
Response to Reviewer 1 

This manuscript presents a modeling framework for evaluating the joint influence of non-tidal residuals 

(NTR), rainfall (RF), and mean sea level variability on coastal flooding in the Gloucester City area, using the 

SFINCS hydrodynamic model and a copula-based statistical approach. The topic is timely and relevant, and 

the study is generally well-structured with a strong emphasis on scenario-based risk quantification. 

However, several methodological choices—particularly regarding data selection, parameter thresholds, 

and model assumptions—require further clarification or justification. Issues such as the generalization of 

AORC performance, the treatment of tropical versus non-tropical events, and simplifications in the SFINCS 

physics raise concerns about the robustness and generalizability of the findings. Despite these limitations, 

the study offers valuable insights into compound flood risk assessment. Detailed comments are provided 

below, which I hope will be useful in clarifying and strengthening the manuscript: 

We thank the reviewer for their constructive and insightful comments, which have helped enhance the 

overall quality of our manuscript. Below, we provide detailed responses to each point and outline how we 

have addressed them in the revised manuscript. The changes to the existing text are highlighted using 

track changes with line numbers in the original manuscript.  

 

 

1. Page 5, Line 146: The sentence claiming that AORC has “higher accuracy” than other gridded rainfall 

datasets seems too general. For example, radar-based products like MRMS have been shown to perform 

as well as or better than AORC in some events, including Hurricane Harvey (e.g., Gao et al., 2021; Gomez 

et al., 2024). I suggest the authors either include MRMS in their comparison or rephrase the sentence to 

clarify that AORC’s performance advantage may depend on the region or event type. 

We thank the reviewer for bringing up this point and agree that MRMS products have demonstrated higher 

accuracy than many other datasets, while offering higher resolution (1 km and hourly for historical). 

However, our primary reason for selecting AORC over MRMS rainfall data is its longer temporal coverage 

(1979 to present), which allows the extraction of rainfall fields for a sufficiently large number of observed 

events required in our event-generation process. In contrast, MRMS precipitation data are only available 

from 2012 onwards (NOAA/NSSL, 2023), which limits their applicability for our framework.   

We have revised the relevant section in the original manuscript as follows: 

L144: “We use both gridded RF data from the Analysis of Period of Record for Calibration (AORC) from 

1979 to 2021 and hourly RF gauge data at the Philadelphia International Airport from 1900 to 2021 

(Kitzmiller et al., 2018). Although radar-based quantitative precipitation estimates, such as the Multi-Radar 

Multi-Sensor (MRMS) products, often provide higher accuracy compared to other gridded rainfall 

products, their temporal coverage is relatively short (Gao et al., 2021; Gomez et al., 2024). We use AORC 

rainfall data because of its availability from 1979 onward and its demonstrated higher accuracy among 

products with similar temporal coverage, while offering hourly data with ~4 km spatial resolution (e.g., 

Hong et al., 2024; Kim and Villarini, 2022) AORC RF data has demonstrated higher accuracy compared to 

other gridded data sets while offering an hourly temporal resolution and ~4 km spatial resolution (e.g., 

Hong et al., 2024; Kim and Villarini, 2022). To leverage the long-term in-situ observations and obtain more 

robust results from the statistical analysis, we apply a bias correction to the hourly RF gauge data, to match 



with the hourly basin-average RF values calculated from AORC. The bias correction is performed using the 

quantile mapping method, fitting both the hourly measured gauge data and the hourly AORC basin-

average data to gamma distributions (for more details see Maduwantha et al. (2024)).” 

 

Additional Ref. 

NOAA/National Severe Storms Laboratory. (2023). Multi-Radar Multi-Sensor (MRMS) system. National 

Oceanic and Atmospheric Administration. https://www.nssl.noaa.gov/projects/mrms/ 

 

 

2. Page 6, Line 160-166: In Section 4.1, several choices such as the 3-day pairing window for NTR and RF, 

the 5-day declustering period, and the 350 km radius for identifying TC events are not clearly explained. It 

would be helpful to clarify whether these are based on physical reasoning, prior studies, or simply 

assumptions made for this analysis. Providing brief justifications or references would improve 

transparency and reproducibility. 

Both the choices of peak pairing window and declustering windows depend on the location-specific storm 

climatology and hydrologic response of the catchment. The choice of a 3-day pairing window for NTR and 

RF was based on the typical timescales over which storm surge (here represented by NTR) and rainfall 

peaks can occur in a compound flood event. We manually checked the time series of RF and NTR of POT 

(peaks over threshold) events and found that a 3-day pairing window was sufficient to capture both NTR 

and RF peaks of most events. Using a longer window could capture peaks from two different storm events 

and treat them as a single event in the bivariate frequency analysis. Furthermore, a 3-day pairing window 

has been found to be appropriate in similar previous studies (Couasnon et al., 2020; Kim et al., 2023; 

Maduwantha et al., 2024).  

Different declustering windows have been used in previous studies to assure sampled extreme events are 

independent (e.g., 3 days (Haigh et al., 2016), 7 days (Santos et al., 2021), 10 days (Kim et al., 2023), and 

14 days (Terlinden-Ruhl et al., 2025). Longer declustering windows are often adopted when the influence 

of river discharge is present, as its effects can last several days (Terlinden-Ruhl et al., 2025). Considering 

the duration of the storm events at our tide gauge location of interest, we use a 5-day window, since 

elevated NTR rarely lasted more than 5 days. 

Previous studies have applied various search radii to identify TC events using a similar approach to ours 

(e.g., ~400 km (Kim et al., 2023) and 500 km (Towey et al., 2022)). In this study, we tested the sensitivity 

of the correlation between peak NTR and peak accumulated rainfall to the TC search radius, following Kim 

et al. (2023). Increasing the search radius captures more nearby TC tracks but also introduces events that 

are too distant to influence flood drivers at the study site, thereby reducing the overall correlation between 

rainfall and NTR of the TC sample. This is also influenced by TC intensity; for example, a Category 5 

hurricane is more likely to generate significant storm surge even when passing far from the tide gauge, 

compared to a Category 1 hurricane. In our analysis, we considered all cyclones listed in the HURDAT2 

database as TC events, regardless of their sustained wind speed or whether they were hybrid systems 



during part of their lifetime. We therefore selected a 350 km search radius, as it provided a higher 

correlation between drivers while still retaining a reasonable number of TC events in the sample.  

