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Abstract. Compound flood risk assessments require probabilistic estimates of flood depths and extents that are derived from 

compound flood models. It is essential to simulate a wide range of flood driver conditions to capture the full range of 

variability in resultant flooding. Although recent advancements in computational resources and the development of faster 

compound flood models allow for more rapid simulations, generating a large enough set of storm events for boundary 15 

conditions remains a challenge. In this study, we introduce a statistical framework designed to generate many synthetic but 

physically plausible compound events, including storm-tide hydrographs and rainfall fields, which can serve as boundary 

conditions for dynamic compound flood models. We apply the proposed framework to Gloucester City in New Jersey, as a 

case study, . and thThee results demonstrate its effectiveness in producing synthetic events covering the unobserved regions 

of the parameter space. We use flood model simulations to assess the importance of explicitly accounting for variability in 20 

mean sea level (MSL) and tides in generating the boundary conditions. Results highlight that MSL anomalies and tidal 

conditions alone can lead to differences in flood depths exceeding 1 m and 1.2 m, respectively, in parts of Gloucester City. 

While we focus use on historically observed events, the framework can be used with applied to model output data including 

hindcasts or future projections. 

1 Introduction 25 

Flooding in coastal regions can be caused by various hydrometeorological drivers such as precipitation, excess river 

discharge, wind-driven storm surge, mean sea level (MSL), and high tides. When these flood drivers occur simultaneously or 

in close succession, they often lead to compound flooding, which can result in more severe flood impacts and substantial 

socioeconomic losses (e.g., Hendry et al., 2019; Nasr et al., 2023; Wahl et al., 2015; Ward et al., 2018). Therefore, 

accurately quantifying and characterizing compound flood risk is crucial for effective flood risk management and mitigation, 30 

infrastructure design, urban planning, the (re)insurance markets, emergency response, and more. 
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Flood depths (and extents) are typically estimated using compound flood models, due to the scarcity of data on historic flood 

events, e.g., from high water marks or satellite observations. One simple approach is to use static compound flood models 

(also referred to as ‘bathtub’ models) (e.g., Gallien, 2016; Seenath et al., 2016; Semmendinger et al., 2021), but these models 

tend to overestimate flood extent primarily due to the assumption that peak water levels are maintained indefinitely  and by 35 

neglecting critical factors such as bottom friction and flood duration (Barnard et al., 2019; Breilh et al., 2013; Gallien, 2016; 

Kumbier et al., 2019). Alternatively, dynamic compound flood models are employed to capture the physical mechanisms of 

coastal and inland flooding, and they have been shown to provide good results for various terrain types, catchment sizes, and 

flood driver combinations (Kumbier et al., 2019; Lewis et al., 2013; Ramirez et al., 2016; Vousdoukas et al., 2016). 

However, dynamic compound flood models require time series of the different flood drivers, and their relative timing to each 40 

other, as boundary conditions. 

Temporally and spatially varying boundary conditions permit a thorough exploration of different scenarios, including 

variations in timing, intensity, and spatial extent of flood drivers (Harrison et al., 2022; Quinn et al., 2014). The development 

of faster compound flood models (e.g. SFINCS (Super-Fast INundation of CoastS)) coupled with the increase in 

computational resources enables many scenarios to be rapidly propagated through dynamic compound flood models.  The 45 

scarcity of long-term concurrent observational records of flood drivers poses a challenge in generating plausible extreme 

conditions that can serve as boundary conditions for those models (Ward et al., 2018). One way of addressing this issue is by 

using physics-based models to generate many events (e.g. rainfall-surge-discharge events) (Bass and Bedient, 2018; Bates et 

al., 2021; Gori et al., 2020; Nederhoff et al., 2024; Orton et al., 2020). For example, Gori et al. (2020) first derived synthetic 

tropical cyclone (TC) tracks and then simulated the resultant rainfall (RF) fields using a physics-based model and the 50 

associated storm tides through a hydrodynamic model (ADvanced CIRCulation (ADCIRC) model (Luettich R. A., 1992)). 

These RF fields and storm tides were subsequently used as boundary conditions in a one-way coupled hydrodynamic 

modeling framework to simulate the total flood levels in a tidal estuary.  

Generating boundary conditions via physics-based modeling is often computationally expensive, thus making it challenging 

to implement across diverse climate and environmental conditions. Statistical approaches offer a computationally cheaper 55 

alternative by modeling the joint probability distribution of flood drivers directly and simulating scenarios from the fitted 

distribution model. These scenarios are then propagated through compound flood models, allowing for the assessment of 

flood impacts while reducing computational demands compared to more complex physical models. Bayesian networks (e.g., 

Couasnon et al., 2018), bivariate logistic models (e.g., Serafin et al., 2019), and copulas (e.g., Liu et al., 2024; Moftakhari et 

al., 2019; Zellou and Rahali, 2019) are examples of statistical approaches applied to analyze compound flood drivers. These 60 

approaches still possess various limitations when deriving time series of boundary conditions. For instance, they often rely 

on a representative event (e.g., Liu et al., 2024) or a simplistic sinusoidal shape (e.g., Moftakhari et al., 2019) of the 

hydrographs for all simulations, which oversimplifies the temporal variability of flood drivers. They also may neglect the 

timing dynamics between RF-runoff and storm tides, either assuming both flood drivers peak simultaneously or assuming a 



 

3 

 

range of possible time lags (e.g., Moftakhari et al., 2019). Furthermore, they fail to capture the spatial variability of RF fields 65 

as they rely on RF point data from observations or models (e.g., Zellou & Rahali, 2019).  

Harrison et al. (2022) highlighted that in both large and small estuaries, storm surge intensity rather than height was the main 

flooding driver, while Shen et al. (2019) noted that longer-duration storm tides led to greater backward flow volumes in 

underground pipes. Therefore, generating realistic synthetic storm-tide hydrographs is crucial since the flood extent, 

particularly around the peak water level, is often highly sensitive to the shape of the storm-tide hydrograph (Quinn et al., 70 

2014). Methods for generating extreme storm-tide hydrographs can be mainly categorized into deterministic and stochastic. 

