
This manuscript presents a modeling framework for evaluating the joint influence of non-tidal residuals 

(NTR), rainfall (RF), and mean sea level variability on coastal flooding in the Gloucester City area, using the 

SFINCS hydrodynamic model and a copula-based statistical approach. The topic is timely and relevant, and 

the study is generally well-structured with a strong emphasis on scenario-based risk quantification. 

However, several methodological choices—particularly regarding data selection, parameter thresholds, 

and model assumptions—require further clarification or justification. Issues such as the generalization of 

AORC performance, the treatment of tropical versus non-tropical events, and simplifications in the SFINCS 

physics raise concerns about the robustness and generalizability of the findings. Despite these limitations, 

the study offers valuable insights into compound flood risk assessment. Detailed comments are provided 

below, which I hope will be useful in clarifying and strengthening the manuscript: 

We thank the reviewer for their constructive and insightful comments, which have helped enhance the 

overall quality of our manuscript. Below, we provide detailed responses to each point and outline how we 

plan to address them in the revised manuscript. The changes to the existing text are highlighted using track 

changes with line numbers in the original manuscript.  

 

 

Page 5, Line 146: The sentence claiming that AORC has “higher accuracy” than other gridded rainfall 

datasets seems too general. For example, radar-based products like MRMS have been shown to perform 

as well as or better than AORC in some events, including Hurricane Harvey (e.g., Gao et al., 2021; Gomez 

et al., 2024). I suggest the authors either include MRMS in their comparison or rephrase the sentence to 

clarify that AORC’s performance advantage may depend on the region or event type. 

We thank the reviewer for bringing up this point and agree that MRMS products have demonstrated higher 

accuracy than many other datasets, while offering higher resolution (1 km and hourly for historical). 

However, our primary reason for selecting AORC over MRMS rainfall data is its longer temporal coverage 

(1979 to present), which allows the extraction of rainfall fields for a sufficiently large number of observed 

events required in our event-generation process. In contrast, MRMS precipitation data are only available 

from 2012 onwards (NOAA/NSSL, 2023), which limits their applicability for our framework.   

We will revise the relevant section in the original manuscript as follows: 

L135 : “We use both gridded RF data from the Analysis of Period of Record for Calibration (AORC) from 

1979 to 2021 and hourly RF gauge data at the Philadelphia International Airport from 1900 to 2021 

(Kitzmiller et al., 2018). Although radar-based quantitative precipitation estimates, such as the Multi-Radar 

Multi-Sensor (MRMS) products, often provide higher accuracy compared to other gridded rainfall 

products, their temporal coverage is relatively short (Gao et al., 2021; Gomez et al., 2024). We use AORC 

rainfall data because of its availability from 1979 onward and its demonstrated higher accuracy among 

products with similar temporal coverage, while offering hourly data with ~4 km spatial resolution (e.g., 

Hong et al., 2024; Kim and Villarini, 2022) AORC RF data has demonstrated higher accuracy compared to 

other gridded data sets while offering an hourly temporal resolution and ~4 km spatial resolution (e.g., 

Hong et al., 2024; Kim and Villarini, 2022). To leverage the long-term in-situ observations and obtain more 

robust results from the statistical analysis, we apply a bias correction to the hourly RF gauge data, to match 

with the hourly basin-average RF values calculated from AORC. The bias correction is performed using the 



quantile mapping method, fitting both the hourly measured gauge data and the hourly AORC basin-

average data to gamma distributions (for more details see Maduwantha et al. (2024)).” 

 

Additional Ref. 

NOAA/National Severe Storms Laboratory. (2023). Multi-Radar Multi-Sensor (MRMS) system. National 

Oceanic and Atmospheric Administration. https://www.nssl.noaa.gov/projects/mrms/ 

 

 

Page 6, Line 160-166: In Section 4.1, several choices such as the 3-day pairing window for NTR and RF, the 

5-day declustering period, and the 350 km radius for identifying TC events are not clearly explained. It 

would be helpful to clarify whether these are based on physical reasoning, prior studies, or simply 

assumptions made for this analysis. Providing brief justifications or references would improve 

transparency and reproducibility. 