To support these choices in the main manuscript, we have added the following paragraph: 

L 415: “A detailed description of the procedure for estimating the joint probability distribution applied in 

this study is provided in Maduwantha et al. (2024). When applying the two-way sampling to extract POT 

events, we used a 3-day pairing window to capture peak NTR and RF, following similar studies (Couasnon 

et al., 2020; Kim et al., 2023). We also manually checked the RF and NTR time series of POT events and 

found that a 3-day window was generally sufficient to capture both peaks in the vast majority of cases. To 

ensure independence within the POT samples, previous studies have applied various declustering 

windows (e.g., 3 days (Haigh et al., 2016), 7 days (Santos et al., 2021), 10 days (Kim et al., 2023), and 14 

days (Terlinden-Ruhl et al., 2025)). Longer declustering windows are often adopted when the influence of 

river discharge is present, as its effects can persist for several days or more (Terlinden-Ruhl et al., 2025). In 

this study, we use a 5-day declustering window (2.5 days before and after the event peaks), as highly 

elevated NTR rarely lasts more than 5 days at the tide gauge location. Previous studies have applied various 

search radii to identify TC events, such as ~400 km (Kim et al., 2023) and 500 km (Towey et al., 2022). In 

this study, we tested the sensitivity of the correlation between peak NTR and peak accumulated RF to the 

TC search radius, following Kim et al. (2023). Increasing the search radius captures more nearby TC tracks 

but also introduces events that are too distant to strongly influence flooding drivers at the study site, 

thereby reducing the overall correlation between RF and NTR of the TC sample. We selected a 350 km 

search radius, as it provided a higher correlation between drivers while still retaining a reasonable number 

of TC events in the sample.” 

Additional Refs:  

Towey, K. L., Booth, J. F., Rodriguez Enriquez, A., and Wahl, T.: Tropical cyclone storm surge probabilities 

for the east coast of the United States: a cyclone-based perspective, Nat. Hazards Earth Syst. Sci., 22, 1287–

1300, https://doi.org/10.5194/nhess-22-1287-2022, 2022. 

Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. 

J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, 

Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020. 

Terlinden-Ruhl, L., Couasnon, A., Eilander, D., Hendrickx, G. G., Mares-Nasarre, P., and Antolínez, J. A. Á.: 

Accelerating compound flood risk assessments through active learning: A case study of Charleston County 

(USA), Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025, 2025. 

 

 

 

 

 

 



 

3. Page 8, Line 217-228: Could the authors clarify the physical justification for uniformly scaling entire NTR 

and RF time series based solely on peak values? For example, does this approach preserve key timing or 

intensity ratios in cases with asymmetrical hydrographs or localized RF bursts? 

We thank the reviewer for raising this important point. In flood hazard modeling, the approach of scaling 

the observed flood driver time series to match design peaks and then considering them as design 

hydrographs/hyetographs with known return periods is already widely used. Examples include 

applications for NTR (Kim et al., 2023; Amorim et al., 2025), RF (Li et al., 2020; Kim et al., 2023), and 

streamflow (Yue et al., 2002). The assumption is that uniform scaling (also referred to as “same frequency 

amplification” in some studies) of the flood-driver time series produces another realistic time series.  

Even with asymmetrical NTR time series/hyetograph shapes, our linear scaling approach preserves the 

relative timing and intensity ratios of sub-peaks to the main peak, which is a key factor in determining the 

resultant flooding. Linearly scaling a storm-tide hydrograph where tidal influence is more visible would 

create an unrealistic total water level time series. However, here we utilize NTR time series for scaling and 

then add tides and MSL to the scaled NTR time series in a consistent manner with their seasonal variability 

accounted for. Although we cannot validate synthetic events on a one-to-one basis against real events, we 

compared statistical properties of key time series characteristics, such as durations, peaks, intensities, and 

lag times, between observations and synthetic events (Fig. 9). These comparisons show that the synthetic 

events preserve the dependencies found in the observed events. 

We acknowledge that scaling smaller events to much higher peaks can still produce unrealistic storm 

events. To mitigate this, we select observed events whose peak values are close to the target peak, so that 

the scaling factor remains close to 1 in most cases (with medians, for NTR: 1, for RF: 0.99), and we impose 

an upper limit on the scaling factor when generating events.  

To clarify this further, and based on another reviewer's comments, we have revised the discussion section 

as follows: 

L 493: “One key assumption of the framework is that uniform scaling (also referred to as “same frequency 

amplification”) of flood-driver time series creates a realistic compound event. This approach has been 

widely adopted in previous studies to construct design hydrographs and hyetographs (e.g., Serafin et al., 

2019; Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 2023; Liu et al., 2024; Xu et al., 2024). 

However, assessing whether each generated synthetic storm event is physically plausible is not possible.  

Instead, we validated the framework by comparing statistical properties of key time series characteristics 

between observations and synthetic events (Fig. 9). Another One key limitation of the proposed 

framework is that certain characteristics of synthetic events, such as RF duration and lag times, are limited 

to the observed values. To generate more diverse lag times, the observed lag times could be fitted to a 

parametric distribution (or alternatively to a copula that accounts for the dependence between peak 

values and lag times) and then one could sample lag times from the fitted distribution during the event 

generation process. This would introduce unobserved lag times into the synthetic events, enhancing their 

diversity. Additionally, the stratification of POT events utilizes a simple yet commonly applied approach 

(e.g., Kim et al., 2023; Maduwantha et al., 2024) as discussed in Section 4.1. However, this method may 

fail not to capture all TCs, particularly those that produce significant RF and storm surges from distances 



greater than 350 km. Such events are classified as non-TC events, meaning the analysis in Section 4.2 may 

not fully reflect the true characteristics of TC and non-TC events. “ 

Additional references: 

Amorim, R., Villarini, G., Kim, H., Jane, R. A., and Wahl, T.: A practitioner’s approach to process-driven 

modeling of compound rainfall and storm surge extremes for coastal Texas, J. Hydrol. Eng., 27, 04022047, 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0002171, 2022. 

Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P., and Bruneau, P.: Approach for describing statistical 

properties of flood hydrograph, J. Hydrol. Eng., 7, 147–153, https://doi.org/10.1061/(ASCE)1084-

0699(2002)7:2(147), 2002. 

 

 

4. Page 10, Line 273-275: The use of SFINCS is well-suited for handling large scenario sets; however, two 

model limitations warrant further discussion. First, SFINCS does not explicitly model nonlinear tide–surge 

interactions, which can influence the timing and amplitude of water levels in estuarine environments (e.g., 

Arns et al., 2020; Dullaart et al., 2023). Second, the omission of advection in the local inertia formulation 

may affect surge dynamics in narrow tidal channels like those surrounding Gloucester City. I recommend 

the authors provide a brief sensitivity analysis or comparison illustrating the impact of including vs. 

excluding the advection term, as SFINCS offers both options (Leijnse et al., 2021). 