Deterministic methods use pre-defined shapes or observed event patterns, such as triangles (e.g., Vousdoukas et al., 2016) or 

sinusoidal functions (e.g., Moftakhari et al., 2019), which simplify the event structure but may not capture the natural 

asymmetry in water level profiles. This approach, although efficient, may also ignore nonlinear interactions between tides 

and surges, depending on how the method is applied (Arns et al., 2020). Rescaling of total water level (or non-tidal residuals 75 

(NTR) time series) of observed events is another deterministic approach that leverages observed event data (Dawson et al., 

2005; Kim et al., 2023; Xu et al., 2024). This method incorporates site-specific information, eliminating the assumption of 

symmetrical rising and falling limbs in the total water level profile. Alternatively, stochastic simulation methods can be used 

to generate many physically plausible events for a given peak water level, while accounting for natural temporal variability 

in storm tides (MacPherson et al., 2019; Wahl et al., 2011, 2012). For example, Wahl et al. (2011) parameterized water 80 

levels around peak tides using 19 sea level and six time parameters, fitting independent marginal distributions to each, and 

modeling dependencies through linear regression. Filters were applied to ensure realistic event generation, effectively 

recreating the peak water level–intensity relationship observed at German Bight tide gauges. Dullaart et al. (2023) created a 

global dataset of storm tide hydrographs from the depth-averaged hydrodynamic Global Tide and Surge Model (GTSM) 

(Hersbach et al., 2020). They incorporated nonlinear tide-surge interactions in the surge series by calculating it as the 85 

difference in elevation between storm tide simulations and tide-only simulations. However, they assumed that the surge 

maximum coincided with the high tide. 

A variety of methods are available for generating design hyetographs for point RF estimates, ranging from simple geometric 

shapes (e.g., Chow et al., 1988) to more sophisticated multi-site stochastic models (e.g., Evin et al., 2018). However, 

relatively few studies have focused on generating synthetic space-time varying RF events. Green et al. (2024) classified 90 

methods for simulating space-time varying RF into four main approaches: (1) multi-site temporal simulations (e.g., Brissette 

et al., 2007; Kleiber et al., 2012), (2) point process theory-based methods (e.g., Burton et al., 2008; Cowpertwait et al., 

2002), (3) random field theory-based methods (e.g., Leblois and Creutin, 2013; Papalexiou et al., 2021), and (4) fractal 

processes in two or three dimensions (e.g., Schertzer and Lovejoy, 1987). These methods are often tailored to specific 

research objectives depending on their strengths, but they also come with various limitations. For example, while point 95 

process theory-based methods are generally robust, they may fail tonot accurately capture the complex spatial structures of 

RF cells (Green et al., 2024). Furthermore, many of these approaches generate stochastic RF fields, without accounting for 
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the temporal dependencies with other flood drivers, such as storm surge, which limits their applicability for generating 

synthetic compound events. 

Among the applications of uniform scaling of flooding drivers, Xu et al. (2024) applied the “same frequency amplification” 100 

method to construct a 200-yr storm surge hydrograph and rainfall hyetograph for their flood simulations. However, their 

approach was limited to point rainfall and assumed uniformly distributed rainfall across the catchment. Kim et al. (2023) 

proposed a framework for generating synthetic time series of RF fields and associated NTR by scaling time series of 

observed TC events. The framework was used to capture different spatial patterns of RF fields as this aspect was shown to 

significantly contribute to compound flood hazard (e.g., Gori et al., 2020). However, their analysis exclusively focused on 105 

TC events and the methodology only produces NTR time series and does not extend to producing complete storm-tide 

hydrographs; this is because it was applied to the Texas coast where the tidal range is small, and where compound flooding 

is primarily driven by TCs. Other types of storms can produce compound flooding in many other areas and tides often 

contribute significantly to the resulting still water levels.  

The existing statistical approaches that generate time-varying boundary conditions for dynamic compound flood models are 110 

primarily intended to construct design events with specified joint return periods (e.g., 50-yr, 100-yr) (Serafin et al., 2019; 

Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 2023; Liu et al., 2024; Xu et al., 2024). This method supports 

the “event-based” flood hazard analysis, where single synthetic events, or a few of them, with known joint return periods are 

simulated through a flood model, and it is assumed that the joint probability of the flood drivers directly translates into the 

probability of the flood response. However, this neglects the range of potential different flooding scenarios that may arise 115 

from variations in temporal and spatial patterns, differences in the relative timing of multiple flood drivers, and other 

complex interactions (for example, tide-surge interactions). Additionally, their approach is designed for creating specific 

design events with known joint return periods of the peaks of the flood drivers, i.e., it supports “event-based” flood hazard 

analysis where one or few events with a given return period are routed through an inundation model and it is assumed that 

the joint probability of the drivers translates to the probability of the flood response. For a more complete characterization of 120 

flood hazard and risk, the flood response of many synthetic events needs to be modeled, allowing the derivation, for 

example, of return levels of flood depth at all points within the model domain (i.e., “response-based” flood hazard analysis).  

In this study, we present a framework for generating many synthetic but physically plausible compound events consisting of 

storm-tide hydrographs and RF fields that can act as boundary conditions for dynamic compound flood models. We first 

estimate the joint probability distribution of flood drivers following Maduwantha et al. (2024) and utilize time series of RF 125 

and NTR of observed events to generate a synthetic event set. We explicitly account for the intra-annual and longer-term 

variability of MSL and tides, tide-surge interactions, and relative lag times between the peaks of flood drivers. Then, we use 

flood model simulations to assess the importance of accounting for MSL and tidal variability in the boundary condition’s 

generation process. We apply the proposed framework for Gloucester City, New Jersey, as a case study. 
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2 Study area 130 

Gloucester City is located in Camden County, New Jersey, and has been impacted by several severe compound flood events 

in recent years, caused by hurricanes and other intense storms, including Hurricanes Floyd in 1999, Irene in 2011, Sandy in 

2012, and an unnamed storm in 2015. The city is bordered by the Delaware River from the west, Newton Creek to the north, 

and Little Timber Creek to the south exposing the area to flooding from multiple water sources. According to the Federal 

Emergency Management Agency (FEMA), a substantial portion of the city's land area falls within designated flood zones, 135 

and over 1,100 residential and commercial properties are exposed to major, severe, or extreme flood risk (Gloucester City 

New Jersey, 2024; FEMA, 2016). We select the catchment area for Gloucester City comprising two 14-digit hydrologic units 

(Fig. 1) (Jones et al., 2022). 

 

 140 

 

 

Figure 1: Location of Gloucester City, selected catchment boundaries, locations of the rainfall gauge, tide gauge, and grid points of 

the Analysis of Period of Record for Calibration (AORC) data. 

3 Data 145 

For the statistical analysis, we consider RF and NTR as flood drivers. We use hourly water level data from the nearest tide 

gauges to the study site provided by the National Oceanic and Atmospheric Administration (NOAA): tide gauges at 

Philadelphia (St. ID: 8545240) and Philadelphia Pier 11-north (St. ID: 8545530)For the statistical analysis, we consider RF 

and NTR as flood drivers. We use hourly water level data from the National Oceanic and Atmospheric Administration 

(NOAA) tide gauges at Philadelphia (St. ID: 8545240) and Philadelphia Pier 11-north (St. ID: 8545530). The two datasets 150 

are merged, adjusting a 1 cm constant offset between the two records during the overlapping period. This results in a 122-

year-long dataset from 1901 to 2021 with less than 3% of missing data. The water level time series is then detrended using a 
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30-day moving average to eliminate the effects of long-term relative MSL rise and seasonal and interannual MSL variability. 

