
The manuscript “Generating Boundary Conditions for Compound Flood Modeling in a Probabilistic 

Framework” by Maduwantha et al. introduces a statistical framework designed to generate many synthetic 

but physically plausible compound events, including storm-tide hydrographs and rainfall fields, which can 

serve as boundary conditions for dynamic compound flood models. The framework is later applied to the 

case of Gloucester City in New Jersey. 

The topic of the manuscript is highly relevant for quantifying flood hazard, particularly water depth 

resulting from the joint occurrence of storm surge and rainfall. However, the proposed framework requires 

further clarification and additional information to assess its validity better and ensure reproducibility by 

others. 

We thank the reviewer for their constructive and insightful comments, which have helped enhance the 

overall quality of our manuscript. Below, we provide detailed responses to each point and outline how we 

plan to address them in the revised manuscript. The changes to the existing text are highlighted using track 

changes with line numbers in the original manuscript.  

 

 

The novelty of the proposed framework should be better highlighted. If I understand correctly, the essence 

of the proposed framework is to select joint events of NTR and rainfall from historical observations, and 

then fit a bivariate copula to generate “unseen” pairs. Pairs are used to amplify historical time series of 

NTR and rainfall over a short period of time with a temporal resolution consistent with the one required 

by the hydrodynamic model. An almost identical workflow was proposed by Xu, H et al (2024) "Combining 

statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a 

case study of Shanghai", Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-

2024. How does this framework differ from Xu et al 2024? How does this framework differ from previous 

studies? The novelty is hidden in the introduction. 

We thank the reviewer for raising this important point. While our framework shares some conceptual 

similarities with Xu et al. (2024), it introduces several methodological and practical novelties that 

distinguish it from previous studies.  

We agree that the general workflow of (i) modeling the joint probability distribution of flood drivers, (ii) 

sampling unseen pairs from the fitted distribution, (iii) assigning corresponding time series, and (iv) 

propagating them through a compound flood model is not unique to our study. This general approach has 

been adopted in several previous works (e.g., Serafin et al., 2019; Moftakhari et al., 2019; Zellou and 

Rahali, 2019; Kim et al., 2023; Liu et al., 2024; Xu et al., 2024), and we do not claim novelty in this regard. 

These studies, including Xu et al. (2024), were primarily tailored to generate design events with specified 

joint return periods (e.g., 100-yr,50-yr) of flood-driver peaks. This only supports an “event-based” hazard 

analysis, where one or a few design events are simulated through flood models, and the joint probability 

of the flood drivers is assumed to be the same as the probability of the flood response.  

In contrast, our framework is designed to generate a large and diverse set of synthetic storm events. These 

are then propagated through the hydrodynamic model to produce a broad ensemble of flood responses. 

Extreme value analysis is then applied directly to the resultant flood depths, thereby supporting a 

response-based flood hazard assessment. This shift from generating boundary conditions for event-based 



to response-based analysis is a key novelty of our work, as it allows us to capture the full spectrum of 

possible flood outcomes, rather than relying solely on the flood response of a single design event or a 

small subset of events. Additionally, our framework can also be used to support event-based hazard 

modelling by generating many diverse synthetic storm events with a unique (or known) joint return period. 

In addition to the objective differences, we have listed other key advancements of our modeling 

framework over Xu et al. (2024): 

1. Accounting for distinct storm types (populations), thereby capturing the unique dependence 

structures of flood-driver peaks 

2. Generation of total water level time series by combining scaled NTR, tides, and MSL consistent 

with seasonal variations 

3. Offers a more flexible framework, by incorporating different rainfall accumulation times and 

employing a two-way conditional sampling method that enables modeling of a wide range of 

storm events, including non-extremes 

 

To better highlight the novelty of our work, we have revised the following paragraphs in our introduction. 

L 75: Rescaling of total water level (or non-tidal residuals (NTR) time series) of observed events is another 

deterministic approach that leverages observed event data (Dawson et al., 2005; Kim et al., 2023; Xu et 

al., 2024). 

 

L 100: “Among the applications of uniform scaling of flooding drivers, Xu et al. (2024) applied the “same 

frequency amplification” method to construct a 200-yr storm surge hydrograph and rainfall hyetograph 

for their flood simulations. However, their approach was limited to point rainfall and assumed uniformly 

distributed rainfall across the catchment. Kim et al. (2023) proposed a framework for generating synthetic 

time series of RF fields and associated NTR by scaling time series of observed TC events. The framework 

was used to capture different spatial patterns of RF fields as this aspect was shown to significantly 

contribute to compound flood hazard (e.g., Gori et al., 2020). However, their analysis exclusively focused 

on TC events and the methodology only produces NTR time series and does not extend to producing 

complete storm-tide hydrographs; this is because it was applied to the Texas coast where the tidal range 

is small, and where compound flooding is primarily driven by TCs. Other types of storms can produce 

compound flooding in many other areas and tides often contribute significantly to the resulting still water 

levels.  