We agree with the reviewer that the tide-surge interaction can produce important effects on estuarine 

water levels. However, the limitations of SFINCS simulating these effects do not affect our analyses since 

the boundary condition of our model is placed along the Delaware, near the coastline of our study site. 

Therefore, we are not simulating the generation and propagation of the surge into the estuary, in which 

interaction between tides and surges occurs. Rather, we account for the tide-surge interaction within the 

presented framework to generate the boundary conditions for the flood model. The tide-surge interaction 

is accounted for by considering the dependency between NTR peaks with tidal high water peaks (i.e., the 

time difference between the NTR peak and the peak of the tide).  As mentioned in L: 235 in the original 

manuscript, we use the observed time difference between peak NTR and the subsequent high tide of the 

sampled NTR time series to combine it with the sampled tidal signal. Therefore, the synthetic events reflect 

the effect of tide surge interaction, which was observed in the historical events. Fig. 1 below shows a 

histogram of the time difference between the peak NTR and the subsequent high tide of observed events 

(orange) and synthetic (blue) events.  



 

Fig.1 The distribution of time difference between the peak NTR and the next high tide of observations 

(orange) and simulations (blue). Positive values indicate the peak NTR occurred before the next high tide.  

As requested by the reviewer, to assess the potential impact of omitting the advection term in the flood 

model runs, we conducted an additional set of simulations with the advection term enabled. The results 

(see Fig.2 below) show negligible differences in resultant flooding compared to our original simulations 

without advection, even in the narrow tidal channels surrounding Gloucester City. Given these results and 

the fact that the main conclusions of our study are based on the statistical framework of boundary 

condition generation rather than fine-scale hydrodynamic sensitivities, we are confident that the omission 

of the advection term does not largely affect the main results and conclusions of the paper.   

 

To further clarify this and address a related concern raised by another reviewer, we have added the 

following sentences. 

L 466: “At the Philadelphia tide gauge, peak NTR often occurs 4–5 hours before the next high tide (see 

Fig.S4 in the supplementary material). To account for this, we combined scaled NTR with tide using the 

observed lag between peak NTR and subsequent high tide of the sampled NTR time series (see Section 

4.3.3). This These steps ensures ensure that synthetic compound events retain the same temporal 

dynamics as similar observed events.” 

 

We have revised the following sentence. 

L 274: The model is run with the advection term neglected, solving the local inertia equations (we tested 

the sensitivity of the results when the advection term was enabled, but changes were negligible).  

 

 



 

Fig 2. Changes in flood depths associated with variability when the advection term is enabled, in MSL (left) 

and Tide (right) of a selected 0.01 AEP most-likely event. (a) When considering the lowest 30-day MSL, (b) 

when considering the tidal segment with the lowest high tide, (c) when considering the highest 30-day 

MSL, (d) when considering the tidal segment with the highest high tide, (e) the difference between (a) and 

(c), (f) difference between (b) and (d). (X, Y coordinates system: UTM- zone 18N). 

 

 



5. Page 11, Line 300-301: The authors use a fixed NTR threshold of 0.63 m to yield ~5 exceedances per 

year, which is reasonable and aligns with past compound flood studies. However, the threshold selection 

could be strengthened by applying one of several recent automated, data-driven approaches developed 

for POT analysis, such as the Sequential Goodness-of-Fit method (Bader et al., 2018), the Extrapolated-

Height Stability method (Liang et al., 2019), the L-moment Ratio Stability method (Silva Lomba & Fraga 

Alves, 2020), or the comparative multi-method approach applied in a coastal flood design context by 

Radfar et al. (2022). 

We thank the reviewer for the comment and agree that more advanced approaches, such as those 

mentioned, offer more robust methods for objectively determining thresholds. However, these methods 

are primarily designed to optimize the fit of the distribution tail. In the context of compound flooding, 

extreme flood events are not always driven by extreme peak flood driver combinations. With a suitable 

combination of timing, duration, intensities, and tidal conditions, extreme flooding can also occur under 

moderate peak NTR and RF combinations (Santamaria et al., 2025). To generate synthetic storm events 

with moderate NTR and RF peaks, the copulas must therefore be fitted using POT events with flood 

potential and still large enough to be well described by a GPD (Generalized Pareto Distribution). 

Accordingly, we selected a threshold that balances both, small enough to capture moderate conditions, 

yet large enough to represent the upper tail of the distribution. Rather than applying more robust 

threshold selection methods, we followed the approach used in similar studies and considered the average 

number of historical flood events to guide our choice.  

 

We have revised the following sentences in the manuscript. 

L 161: Recent data-driven threshold-selection methods, such as the Sequential Goodness-of-Fit method 

(Bader et al., 2018), the Extrapolated-Height Stability method (Liang et al., 2019), L-moment ratio stability 

(Silva Lomba & Fraga Alves, 2020), and a comparative multi-method approach (Radfar et al., 2022) provide 

robust POT thresholds but primarily optimize tail fit. Extreme compound flood events are not necessarily 

generated by extreme flood driver peaks. With favorable timing, duration, and tidal conditions, extreme 

flooding can occur even under moderate flood-driver conditions (Santamaria et al., 2025). Therefore, we 

use a two-sided conditional sampling based on peak-over-threshold (POT) approach to identify extreme 

events, setting NTR and RF thresholds to obtain samples allowing an average of 5 exceedances per year 

(Jane et al., 2020; Kim et al., 2023). We use a two-sided conditional sampling based on peak-over-threshold 

(POT) approach to identify extreme events, setting NTR and RF thresholds to obtain samples allowing an 

average of 5 exceedances per year (Jane et al., 2020).  

 

Additional refs:  

Santamaria-Aguilar, S., Maduwantha, P., Enriquez, A. R., and Wahl, T.: Large discrepancies between event- 

and response-based compound flood hazard estimates, EGUsphere [preprint], 

https://doi.org/10.5194/egusphere-2025-1938, 2025. 

 



6. Page 12, Line 328-336: While the authors maintain stratification for joint probability estimation, they 

combine TC and non-TC time series for event generation based on overlapping confidence intervals and 

similar time series shapes. Given the well-established physical differences between tropical and 

extratropical systems (precipitation structures, spatial scales, storm tracks), could the authors clarify how 

confident they are that this approach adequately preserves the distinct characteristics of these storm 

types? 

We agree that it is well established that tropical cyclones, extratropical cyclones, and other non-cyclonic 

locally generated systems differ in terms of physical properties. However, for our study area, factors such 

as the limited sample size of TC events, the small size of the catchment, and the hydrologic response of 

the upstream Delaware River reduce the extent to which the inherent large-scale storm characteristics are 

reflected in the time series of NTR and basin-average rainfall.  