Subsequently, a year-by-year harmonic tidal analysis is conducted using the Unified Tidal Analysis and Prediction (UTide) 

package in MATLAB to determine tidal constituents and tidal levels (Codiga, 2011). Years with more than 25% missing 155 

data are removed from the analysis (1903, 1921, 1922, and 1959). We calculate the hourly NTR time series by subtracting 

the predicted tides from the detrended water levels. 

We use both gridded RF data from the Analysis of Period of Record for Calibration (AORC) from 1979 to 2021 and hourly 

RF gauge data at the Philadelphia International Airport from 1900 to 2021 (Kitzmiller et al., 2018). Although radar-based 

quantitative precipitation estimates, such as the Multi-Radar Multi-Sensor (MRMS) products, often provide higher accuracy 160 

compared to other gridded rainfall products, their temporal coverage is relatively short (Gao et al., 2021; Gomez et al., 

2024). We use AORC rainfall data because of its availability from 1979 and its demonstrated higher accuracy among 

products with similar temporal coverage (e.g., Hong et al., 2024; Kim and Villarini, 2022), while offering hourly data at ~4 

km spatial resolution.AORC RF data has demonstrated higher accuracy compared to other gridded data sets while offering 

an hourly temporal resolution and ~4 km spatial resolution (e.g., Hong et al., 2024; Kim and Villarini, 2022).  Rain gauges 165 

measure highly localized rainfall. Assuming that these point measurements occurred uniformly distributed across the entire 

catchment can misrepresent the compound flood hazard. To address this, we apply a bias correction to the hourly gauge data 

so it matches the basin-averaged hourly rainfall estimates derived from AORC. This correction is performed using the 

quantile mapping method, in which both the gauge-based and AORC-based rainfall distributions are fitted to gamma 

functions To leverage the long-term in-situ observations and obtain more robust results from the statistical analysis, we apply 170 

a bias correction to the hourly RF gauge data, to match with the hourly basin-average RF values calculated from AORC. The 

bias correction is performed using the quantile mapping method, fitting both the hourly measured gauge data and the hourly 

AORC basin-average data to gamma distributions (for more details see Maduwantha et al. (2024)).   

For identifying TC events, we use the HURDAT2 TC track dataset from the National Hurricane Center, which provides the 

location of the center of circulation at 6-hour intervals (Landsea and Franklin, 2013). Considering the overlapping periods of 175 

available datasets, the joint probability analysis is conducted for the period from 1901 to 2021. 

4 Methods 

The overall methodology to derive synthetic boundary conditions for compound flood inundation modeling with associated 

annual exceedance probabilities is outlined in the flowchart in Fig. 2. In the following subsections we describe the process in 

more detail and refer to the relevant boxes (or groups of boxes) in the flowchart for better clarity. 180 

4.1 Joint probability estimation 

Recent data-driven threshold-selection methods, such as the Sequential Goodness-of-Fit method (Bader et al., 2018), the 

Extrapolated-Height Stability method (Liang et al., 2019), L-moment ratio stability (Silva Lomba & Fraga Alves, 2020), and 
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a comparative multi-method approach (Radfar et al., 2022), provide robust peak-over-threshold (POT) thresholds but 

primarily optimize tail fit. Extreme compound flood events are not necessarily generated by extreme flood driver peaks. 185 

With favorable timing, duration, and tidal conditions, extreme flooding can occur even under moderate flood-driver 

conditions (Santamaria et al., 2025). Therefore, we use a two-sided conditional sampling based on the POT approach to 

identify extreme events, setting NTR and RF thresholds to obtain samples allowing an average of 5 exceedances per year 

(Jane et al., 2020; Kim et al., 2023). We use a two-sided conditional sampling based on peak-over-threshold (POT) approach 

to identify extreme events, setting NTR and RF thresholds to obtain samples allowing an average of 5 exceedances per year 190 

(Jane et al., 2020). When conditioning on NTR, the maximum RF value within a 3-day window is selected, and the same 

procedure is followed when conditioning on RF. To ensure independence within the POT samples, a 5-day declustering 

window (2.5 days before and after the event peaks) is used (Camus et al., 2021). Next, the two conditional samples are 

stratified into two sets, TC events and non-TC events, using the TC track data set. An event is classified as being caused by a 

TC if there is a center of circulation within a 350 km radius of the Gloucester City catchment within a 3-day window (2 days 195 

before and 1 day after) of a POT event. All other events are categorized as non-TC events. This process is carried out for all 

the hourly RF accumulation times from 1 to 48 hours; the RF accumulation time that has the highest correlation with NTR is 

selected for the subsequent bivariate statistical analysis. Maduwantha et al. (2024) found significant non-stationarity in 

Kendall’s τ between peak NTR and RF over the analysis period. To capture most recent climate conditions and avoid 

underestimating compounding effects, we model dependence using only the last 30 years of data. The stratified samples (TC 200 

and non-TC) are then fitted to different parametric univariate distributions and copulas to identify the best-fitting marginal 

distributions and copula families, respectively. Considering the recommendations of Moftakhari et al. (2019) for compound 

flood assessments, we use the “AND” scenario which represents the exceedance of both variables for calculating annual joint 

exceedance probabilities (AEPs). The calculated AEPs of two stratified samples are then combined to estimate the final joint 

probability distribution. To quantify relative joint probabilities along a given isoline, we sample 106 NTR and RF 205 

combinations from the fitted copulas, ensuring the proportion of extremes matches the empirical distribution. The relative 

probability along the isolines is then calculated using a kernel density function, with the "most likely" event assigned to the 

point of highest relative probability density on the isoline (Salvadori and De Michele, 2013). A more detailed description of 

the methodology can be found in Maduwantha et al. (2024). 

We generate an event set of 5,000 combinations of NTR and RF (“target events”) by sampling from the fitted copulas such 210 

that the relative proportion of extremes is consistent with the empirical distribution. This initial event set contains the peak 

NTR and peak basin average RF for the selected RF accumulation time reflecting their joint probability of occurrence at the 

study site (Fig. 2 (e)). In the following subsections, we outline how those peak values are turned into storm-tide hydrographs 

and temporally varying RF fields with realistic lag times between the peaks of NTR and RF.  
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4.2 Characteristics of NTR and RF time series from TC and non-TC events 215 

Before generating the final synthetic events, we compare the characteristics of TC events and non-TC events to determine 

whether event generation should be conducted separately for TC and non-TC events or if we can draw time series from the 

combined dataset, allowing for more variability in the final event set. We extract hourly time series of NTR (Fig. 2 (d)) and 

hourly RF fields (Fig. 2 (f)) over the Gloucester City catchment during a three-day period around all POT events. This 

analysis is limited to POT events recorded after January 1979, the start date of the gridded AORC RF data. The joint 220 

probability distribution derived in Section 4.1 explicitly accounts for the two different dependence structures between peak 

NTR and RF for the two different storm types. In this analysis step, we examine the correlations between various 

characteristics of the time series, including hourly peaks, durations, intensities, and lag times. Additionally, we assess the 

distributional shapes of peak RF, total RF, RF duration, lag time, NTR duration, and NTR intensity by fitting them to 

appropriate parametric distributions. We consider Normal, Exponential, Gamma, Lognormal, Birnbaum-Saunders, and 225 

generalized Pareto distributions, selecting the best model using the Akaike information criterion (AIC; Akaike, 1974). 