Both the choices of peak pairing window and declustering windows depend on the location-specific storm 

climatology and hydrologic response of the catchment. The choice of a 3-day pairing window for NTR and 

RF was based on the typical timescales over which storm surge (here represented by NTR) and rainfall 

peaks can occur in a compound flood event. We manually checked the time series of RF and NTR of POT 

(peaks over threshold) events and found that a 3-day pairing window was sufficient to capture both NTR 

and RF peaks of most events. Using a longer window could capture peaks from two different storm events 

and treat them as a single event in the bivariate frequency analysis. Furthermore, a 3-day pairing window 

has been found to be appropriate in similar previous studies (Couasnon et al., 2020; Kim et al., 2023; 

Maduwantha et al., 2024).  

Different declustering windows have been used in previous studies to assure sampled extreme events are 

independent (e.g., 3 days (Haigh et al., 2016), 7 days (Santos et al., 2021), 10 days (Kim et al., 2023), and 

14 days (Terlinden-Ruhl et al., 2025). Longer declustering windows are often adopted when the influence 

of river discharge is present, as its effects can last several days (Terlinden-Ruhl et al., 2025). Considering 

the duration of the storm events at our tide gauge location of interest, we use a 5-day window, since 

elevated NTR rarely lasted more than 5 days. 

Previous studies have applied various search radii to identify TC events using a similar approach to ours 

(e.g., ~400 km (Kim et al., 2023) and 500 km (Towey et al., 2022)). In this study, we tested the sensitivity 

of the correlation between peak NTR and peak accumulated rainfall to the TC search radius, following Kim 

et al. (2023). Increasing the search radius captures more nearby TC tracks but also introduces events that 

are too distant to influence flood drivers at the study site, thereby reducing the overall correlation between 

rainfall and NTR of the TC sample. This is also influenced by TC intensity; for example, a Category 5 

hurricane is more likely to generate significant storm surge even when passing far from the tide gauge, 

compared to a Category 1 hurricane. In our analysis, we considered all cyclones listed in the HURDAT2 

database as TC events, regardless of their sustained wind speed or whether they were hybrid systems 

during part of their lifetime. We therefore selected a 350 km search radius, as it provided a higher 

correlation between drivers while still retaining a reasonable number of TC events in the sample.  



To support these choices in the main manuscript, we add the following paragraph: 

L 415: “A detailed description of the procedure for estimating the joint probability distribution applied in 

this study is provided in Maduwantha et al. (2024). When applying the two-way sampling to extract POT 

events, we use a 3-day pairing window to capture peak NTR and RF, following similar studies (Couasnon 

et al., 2020; Kim et al., 2023). We also manually checked the RF and NTR time series of POT events and 

found that a 3-day window was generally sufficient to capture both peaks. To ensure event independence 

within the POT samples, previous studies have applied various declustering windows (e.g., 3 days (Haigh 

et al., 2016), 7 days (Santos et al., 2021), 10 days (Kim et al., 2023), and 14 days (Terlinden-Ruhl et al., 

2025)). Longer declustering windows are often adopted when the influence of river discharge is present, 

as its effects can persist for several days (Terlinden-Ruhl et al., 2025). In this study, we use a 5-day 

declustering window (2.5 days before and after the event peaks), as elevated NTR rarely lasts more than 5 

days at the Philadelphia tide gauge location. Previous studies have applied various search radii to identify 

TC events, such as ~400 km (Kim et al., 2023) and 500 km (Towey et al., 2022). In this study, we tested the 

sensitivity of the correlation between peak NTR and peak accumulated rainfall to the TC search radius, 

following Kim et al. (2023). Increasing the search radius captures more nearby TC tracks but also introduces 

events that are too distant to strongly influence flood drivers at the study site, thereby reducing the overall 

correlation between rainfall and NTR of the TC sample. We selected a 350 km search radius, as it leads to 

a higher correlation between flood drivers while still retaining a reasonable number of TC events in the 

sample.” 

Additional Refs:  

Towey, K. L., Booth, J. F., Rodriguez Enriquez, A., and Wahl, T.: Tropical cyclone storm surge probabilities 

for the east coast of the United States: a cyclone-based perspective, Nat. Hazards Earth Syst. Sci., 22, 1287–

1300, https://doi.org/10.5194/nhess-22-1287-2022, 2022. 

Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. 

J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, 

Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020. 

Terlinden-Ruhl, L., Couasnon, A., Eilander, D., Hendrickx, G. G., Mares-Nasarre, P., and Antolínez, J. A. Á.: 

Accelerating compound flood risk assessments through active learning: A case study of Charleston County 

(USA), Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025, 2025. 