The existing statistical approaches that generate time-varying boundary conditions for dynamic compound 

flood models are primarily intended to construct design events with specified joint return periods (e.g., 

50-yr, 100-yr) (Serafin et al., 2019; Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 2023; Liu et 

al., 2024; Xu et al., 2024). This method supports the “event-based” flood hazard analysis, where a single 

(or only a few) synthetic event with known joint return periods is simulated through a flood model, and it 

is assumed that the (joint) probability of the flood drivers directly translates into the probability of the 

flood response. However, this neglects the range of potential different flooding scenarios that may arise 

from variations in temporal and spatial patterns, differences in the relative timing of multiple flood drivers, 

and other complex interactions (for example, tide-surge interactions).Additionally, their approach is 



designed for creating specific design events with known joint return periods of the peaks of the flood 

drivers, i.e., it supports “event-based” flood hazard analysis where one or few events with a given return 

period are routed through an inundation model and it is assumed that the joint probability of the drivers 

translates to the probability of the flood response. For a more complete characterization of flood hazard 

and risk, the flood response of many synthetic events needs to be modeled, allowing the derivation, for 

example, of return levels of flood depth at all points within the model domain (i.e., “response-based” flood 

hazard analysis).” 

 

 

In lines 502-503, the Authors say that  “Although measures are taken to prevent the generation of 

physically unrealistic events (see Section 4.3), it cannot be fully ruled out.” If this statement is true, then 

the Authors cannot claim that the framework generated physically plausible compound events (Abstract - 

Lines 16-17). This is quite an important point, and the Authors need to be transparent about the potential 

of the framework to generate physically plausible events or not. 

We thank the Reviewer for the comment. Our claim in the Abstract (Lines 16–17) that the framework 

generates physically plausible compound events comes from a statistical and process-based perspective 

since the framework explicitly preserves the dependence structures of peaks of flooding drivers and 

adheres to ranges and interdependencies of observed timeseries characteristics, as described in Section 

4.3.  

However, we acknowledge that we cannot fully eliminate the risk of generating extreme storm events that 

may be physically "implausible”, at least under current climate conditions (we believe this is not unique to 

our approach but true for most statistical methods that generate extreme unseen environmental data). 

For instance, when deriving peak NTR–RF combinations from the multivariate statistical model, the use of 

unbounded marginal distributions can yield large peaks that might be physically impossible to occur. 

However, the absence of such events in the observational record does not in itself indicate that the 

generated synthetic events are unrealistic, as the record length may be insufficient to capture their 

occurrence. Extremes are often wrongly perceived as impossible until they happen. Moreover, even with 

the assumption that uniform scaling produces realistic NTR and RF time series individually, it still requires 

the additional assumption that their combined representation is also physically realistic. Ideally, a direct 

one-to-one validation of synthetic events against observed events would provide a rigorous test of these 

assumptions, but such validation is impossible. To evaluate the performance of our framework, we 

compared the statistical properties of key time-series characteristics, including durations, peaks, 

intensities, and lag times between observations and synthetic events (Fig. 9).  

 

To further acknowledge these limitations, along with comments from another reviewer, we will add the 

following to the discussion: 

L 494: “One key assumption of the framework is that uniform scaling (also referred to as “same frequency 

amplification”) of flooding-driver time series creates a realistic compound event. This approach has been 

widely adopted in previous studies to construct design hydrographs and hyetographs (e.g., Serafin et al., 

2019; Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 2023; Liu et al., 2024; Xu et al., 2024). 



However, assessing whether each generated synthetic storm event is physically plausible is not possible. 

Instead, we validate the framework by comparing statistical properties of key time series characteristics 

between observations and synthetic events (Fig. 9).  

 

 

The data selection procedure and its effects on the results need further clarification. 