Previous studies indicate that TCs generally produce more intense RF compared to extratropical cyclones (ETCs), while 

ETCs often generate longer-duration RF (e.g., Orton et al., 2016; Sinclair et al., 2020). Therefore, we analyze the shapes and 

durations of the NTR and RF time series from observed events to determine whether there are significant differences 

between TC and non-TC event time series.  230 

We use a 6-hour continuous dry period to identify independent RF events, and the duration of a given RF event is defined as 

the non-zero basin average RF to the starting hour of the next 6-hour dry spell. Here we calculate the total RF as the sum of 

all the basin-averaged hourly RF quantities of the event. The duration of the NTR events is defined as the duration over 

which the NTR is continuously above the defined threshold. The intensity of the NTR is calculated as the area under the 

NTR time series curve above zero within the duration.  235 

4.3 The events generation process 

4.3.1 Selecting observed events 

To disaggregate the target basin average peak RF spatially and temporally, we select a historical event that closely matches 

the accumulated RF of the target basin average RF. Given the limited number of observed events, selecting only the nearest 

event would result in utilizing a single or small number of observed events for all the nearby target scenarios, thereby 240 

restricting the diversity of the generated events. Additionally, when the selected RF event is largely different from the target 

RF, the scaling factor becomes higher and may result in making the synthetic event unrealistic. Therefore, we randomly 

sample from the observed events, with probabilities defined as the inverse of the difference between target RF and peak 

basin average RF quantities (of the selected RF accumulation time) of historical events (Fig. 2 (j)). For NTR, we also use the 

same method for selecting a nearby event using the inverse of the difference between the target NTR and peak hourly NTR 245 

of the historical events (Fig. 2 (h)).  
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4.3.2 Scaling observed events  

We use a similar scaling approach to that introduced by Kim et al. (2023) for assigning time series of data to match target 

scenarios (peak NTR and peak basin average RF pairs). We calculate the RF scaling factor KRF as follows:  

 𝐾𝑅𝐹 = RF𝑇/RF𝑜𝑏𝑠                       (1) 250 

where, RFT is the target RF and RFobs is the peak basin average RF (of selected accumulation time) of the selected observed 

event. Then we multiply the hourly observed RF fields by the scaling factor KRF, generating a synthetic RF event with a peak 

accumulation that matches that of the target RF (Fig. 2 (m)). 

For NTR, we calculate the NTR scaling factor KNTR as follows: 

𝐾𝑁𝑇𝑅 = NTR𝑇/NTR𝑜𝑏𝑠                       (2) 255 

where, NTRT is the target NTR peak and NTRobs is the peak hourly NTR of the selected observed event. Then we multiply 

the hourly time series of the NTR by the scaling factor KNTR, generating a synthetic NTR event with a peak that matches the 

peak target NTR (Fig. 2 (k)). Here we only consider the section of the NTR time series for which the NTR is positive around 

the peak.   

4.3.3 Combining scaled NTR time series with tides and MSL  260 

Dynamic compound flood models require total water level time series as boundary conditions which comprise the tide, MSL, 

and NTR (in some cases also waves, depending on the location). All of those exhibit seasonal variations, which can be 

significant and, therefore, cannot be ignored (for NTR this is captured through stratification into TC and non-TC events). As 

a preliminary step, we assess the variability of MSL and the high and low tides throughout the year, categorized by calendar 

months. As explained in Maduwantha et al. (2024), we apply a 30-day moving average to the measured water level data to 265 

remove any trends before conducting the tidal analysis. We then segregate the 30-day averaged MSL values of the last five 

years (to ensure that the analysis reflects the most recent conditions) by calendar month. For tides, we extract hourly tidal 

signal segments spanning 3-day periods around each high tide, covering the last 18.6 years to account for the lunar nodal 

cycle. These segments are then grouped by calendar month. 

To ensure consistency with seasonal variations, we first sample a month based on the distribution of POT observations 270 

recorded in each month (i.e., the monthly frequency of occurrence). Target events are derived from copulas fitted to the TC 

sample and the non-TC sample. If the target event is derived from a copula fitted to TC (non-TC) events, we sample the 

month from the distribution of TC (non-TC) events (Fig. 2 (a)). Once the month is selected, we randomly sample a MSL 

value and a tidal signal segment from the selected month (Fig. 2 (g)). 

Considering that tide-surge interactions are significant in certain regions, tides, and wind-driven storm surges (here NTR) 275 

often show interdependencies. Therefore, it is important to check the variability of the timing of peak NTR relative to tidal 

levels to determine whether it is necessary to explicitly account for tide-surge interactions when generating synthetic events. 

Here, we use the observed time difference between peak NTR and the subsequent high tide of the sampled NTR time series 
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to combine it with the sampled tidal signal. Then the sampled MSL value is added, generating the storm tide hydrograph 

(Fig. 2 (n)). 280 

4.3.4 Combining storm tide hydrograph and RF fields 

As the final step, the scaled RF fields and calculated storm tide hydrographs are combined to create compound events that 

can be simulated through a flood model. The timing dynamics of the flood drivers play a vital role in the resultant flood 

depth (Gori et al. 2020). Therefore, we randomly pick one of the observed lag times (between the peak hourly NTR and peak 

hourly basin average RF) from the selected NTR event and selected RF event for creating the synthetic compound event 285 

(Fig. 2 (p)). 

 

 

Figure 2: Workflow of the framework. 

4.4 Assessing the effects of MSL and tidal variability on flood hazard 290 

One advancement of the proposed framework over the approach outlined in Kim et al. (2023) is the inclusion of MSL and 

tides, along with their intra- and inter-annual variability. To assess how this variability affects compound flooding, we use 

the SFINCS model. SFINCS is a reduced-complexity model designed to simulate flooding from multiple drivers, such as 

storm surge, river discharge, and precipitation (Leijnse et al., 2021). It offers a simplified yet robust approach to modeling 

the complex interactions between flood drivers, balancing computational efficiency with accuracy. We define the flood 295 
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model domain as the catchment area comprising the 14-digit hydrologic units of the two creeks (Newton and Little Timber 

Creeks) that surround Gloucester City to account for all the runoff that can produce pluvial flooding in the study site. The 

inland catchment area boundaries are defined as outflow boundaries to allow water to exit the domain. For the coastal 

boundary, we place an open boundary along the middle of the Delaware River, defined by the catchment polygons described 

earlier. We use the Coastal National Elevation Database (CoNED) from the U.S. Geological Survey, a Digital Elevation 300 

Model (DEM) with a horizontal resolution of 1 meter and a vertical accuracy of 10 cm (Danielson et al., 2016). We use the 

subgrid approach of SFINCS with a dual resolution of 10m and 1m. For surface roughness, we use land cover data from the 

NJDEP  (New Jersey Department of Environmental Protection) Bureau of GIS, converting land classifications into 

Manning's coefficients based on guidance from the U.S. Army Corps of Engineers (US Army Corps of Engineers, 2024). 