The overlapping confidence intervals of Kendall’s tau, along with comparisons of distribution parameters 

fitted to the time series characteristics of RF and NTR, indicate no statistically significant differences 

between the TC and non-TC samples (see Fig. 6). Similarly, the shapes of the NTR and basin-average RF 

time series produced by TCs are similar to those generated by non-TC events (see Fig. 7). Based on these 

results, we conclude that generating event time series (i.e., water-level hydrographs and RF hyetographs) 

separately for the two storm types would yield results similar to those obtained without differentiating 

between them. However, we acknowledge that in other locations, significant differences in time series 

characteristics between TC and non-TC samples may exist, especially when model domains are large. In 

those cases, we recommend conducting event generation separately for each storm type. This limitation 

is already discussed in the original manuscript (Section 6, Lines 440–455). 

 

 

 

7. Additionally, given the limited number of TC events, how do the authors assess whether their analysis 

has sufficient statistical power to detect meaningful differences? Would alternative approaches like 

physics-based conditioning (e.g., storm track or seasonal constraints) potentially better preserve known 

meteorological distinctions while addressing sample size limitations? 

We thank the reviewer for this thoughtful comment. We acknowledge that the limited number of TC 

events in our dataset reduces the statistical power to detect subtle differences in time series characteristics 

between TC and non-TC samples. As noted in the manuscript (Section 6, Lines 440–455), this is recognized 

as a limitation of our application. 

Methods involving physics-based models to generate synthetic flood drivers from TC events (often using 

synthetic TC tracks) can better preserve the inherent spatio-temporal characteristics of storms (e.g., 

Emanuel et al., 2006; Gori et al, 2020). However, these methods are computationally demanding, as they 

require both hydrologic and hydrodynamic modeling, which limits their ability to generate large numbers 

of events. We agree that such approaches could help address the limited TC sample size in our study. 

Implementing this type of framework is beyond the scope of the current work, but we plan to incorporate 

it in future studies. 



To acknowledge this in the manuscript, we have added the following sentences. 

L 452: “One option to overcome the limited TC sample size in our analysis is employing physics-based 

models to generate time series of flood drivers from synthetic TC tracks (e.g., Emanuel et al., 2006; Gori 

et al., 2020). We plan to explore this in future work.” 

 

 

 

8. Page 20, Figure 10: The authors demonstrate substantial flood depth due to MSL and tidal variability 

using a single most-likely 0.01 AEP event. While this effectively illustrates the potential importance of these 

factors, could the authors comment on whether this sensitivity pattern is representative across different 

event types and return periods? 

The most-likely 0.01 AEP (100-year return period) event was selected to show an illustrative example to 

highlight the potential influence of MSL and tidal variability on resultant flooding. While traditional 

approaches often neglect this variability in their modeling frameworks, we explicitly account for it. We use 

the 0.01 AEP, as it is commonly adopted in flood hazard mapping for planning purposes (e.g., FEMA Special 

Flood Hazard Areas; FEMA, 2020). 

We agree that this single event may not fully represent the sensitivity patterns across the full range of 

event types and return periods. In a separate study (Santamaria et al., 2025, under review), we simulated 

flooding for the same study site using a set of 5,000 synthetic storm events that were generated from the 

developed statistical framework. Resultant flooding shows a wide range of variability, even among events 

with similar joint return periods. However, attributing this variability to a single factor like MSL or tides is 

challenging due to the complexity of their interactions. This is discussed in detail in Santamaria et al. 

(2025).  

 

For discussing this in the manuscript, we have modified the section starting from L 488 as follows: 

L488: “Analyzing only the most likely event, even if it appears to be the most plausible based on 

observations, does not capture the range of flood levels that could be generated by different combinations 

of flood drivers (i.e., NTR and RF) with different time series properties. Therefore, the flood model 

simulations presented here are aimed at evaluating the importance of explicitly accounting for the 

variability of MSL and tides, and not to produce comprehensive probabilistic flood maps. In a separate 

study (Santamaria et al., 2025), we simulated flooding of 5,000 synthetic storms at this site and found large 

variation in resultant flooding, even for events with similar joint return periods. However, attributing this 

variability to a single factor like MSL or tides is challenging due to the complexity of their interactions.”  

 

Additional Ref. 



Federal Emergency Management Agency (FEMA). (2020). Flood Insurance Study Guidelines: Guidelines 

and Specifications for Flood Hazard Mapping Partners. https://www.fema.gov/flood-maps/guidance-

partners/guidelines-specifications 

Santamaria-Aguilar, S., Maduwantha, P., Enriquez, A. R., and Wahl, T.: Large discrepancies between event- 

and response-based compound flood hazard estimates, EGUsphere [preprint], 

https://doi.org/10.5194/egusphere-2025-1938, 2025. 

 

 

 

9. Additionally, given that the most pronounced effects occur along the Delaware River and Newton Creek 

boundaries, could the authors discuss whether the model's spatial resolution, boundary condition 

placement, or coastal setup might be influencing the magnitude of these sensitivities? 

In the flood model, the coastal boundary is placed along the Delaware River to match the water levels at 

the Philadelphia tide gauge and includes the entire catchment of Newton Creek to capture all contributing 

runoff. We used the Coastal National Elevation Database (CoNED) digital elevation model with a horizontal 

resolution of 1 meter and a vertical accuracy of 10 cm. We use the subgrid approach of SFINCS with a dual 

resolution of 10m and 1m. This level of detail is relatively high compared to many other compound flood 

hazard assessments, which often use coarser grids. Given the size of the Delaware River and surrounding 

creeks, we believe the model adequately resolves hydrodynamics and that the observed sensitivities 

reflect physical processes rather than numerical limitations. 

 

 

Refs.: 

Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P., Niehüser, S., & Jensen, J. (2020). 

Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts. Nature 

Communications, 11, 1918. 

Dullaart, J. C. M., Muis, S., de Moel, H., Ward, P. J., Eilander, D., & Aerts, J. C. J. H. (2023). Enabling dynamic 

modelling of coastal flooding by defining storm tide hydrographs. Natural Hazards and Earth System 

Sciences, 23, 1847–1862. 

Leijnse, T., Dazzi, S., Yu, D., & Bates, P. D. (2021). Efficient coastal flood hazard mapping with a 2D non-

inertia model. Coastal Engineering, 170, 103994. 