 

 

 

 

 

 

 



Page 8, Line 217-228: Could the authors clarify the physical justification for uniformly scaling entire NTR 

and RF time series based solely on peak values? For example, does this approach preserve key timing or 

intensity ratios in cases with asymmetrical hydrographs or localized RF bursts? 

We thank the reviewer for raising this important point. In flood hazard modeling, the approach of scaling 

the observed flood driver time series to match design peaks and then considering them as design 

hydrographs/hyetographs with known return periods is already widely used. Examples include 

applications for NTR (Kim et al., 2023; Amorim et al., 2025), RF (Li et al., 2020; Kim et al., 2023), and 

streamflow (Yue et al., 2002). The assumption is that uniform scaling (also referred to as “same frequency 

amplification” in some studies) of the flood-driver time series produces another realistic time series.  

Even with asymmetrical NTR time series/hyetograph shapes, our linear scaling approach preserves the 

relative timing and intensity ratios of sub-peaks to the main peak, which is a key factor in determining the 

resultant flooding. Linearly scaling a storm-tide hydrograph where tidal influence is more visible would 

create an unrealistic total water level time series. However, here we utilize NTR time series for scaling and 

then add tides and MSL to the scaled NTR time series in a consistent manner with their seasonal variability 

accounted for. Although we cannot validate synthetic events on a one-to-one basis against real events, we 

compared statistical properties of key time series characteristics, such as durations, peaks, intensities, and 

lag times, between observations and synthetic events (Fig. 9). These comparisons show that the synthetic 

events preserve the dependencies found in the observed events. 

We acknowledge that scaling smaller events to much higher peaks can still produce unrealistic storm 

events. To mitigate this, we select observed events whose peak values are close to the target peak, so that 

the scaling factor remains close to 1 in most cases (with medians, for NTR: 1, for RF: 0.99), and we impose 

an upper limit on the scaling factor when generating events.  

To clarify this further, and based on another reviewer's comments, we will revise the discussion section as 

follows: 

L 493: “One key assumption of the framework is that uniform scaling (also referred to as “same frequency 

amplification”) of flood-driver time series creates a realistic compound event. This approach has been 

widely adopted in previous studies to construct design hydrographs and hyetographs (e.g., Serafin et al., 

2019; Moftakhari et al., 2019; Zellou and Rahali, 2019; Kim et al., 2023; Liu et al., 2024; Xu et al., 2024). 

However, assessing whether each generated synthetic storm event is physically plausible is not possible.  

Instead, we validated the framework by comparing statistical properties of key time series characteristics 

between observations and synthetic events (Fig. 9).  Another One key limitation of the proposed 

framework is that certain characteristics of synthetic events, such as RF duration and lag times, are limited 

to the observed values. To generate more diverse lag times, the observed lag times could be fitted to a 

parametric distribution (or alternatively to a copula that accounts for the dependence between peak 

values and lag times) and sample lag times from the fitted distribution during the event generation 

process. This would introduce unobserved lag times into the synthetic events, enhancing their diversity. 

Additionally, the stratification of POT events utilizes a simple yet commonly applied approach (e.g., Kim et 

al., 2023; Maduwantha et al., 2024) as discussed in Section 4.1. However, this method may fail to capture 

all TCs, particularly those that produce significant RF and storm surges from distances greater than 350 

km. Such events are classified as non-TC events, meaning the analysis in Section 4.2 may not fully reflect 

the true characteristics of TC and non-TC events. “ 



Page 10, Line 273-275: The use of SFINCS is well-suited for handling large scenario sets; however, two 

model limitations warrant further discussion. First, SFINCS does not explicitly model nonlinear tide–surge 

interactions, which can influence the timing and amplitude of water levels in estuarine environments (e.g., 

Arns et al., 2020; Dullaart et al., 2023). Second, the omission of advection in the local inertia formulation 

may affect surge dynamics in narrow tidal channels like those surrounding Gloucester City. I recommend 

the authors provide a brief sensitivity analysis or comparison illustrating the impact of including vs. 

excluding the advection term, as SFINCS offers both options (Leijnse et al., 2021). 

We agree with the reviewer that the tide-surge interaction can produce important effects on estuarine 

water levels. However, the limitations of SFINCS simulating these effects do not affect our analyses since 

the boundary condition of our model is placed along the Delaware, near the coastline of our study site. 