Water level boundary conditions are provided as the time series at the location of the Philadelphia tide gauge. RF forcing is 305 

applied as spatially varying fields, with the same resolution as the AORC data, and SFINCS interpolates these onto the 

model grid resolution. The model is run with the advection term neglected, solving the local inertia equations (we tested the 

sensitivity of the results when the advection term was enabled, but changes were negligible). We use the GPU version of 

SFINCS and ran the simulations on an Intel (R) Core (TM) i7-13700KF CPU and NVIDIA GeForce RTX 4080 GPU.   

The lack of observed flood data to validate and calibrate flood models is a common challenge (see e.g., Merz et al., 2024; 310 

Molinari et al., 2019). For this case study, we search for historical flood information from several different sources, 

including high-water marks from USGS (United States Geological Survey), satellite images, the NOAA storm event dataset, 

FEMA Flood Risk Map, local news, and crowd-sourced platforms such as social media and citizen science platforms. 

However, very little information was found to perform a quantitative validation of the simulated water depths and extents. 

Due to the lack of observed historical flood data, we perform a qualitative validation comparing a few known flooded areas 315 

with simulated flooded sites for this qualitative validation, we also use local expert knowledge on areas that are freuqntly 

flooded as well as a few known flooded areas from past events from the previously listed sources. Overall, we find good 

agreement between the model output and the reported flood depths. A detailed description of the model validation can be 

found in Appendix 1 of Pollack et al. (2025). 

To quantify the impact of including MSL and tide variations in the framework, we designed the following experiment. We 320 

use the most-likely event with 0.01 AEP (i.e., 100-year return period), determined from the derived joint probability 

distribution, as the target scenario for all simulations. Using the developed framework, we generate many most-likely 0.01 

AEP events. A single event is then selected where the peak NTR coincides with high tide, as tidal variability would have less 

impact on flood depths if the peak NTR occurred during low tide. Then, we modify only the specific parameter of interest 

(MSL or tide) of the selected event while keeping all other event characteristics the same. To assess the impact of MSL, we 325 

change the MSL to the lowest and highest 30-day averaged MSL values recorded in the past five years and simulate the 

compound flooding. For tidal influences, we use tidal signal segments with the lowest and highest high tides over the last 

18.6 years of the study period. This analysis allows us to assess the individual contributions from the variability of MSL and 
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tides to overall flood hazard and better understand how critical it is to align with the seasonality when combining MSL and 

tide with NTR time series. 330 

5 Results 

5.1 Joint probability distribution 

The threshold for NTR is set to 0.63 m, resulting in a total of 580 POT events (that is consistent with 5 events per year on 

average). For RF, thresholds are set to also obtain 580 POT events for each RF accumulation time from 1 to 48 hours. The 

18-hour RF accumulation time exhibits the strongest correlation with the peak NTR. Therefore, the 18-hour RF 335 

accumulation is selected for subsequent analysis. After stratifying these events into TC and non-TC, 38 are identified as TCs 

when conditioned on NTR, and 43 when conditioned on RF, with the remaining events categorized as non-TCs. The 

conditioning variable of each stratified sample is fit to a Generalized Pareto Distribution (GPD). For the conditioned 

variable, several parametric distributions are tested. Selected marginal distributions and quantile plots for each sample are 

shown in Fig. S1 in the supplementary material. The rotated Tawn type 2 (180°) copula provides the best fit for both 340 

conditioning samples of TC events. For the non-TC events, the Frank-Joe Copula is selected for the sample conditioning 

NTR and Clayton Copula for the sample conditioning RF. The quantile isolines after combining the joint probability 

distributions of the two storm populations (TC and non-TC) are shown in Fig. 3 (for a more detailed description, refer to 

Maduwantha et al. (2024)). Here we use the framework to derive 5,000 combinations of peak NTR and RF by sampling from 

the fitted copulas such that the relative proportion of extremes is consistent with the empirical distribution (see Fig. 3 (b)). 345 

Figure 3: Joint probability isolines after combining the AEPs of the two populations (TC and non-TC) with (a) observations, and 

(b) simulations. The color scale indicates the relative probability of events along the isolines. The location of the “most likely” 

event is assigned to the point with the highest relative probability density on an isoline (black triangles in (a)) 
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5.2 Characteristics of TC events and non-TC events 

We use Kendall’s rank correlation coefficient τ to measure the strength of dependence between different attributes of 350 

observed events falling into the TC and non-TC categories. The correlations between NTR duration and peak NTR (Fig. 4 

(a)), NTR intensity and peak NTR (Fig. 4 (d)), total RF and peak hourly RF (Fig. 4 (k)) are strong, positive, and statistically 

significant. The lag times of the observed events are predominantly positive, indicating that the peak hourly RF typically 

occurs before the peak NTR. The correlation between lag time and peak RF (Fig. 4 (i)) is weakly to moderately negative, but 

statistically significant only for the non-TC sample. However, Fig. 4 (e) and Fig. 4 (i) show that events with higher peaks of 355 

NTR or RF generally tend to have shorter lag times. There is no significant correlation between RF duration and NTR 

duration in both TC and non-TC samples (see Fig 4 (c)). To further examine differences in the pairwise correlations in TC 

and non-TC samples, we derive the confidence intervals associated with the values of Kendall’s τ (Fig. 5). Only the NTR 

hourly peak vs. RF hourly peak and NTR intensity vs. total RF exhibit non-overlapping 95% confidence intervals, whereas 

in all other cases, the confidence intervals for TC and non-TC events overlap.  360 

The NTR duration, NTR intensity, lag time, RF duration, peak hourly RF, and total RF observations are fitted to various 

parametric distributions, with the best fitting selected based on AIC. Fig. 6 displays the estimated parameters of the selected 

distributions along with their 95% confidence intervals. For all parameter values, the confidence intervals for TC events 

overlap with those of non-TC events, except for the scale parameter of the RF duration. The goodness of fit of the parametric 

distributions is shown in Fig. S2 of the supplementary material. As described in Section 4.2, we also check the time 365 

evolution of the NTR and basin-averaged RF of the observed POT events. Fig. 7 shows the hourly time series of NTR and 

basin average RF of observed events around the peak. Although peak RF is higher for TC events compared to non-TCs, the 

overall shape of the NTR time series and basin-average RF is similar for both storm types. Therefore, TC and non-TC RF 

and NTR times series are randomly sampled (and scaled to the target peak values) without stratifying by storm type.  