Bader, B., Yan, J., & Zhang, X. (2018). Automated threshold selection in extreme value analysis via 

goodness-of-fit tests with adjustment for false discovery rate. Annals of Applied Statistics, 12(1), 310–329. 

Liang, B., Shao, Z., Li, H., Shao, M., Lee, D., 2019. An automated threshold selection method based on the 

characteristic of extrapolated significant wave heights. Coast. Eng. 144, 22–32. 



Radfar, S., Shafieefar, M., & Akbari, H. (2022). Impact of copula model selection on reliability-based design 

optimization of a rubble mound breakwater. Ocean Engineering, 260, 112023. 

Silva Lomba, J., Fraga Alves, M.I., 2020. L-moments for automatic threshold selection in extreme value 

analysis. Stoch. Environ. Res. Risk Assess. 34 (3), 465–491. 

Gao, S., Zhang, J., Li, D., Jiang, H., & Fang, Z. N. (2021). Evaluation of multiradar multisensor and stage IV 

quantitative precipitation estimates during Hurricane Harvey. Natural Hazards Review, 22(1), 04020057. 

Gomez, F. J., Jafarzadegan, K., Moftakhari, H., & Moradkhani, H. (2024). Probabilistic flood inundation 

mapping through copula Bayesian multi-modeling of precipitation products. Natural Hazards and Earth 

System Sciences, 24(8), 2647-2665. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer 2 

The manuscript “Generating Boundary Conditions for Compound Flood Modeling in a Probabilistic 

Framework” by Maduwantha et al. introduces a statistical framework designed to generate many synthetic 

but physically plausible compound events, including storm-tide hydrographs and rainfall fields, which can 

serve as boundary conditions for dynamic compound flood models. The framework is later applied to the 

case of Gloucester City in New Jersey. 

The topic of the manuscript is highly relevant for quantifying flood hazard, particularly water depth 

resulting from the joint occurrence of storm surge and rainfall. However, the proposed framework requires 

further clarification and additional information to assess its validity better and ensure reproducibility by 

others. 

We thank the reviewer for their constructive and insightful comments, which have helped enhance the 

overall quality of our manuscript. Below, we provide detailed responses to each point and outline how we 

have addressed them in the revised manuscript. The changes to the existing text are highlighted using 

track changes with line numbers in the original manuscript.  

 

 

1. The novelty of the proposed framework should be better highlighted. If I understand correctly, the 

essence of the proposed framework is to select joint events of NTR and rainfall from historical 

observations, and then fit a bivariate copula to generate “unseen” pairs. Pairs are used to amplify historical 

time series of NTR and rainfall over a short period of time with a temporal resolution consistent with the 

one required by the hydrodynamic model. An almost identical workflow was proposed by Xu, H et al (2024) 

"Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and 

storm surge: a case study of Shanghai", Hydrol. Earth Syst. Sci., 28, 3919–3930, 

https://doi.org/10.5194/hess-28-3919-2024. How does this framework differ from Xu et al 2024? How 

does this framework differ from previous studies? The novelty is hidden in the introduction. 

We thank the reviewer for raising this important point. While our framework shares some conceptual 

similarities with Xu et al. (2024), it introduces several methodological and practical novelties that 

distinguish it from previous studies.  

We agree that the general workflow of (i) modeling the joint probability distribution of flood drivers, (ii) 

sampling unseen pairs from the fitted distribution, (iii) assigning corresponding time series, and (iv) 

propagating them through a compound flood model is not unique to our study. This general approach has 

been adopted in several previous works (e.g., Serafin et al., 2019; Moftakhari et al., 2019; Zellou and 

Rahali, 2019; Kim et al., 2023; Liu et al., 2024; Xu et al., 2024), and we do not claim novelty in this regard. 

These studies, including Xu et al. (2024), were primarily tailored to generate design events with specified 

joint return periods (e.g., 100-yr,50-yr) of flood-driver peaks. This only supports an “event-based” hazard 

analysis, where one or a few design events are simulated through flood models, and the joint probability 

of the flood drivers is assumed to be the same as the probability of the flood response.  

In contrast, our framework is designed to generate a large and diverse set of synthetic storm events. These 

are then propagated through the hydrodynamic model to produce a broad ensemble of flood responses. 



Extreme value analysis is then applied directly to the resultant flood depths, thereby supporting a 

response-based flood hazard assessment. This shift from generating boundary conditions for event-based 

to response-based analysis is a key novelty of our work, as it allows us to capture the full spectrum of 

possible flood outcomes, rather than relying solely on the flood response of a single design event or a 

small subset of events. Additionally, our framework can also be used to support event-based hazard 

modelling by generating many diverse synthetic storm events with a unique (or known) joint return period. 

In addition to the objective differences, we have listed other key advancements of our modeling 

framework over Xu et al. (2024): 

1. Accounting for distinct storm types (populations), thereby capturing the unique dependence 

structures of flood-driver peaks 

2. Generation of total water level time series by combining scaled NTR, tides, and MSL consistent 

with seasonal variations 

3. Offers a more flexible framework, by incorporating different rainfall accumulation times and 

employing a two-way conditional sampling method that enables modeling of a wide range of 

storm events, including non-extremes 

 

To better highlight the novelty of our work, we have revised the following paragraphs in our introduction. 

L 75: Rescaling of total water level (or non-tidal residuals (NTR) time series) of observed events is another 

deterministic approach that leverages observed event data (Dawson et al., 2005; Kim et al., 2023; Xu et 

al., 2024). 

 

L 100: “Among the applications of uniform scaling of flooding drivers, Xu et al. (2024) applied the “same 

frequency amplification” method to construct a 200-yr storm surge hydrograph and rainfall hyetograph 

for their flood simulations. However, their approach was limited to point rainfall and assumed uniformly 

distributed rainfall across the catchment. Kim et al. (2023) proposed a framework for generating synthetic 

time series of RF fields and associated NTR by scaling time series of observed TC events. The framework 

was used to capture different spatial patterns of RF fields as this aspect was shown to significantly 

contribute to compound flood hazard (e.g., Gori et al., 2020). However, their analysis exclusively focused 

on TC events and the methodology only produces NTR time series and does not extend to producing 

complete storm-tide hydrographs; this is because it was applied to the Texas coast where the tidal range 

is small, and where compound flooding is primarily driven by TCs. Other types of storms can produce 

compound flooding in many other areas and tides often contribute significantly to the resulting still water 

levels.  