We appreciate the Reviewer’s comment and agree that the data selection procedure requires a clearer 

explanation. The framework is designed to generate high-resolution rainfall fields over the catchment and 

storm-tide hydrographs at the coastal boundary. For water levels, we use the nearest tide gauges to the 

study site (Philadelphia (St. ID: 8545240) and Philadelphia Pier 11-north (St. ID: 8545530)). Although some 

rainfall gauges exist near Gloucester City, the Philadelphia Airport rain gauge provides the longest hourly 

record (from 1900). For rainfall fields, radar-based products such as MRMS offer higher resolution and 

accuracy compared to other gridded RF data (1 km, hourly), but their temporal coverage is limited (MRMS: 

from 2012; Stage IV: from 2002). We therefore use AORC precipitation data (1979 to present), which 

balances high resolution (4 km, hourly) with sufficient temporal coverage (from 1979) to extract observed 

RF fields from many events. For identifying TC-induced POT (peak over threshold) events, we use 

HURDAT2, the most widely used and reliable TC catalog for the Atlantic basin. 

While using different datasets may introduce some changes to the joint probability distributions and 

resulting synthetic storm events, we emphasize that our choices represent the best available balance of 

resolution, accuracy, and temporal coverage. Therefore, we believe our results are robust. A full sensitivity 

analysis of synthetic storms to different datasets would be valuable, but it's beyond the scope of this study. 

 

We will revise the relevant sections in the original manuscript as follows: 

L 135: “For the statistical analysis, we consider RF and NTR as flood drivers. We use hourly water level data 

from the nearest tide gauges to the study site from the the National Oceanic and Atmospheric 

Administration (NOAA): tide gauges at Philadelphia (St. ID: 8545240) and Philadelphia Pier 11-north (St. 

ID: 8545530).  

L 144: “We use both gridded RF data from the Analysis of Period of Record for Calibration (AORC) from 

1979 to 2021 and hourly RF gauge data at the Philadelphia International Airport from 1900 to 2021 

(Kitzmiller et al., 2018). Although radar-based quantitative precipitation estimates, such as the Multi-Radar 

Multi-Sensor (MRMS) products, often provide higher accuracy compared to other gridded rainfall 

products, their temporal coverage is relatively short (Gao et al., 2021; Gomez et al., 2024). We use AORC 

rainfall data because of its availability from 1979 and its demonstrated higher accuracy among products 

with similar temporal coverage, while offering hourly data with ~4 km spatial resolution (e.g., Hong et al., 

2024; Kim and Villarini, 2022) AORC RF data has demonstrated higher accuracy compared to other gridded 

data sets while offering an hourly temporal resolution and ~4 km spatial resolution (e.g., Hong et al., 2024; 

Kim and Villarini, 2022).”  

 



First, synchronous NTR are selected, and later on astronomical tide and mean sea level are added. Did the 

Authors consider using the concept of skew surge? If not, why? In addition, tide-surge interaction is 

mentioned but not really discussed. How relevant is it? Would the concept of skew surge solve it? 

We thank the Reviewer for the comment. We agree that skew surge would implicitly account for tide–

surge interactions and offers a straightforward way to combine it with Tides. However, as skew surge 

provides only two values per tidal cycle (semidiurnal in the Philadelphia region), it cannot capture the full 

temporal evolution of NTR at hourly scales or the timing between flood drivers, which are critical for 

compound flooding (Gori et al., 2021). Previous studies (e.g., Terlinden-Ruhl et al., 2025) assumed a 

constant skew surge over a 12-hr period, which we consider insufficient to reproduce realistic hydrographs 

for our analysis. Additionally, estimating the duration of elevated NTR is difficult from skew surge alone, 

but it is a key time series characteristic that we want to examine and make sure it is consistent in the 

synthetic events.  

At the Philadelphia tide gauge, peak NTR often occurs 4–7 hours before the next high tide (see Fig.1 below). 

To account for this, we combined scaled NTR time series with tide time series using the observed lag 

between peak NTR and subsequent high tide of the sampled NTR event (see Section 4.3.3), ensuring that 

synthetic events preserve the same dynamics. 

 

Fig.1 The distribution of time difference between the peak NTR and the next high tide of observations 

(orange) and simulations (blue). Positive values indicate the peak NTR occurred before the next high tide.  

 

In addition to the explanation in the main manuscript in Section 4.3.3, we plan to further clarify this in the 

discussion by adding the following: 

L 465: “At the Philadelphia tide gauge, peak NTR often occurs 4–7 hours before the next high tide (see 

Fig.S2 in the supplementary material). To account for this, we combine scaled NTR time series with tide 

time series using the observed lag between peak NTR and subsequent high tide of the sampled NTR event 

(see Section 4.3.3).” 

 

 



Second, multiple rainfall measurements are considered. However, it is unclear how such measurements 

are aggregated and how this aggregation affects the dependence between NTR and rainfall, and so the 

fitted copula. Moreover, which rainfall measurement is used as a reference for the lag time between peak 

surge and peak rainfall? 

