantial variability in flood depth can arise solely from different MSL and tidal conditions, even when peak NTR and 

RF values are the same. This emphasizes the importance of accounting for the variability in time series dynamics, MSL, and 565 

tidal conditions in compound flood risk assessments. While we focus on historical observed events, the framework can be used 

with model output data including hindcasts or future projections. 
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