We emphasize that stratification is still conducted and important when deriving the joint probability distribution because TC 370 

and non-TC events exhibit different dependence between NTR and RF. However, the relevant characteristics of the complete 

time series of the different event types are similar, as shown in this section. Therefore, to have a larger sample to draw from 

(especially in the TC case) we do not treat TC and non-TC events separately when selecting observed event time series for 

subsequent scaling. We elaborate on this more in the Discussion section. 

 375 
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Figure 4: Scatter plots between (a) NTR duration and peak NTR, (b) RF duration and peak hourly RF, (c) NTR duration and RF 

duration, (d) NTR intensity and peak NTR, (e) peak NTR and lag time, (f) RF duration and lag time, (g) NTR duration and lag 385 
time, (h) peak hourly RF and peak NTR, (i) Peak hourly RF and lag time, (j) NTR intensity and total RF, (k) total RF (sum of all 

the basin-averaged hourly RF quantities of the event) and peak hourly RF,  of observed TC events (red) and non-TC events (blue). 

Kendall’s τ for each sample with the corresponding p-value (in brackets) is shown in each panel. 

 

 390 
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Figure 5: Kendall’s τ for different parameters of observed TC events (red) and non-TC events (blue). The light color range 

indicates the associated 95% confidence intervals. 

 

Figure 6: Parameter values of the fitted parametric distributions with their 95% confidence intervals for TC events (red) and non-395 
TC events (blue). The selected parametric distribution is shown in each panel. 
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Figure 7: Houry time series of (a) NTR and (b) basin average RF of observed events besides the peak. The solid lines show the 

mean value of each time step of TC events (red) and non-TC events (blue).  The dashed lines of (a) represent the standard 400 
deviation around the mean at each time step. 

5.3 Event generation process 

Fig. 8 illustrates the procedure for generating an event with a 106-year joint return period, consisting of a 1.75 m NTR and 

80 mm 18-hour basin-average RF. Since the target event was simulated from the copula that was fit to the TC sample, the 

event month was randomly sampled from the frequency of TC occurrences in each month (Fig. 8 (d)). For the selected event, 405 

the month of July was sampled. After that, a MSL value of 0.3 m was selected from the MSL distribution for the month of 

July(Fig. 8 (e)). To generate the storm tide hydrograph, an NTR time series was sampled from the observed events 

(regardless of storm type) (Fig.8 (g)) and scaled to match the target value (Fig. 8 (h)). The NTR time series was subsequently 

combined with the sampled MSL and a randomly selected tidal signal segment, chosen from the set of tidal signal segments 

for the month of July (Fig. 8 (f)). For generating RF fields, an RF event was sampled (regardless of storm type) from all 410 

available events (Fig. 8 (b)) and scaled to match the target 18-hour RF (Fig. 8 (c)). Fig. 8 (k) shows the scaled RF fields at 

selected hours, demonstrating the spatio-temporal variability in the RF fields. A 6-hour time lag, originally associated with 

the selected RF event, was used to combine the RF time series with the storm tide hydrograph (Fig. 8 (m)).  
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The proposed framework was implemented to generate 5,000 synthetic events, consisting of hourly still water levels (storm 

tide hydrograph) at the Philadelphia tide gauge and hourly RF fields over the Gloucester City catchment. Fig. 9 shows the 415 

scatter plots comparing various characteristics of the time series, including hourly peaks, durations, intensities, and lag times 

for both observed and simulated events. Overall, the spread and correlation for each pair of parameters in the simulated 

events are consistent with those in the observed events. 

 

 420 
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Figure 8: The demonstration of the event generation process using an example target event with 1.75 m NTR and 80 mm 18-hr RF. 

Panels: (a) Joint probability distribution, (b) Observed RF time series, (c) Selected and scaled RF time series, (d) Monthly 

frequency of occurrence of TC events and non-TC events, (e) MSL distribution of the month July, (f) Tidal signal segments of the 

month July, (g) Observed NTR time series, (h) Selected and scaled NTR time series, (j) Storm tide hydrograph, (k) Scaled hourly 

RF fields over the Gloucester City catchment, (m) Synthetic compound event comprised of storm tide hydrograph (including 425 
scaled NTR) and scaled RF. 
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Figure 9: Scatter plots between (a) NTR duration and peak NTR, (b) RF duration and peak hourly RF, (c) NTR duration and RF 

duration, (d) NTR intensity and peak NTR, (e) peak NTR and lag time, (f) RF duration and lag time, (g) NTR duration and lag 

time, (h) peak hourly RF and peak NTR, (i) Peak hourly RF and lag time, (j) NTR intensity and total RF, (k) total RF (sum of all 430 
the basin-averaged hourly RF quantities of the event) and peak hourly RF, of observed events (red) and simulated events (gray). 

Kendall’s τ for each sample with the corresponding p-value (in brackets) is shown in each panel. 
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5.4 Flood model simulations and role of MSL and tide variation 

A most-likely 0.01 AEP event (see black triangle in Fig. 3 (a)) was used to assess the impact of tidal and MSL variability on 435 

flood depth and extent. To assess MSL impact, we simulate flooding by adjusting the MSL to the lowest (-0.198 m, above 

NAVD88) and highest (0.540 m, above NAVD88) 30-day average values recorded over the past five years. For tidal 

influences, we use tidal segments with the lowest and highest high tides observed over the last 18.6 years. Fig. 10 illustrates 

the maximum flood depth and extent resulting from each scenario during the flood model simulations. There is a significant 

difference in flood depth and extent when comparing the simulation results of applying the maximum and minimum tide (or 440 

MSL). Flood depths reach up to 1.5 meters in certain areas when the highest 30-day MSL is used for generating the storm-

tide hydrograph. The difference in flood depths between using the highest and lowest 30-day MSL reaches up to 1 m in some 

regionsareas of the city. Similarly, applying the tidal signal segment with the highest high tide causes flood depths to reach 2 

m in several areas, with increases over 1.2 m compared to using the segment with the lowest high tide. These changes in 

flood depths are particularly pronounced along the Delaware River and Newton Creek, where the influence of coastal water 445 

level levels is strongest. 