Therefore, we are not simulating the generation and propagation of the surge into the estuary, in which 

interaction between tides and surges occurs. Rather, we account for the tide-surge interaction within the 

presented framework to generate the boundary conditions for the flood model. The tide-surge interaction 

is accounted for by considering the dependency between NTR peaks with tidal high water peaks (i.e., the 

time difference between the NTR peak and the peak of the tide).  As mentioned in L: 235 in the original 

manuscript, we use the observed time difference between peak NTR and the subsequent high tide of the 

sampled NTR time series to combine it with the sampled tidal signal. Therefore, the synthetic events reflect 

the effect of tide surge interaction, which was observed in the historical events. Fig. 1 below shows a 

histogram of the time difference between the peak NTR and the subsequent high tide of observed events 

(orange) and synthetic (blue) events.  

 

Fig.1 The distribution of time difference between the peak NTR and the next high tide of observations 

(orange) and simulations (blue). Positive values indicate the peak NTR occurred before the next high tide.  

As requested by the reviewer, to assess the potential impact of omitting the advection term in the flood 

model runs, we conducted an additional set of simulations with the advection term enabled. The results 

(see Fig.2 below) show negligible differences in resultant flooding compared to our original simulations 

without advection, even in the narrow tidal channels surrounding Gloucester City. Given these results and 

the fact that the main conclusions of our study are based on the statistical framework of boundary 

condition generation rather than fine-scale hydrodynamic sensitivities, we are confident that the omission 

of the advection term does not largely affect the main results and conclusions of the paper.   



 

To further clarify this and address a related concern raised by another reviewer, we will add the following 

sentences. 

L 465: “At the Philadelphia tide gauge, peak NTR often occurs 4–7 hours before the next high tide (see 

Fig.S2 in the supplementary material). To account for this, we combine scaled NTR time series with tide 

time series using the observed lag between peak NTR and subsequent high tide of the sampled NTR event 

(see Section 4.3.3).” 

 

We will revise the following sentence. 

L 274: The model is run with the advection term neglected, solving the local inertia equations (we tested 

the sensitivity of the results when the advection term was enabled, but changes were negligible).  

 

 



 

Fig 2. Changes in flood depths associated with variability when the advection term is enabled, in MSL (left) 

and Tide (right) of a selected 0.01 AEP most-likely event. (a) When considering the lowest 30-day MSL, (b) 

when considering the tidal segment with the lowest high tide, (c) when considering the highest 30-day 

MSL, (d) when considering the tidal segment with the highest high tide, (e) the difference between (a) and 

(c), (f) difference between (b) and (d). (X, Y coordinates system: UTM- zone 18N). 

 

 



Page 11, Line 300-301: The authors use a fixed NTR threshold of 0.63 m to yield ~5 exceedances per year, 

which is reasonable and aligns with past compound flood studies. However, the threshold selection could 

be strengthened by applying one of several recent automated, data-driven approaches developed for POT 

analysis, such as the Sequential Goodness-of-Fit method (Bader et al., 2018), the Extrapolated-Height 

Stability method (Liang et al., 2019), the L-moment Ratio Stability method (Silva Lomba & Fraga Alves, 

2020), or the comparative multi-method approach applied in a coastal flood design context by Radfar et 

al. (2022). 

We thank the reviewer for the comment and agree that more advanced approaches, such as those 

mentioned, offer more robust methods for objectively determining thresholds. However, these methods 

are primarily designed to optimize the fit of the distribution tail. In the context of compound flooding, 

extreme flood events are not always driven by extreme peak flood driver combinations. With a suitable 

combination of timing, duration, intensities, and tidal conditions, extreme flooding can also occur under 

moderate peak NTR and RF combinations (Santamaria et al., 2025). To generate synthetic storm events 

with moderate NTR and RF peaks, the copulas must therefore be fitted using POT events with flood 

potential and still large enough to be well described by a GPD (Generalized Pareto Distribution). 

Accordingly, we selected a threshold that balances both, small enough to capture moderate conditions, 

yet large enough to represent the upper tail of the distribution. Rather than applying more robust 

threshold selection methods, we followed the approach used in similar studies and considered the average 

number of historical flood events to guide our choice.  

 

We will add the following text to the manuscript. 