The existing statistical approaches that generate time-varying boundary conditions for dynamic compound 

flood models are primarily intended to construct design events with specified joint return periods (e.g., 

50-yr, 100-yr) (Serafin et al., 2019; Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 2023; Liu et 

al., 2024; Xu et al., 2024). This method supports the “event-based” flood hazard analysis, where a single 

(or only a few) synthetic event with known joint return periods is simulated through a flood model, and it 

is assumed that the (joint) probability of the flood drivers directly translates into the probability of the 

flood response. However, this neglects the range of potential different flooding scenarios that may arise 



from variations in temporal and spatial patterns, differences in the relative timing of multiple flood drivers, 

and other complex interactions (for example, tide-surge interactions).Additionally, their approach is 

designed for creating specific design events with known joint return periods of the peaks of the flood 

drivers, i.e., it supports “event-based” flood hazard analysis where one or few events with a given return 

period are routed through an inundation model and it is assumed that the joint probability of the drivers 

translates to the probability of the flood response. For a more complete characterization of flood hazard 

and risk, the flood response of many synthetic events needs to be modeled, allowing the derivation, for 

example, of return levels of flood depth at all points within the model domain (i.e., “response-based” flood 

hazard analysis).” 

 

 

2. In lines 502-503, the Authors say that  “Although measures are taken to prevent the generation of 

physically unrealistic events (see Section 4.3), it cannot be fully ruled out.” If this statement is true, then 

the Authors cannot claim that the framework generated physically plausible compound events (Abstract - 

Lines 16-17). This is quite an important point, and the Authors need to be transparent about the potential 

of the framework to generate physically plausible events or not. 

We thank the Reviewer for the comment. Our claim in the Abstract (Lines 16–17) that the framework 

generates physically plausible compound events comes from a statistical and process-based perspective 

since the framework explicitly preserves the dependence structures of peaks of flooding drivers and 

adheres to ranges and interdependencies of observed timeseries characteristics, as described in Section 

4.3.  

However, we acknowledge that we cannot fully eliminate the risk of generating extreme storm events that 

may be physically "implausible”, at least under current climate conditions (we believe this is not unique to 

our approach but true for most statistical methods that generate extreme unseen environmental data). 

For instance, when deriving peak NTR–RF combinations from the multivariate statistical model, the use of 

unbounded marginal distributions can yield large peaks that might be physically impossible to occur. 

However, the absence of such events in the observational record does not in itself indicate that the 

generated synthetic events are unrealistic, as the record length may be insufficient to capture their 

occurrence. Extremes are often wrongly perceived as impossible until they happen. Moreover, even with 

the assumption that uniform scaling produces realistic NTR and RF time series individually, it still requires 

the additional assumption that their combined representation is also physically realistic. Ideally, a direct 

one-to-one validation of synthetic events against observed events would provide a rigorous test of these 

assumptions, but such validation is impossible. To evaluate the performance of our framework, we 

compared the statistical properties of key time-series characteristics, including durations, peaks, 

intensities, and lag times between observations and synthetic events (Fig. 9).  

 

To further acknowledge these limitations, along with comments from another reviewer, we have revised 

the following section in the discussion: 

L 494: “One key assumption of the framework is that uniform scaling (also referred to as “same frequency 

amplification”) of flooding-driver time series creates a realistic compound event. This approach has been 



widely adopted in previous studies to construct design hydrographs and hyetographs (e.g., Serafin et al., 

2019; Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 2023; Liu et al., 2024; Xu et al., 2024). 

However, assessing whether each generated synthetic storm event is physically realistic is challenging. 

Ideally, a direct one-to-one validation against observed events (verifying whether every synthetic event 

has a similar or closer observed event) would provide the most rigorous test.  Yet such validation is 

impossible given the limited availability of observations, which is why the synthetic event generation is 

necessary in the first place. Instead, we tested the framework by comparing statistical properties of key 

time series characteristics between observations and synthetic events (Fig. 9). Another limitation of the 

proposed framework is that certain characteristics of synthetic events, such as RF duration and lag times, 

are limited to the observed values. To generate more diverse lag times, the observed lag times could be 

fitted to a parametric distribution (or alternatively to a copula that accounts for the dependence between 

peak values and lag times) and sample lag times from the fitted distribution during the event generation 

process. This would introduce unobserved lag times into the synthetic events, enhancing their diversity. 

Additionally, the stratification of POT events utilizes a simple yet commonly used approach (e.g., Kim et 

al., 2023; Maduwantha et al., 2024) as discussed in Section 4.1. However, this method may fail to capture 

all TCs, particularly those that produce significant RF and storm surges from distances greater than 350 

km. Such events are classified as non-TC events, meaning the analysis in Section 4.2 may not fully reflect 

the true characteristics of TC and non-TC events.One key limitation of the proposed framework is that 

certain characteristics of synthetic events, such as RF duration and lag times, are limited to the observed 

values. To generate more diverse lag times, the observed lag times could be fitted to a parametric 

distribution (or alternatively to a copula that accounts for the dependence between peak values and lag 

times) and sample lag times from the fitted distribution during the event generation process. This would 

introduce unobserved lag times into the synthetic events, enhancing their diversity. Additionally, the 

stratification of POT events utilizes a simple yet commonly used approach (e.g., Kim et al., 2023; 

Maduwantha et al., 2024) as discussed in Section 4.1. However, this method may fail to capture all TCs, 

particularly those that produce significant RF and storm surges from distances greater than 350 km. Such 

events are classified as non-TC events, meaning the analysis in Section 4.2 may not fully reflect the true 

characteristics of TC and non-TC events.”  

 

 

3. The data selection procedure and its effects on the results need further clarification. 

We appreciate the Reviewer’s comment and agree that the data selection procedure requires a clearer 

explanation. The framework is designed to generate high-resolution rainfall fields over the catchment and 

storm-tide hydrographs at the coastal boundary. For water levels, we use the nearest tide gauges to the 

study site (Philadelphia (St. ID: 8545240) and Philadelphia Pier 11-north (St. ID: 8545530)). Although some 

rainfall gauges exist near Gloucester City, the Philadelphia Airport rain gauge provides the longest hourly 

record (from 1900). For rainfall fields, radar-based products such as MRMS offer higher resolution and 

accuracy compared to other gridded RF data (1 km, hourly), but their temporal coverage is limited (MRMS: 

from 2012; Stage IV: from 2002). We therefore use AORC precipitation data (1979 to present), which 

balances high resolution (4 km, hourly) with sufficient temporal coverage (from 1979) to extract observed 

RF fields from many events. For identifying TC-induced POT (peak over threshold) events, we use 

HURDAT2, the most widely used and reliable TC catalog for the Atlantic basin. 



While using different datasets may introduce some changes to the joint probability distributions and 

resulting synthetic storm events, we emphasize that our choices represent the best available balance of 

resolution, accuracy, and temporal coverage. Therefore, we believe our results are robust. A full sensitivity 

analysis of synthetic storms to different datasets would be valuable, but it's beyond the scope of this study. 