6 Discussion 

A detailed description of the procedure for estimating the joint probability distribution applied in this study is provided in 

Maduwantha et al. (2024). When applying the two-way sampling to extract POT events, we used a 3-day pairing window to 

capture peak NTR and RF, following similar studies (Couasnon et al., 2020; Kim et al., 2023). We also manually checked 450 

the RF and NTR time series of POT events and found that a 3-day window was generally sufficient to capture both peaks in 

the vast majority of cases. To ensure independence within the POT samples, previous studies have applied various 

declustering windows (e.g., 3 days (Haigh et al., 2016), 7 days (Santos et al., 2021), 10 days (Kim et al., 2023), and 14 days 

(Terlinden-Ruhl et al., 2025)). Longer declustering windows are often adopted when the influence of river discharge is 

present, as its effects can persist for several days or more (Terlinden-Ruhl et al., 2025). In this study, we use a 5-day 455 

declustering window (2.5 days before and after the event peaks), as highly elevated NTR rarely lasts more than 5 days at the 

tide gauge location. Previous studies have applied various search radii to identify TC events, such as ~400 km (Kim et al., 

2023) and 500 km (Towey et al., 2022). In this study, we tested the sensitivity of the correlation between peak NTR and peak 

accumulated RF to the TC search radius, following Kim et al. (2023). Increasing the search radius captures more nearby TC 

tracks but also introduces events that are too distant to strongly influence flooding drivers at the study site, thereby reducing 460 

the overall correlation between RF and NTR of the TC sample. We selected a 350 km search radius, as it provided a higher 

correlation between drivers while still retaining a reasonable number of TC events in the sample. 

Maduwantha et al. (2024) identified a strong correlation between peak NTR and peak RF when the extreme events are 

caused by TCs in the Gloucester City region, suggesting that there is a higher potential for compound flooding by TCs in the 

study region (Fig. S3 (a) and (c) in supplementary material). The non-TC events, which include ETCs and convective RF 465 
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events, exhibit a weaker correlation between peak NTR and RF. Consequently, TC and non-TC events were treated as two 

distinct populations in the joint probability analysis, leading to more accurate and robust estimates compared to modeling 

them as a single population (Maduwantha et al., 2024). The joint probability distributions of peak NTR and peak RF of TC 

and non-TC storms are substantially different. Small to moderate compound events are more frequent in the non-TC storms, 

whereas the most extreme compound events are more likely generated by TCs. Here, the generated 5,000 combinations of 470 

peak NTR and RF by sampling from the fitted copulas provide 1,000 years’ worth of extreme events (5 events per year on 

average), reflecting the joint probability distribution of NTR and RF.  

Considering the distinct properties of TCs compared to ETCs and other storm types, it is crucial to account for the unique 

characteristics of these flood drivers in the synthetic event generation process. Therefore, the most effective approach would 

be to use observed time series of flood drivers from TC events exclusively for generating synthetic TC events, while using 475 

those from non-TC events separately to generate synthetic non-TC events. This separation allows for a more accurate 

representation of the differences in timing (of peak storm surge and peak RF), intensity, duration, and spatial patterns 

between TC and non-TC events, ensuring that the synthetic events realistically reflect the distinct physical properties 

associated with each storm type. However, the small number of TCs in the historical record, due to their infrequent 

occurrence, presents a challenge when generating many synthetic events. A limited TC dataset may not fully reflect the  480 

inherent variability and the full range of possible events through the event generation process. Therefore, we assess whether 

the event generation process can be applied to the entire sample combining both TC and non-TC events while still preserving 

key characteristics of the flood drivers. To inform this decision, we examined various time series attributes of NTR and RF, 

such as magnitudes, durations, shapes, and timing. 
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Figure 10: Changes in flood depths associated with variability in MSL (left) and Tide (right) of a selected 0.01 AEP most-likely 485 
event. (a) When considering the lowest 30-day MSL, (b) when considering the tidal segment with the lowest high tide, (c) when 

considering the highest 30-day MSL, (d) when considering the tidal segment with the highest high tide, (e) the difference between 

(a) and (c), (f) difference between (b) and (d). (X, Y coordinates system: UTM- zone 18N). 
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Kendall’s τ for the hourly peak and duration of the NTR time series shows a strong positive correlation (see Fig. 4 (a)), 490 

suggesting that more intense storm surge events tend to last longer in the study region. In contrast, for RF there is no 

significant correlation between the hourly peak and the duration of the basin-average RF, as indicated by τ values closer to 

zero (see Fig. 4 (b)). However, the confidence intervals of τ, as shown in Fig. 5, indicate that the strength of dependence 

between the tested characteristics does not differ significantly between the two storm types. It is well known that TCs 

typically produce more intense RF than ETCs, whereas ETCs tend to be larger in size and generate RF for prolonged 495 

durations (e.g., Orton et al., 2016; Sinclair et al., 2020). However, this behavior is not evident in the statistical properties of 

the observed POT events, as shown in Figs. 4 to 6. Several factors could explain this. First, the non-TC sample may include 

TCs that passed beyond the 350 km search radius but still contributed RF and storm surge to the Gloucester City catchment. 

Second, the non-TC sample also contains locally generated convective RF events, which, although shorter in duration, can 

produce severe RF intensities (Pfahl and Wernli, 2012). Further, the smaller number of observed TC events may lead to 500 

statistically significant correlations going undetected and wider confidence intervals, limiting the ability to discern distinct 

patterns. One option to overcome the limited TC sample size in our analysis is employing physics-based models to generate 

time series of flood drivers from synthetic TC tracks (e.g., Emanuel et al., 2006; Gori et al., 2020). We plan to explore this in 

future work. The relatively small size of the Gloucester City catchment also means that we analyze only parts of the spatial 

variability associated with different storm types.  505 

The comparison of distribution parameters fitted to peak RF, total RF, RF duration, lag time, NTR duration, and NTR 

intensity also suggests no significant differences between the various characteristics of TCs and non-TCs (see Fig. 6). 

Similarly, the shapes of the NTR and basin-average RF time series produced by TCs are not significantly different from 

those generated by non-TC events (see Fig. 7). Given these results we conclude that generating the event time series (i.e., 

water level hydrographs and RF hyetographs) separately for the two storm types would produce similar results compared to 510 

the ones we derive without stratifying. Note, that stratification is still applied when deriving the joint probability distribution. 

Importantly, this applies to the specific study location. In other places, significant differences may exist in the time series 

characteristics between TC and non-TC samples (as discussed in Section 4.2), warranting that the event generation process is 

conducted separately for each storm type.  