A detailed description of the rainfall (RF) data treatment is provided in our previously published work 

(Maduwantha et al., 2024), but we summarize the main steps in the Methods section. Rain gauges 

measure very local weather conditions. However, the assumption that such point RF quantities are 

uniformly distributed over the entire catchment could lead to mischaracterization of the flood hazard 

potential. Therefore, we apply a bias correction to the hourly RF gauge data to match the hourly basin-

averaged RF quantities calculated from AORC. The quantile mapping method is used for the bias 

correction, fitting both hourly measured gauge data and hourly AORC basin-averaged data to gamma 

distributions. This procedure allows us to increase the POT sample size, thereby reducing uncertainty in 

the marginal distributions. As discussed in Maduwantha et al. (2024), the correlation between peak NTR 

and rainfall shows nonstationarity with an increase in recent decades. Hence, we estimated the copula 

parameters using POT events from the last 30 years, ensuring that the dependence structure reflects 

current climate conditions, and we avoid potential underestimation of the flood hazard.  

Lag times and other time-series characteristics (e.g., durations, peaks, and intensities) are derived directly 

from the historical events, using AORC rainfall fields combined with tide gauge records (those are then 

scaled to match the target peaks sampled from the NTR-RF joint distribution). This part is explained in the 

original manuscript from L 185 to L 190. 

 

To further clarify how the aggregation of RF gauge data and AORC data affects dependence, we will revise 

the following paragraph:  

L 147: “Rain gauges measure highly localized rainfall. Assuming that these point measurements occurred 

uniformly distributed across the entire catchment can misrepresent the compound flood hazard. To 

address this, we apply a bias correction to the hourly gauge data so it matches the basin-averaged hourly 

rainfall estimates derived from AORC. This correction is performed using the quantile mapping method, in 

which both the gauge-based and AORC-based rainfall distributions are fitted to gamma functions. To 

leverage the long-term in-situ observations and obtain more robust results from the statistical analysis, 

we apply a bias correction to the hourly RF gauge data, to match with the hourly basin-average RF values 

calculated from AORC. The bias correction is performed using the quantile mapping method, fitting both 

the hourly measured gauge data and the hourly AORC basin-average data to gamma distributions (for 

more details see Maduwantha et al. (2024)).” 

We plan to add the following: 

L 171: “Maduwantha et al. (2024) found significant non-stationarity in Kendall’s τ between peak NTR and 

RF over the analysis period. To capture most recent climate conditions and avoid underestimating 

compounding effects, we model dependence using only the last 30 years of data.” 

 



Finally, the distinction between TC and non-TC leads to copulas with different asymmetries. How do the 

Authors justify such differences? What happens when the TC and non-TC are combined together? I would 

say this is mostly relevant in paragraph 5.3 “Event Generation Process”. How do the Authors know that the 

106-year event (which is also quite an interesting number!) corresponds to a TC? Given the length of the 

data, the 106-year event is inferred from the copula and not observed. Regardless of how the Authors 

track whether it is a TC or a non-TC, how sensitive are the results to the type of event? For example, what 

is the difference between a TC and non-TC event with the same return period? What about in terms of the 

drivers’ magnitude and water depth? I suggest adding some sensitivity analysis to the assumptions made, 

including the lag time between peak rainfall and peak surge. 

We thank the Reviewer for the comment. A key objective of our framework is to account for the distinct 

dependence structures of different storm types (TCs vs. non-TCs), which are often overlooked when all 

POT events are treated as a single population. In our analysis, peak NTR and peak RF were found to be 

more strongly correlated in TC-induced events than in non-TC events, in line with previous studies (e.g., 

Kim et al., 2023). Therefore, as the reviewer mentioned, TC and non-TC lead to copulas with different 

asymmetries. We derive 5,000 combinations of peak NTR and RF by sampling from the fitted copulas to 

each sample such that the relative proportion of extremes is consistent with their historical occurrence. 

351 combinations from the copulas fitted to the TC sample and 4,649 from the fitted copulas to the non-

TC sample. 

The illustrative “106-year event” presented in the paper was drawn from the TC sample (one of the 351 

combinations). Since the events are generated from the fitted copulas through the Monte Carlo approach, 

the resulting combinations do not correspond to standard return periods (e.g., exactly 50- or 100-year), 

instead, reflect the joint probability distribution of peak NTR and RF. 