 

We have revised the relevant sections in the original manuscript as follows: 

L 135: “For the statistical analysis, we consider RF and NTR as flood drivers. We use hourly water level data 

from the nearest tide gauges to the study site provided by the National Oceanic and Atmospheric 

Administration (NOAA): Philadelphia (St. ID: 8545240) and Philadelphia Pier 11-north (St. ID: 8545530). 

For the statistical analysis, we consider RF and NTR as flood drivers. We use hourly water level data from 

the National 135 Oceanic and Atmospheric Administration (NOAA) tide gauges at Philadelphia (St. ID: 

8545240) and Philadelphia Pier 11-north (St. ID: 8545530).  

L 144: “We use both gridded RF data from the Analysis of Period of Record for Calibration (AORC) from 

1979 to 2021 and hourly RF gauge data at the Philadelphia International Airport from 1900 to 2021 

(Kitzmiller et al., 2018). Although radar-based quantitative precipitation estimates, such as the Multi-Radar 

Multi-Sensor (MRMS) products, often provide higher accuracy compared to other gridded rainfall 

products, their temporal coverage is relatively short (Gao et al., 2021; Gomez et al., 2024). We use AORC 

rainfall data because of its availability from 1979 and its demonstrated higher accuracy among products 

with similar temporal coverage (e.g., Hong et al., 2024; Kim and Villarini, 2022), while offering hourly data 

with ~4 km spatial resolution  AORC RF data has demonstrated higher accuracy compared to other gridded 

data sets while offering an hourly temporal resolution and ~4 km spatial resolution (e.g., Hong et al., 2024; 

Kim and Villarini, 2022).”  

 

 

4. First, synchronous NTR are selected, and later on astronomical tide and mean sea level are added. Did 

the Authors consider using the concept of skew surge? If not, why? In addition, tide-surge interaction is 

mentioned but not really discussed. How relevant is it? Would the concept of skew surge solve it? 

We thank the Reviewer for the comment. We agree that skew surge would implicitly account for tide–

surge interactions and offers a straightforward way to combine it with Tides. However, as skew surge 

provides only two values per tidal cycle (semidiurnal in the Philadelphia region), it cannot capture the full 

temporal evolution of NTR at hourly scales or the timing between flood drivers, which are critical for 

compound flooding (Gori et al., 2021). Previous studies (e.g., Terlinden-Ruhl et al., 2025) assumed a 

constant skew surge over a 12-hr period, which we consider insufficient to reproduce realistic hydrographs 

for our analysis. Additionally, estimating the duration of elevated NTR is difficult from skew surge alone, 

but it is a key time series characteristic that we want to examine and make sure it is consistent in the 

synthetic events.  



At the Philadelphia tide gauge, peak NTR often occurs 4–7 hours before the next high tide (see Fig.3 below). 

To account for this, we combined scaled NTR time series with tide time series using the observed lag 

between peak NTR and subsequent high tide of the sampled NTR event (see Section 4.3.3), ensuring that 

synthetic events preserve the same dynamics. 

 

Fig.3 The distribution of time difference between the peak NTR and the next high tide of observations 

(orange) and simulations (blue). Positive values indicate the peak NTR occurred before the next high tide.  

 

In addition to the explanation in the main manuscript in Section 4.3.3, we have revised the following 

sentences to further clarify this in the discussion. 

L 466: “At the Philadelphia tide gauge, peak NTR often occurs 4–5 hours before the next high tide (see 

Fig.S4 in the supplementary material). To account for this, we combined scaled NTR with tide predictions 

using the observed lag between peak NTR and subsequent high tide of the sampled NTR event (see 

Section 4.3.3). This These steps ensures ensure that synthetic compound events retain the same 

temporal dynamics as similar observed events.” 

 

 

5. Second, multiple rainfall measurements are considered. However, it is unclear how such measurements 

are aggregated and how this aggregation affects the dependence between NTR and rainfall, and so the 

fitted copula. Moreover, which rainfall measurement is used as a reference for the lag time between peak 

surge and peak rainfall? 

A detailed description of the rainfall (RF) data treatment is provided in our previously published work 

(Maduwantha et al., 2024), but we summarize the main steps in the Methods section. Rain gauges 

measure very local weather conditions. However, the assumption that such point RF quantities are 

uniformly distributed over the entire catchment could lead to mischaracterization of the flood hazard 

potential. Therefore, we apply a bias correction to the hourly RF gauge data to match the hourly basin-

averaged RF quantities calculated from AORC. The quantile mapping method is used for the bias 

correction, fitting both hourly measured gauge data and hourly AORC basin-averaged data to gamma 



distributions. This procedure allows us to increase the POT sample size, thereby reducing uncertainty in 

the marginal distributions. As discussed in Maduwantha et al. (2024), the correlation between peak NTR 

and rainfall shows nonstationarity with an increase in recent decades. Hence, we estimated the copula 

parameters using POT events from the last 30 years, ensuring that the dependence structure reflects 

current climate conditions, and we avoid potential underestimation of the flood hazard.  

Lag times and other time-series characteristics (e.g., durations, peaks, and intensities) are derived directly 

from the historical events, using AORC rainfall fields combined with tide gauge records (those are then 

scaled to match the target peaks sampled from the NTR-RF joint distribution). This part is explained in the 

original manuscript from L 185 to L 190. 

 

To further clarify how the aggregation of RF gauge data and AORC data affects dependence, we have 

revised the following paragraph:  

L 147: “Rain gauges measure highly localized rainfall. Assuming that these point measurements occurred 

uniformly distributed across the entire catchment can misrepresent the compound flood hazard. To 

address this, we apply a bias correction to the hourly gauge data so it matches the basin-averaged hourly 

rainfall estimates derived from AORC. This correction is performed using the quantile mapping method, in 

which both the gauge-based and AORC-based rainfall distributions are fitted to gamma functions. To 

leverage the long-term in-situ observations and obtain more robust results from the statistical analysis, 

we apply a bias correction to the hourly RF gauge data, to match with the hourly basin-average RF values 

calculated from AORC. The bias correction is performed using the quantile mapping method, fitting both 

the hourly measured gauge data and the hourly AORC basin-average data to gamma distributions (for 

more details see Maduwantha et al. (2024)).” 

We have added the following: 

L 169: “Maduwantha et al. (2024) found significant non-stationarity in Kendall’s τ between peak NTR and 

RF over the analysis period. To capture most recent climate conditions and avoid underestimating 

compounding effects, we model dependence using only the last 30 years of data.” 