In the event generation process described in Section 4.3, steps are taken to ensure the synthetic events are both realistic and 515 

physically plausible. While lag times between peak NTR and peak RF can vary a lot, more extreme events tend to exhibit 

shorter lag times (see Figs. 4 (e) and 4 (i)). To incorporate this behavior into the synthetic events, we not only select nearby 

historical events for scaling but also adopt the lag time from one of the selected events. At the Philadelphia tide gauge, peak 

NTR often occurs 4–5 hours before the next high tide (see Fig. S4 in the supplementary material). To account for this, we 

combined scaled NTR with tide predictions using the observed lag between peak NTR and subsequent high tide of the 520 

sampled NTR event (see Section 4.3.3). This These steps ensures ensure that synthetic compound events retain the same 

temporal dynamics as similar observed events.  
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MSL exhibits both long-term trends and seasonal variability, which is often driven by regional climate characteristics 

(Barroso et al., 2024). Detection of this seasonality is crucial, as the risk of flooding increases significantly when elevated 

MSL coincides with storm activity and/or seasonal high tides (known as king tides), compared to when these peaks are out 525 

of phase (Barroso et al., 2024; Dangendorf et al., 2013; Thompson et al., 2021). At the Philadelphia tide gauge, the 30-day 

averaged MSL varies by approximately 0.7 m over the last five years of the study period, highlighting the importance of 

incorporating this variability into flood modeling frameworks. The long-term variations of tides have also been linked to 

increases in high-tides and extreme coastal flooding (Enríquez et al., 2022; Thompson et al., 2021). These tidal variations 

arise from the nodal and perigean modulations, with cycles of 18.6 and 4.4 years respectively. To account for these tidal 530 

variations, we use 3-day tidal signal segments over the most recent 18.6 years of the study period to generate the synthetic 

storm events. The framework was applied to generate 5,000 synthetic events, and the comparisons of scatter plots in Fig. 9 

indicate that the characteristics of the simulated events, such as hourly peaks, durations, intensities, and lag times are 

consistent with the observed events.  

The results of the compound flood model simulations show that a substantial portion of the study area is impacted by a 0.01 535 

AEP compound flood event. Still, the flood depth varies significantly depending on the MSL and tidal conditions (see Fig. 

10). An event with 0.01 AEP (i.e., joint probability between peak RF and peak NTR) can produce up to 1 m difference in 

flood depth depending on MSL conditions, while the prevailing tidal conditions can lead to differences of up to 1.2 m. These 

changes are particularly evident in areas along the Delaware River and Newton Creek, where the influence of coastal water 

levels is the largest. It is important to note that these variabilities are solely due to the influence of MSL and tides, and do not 540 

account for additional variability from different combinations of NTR and RF peaks along the 0.01 AEP isoline or other 

factors (Jane et al., 2022). Nonetheless, the substantial differences in flood depths highlight the critical importance of 

accurately representing MSL and tidal conditions, which we achieve in the proposed framework by randomly sampling from 

their monthly distributions. Analyzing only the most likely event, even if it appears to be the most plausible based on 

observations, does not capture the range of flood levels that could be generated by different combinations of flood drivers 545 

(i.e., NTR and RF) with different time series properties. Therefore, the flood model simulations presented here are aimed at 

evaluating the importance of explicitly accounting for the variability of MSL and tides, and not to produce comprehensive 

probabilistic flood maps. In a separate study (Santamaria et al., 2025), we simulated flooding of 5,000 synthetic storms at 

this site and found large variation in resultant flooding, even for events with similar joint return periods. However, 

attributing this variability to a single factor like MSL or tides is challenging due to the complexity of their interactions. 550 

One key assumption of the framework is that uniform scaling (also referred to as “same frequency amplification”) of 

flooding-driver time series creates a realistic compound event. This approach has been widely adopted in previous studies to 

construct design hydrographs and hyetographs (e.g., Serafin et al., 2019; Moftakhari et al., 2019; Zellou and Rahali, 2019; 

Kim et al., 2023; Liu et al., 2024; Xu et al., 2024). However, assessing whether each generated synthetic storm event is 

physically realistic is challenging. Ideally, a direct one-to-one validation against observed events (verifying whether every 555 

synthetic event has a similar observed event) would provide the most rigorous test.  Yet such validation is impossible given 
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the limited availability of observations, which is why the synthetic event generation is necessary in the first place. Instead, 

we tested the framework by comparing statistical properties of key time series characteristics between observations and 

synthetic events (Fig. 9). Another limitation of the proposed framework is that certain characteristics of synthetic events, 

such as RF duration and lag times, are limited to the observed values. To generate more diverse lag times, the observed lag 560 

times could be fitted to a parametric distribution (or alternatively to a copula that accounts for the dependence between peak 

values and lag times) and then one could sample lag times from the fitted distribution during the event generation process. 

This would introduce unobserved lag times into the synthetic events, enhancing their diversity. Additionally, the 

stratification of POT events utilizes a simple yet commonly used approach (e.g., Kim et al., 2023; Maduwantha et al., 2024) 

as discussed in Section 4.1. However, this method may not capture all TCs, particularly those that produce significant RF 565 

and storm surges from distances greater than 350 km. Such events are classified as non-TC events here, meaning the analysis 

in Section 4.2 may not fully reflect the true characteristics of TC and non-TC eventsOne key limitation of the proposed 

framework is that certain characteristics of synthetic events, such as RF duration and lag times, are limited to the observed 

values. To generate more diverse lag times, the observed lag times could be fitted to a parametric distribution (or 

alternatively to a copula that accounts for the dependence between peak values and lag times) and sample lag times from the 570 

fitted distribution during the event generation process. This would introduce unobserved lag times into the synthetic events, 

enhancing their diversity. Additionally, the stratification of POT events utilizes a simple yet commonly used approach (e.g., 

Kim et al., 2023; Maduwantha et al., 2024) as discussed in Section 4.1. However, this method may fail to capture all TCs, 

particularly those that produce significant RF and storm surges from distances greater than 350 km. Such events are 

classified as non-TC events, meaning the analysis in Section 4.2 may not fully reflect the true characteristics of TC and non-575 

TC events.  

Although measures are taken to prevent the generation of physically unrealistic events (see Section 4.3), it cannot be fully 

ruled out. For instance, when generating many peak NTR-RF combinations from the multivariate statistical model, 

unbounded marginal distributions can produce implausible extreme events that would result in unrealistic flood depths for 

those particular events. How much that affects the overall results depends on the type of analysis and how the flood 580 

information from individual synthetic events is used. Implementing a quality control process, e.g., using probable maximum 

precipitation or existing data on maximum storm surge potential (in the U.S. such data is available from a large number of 

SLOSH simulations) could help filter out such unrealistic events, ensuring that the resulting synthetic event set remains 

feasible for a comprehensive flood risk assessment. 

7 Conclusions 585 

This paper presents a novel framework for generating synthetic events consisting of RF fields and (coastal/estuarine) water 

level time series, which can serve as boundary conditions for compound flood models. The framework explicitly accounts 

for different storm types in estimating the joint distribution of flood drivers and derives a large sample of peak NTR-RF 
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combinations. Historic time series are scaled to match the target peaks, with the observed events chosen to ensure that the re-

scaled events are physically plausible. We applied this framework to Gloucester City in New Jersey, a coastal city that is 590 

exposed to flooding from multiple water sources and storm types. The results demonstrate that the simulated events are 

consistent with observed events while covering unobserved portions of the event space. Results of the flood modeling 

indicate that substantial variability in flood depth can arise solely from different MSL and tidal conditions, even when peak 

NTR and RF values are the same. This emphasizes the importance of accounting for the variability in time series dynamics, 

MSL, and tidal conditions in compound flood risk assessments. While we focus on historical observed events, the framework 595 

can be used with model output data including hindcasts or future projections. 
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