L 161: Recent data-driven threshold-selection methods such as the Sequential Goodness-of-Fit method 

(Bader et al., 2018), the Extrapolated-Height Stability method (Liang et al., 2019), L-moment ratio stability 

(Silva Lomba & Fraga Alves, 2020), and a comparative multi-method approach (Radfar et al., 2022) provide 

robust POT thresholds but primarily optimize tail fit. Extreme compound flood events are not necessarily 

generated by extreme flood driver peaks. With favorable timing, duration, and tidal conditions, extreme 

flooding can occur even under moderate flood-driver conditions (Santamaria et al., 2025). Therefore, we 

set thresholds on NTR and RF, targeting an average of five exceedances per year to extract POT events, 

following similar studies (Jane et al., 2020; Kim et al., 2023). 

 

 

Page 12, Line 328-336: While the authors maintain stratification for joint probability estimation, they 

combine TC and non-TC time series for event generation based on overlapping confidence intervals and 

similar time series shapes. Given the well-established physical differences between tropical and 

extratropical systems (precipitation structures, spatial scales, storm tracks), could the authors clarify how 

confident they are that this approach adequately preserves the distinct characteristics of these storm 

types? 

We agree that it is well established that tropical cyclones, extratropical cyclones, and other non-cyclonic 

locally generated systems differ in terms of physical properties. However, for our study area, factors such 

as the limited sample size of TC events, the small size of the catchment, and the hydrologic response of 



the upstream Delaware River reduce the extent to which the inherent large-scale storm characteristics are 

reflected in the time series of NTR and basin-average rainfall.  

The overlapping confidence intervals of Kendall’s tau, along with comparisons of distribution parameters 

fitted to the time series characteristics of RF and NTR, indicate no statistically significant differences 

between the TC and non-TC samples (see Fig. 6). Similarly, the shapes of the NTR and basin-average RF 

time series produced by TCs are similar to those generated by non-TC events (see Fig. 7). Based on these 

results, we conclude that generating event time series (i.e., water-level hydrographs and RF hyetographs) 

separately for the two storm types would yield results similar to those obtained without differentiating 

between them. However, we acknowledge that in other locations, significant differences in time series 

characteristics between TC and non-TC samples may exist, especially when model domains are large. In 

those cases, we recommend conducting event generation separately for each storm type. This limitation 

is already discussed in the original manuscript (Section 6, Lines 440–455). 

 

 

 

Additionally, given the limited number of TC events, how do the authors assess whether their analysis has 

sufficient statistical power to detect meaningful differences? Would alternative approaches like physics-

based conditioning (e.g., storm track or seasonal constraints) potentially better preserve known 

meteorological distinctions while addressing sample size limitations? 

We thank the reviewer for this thoughtful comment. We acknowledge that the limited number of TC 

events in our dataset reduces the statistical power to detect subtle differences in time series characteristics 

between TC and non-TC samples. As noted in the manuscript (Section 6, Lines 440–455), this is recognized 

as a limitation of our application. 

Methods involving physics-based models to generate synthetic flood drivers from TC events (often using 

synthetic TC tracks) can better preserve the inherent spatio-temporal characteristics of storms (e.g., 

Emanuel et al., 2006; Gori et al, 2020). However, these methods are computationally demanding, as they 

require both hydrologic and hydrodynamic modeling, which limits their ability to generate large numbers 

of events. We agree that such approaches could help address the limited TC sample size in our study. 

Implementing this type of framework is beyond the scope of the current work, but we plan to incorporate 

it in future studies. 

We plan to add the following sentences to the main manuscript. 

L 452: “One option to overcome the limited TC sample size in our analysis is employing physics-based 

models to generate time series of flood drivers from synthetic TC tracks (e.g., Emanuel et al., 2006; Gori 

et al., 2020). We plan to explore this in future work.” 

 

 

 



Page 20, Figure 10: The authors demonstrate substantial flood depth due to MSL and tidal variability using 

a single most-likely 0.01 AEP event. While this effectively illustrates the potential importance of these 

factors, could the authors comment on whether this sensitivity pattern is representative across different 

event types and return periods? 

The most-likely 0.01 AEP (100-year return period) event was selected to show an illustrative example to 

highlight the potential influence of MSL and tidal variability on resultant flooding. While traditional 

approaches often neglect this variability in their modeling frameworks, we explicitly account for it. We use 

the 0.01 AEP, as it is commonly adopted in flood hazard mapping for planning purposes (e.g., FEMA Special 

Flood Hazard Areas; FEMA, 2020). 

We agree that this single event may not fully represent the sensitivity patterns across the full range of 

event types and return periods. In a separate study (Santamaria et al., 2025, under review), we simulated 

flooding for the same study site using a set of 5,000 synthetic storm events that were generated from the 

developed statistical framework. Resultant flooding shows a wide range of variability, even among events 

with similar joint return periods. However, attributing this variability to a single factor like MSL or tides is 

challenging due to the complexity of their interactions. This is discussed in detail in Santamaria et al. 