Based on the analysis we conducted in section 4.2, we found no significant differences in statistical features 

nor various time series characteristics in NTR and RF from TC events and non-TC events. Given these 

results, we conclude that generating the event time series (i.e., water level hydrographs and RF 

hyetographs) separately for the two storm types would produce similar results compared to the ones we 

derive without stratifying. Yet, we acknowledge that with sufficient data, the most effective approach 

would be to use observed time series of flood drivers from TC events exclusively for generating synthetic 

TC events, while using those from non-TC events separately to generate synthetic non-TC events.  

The NTR and RF peak magnitudes of an event with the same joint probability can differ substantially 

between storm types and depending on where it lies along the probability isoline. For example, the 

selected event (NTR = 1.75 m; 18-h RF = 80 mm) has a ~106-yr joint return period when joint probability 

distributions of TC and non-TC storms are combined. The same event has a ~111-yr joint return period in 

the TC sample and ~2431-yr joint return period in the non-TC sample. Conversely, an event with relatively 

lower peaks (NTR = 1.0 m; 18-h RF = 50 mm) has a ~5-yr joint return period in the non-TC sample but ~15-

yr joint return period in the TC sample. In conclusion, small to moderate events are more frequent in the 

non-TC storms, whereas the most extreme events are more likely generated by TCs. This aspect is 

discussed in detail in Maduwantha et al. (2024).  

As discussed in L 464, lag times between peak NTR and peak RF can vary considerably, and more extreme 

events tend to exhibit shorter lag times (see Figs. 4 (e) and 4 (i)). However, this behavior is evident in both 

TC and non-TC events. To reflect this behavior in synthetic events, we select nearby historical events for 

scaling and adopt the associated lag time from one of the selected time series. This ensures that synthetic 



compound events retain the same timing dynamics as similar observed events (See Fig. 9). Extending this 

analysis to evaluate how differences between storm types influence flood depths would require flood 

model simulations of a broader set of events, which is beyond the scope of this study. 

 

For further clarification, the following sentences will be revised: 

L 239: “Target events are derived from copulas fitted to the TC sample and the non-TC sample. If the target 

event is derived from a copula fitted to TC (non-TC) events, we sample the month from the distribution of 

TC (non-TC) events (Fig. 2 (a)). Once the month is selected, we randomly sample a MSL value and a tidal 

signal segment from the selected month (Fig. 2 (g)).” 

 

The following will be added: 

L 420: “The joint probability distributions of peak NTR and peak RF of TC and non-TC storms are 

substantially different. Small to moderate compound events are more frequent in the non-TC storms, 

whereas the most extreme compound events are more likely generated by TCs. This aspect is further 

discussed in Maduwantha et al. (2024). 

 

 

 

Minor comments. 

 

The “target event” is never explicitly defined, and from my personal perspective, this creates some 

confusion. How is it how is it selected? 

We thank the reviewer for raising this point. We refer to a “target event” as a synthetic peak NTR–RF 

combination selected from the 5,000 combinations generated via Monte Carlo sampling of the fitted 

copulas. While some studies use the term “design event”, we used “target event” since our framework 

does not rely on standard design return periods (e.g., 50- or 100-year). We will define it in L 179.  

L 179: “We generate an event set of 5,000 combinations of NTR and RF (“target events”) by sampling from 

the fitted copulas such that the relative proportion of extremes is consistent with the empirical 

distribution.” 

 

ETC and non-TCI seem to be used interchangeably. I suggest checking the notation for consistency. 

Checked and will be corrected. 

 



Line 409: the Authors say that flood depth varies in some regions. However, the case study seems to 

concern only one region. I would suggest checking this sentence. 

The term region refers to the different areas within the catchment. We will revise the sentence as follows: 

“The difference in flood depths between using the highest and lowest 30-day MSL reaches up to 1 m in 

some regionsareas of the city”.  

 

 

The comparison between rainfall and surge is done considering duration. How did the Authors handle 

discrete variables when assessing correlation? 

We thank the reviewer for raising this point. We have used the MATLAB function “corr” for calculating 

Kendall’s tau. When handling ties, this function uses an adjustment, calculating tau-b, which still varies in 

the range of -1 to +1 and leads to a stable estimation. Tau-b is calculated as follows: 

𝑇𝑎𝑢𝑏 =  
𝐶 − 𝐷

√(𝐶 + 𝐷 + 𝑇𝑥)(𝐶 + 𝐷 + 𝑇𝑦)
 

Where, 

C = number of concordant pairs 

D = number of concordant pairs 

𝑇𝑥 = number of pairs tied only in X 

𝑇𝑦 = number of pairs tied only in Y 

 

 

 

 

 

 

 

 