 

 

6. Finally, the distinction between TC and non-TC leads to copulas with different asymmetries. How do the 

Authors justify such differences? What happens when the TC and non-TC are combined together? I would 

say this is mostly relevant in paragraph 5.3 “Event Generation Process”. How do the Authors know that the 

106-year event (which is also quite an interesting number!) corresponds to a TC? Given the length of the 

data, the 106-year event is inferred from the copula and not observed. Regardless of how the Authors 

track whether it is a TC or a non-TC, how sensitive are the results to the type of event? For example, what 

is the difference between a TC and non-TC event with the same return period? What about in terms of the 

drivers’ magnitude and water depth? I suggest adding some sensitivity analysis to the assumptions made, 

including the lag time between peak rainfall and peak surge. 

We thank the Reviewer for the comment. A key objective of our framework is to account for the distinct 

dependence structures of different storm types (TCs vs. non-TCs), which are often overlooked when all 



POT events are treated as a single population. In our analysis, peak NTR and peak RF were found to be 

more strongly correlated in TC-induced events than in non-TC events, in line with previous studies (e.g., 

Kim et al., 2023). Therefore, as the reviewer mentioned, TC and non-TC lead to copulas with different 

asymmetries. We derive 5,000 combinations of peak NTR and RF by sampling from the fitted copulas to 

each sample such that the relative proportion of extremes is consistent with their historical occurrence. 

351 combinations from the copulas fitted to the TC sample and 4,649 from the fitted copulas to the non-

TC sample. 

The illustrative “106-year event” presented in the paper was drawn from the TC sample (one of the 351 

combinations). Since the events are generated from the fitted copulas through the Monte Carlo approach, 

the resulting combinations do not correspond to standard return periods (e.g., exactly 50- or 100-year), 

instead, reflect the joint probability distribution of peak NTR and RF. 

Based on the analysis we conducted in section 4.2, we found no significant differences in statistical features 

nor various time series characteristics in NTR and RF from TC events and non-TC events. Given these 

results, we conclude that generating the event time series (i.e., water level hydrographs and RF 

hyetographs) separately for the two storm types would produce similar results compared to the ones we 

derive without stratifying. Yet, we acknowledge that with sufficient data, the most effective approach 

would be to use observed time series of flood drivers from TC events exclusively for generating synthetic 

TC events, while using those from non-TC events separately to generate synthetic non-TC events.  

The NTR and RF peak magnitudes of an event with the same joint probability can differ substantially 

between storm types and depending on where it lies along the probability isoline. For example, the 

selected event (NTR = 1.75 m; 18-h RF = 80 mm) has a ~106-yr joint return period when joint probability 

distributions of TC and non-TC storms are combined. The same event has a ~111-yr joint return period in 

the TC sample and ~2431-yr joint return period in the non-TC sample. Conversely, an event with relatively 

lower peaks (NTR = 1.0 m; 18-h RF = 50 mm) has a ~5-yr joint return period in the non-TC sample but ~15-

yr joint return period in the TC sample. In conclusion, small to moderate events are more frequent in the 

non-TC storms, whereas the most extreme events are more likely generated by TCs.  

As discussed in L 464, lag times between peak NTR and peak RF can vary considerably, and more extreme 

events tend to exhibit shorter lag times (see Figs. 4 (e) and 4 (i)). However, this behavior is evident in both 

TC and non-TC events. To reflect this behavior in synthetic events, we select nearby historical events for 

scaling and adopt the associated lag time from one of the selected time series. This ensures that synthetic 

compound events retain the same timing dynamics as similar observed events (See Fig. 9). Extending this 

analysis to evaluate how differences between storm types influence flood depths would require flood 

model simulations of a broader set of events, which is beyond the scope of this study. 

 

For further clarification, the following sentences have been revised: 

L 239: “Target events are derived from copulas fitted to the TC sample and the non-TC sample. If the target 

event is derived from a copula fitted to TC (non-TC) events, we sample the month from the distribution of 

TC (non-TC) events (Fig. 2 (a)). Once the month is selected, we randomly sample a MSL value and a tidal 

signal segment from the selected month (Fig. 2 (g)).” 

 



The following was added: 

L 420: “The joint probability distributions of peak NTR and peak RF of TC and non-TC storms are 

substantially different. Small to moderate compound events are more frequent in the non-TC storms, 

whereas the most extreme compound events are more likely generated by TCs. This aspect has been 

further discussed in Maduwantha et al. (2024). 

 

 

 

Minor comments. 

 

7. The “target event” is never explicitly defined, and from my personal perspective, this creates some 

confusion. How is it how is it selected? 

We thank the reviewer for raising this point. We refer to a “target event” as a synthetic peak NTR–RF 

combination selected from the 5,000 combinations generated via Monte Carlo sampling of the fitted 

copulas. While some studies use the term “design event”, we used “target event” since our framework 

does not rely on standard design return periods (e.g., 50- or 100-year). We have added the following to 

define it in L 179.  

L 179: “We generate an event set of 5,000 combinations of NTR and RF (“target events”) by sampling from 

the fitted copulas such that the relative proportion of extremes is consistent with the empirical 

distribution.” 

 

8. ETC and non-TCI seem to be used interchangeably. I suggest checking the notation for consistency. 

Checked and confirmed. The term ‘ETC’ denotes extratropical cyclones, whereas ‘non-TC’ refers to all 

events that are not classified as tropical cyclones. 

 

9. Line 409: the Authors say that flood depth varies in some regions. However, the case study seems to 

concern only one region. I would suggest checking this sentence. 

The term region refers to the different areas within the catchment. We have revised the sentence as 

follows: 

“The difference in flood depths between using the highest and lowest 30-day MSL reaches up to 1 m in 

some regionsareas of the city”.  

 

 



10. The comparison between rainfall and surge is done considering duration. How did the Authors handle 

discrete variables when assessing correlation? 

We thank the reviewer for raising this point. We have used the MATLAB function “corr” for calculating 

Kendall’s tau. When handling ties, this function uses an adjustment, calculating tau-b, which still varies in 

the range of -1 to +1 and leads to a stable estimation. Tau-b is calculated as follows: 

𝑇𝑎𝑢𝑏 =  
𝐶 − 𝐷

√(𝐶 + 𝐷 + 𝑇𝑥)(𝐶 + 𝐷 + 𝑇𝑦)
 

Where, 

C = number of concordant pairs 

D = number of concordant pairs 

𝑇𝑥 = number of pairs tied only in X 

𝑇𝑦 = number of pairs tied only in Y 

 

 

 

 

 

 

 

 

 