(2025).  

 

For discussing this in the manuscript, we will modify the section starting from L 488 as follows: 

L488: “Analyzing only the most likely event, even if it appears to be the most plausible based on 

observations, does not capture the range of flood levels that could be generated by different combinations 

of flood drivers (i.e., NTR and RF) with different time series properties. Therefore, the flood model 

simulations presented here are aimed at evaluating the importance of explicitly accounting for the 

variability of MSL and tides, and not to produce comprehensive probabilistic flood maps. In a separate 

study (Santamaria et al., 2025), we simulated flooding of 5,000 synthetic storms at this site and found large 

variation in resultant flooding, even for events with similar joint return periods. However, attributing this 

variability to a single factor like MSL or tides is challenging due to the complexity of their interactions.”  

 

Additional Ref. 

Federal Emergency Management Agency (FEMA). (2020). Flood Insurance Study Guidelines: Guidelines 

and Specifications for Flood Hazard Mapping Partners. https://www.fema.gov/flood-maps/guidance-

partners/guidelines-specifications 

Santamaria-Aguilar, S., Maduwantha, P., Enriquez, A. R., and Wahl, T.: Large discrepancies between event- 

and response-based compound flood hazard estimates, EGUsphere [preprint], 

https://doi.org/10.5194/egusphere-2025-1938, 2025. 

 

 

 



Additionally, given that the most pronounced effects occur along the Delaware River and Newton Creek 

boundaries, could the authors discuss whether the model's spatial resolution, boundary condition 

placement, or coastal setup might be influencing the magnitude of these sensitivities? 

In the flood model, the coastal boundary is placed along the Delaware River to match the water levels at 

the Philadelphia tide gauge and includes the entire catchment of Newton Creek to capture all contributing 

runoff. We used the Coastal National Elevation Database (CoNED) digital elevation model with a horizontal 

resolution of 1 meter and a vertical accuracy of 10 cm. We use the subgrid approach of SFINCS with a dual 

resolution of 10m and 1m. This level of detail is relatively high compared to many other compound flood 

hazard assessments, which often use coarser grids. Given the size of the Delaware River and surrounding 

creeks, we believe the model adequately resolves hydrodynamics and that the observed sensitivities 

reflect physical processes rather than numerical limitations. 

 

 

Refs.: 

Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P., Niehüser, S., & Jensen, J. (2020). 

Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts. Nature 

Communications, 11, 1918. 

Dullaart, J. C. M., Muis, S., de Moel, H., Ward, P. J., Eilander, D., & Aerts, J. C. J. H. (2023). Enabling dynamic 

modelling of coastal flooding by defining storm tide hydrographs. Natural Hazards and Earth System 

Sciences, 23, 1847–1862. 

Leijnse, T., Dazzi, S., Yu, D., & Bates, P. D. (2021). Efficient coastal flood hazard mapping with a 2D non-

inertia model. Coastal Engineering, 170, 103994. 

Bader, B., Yan, J., & Zhang, X. (2018). Automated threshold selection in extreme value analysis via 

goodness-of-fit tests with adjustment for false discovery rate. Annals of Applied Statistics, 12(1), 310–329. 

Liang, B., Shao, Z., Li, H., Shao, M., Lee, D., 2019. An automated threshold selection method based on the 

characteristic of extrapolated significant wave heights. Coast. Eng. 144, 22–32. 

Radfar, S., Shafieefar, M., & Akbari, H. (2022). Impact of copula model selection on reliability-based design 
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Silva Lomba, J., Fraga Alves, M.I., 2020. L-moments for automatic threshold selection in extreme value 

analysis. Stoch. Environ. Res. Risk Assess. 34 (3), 465–491. 

Gao, S., Zhang, J., Li, D., Jiang, H., & Fang, Z. N. (2021). Evaluation of multiradar multisensor and stage IV 

quantitative precipitation estimates during Hurricane Harvey. Natural Hazards Review, 22(1), 04020057. 

Gomez, F. J., Jafarzadegan, K., Moftakhari, H., & Moradkhani, H. (2024). Probabilistic flood inundation 

mapping through copula Bayesian multi-modeling of precipitation products. Natural Hazards and Earth 

System Sciences, 24(8), 2647-2665. 

 


